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PROPERTIES OF THE RESOLVENT OF THE LAPLACE

OPERATOR ON A TWO-DIMENSIONAL SPHERE

AND A TRACE FORMULA

A.I. ATNAGULOV, V.A. SADOVNICHY, Z.YU. FAZULLIN

Abstract. In the work we study the properties of the resolvent of the Laplace-Beltrami
operator on a two-dimensional sphere 𝑆2. We obtain the regularized trace formula for the
Laplace-Beltrami operator perturbed by the operator of multiplication by a function in
𝑊 1

2 (𝑆
2).

Keywords: resolvent, kernel, Laplace-Beltrami operator, perturbed operator.

Mathematics Subject Classification: 47B10, 47B15, 47A55

1. Introduction

Let

𝐻0 = − 1
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𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃
− 1

sin2 𝜃

𝜕2

𝜕𝜙2

be the Laplace-Beltrami operator on a two-dimensional sphere 𝑆2. The work is devoted to the
studying the spectral properties of a perturbation of this operator 𝐻𝑢 = 𝐻0𝑢 + 𝑉 𝑢. Namely,
it is devoted to proving the Gel’fand-Levitan formula for the regularized trace of the Laplace-
Beltrami operator perturbed by the operator 𝑉 of the multiplication by a function 𝜈(𝜔), 𝜔 ∈ 𝑆2.
The trace of the Laplace-Beltrami operator perturbed by an odd function 𝜈(𝜔) ∈ 𝐶∞(𝑆2)
was obtained first in 1993–1996 in the works [1], [2] (although the problem was proposed by
I.M. Gel’fand in 1962). We note that the conditions of the oddness and belonging to the class
𝐶∞(𝑆2) for the function 𝜈(𝜔) were essential for the method employed in these works. The next
step in this problem was made in works [3]–[5] based on a way of summing the second correctors
of the perturbation theory. In these works, the classic Gel’fand-Levitan formula was obtained
for arbitrary function (not necessarily odd) 𝜈(𝜔) of a finite smoothness, and in the work [5] the
only condition assumed was 𝜈(𝜔) ∈ 𝐶2(𝑆2).

As it is turned out, for further weakening of the conditions for the perturbation 𝜈(𝜔) one
needed a more detailed study of the properties of the kernel 𝑅0(𝜔, 𝜔0, 𝜆) of the resolvent for
the Laplace-Beltrami operator (Theorem 1), of the kernel 𝑅0𝑛(𝜔, 𝜔0, 𝜆) of the reduced resol-
vent(Theorem 2). On the base of these studies and the approach of the work [5], the trace
formula for the Laplace-Beltrami operator was obtained for the perturbations 𝜈(𝜔) in the class
𝑊 1

2 (𝑆2).
We note that Sections 2 and 3 are devoted to the detailed exposition of the results of the

work [6].
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2. Representation of the kernel 𝑅0(𝜔, 𝜔0, 𝜆) of the resolvent for the
Laplace-Beltrami operator

It is well-known [7] that the kernel 𝑅0(𝜔, 𝜔0, 𝜆) of the resolvent 𝑅0(𝜆) = (𝐻0 − 𝜆)−1 for the
operator 𝐻0 (Laplace-Beltrami operator) in 𝐿2(𝑆2) is equal to

𝑅0(𝜔, 𝜔0, 𝜆) =
1

4𝜋

∞∑︁
𝑛=0

(2𝑛+ 1)𝑃𝑛(cos𝛼)

𝑛(𝑛+ 1) − 𝜆
, (2.1)

where 𝛼 is the angle between vectors 𝜔, 𝜔0 ∈ 𝑆2, 𝑃𝑛(cos𝛼) is a Legendre polynomial, and

𝑃𝑛(𝜔, 𝜔0) =
2𝑛+ 1

4𝜋
𝑃𝑛(cos𝛼)

is the kernel of the orthogonal projector 𝑃𝑛 projecting on the eigenspace associated with the
eigenvalue 𝜆𝑛 = 𝑛(𝑛+ 1) of the operator 𝐻0 and the multiplicity of 𝜆𝑛 is equal to (2𝑛+ 1).

On the other hand, it is known (see, for instance, [8, Sect. 4.3, 4.5]) that the sequence

𝑓𝑛(𝛼) =
√︀
𝑛+ 1/2

√
sin𝛼𝑃𝑛(cos𝛼), 𝑛 = 0, 1, . . . , (2.2)

is an orthonormal basis formed by the eigenfunctions for the Dirichlet problem for the ordinary
differential operator

𝑀𝑓(𝛼) = −𝑓 ′′(𝛼) − (4 sin2 𝛼)−1𝑓(𝛼)

in the space 𝐿2[0, 𝜋], at that,

𝑀𝑓𝑛(𝛼) = (𝑛+ 1/2)2𝑓𝑛(𝛼), 𝜇𝑛 = (𝑛+ 1/2)2.

Thus, in accordance with (2.2), the kernel 𝐺(𝛼, 𝛼0, 𝑧) of the integral operator

𝐺(𝑧) = (𝑀 − 𝑧)−1

is represented as

𝐺(𝛼, 𝛼0, 𝑧) =
∞∑︁
𝑛=0

𝑓𝑛(𝛼)𝑓𝑛(𝛼0)

𝜇𝑛 − 𝑧
=

∞∑︁
𝑛=0

(𝑛+ 1
2
)
√

sin𝛼 sin𝛼0𝑃𝑛(cos𝛼)𝑃𝑛(cos𝛼0)

(𝑛+ 1
2
)2 − 𝑧

. (2.3)

Hence, letting

Γ(𝛼, 𝛼0, 𝑧) = (sin𝛼 sin𝛼0)
− 1

2𝐺(𝛼, 𝛼0, 𝑧), (2.4)

and taking into consideration that 𝑃𝑛(1) = 1, we obtain

Γ(𝛼, 0, 𝑧) =
∞∑︁
𝑛=0

(𝑛+ 1/2)𝑃𝑛(cos𝛼)

(𝑛+ 1/2)2 − 𝑧
=

1

2

∞∑︁
𝑛=0

(2𝑛+ 1)𝑃𝑛(cos𝛼)

𝑛(𝑛+ 1) − (𝑧 − 1/4)
. (2.5)

Comparing (2.1) and (2.5), we arrive at the following statement.

Lemma 1. For all 𝜔, 𝜔0 ∈ 𝑆2 and 𝜆 /∈ {𝑛(𝑛 + 1)}∞𝑛=0 the kernel 𝑅0(𝜔, 𝜔0, 𝜆) is represented
as

𝑅0(𝜔, 𝜔0, 𝜆) =
1

2𝜋
Γ(𝛼, 0, 𝜆+ 1/4). (2.6)

Thus, in view of Lemma 1 and identities (2.3)–(2.6) we see that the kernel 𝑅0(𝜔, 𝜔0, 𝜆) can
be represented in terms of the solutions to the ordinary differential equations

𝑢′′ + (4 sin2 𝛼)−1𝑢+ 𝑧𝑢 = 0 (2.7)

in the interval (0, 𝜋).
We first observe that the identity

(4 sin2 𝛼)−1 = (4𝛼2)−1 + 𝑞(𝛼)
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holds true on the segment (0, 𝜋/2), where 𝑞(𝛼) ∈ 𝐶(2)[0, 𝜋/2]. Therefore, we can construct
linearly independent solutions to equation (2.7) by means of the solutions to the equation

𝜈 ′′ + (4𝛼2)−1 + 𝑧𝜈 = 0. (2.8)

As the linear independent solutions to “unperturbed” equation (2.8) we take the functions (see,
for instance, [9, Sect. 1.8])

𝑢01(𝛼, 𝑧) =
√
𝛼𝐽0(

√
𝑧𝛼), 𝑢02(𝛼, 𝑧) =

√
𝛼𝑌0(

√
𝑧𝛼)

𝜋

2
, (2.9)

where 𝐽0(
√
𝑧𝛼) and 𝑌0(

√
𝑧𝛼) are the first and second kind Bessel functions, respectively, while

the branch of
√
𝑧 is fixed by the restriction 0 6 arg

√
𝑧 < 𝜋.

For the sake of convenience we provide various representations for the cylindric functions,
which we will use in what follows.

For the functions 𝐽0(𝑠) and 𝑌0(𝑠) we shall employ the expansions ([8, Sect. 5.2]):

𝐽0(𝑠) =
∞∑︁
𝑘=0

(−1)𝑘

(𝑘!)2

(︁𝑠
2

)︁2𝑘
, (2.10)

𝑌0(𝑠) =
2

𝜋
𝐽0(𝑠) ln

𝑠

2
− 2

𝜋

∞∑︁
𝑘=0

(−1)𝑘

(𝑘!)2

(︁𝑠
2

)︁2𝑘
𝜓(𝑘 + 1). (2.11)

Here

𝜓(𝑘 + 1) = −𝛾 + 1 +
1

2
+ . . .+

1

𝑘
, 𝜓(1) = −𝛾,

𝛾 is the Euler constant. We shall also make use of the asymptotic representations ([8, Sect.
5.11]) for |𝑠| ≫ 1, | arg 𝑠| 6 𝜋 − 𝛿 (𝛿 > 0 is an arbitrarily small number):

𝐽0(𝑠) =

√︂
2

𝜋𝑠

{︁
𝛾1(𝑠) cos(𝑠− 𝜋

4
) + 𝛾2(𝑠) sin(𝑠− 𝜋

4
)
}︁

(2.12)

𝑌0(𝑠) =

√︂
2

𝜋𝑠

{︁
𝛾1(𝑠) sin(𝑠− 𝜋

4
) − 𝛾2(𝑠) cos(𝑠− 𝜋

4
)
}︁
, (2.13)

where

𝛾1(𝑠) =
∞∑︁
𝑘=0

(−1)𝑘(0, 2𝑘)

(2𝑠)2𝑘
, 𝛾2(𝑠) =

∞∑︁
𝑘=0

(−1)𝑘(0, 2𝑘 + 1)

(2𝑠)2𝑘+1
,

at that, (𝜈, 0) = 1,

(𝜈,𝑚) =
(4𝜈2 − 12)(4𝜈2 − 32) · . . . · (4𝜈2 − (2𝑚− 1)2)

22𝑚𝑚!
, 𝑚 ∈ N,

𝛾1(𝑠) = 1 − 9

128𝑠2
+𝑂(𝑠−4), 𝛾2(𝑠) =

1

8𝑠
− 75

1024𝑠3
+𝑂(𝑠−5).

It is known (see [9, Sect. 1.8]) that the Wronskian satisfies the identity

𝑊 (𝑢01, 𝑢
0
2) = 𝑢01(𝛼, 𝑧)𝑢0 ′2 (𝛼, 𝑧) − 𝑢0 ′1 (𝛼, 𝑧)𝑢02(𝛼, 𝑧) ≡ 1. (2.14)

Now we construct linearly independent solutions to equation (2.7) in the segment (0, 𝜋
2
] as

the solutions to the inhomogeneous Volterra equations

𝑢𝑘(𝛼, 𝑧) = 𝑢0𝑘(𝛼, 𝑧) +

𝛼∫︁
0

𝑔(𝛼, 𝑡, 𝑧)𝑞(𝑡)𝑢𝑘(𝑡, 𝑧)𝑑𝑡, (2.15)

where
𝑔(𝛼, 𝑡, 𝑧) = 𝑢01(𝛼, 𝑧)𝑢02(𝑡, 𝑧) − 𝑢01(𝑡, 𝑧)𝑢02(𝛼, 𝑧). (2.16)

The solutions 𝑢𝑘(𝛼, 𝑧) to equation (2.7) constructed on the segment [0, 𝜋/2] by means of
integral equations (2.15) can be continued to the segment (𝜋

2
, 𝜋], namely, we have the lemma.
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Lemma 2. The solutions to equations (2.7) constructed on the segment [0, 𝜋
2
] as the solutions

to Volterra equations (2.15) can be continued to the segment (𝜋
2
, 𝜋] by the formulae

𝑢𝑘(𝛼, 𝑧) = 𝑎𝑘1(𝑧)𝑢1(𝜋 − 𝛼, 𝑧) + 𝑎𝑘2(𝑧)𝑢2(𝜋 − 𝛼, 𝑧), 𝑘 = 1, 2,

where {︃
𝑎11(𝑧) = 𝑢1(

𝜋
2
, 𝑧)𝑢′2(

𝜋
2
, 𝑧) + 𝑢′1(

𝜋
2
, 𝑧)𝑢2(

𝜋
2
, 𝑧), 𝑎22(𝑧) = −𝑎11(𝑧),

𝑎12(𝑧) = −2𝑢1(
𝜋
2
, 𝑧)𝑢′1(

𝜋
2
, 𝑧), 𝑎21(𝑧) = 2𝑢2(

𝜋
2
, 𝑧)𝑢′2(

𝜋
2
, 𝑧).

(2.17)

Proof. It is easy to see that the functions

𝜈𝑘(𝛼, 𝑧) = 𝑢𝑘(𝜋 − 𝛼, 𝑧), 𝛼 ∈ (
𝜋

2
, 𝜋], 𝑘 = 1, 2,

are linearly independent solutions to equation (2.7) on this segment. Then the continuations
𝑢𝑘(𝛼, 𝑧) are expressed as linear combinations of 𝜈𝑘(𝛼, 𝑧) as 𝛼 ∈ (𝜋

2
, 𝜋]:

𝑢𝑘(𝛼, 𝑧) = 𝑎𝑘1(𝑧)𝑢1(𝜋 − 𝛼, 𝑧) + 𝑎𝑘2𝑢2(𝜋 − 𝛼, 𝑧), (2.18)

where 𝑎𝑘𝑖(𝑧) are constants depending on 𝑧 only.
As 𝛼 = 𝜋/2, the relations{︃

𝑢𝑘(𝜋
2
, 𝑧) = 𝑎𝑘1(𝑧)𝑢1(

𝜋
2
, 𝑧) + 𝑎𝑘2(𝑧)𝑢2(

𝜋
2
, 𝑧)

𝑢′𝑘(𝜋
2
, 𝑧) = −𝑎𝑘1(𝑧)𝑢′1(

𝜋
2
, 𝑧) − 𝑎𝑘2(𝑧)𝑢′2(

𝜋
2
, 𝑧)

(2.19)

should hold true.
It is obvious that it follows straightforwardly from relations (2.12)–(2.14) that

𝑊 (𝑢1, 𝑢2) = 𝑊 (𝑢01, 𝑢
0
2) = 1. (2.20)

Solving then systems (2.19) and taking into consideration (2.20), we arrive at relations (2.17).
The proof is complete.

Now we are in position to formulate the main result of the present section. The following
theorem holds true.

Theorem 1. For all 𝜆 ∈ R ∖ {𝑛(𝑛+ 1)}∞𝑛=0 the kernel 𝑅0(𝜔, 𝜔0, 𝜆) is represented as

𝑅0(𝜔, 𝜔0, 𝜆) =
1

2𝜋
√

sin𝛼
[𝑢2(𝛼, 𝜆+ 1/4) − 𝐴(𝜆+ 1/4)𝑢1(𝛼, 𝜆+ 1/4)], (2.21)

where

𝐴(𝑧) =
1

2

(︂
𝑢′2(

𝜋
2
, 𝑧)

𝑢′1(
𝜋
2
, 𝑧)

+
𝑢2(

𝜋
2
, 𝑧)

𝑢1(
𝜋
2
, 𝑧)

)︂
. (2.22)

Proof. Let the kernel 𝐷(𝛼, 𝑡, 𝑧) be as follows:

𝐷(𝛼, 𝑡, 𝑧) =

{︃
𝑢2(𝛼, 𝑧)𝑢1(𝑡, 𝑧), 𝑡 6 𝛼 6 𝜋,

𝑢2(𝑡, 𝑧)𝑢1(𝛼, 𝑧), 𝛼 6 𝑡 6 𝜋.
(2.23)

Employing (2.7) and (2.20), we find that

𝜈(𝛼, 𝑧) =

𝜋∫︁
0

𝐷(𝛼, 𝑡, 𝑧)ℎ(𝑡)𝑑𝑡,

where ℎ(𝑡) ∈ 𝐿2[0, 𝜋] is a solution of the differential equation

−𝜈 ′′(𝛼, 𝑧) − (4 sin2 𝛼)−1𝜈(𝛼, 𝑧) − 𝑧𝜈(𝛼, 𝑧) = ℎ(𝛼).

Then the function

𝑢(𝛼, 𝑧) =

𝜋∫︁
0

𝐺(𝛼, 𝑡, 𝑧)ℎ(𝑡)𝑑𝑡, (2.24)
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where 𝐺(𝑡, 𝛼, 𝑧) is the kernel of the operator 𝐺(𝑧) (see (2.3)), is represented as

𝑢(𝛼, 𝑧) =

𝜋∫︁
0

𝐷(𝛼, 𝑡, 𝑧)ℎ(𝑡)𝑑𝑡+ 𝑐𝑢1(𝛼, 𝑧), (2.25)

where we have taken into consideration that 𝑢(𝛼, 𝑧) should satisfying the finite limit condition:

lim
𝛼→0+

𝑢(𝛼, 𝑧)(𝜋 − 𝛼)−1/2. (2.26)

As 𝛼 < 𝜋, 𝛼 ∼ 𝜋, the right hand of formula (2.25) can be represented as

𝑢(𝛼, 𝑧) = 𝑢2(𝛼, 𝑧)

𝜋∫︁
0

𝑢1(𝑡, 𝑧)ℎ(𝑡)𝑑𝑡+ 𝑐𝑢1(𝛼, 𝑧) +𝑊 (𝛼, 𝑧), (2.27)

where

𝑊 (𝛼, 𝑧) = 𝑢1(𝛼, 𝑧)

𝜋∫︁
𝛼

𝑢2(𝑡, 𝑧)ℎ(𝑡)𝑑𝑡− 𝑢2(𝛼, 𝑧)

𝜋∫︁
𝛼

𝑢1(𝑡, 𝑧)ℎ(𝑡)𝑑𝑡,

and it is easy to show that 𝑊 (𝛼, 𝑧) satisfies the estimate

|𝑊 (𝛼, 𝑧)| 6 𝑎1(𝜋 − 𝛼)(1 + | ln(𝜋 − 𝛼)|),

where 𝑎1 > 0 is a constant.
Thus, 𝑊 (𝛼, 𝑧) satisfies the condition lim

𝛼→𝜋−0

𝑊 (𝛼,𝑧)√
𝜋−𝛼

=0. It implies that the sum of the first two

term in the right hand side of (2.27) should satisfy condition (2.26). According to (2.18), this
sum can be easily represented as

𝑐[𝑎11(𝑧)𝑢1(𝜋 − 𝛼, 𝑧) + 𝑎12(𝑧)𝑢2(𝜋 − 𝛼, 𝑧)]

+

𝜋∫︁
0

𝑢1(𝑡, 𝑧)ℎ(𝑡)𝑑𝑡[𝑎21(𝑧)𝑢1(𝜋 − 𝛼, 𝑧) + 𝑎22(𝑧)𝑢2(𝜋 − 𝛼, 𝑧)]

=[𝑐𝑎11(𝑧) + 𝑎21(𝑧)

𝜋∫︁
0

𝑢1(𝑡, 𝑧)ℎ(𝑡)𝑑𝑡]𝑢1(𝜋 − 𝛼, 𝑧)

+ [𝑐𝑎12(𝑧) + 𝑎22(𝑧)

𝜋∫︁
0

𝑢1(𝑡, 𝑧)ℎ(𝑡)𝑑𝑡]𝑢2(𝜋 − 𝛼, 𝑧).

Since by the definition 𝑢1(𝜋 − 𝛼, 𝑧) satisfies condition (2.26) and, due to the presence of the
logarithmic singularity,

lim
𝛼→𝜋−0

𝑢2(𝜋 − 𝛼, 𝑧)√
𝜋 − 𝛼

= ∞,

the coefficient at 𝑢2(𝜋 − 𝛼, 𝑧) should vanish:

𝑐𝑎12(𝑧) + 𝑎22(𝑧)

𝜋∫︁
0

𝑢1(𝑡, 𝑧)ℎ(𝑡)𝑑𝑡 = 0.

Thus, it follows from (2.23), (2.24), (2.25) that

𝐺(𝛼, 𝑡, 𝑧) = 𝐷(𝛼, 𝑡, 𝑧) − 𝑎22(𝑧)

𝑎12(𝑧)
𝑢1(𝛼, 𝑧)𝑢1(𝑡, 𝑧),
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where, in accordance with (2.17),

𝐴(𝑧) =
𝑎22(𝑧)

𝑎12(𝑧)
=

1

2

[︂
𝑢′2(

𝜋
2
, 𝑧)

𝑢′1(
𝜋
2
, 𝑧)

+
𝑢2(

𝜋
2
, 𝑧)

𝑢1(
𝜋
2
, 𝑧)

]︂
.

Then, employing (2.4), (2.5) and the relations

lim
𝛼→+0

𝑢1(𝛼, 𝑧)√
𝛼

= lim
𝛼→+0

𝑢01(𝛼, 𝑧)√
𝛼

= 1,

we arrive at the statement of the theorem.

3. The representation of the kernel 𝑅0𝑛(𝜔, 𝜔0, 𝜆) of the reduced resolvent

Representation (2.21) for the kernel 𝑅0(𝜔, 𝜔0, 𝜆) allows us to calculate the kernel of the
reduced resolvent of the operator 𝐻0

𝑅0𝑛(𝜔, 𝜔0, 𝜆𝑛) =
1

4𝜋

∑︁
𝑚 ̸=𝑛

(2𝑚+ 1)𝑃𝑚(cos𝛼)

𝑚(𝑚+ 1) − 𝑛(𝑛+ 1)

in terms of the functions 𝑢𝑘(𝛼, 𝑧) and their derivatives w.rt. variable 𝑧

𝜙𝑘(𝛼, 𝑧) =
𝜕

𝜕𝑧
𝑢𝑘(𝛼, 𝑧), 𝜓𝑘(𝛼, 𝑧) =

𝜕

𝜕𝑧
𝜙𝑘(𝛼, 𝑧), 𝑘 = 1, 2,

at the point 𝛼 = 𝜋
2
. Since according to Theorem 1 the spectrum of the operator 𝐻0 coincides

with the poles of the function 𝐴(𝜆 + 1
4
) (for 𝐴(𝑧) see formula (2.22)), that is, with the zeroes

of the functions 𝑢1(
𝜋
2
, 𝜆+ 1

4
) and 𝑢′1(

𝜋
2
, 𝜆+ 1

4
) and it is easy to confirm (see [8, Sect. 4.6]) that

𝑢1

(︂
𝜋

2
, 𝜆𝑛 +

1

4

)︂
= 0, 𝑛 = 2𝑘 + 1, 𝑘 = 0, 1, . . . , (3.1)

𝑢′1

(︂
𝜋

2
, 𝜆𝑛 +

1

4

)︂
= 0, 𝑛 = 2𝑘, 𝑘 = 0, 1, . . . (3.2)

Assume also that

𝜙0
𝑘(𝛼, 𝑧) =

𝜕

𝜕𝑧
𝑢0𝑘(𝛼, 𝑧), 𝜓0

𝑘(𝛼, 𝑧) =
𝜕

𝜕𝑧
𝜙0
𝑘(𝛼, 𝑧), 𝑘 = 1, 2,

then it follows from (2.15), (2.16) that the functions 𝜙𝑘(𝛼, 𝑧) and 𝜓𝑘(𝛼, 𝑧) on the segment [0, 𝜋
2
]

are solutions to Volterra equations, namely, the following statement holds.

Lemma 3. For all 𝑘 = 1, 2 and 𝑧 ̸= 0, there exist the derivatives

lim
ℎ→0

𝑢𝑘(𝛼, 𝑧 + ℎ) − 𝑢𝑘(𝛼, 𝑧)

ℎ
= 𝜙𝑘(𝛼, 𝑧),

lim
ℎ→0

𝜙𝑘(𝛼, 𝑧 + ℎ) − 𝜙𝑘(𝛼, 𝑧)

ℎ
= 𝜓𝑘(𝛼, 𝑧),

in the Banach space 𝐶[0, 𝜋
2
], and 𝜙𝑘(𝛼, 𝑧) is a solution to the Volterra equation

𝜙𝑘(𝛼, 𝑧) = 𝜙0
𝑘(𝛼, 𝑧) +

𝛼∫︁
0

𝑔1(𝛼, 𝑡, 𝑧)𝑞(𝑡)𝑢𝑘(𝑡, 𝑧)𝑑𝑡+

𝛼∫︁
0

𝑔(𝛼, 𝑡, 𝑧)𝑞(𝑡)𝜙𝑘(𝑡, 𝑧)𝑑𝑡, (3.3)

where

𝑔1(𝛼, 𝑡, 𝑧) = 𝜙0
1(𝛼, 𝑧)𝑢02(𝑡, 𝑧) − 𝜙0

2(𝛼, 𝑧)𝑢01(𝑡, 𝑧) + 𝑢01(𝛼, 𝑧)𝜙0
2(𝑡, 𝑧) − 𝑢02(𝛼, 𝑧)𝜙0

1(𝑡, 𝑧) (3.4)
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and

𝜓𝑘(𝛼, 𝑧) =𝜓0
𝑘(𝛼, 𝑧) +

𝛼∫︁
0

𝑔2(𝛼, 𝑡, 𝑧)𝑞(𝑡)𝑢𝑘(𝑡, 𝑧)𝑑𝑡+ 2

𝛼∫︁
0

𝑔1(𝛼, 𝑡, 𝑧)𝑞(𝑡)𝜙𝑘(𝑡, 𝑧)𝑑𝑡

+

𝛼∫︁
0

𝑔(𝛼, 𝑡, 𝑧)𝑞(𝑡)𝜓𝑘(𝑡, 𝑧)𝑑𝑡,

(3.5)

where

𝑔2(𝛼, 𝑡, 𝑧) =
𝜕

𝜕𝑧
𝑔1(𝛼, 𝑡, 𝑧) = 𝜓0

1(𝛼, 𝑧)𝑢02(𝑡, 𝑧) − 𝜓0
2(𝛼, 𝑧)𝑢01(𝑡, 𝑧) + 𝑢01(𝛼, 𝑧)𝜓0

2(𝑡, 𝑧)

− 𝑢02(𝛼, 𝑧)𝜓0
1(𝑡, 𝑧) + 2

(︀
𝜙0
1(𝛼, 𝑧)𝜙0

2(𝑡, 𝑧) − 𝜙0
2(𝛼, 𝑧)𝜙0

1(𝑡, 𝑧)
)︀
.

In what follows, for a representation of the kernel of the reduced resolvent 𝑅0𝑛(𝜔, 𝜔0, 𝜆𝑛) we
shall need the following lemma.

Lemma 4. Suppose that functions 𝑓(𝜆) and 𝑔(𝜆) are twice differentiable in a neighbourhood
of 𝜆 = 𝜆𝑛 and 𝑔(𝜆𝑛) = 0, 𝑔′(𝜆𝑛) ̸= 0. Then

𝑓(𝜆)

𝑔(𝜆)
=

𝑓(𝜆𝑛)

𝑔′(𝜆𝑛)(𝜆− 𝜆𝑛)
+

[︂
𝑓 ′(𝜆𝑛)

𝑔′(𝜆𝑛)
− 𝑓(𝜆𝑛)𝑔′′(𝜆𝑛)

𝑔′2(𝜆𝑛)

]︂
+ 𝑜(1).

Proof. In accordance with the assumption of the lemma, the Taylor formula

𝑔(𝜆) = 𝑔′(𝜆𝑛)(𝜆− 𝜆𝑛) +
𝑔′′(𝜆𝑛)

2
(𝜆− 𝜆𝑛)2 + 𝑜((𝜆− 𝜆𝑛)2)

holds true. It yields

1

𝑔(𝜆)
=

1

𝑔′(𝜆𝑛)(𝜆− 𝜆𝑛)

[︂
1 +

𝑔′′(𝜆𝑛)

2𝑔′(𝜆𝑛)
(𝜆− 𝜆𝑛) + 𝑜((𝜆− 𝜆𝑛))

]︂−1

=
1

𝑔′(𝜆𝑛)(𝜆− 𝜆𝑛)

[︂
1 − 𝑔′′(𝜆𝑛)

2𝑔′(𝜆𝑛)
(𝜆− 𝜆𝑛) + 𝑜((𝜆− 𝜆𝑛))

]︂
=

1

𝑔′(𝜆𝑛)(𝜆− 𝜆𝑛)
− 𝑔′′(𝜆𝑛)

2𝑔′2(𝜆𝑛)
+ 𝑜(1).

Since the assumptions of the lemma implies that

𝑓(𝜆) = 𝑓(𝜆𝑛) + 𝑓 ′(𝜆𝑛)(𝜆− 𝜆𝑛) +
𝑓 ′′(𝜆𝑛)

2
(𝜆− 𝜆𝑛)2 + 𝑜((𝜆− 𝜆𝑛)2),

we multiply two latter formulae to obtain the formula for the fraction in the statement of the
lemma. The proof is complete.

Since by Theorem 1 the poles of the kernel 𝑅0(𝜔, 𝜔0, 𝜆) coincide with the zeroes of the
functions 𝑢1(

𝜋
2
, 𝑧), 𝑢′1(

𝜋
2
, 𝑧), where 𝑧 = 𝜆 + 1

4
, in view of relations (3.1) and (3.2) we consider

separately the cases 𝑛 = 2𝑘 and 𝑛 = 2𝑘 + 1, 𝑘 = 0, 1, . . .
Let 𝑛 = 2𝑘 + 1, then denoting

𝑓(𝛼, 𝜆) = 𝑢2

(︂
𝜋

2
, 𝜆+

1

4

)︂
𝑢1

(︂
𝛼, 𝜆+

1

4

)︂
, 𝑔(𝜆) = 4𝜋𝑢1

(︂
𝜋

2
, 𝜆+

1

4

)︂
,



PROPERTIES OF THE RESOLVENT OF THE LAPLACE OPERATOR. . . 29

in accordance (2.21), (2.22) and by Lemma 4 we have

𝑓(𝛼, 𝜆)

𝑔(𝜆)
= −

𝑢2(
𝜋
2
, 𝜆𝑛 + 1

4
)𝑢1(𝛼, 𝜆𝑛 + 1

4
)

4𝜋𝜙1(
𝜋
2
, 𝜆𝑛 + 1

4
)(𝜆− 𝜆𝑛)

+
𝜙2(

𝜋
2
, 𝜆𝑛 + 1

4
)𝑢1(𝛼, 𝜆𝑛 + 1

4
) + 𝑢2(

𝜋
2
, 𝜆𝑛 + 1

4
)𝜙1(𝛼, 𝜆𝑛 + 1

4
)

4𝜋𝜙1(
𝜋
2
, 𝜆𝑛 + 1

4
)

−
𝜓1(

𝜋
2
, 𝜆𝑛 + 1

4
)𝑢2(

𝜋
2
, 𝜆𝑛 + 1

4
)𝑢1(𝛼, 𝜆𝑛 + 1

4
)

8𝜋𝜙2
1(

𝜋
2
, 𝜆𝑛 + 1

4
)

+ 𝑜(1).

(3.6)

Hence, according to relations (2.1), (2.4), (2.5),

𝑃𝑛(𝜔, 𝜔0) =
1

4𝜋

𝑢2
(︀
𝜋
2
, 𝜆𝑛 + 1

4

)︀
𝑢1
(︀
𝛼, 𝜆𝑛 + 1

4

)︀
√

sin𝛼𝜙1

(︀
𝜋
2
, 𝜆𝑛 + 1

4

)︀ =
2𝑛+ 1

4𝜋
𝑃𝑛(cos𝛼). (3.7)

Since

𝑃𝑛(𝜔, 𝜔) =
2𝑛+ 1

4𝜋
, lim

𝛼→+0

𝑢1(𝛼, 𝜆𝑛 + 1
4
)

√
𝛼

= 1,

then as 𝑛 = 2𝑘 + 1
𝑢2(

𝜋
2
, 𝜆𝑛 + 1

4
)

𝜙1(
𝜋
2
, 𝜆𝑛 + 1

4
)

= 2𝑛+ 1. (3.8)

Remark 1. The case 𝑛 = 2𝑘 can be studied in the same way.

Thus, by Theorem 1, relations (3.6)–(3.8) and Remark 1 we arrive at the following theorem.

Theorem 2. Let 𝑧𝑛 = 𝜆𝑛 + 1
4
. The kernels

𝑃𝑛(𝜔, 𝜔0) =
(2𝑛+ 1)𝑃𝑛(cos𝛼)

4𝜋
and 𝑅0𝑛(𝜔, 𝜔0, 𝜆𝑛)

can be represented as

𝑃𝑛(𝜔, 𝜔0) =
(2𝑛+ 1)𝑢1(𝛼, 𝑧𝑛)

4𝜋
√

sin𝛼
and

𝑅0𝑛(𝜔, 𝜔0, 𝜆𝑛) =
1

2𝜋
√

sin𝛼

[︂
𝑢2(𝛼, 𝑧𝑛) − 2𝑛+ 1

2
𝜙1(𝛼, 𝑧𝑛) − 𝑎𝑛𝑢1(𝛼, 𝑧𝑛)

]︂
,

where as 𝑛 = 2𝑘 + 1,

𝑎𝑛 =
𝑢′2(

𝜋
2
, 𝑧𝑛)

2𝑢′1(
𝜋
2
, 𝑧𝑛))

+
(2𝑛+ 1)𝜙2(

𝜋
2
, 𝑧𝑛))

2𝑢2(
𝜋
2
, 𝑧𝑛))

−
(2𝑛+ 1)2𝜓1(

𝜋
2
, 𝑧𝑛))

4𝑢2(
𝜋
2
, 𝑧𝑛))

,

and as 𝑛 = 2𝑘,

𝑎𝑛 =
𝑢2(

𝜋
2
, 𝑧𝑛)

2𝑢1(
𝜋
2
, 𝑧𝑛))

+
(2𝑛+ 1)𝜙′

2(
𝜋
2
, 𝑧𝑛))

2𝑢′2(
𝜋
2
, 𝑧𝑛))

−
(2𝑛+ 1)2𝜓′

1(
𝜋
2
, 𝑧𝑛))

4𝑢′2(
𝜋
2
, 𝑧𝑛))

.

While finding the trace formula for a perturbation of the the Laplace-Beltrami operator via
the approach of the work [5], the key ingredient is the asymptotics for the second corrector of
the perturbation theory

𝛼𝑛 =
1

4𝜋

𝜋∫︁
0

𝑔(𝛼)(2𝑛+ 1)𝑃𝑛(cos𝛼)𝑅0𝑛(𝜔, 𝜔0, 𝜆𝑛) sin𝛼𝑑𝛼;

for the definition of function 𝑔(𝛼) see [5, Formula (7)], at that,

𝑔′(0) = 𝑔′(𝜋) = 0. (3.9)
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Therefore, in view of the representations of the functions 𝑃𝑛(𝜔, 𝜔0) and 𝑅0𝑛(𝜔, 𝜔0, 𝜆𝑛) in
Theorem 2, we need to study the asymptotic behavior of the functions 𝑢𝑘(𝛼, 𝑧), 𝜙𝑘(𝛼, 𝑧),
𝜓𝑘(𝛼, 𝑧), their derivatives w.r.t. variable 𝛼, and the numbers 𝑎𝑛 as 𝑛 → ∞. In order to do it,
we shall prove a series of statements.

Lemma 5. There exist constants 𝑐0 > 0 and 𝑐1 > 0 independent of 𝑧 and 𝛼 such that

𝑢𝑘(𝛼, 𝑧) = 𝑢0𝑘(𝛼, 𝑧) + 𝜔𝑘(𝛼, 𝑧) (3.10)

for all 𝛼 ∈ [0, 𝜋
2
], 𝑧 > 0, 𝑘 = 1, 2. Moreover,

|𝑢0𝑘(𝛼, 𝑧)| 6 𝑐0𝑧
−1/4 (3.11)

|𝜔𝑘(𝛼, 𝑧)| 6 𝑐1𝑧
−3/4𝛼. (3.12)

Proof. Since sup
𝑡>0

|
√
𝑡𝑌0(𝑡)| < ∞ and sup

𝑡>0
|
√
𝑡𝐽0(𝑡)| < ∞ (see [9, Sects. 1.71, 7.11]), they imply

inequalities (3.11). Identity (3.10) is implied by (2.15), where

𝜔𝑘(𝛼, 𝑧) =

𝛼∫︁
0

𝑔(𝛼, 𝑡, 𝑧)𝑞(𝑡)𝑢𝑘(𝑡, 𝑧)𝑑𝑡. (3.13)

Since in accordance with (3.11) and (2.16)

|𝑔(𝛼, 𝑡, 𝑧)| < 𝑐20𝑧
−1/2 (3.14)

as 𝑧 > 0, then the norm of the integral operator in equation (2.15) is bounded from above by
the number

2𝑐20𝑧
−1/2

𝜋
2∫︁

0

𝑞(𝑡)𝑑𝑡.

Therefore, equation (2.15) yields the estimate

‖𝑢𝑘(𝑧)‖ = max
06𝛼6𝜋

2

|𝑢𝑘(𝛼, 𝑧)| 6 𝑐20𝑧
−1/4 + 2𝑐20𝑧

−1/2

𝜋
2∫︁

0

𝑞(𝑡)𝑑𝑡‖𝑢𝑘(𝑧)‖. (3.15)

It follows that sup
𝑧>0

𝑧
1
4‖𝑢𝑘(𝑧)‖ <∞. Now estimate (3.12) is implied by (3.13)–(3.15).

We proceed to the studying of the functions

𝜙0
𝑘(𝛼, 𝑧) =

𝜕

𝜕𝑧
𝑢0𝑘(𝛼, 𝑧), 𝜓0

𝑘(𝛼, 𝑧) =
𝜕

𝜕𝑧
𝜙0
𝑘(𝛼, 𝑧), 𝑘 = 1, 2,

and their derivatives w.r.t. the variable 𝛼. Here we employ the usual notations for the deriva-
tives w.r.t. the variables 𝛼:

𝑢0 ′𝑘 (𝛼, 𝑧) =
𝜕

𝜕𝛼
𝑢0𝑘(𝛼, 𝑧), 𝑢′𝑘(𝛼, 𝑧) =

𝜕

𝜕𝛼
𝑢𝑘(𝛼, 𝑧)

𝜙0 ′
𝑘 (𝛼, 𝑧) =

𝜕

𝜕𝛼
𝜙0
𝑘(𝛼, 𝑧), 𝜙′

𝑘(𝛼, 𝑧) =
𝜕

𝜕𝛼
𝜙𝑘(𝛼, 𝑧).

The following lemma holds.

Lemma 6. For all 𝛼 ∈ [0, 𝜋
2
], 𝑧 > 0,

𝜙0
𝑘(𝛼, 𝑧) =

𝛼

2𝑧
𝑢0 ′𝑘 (𝛼, 𝑧) − 1

4𝑧
𝑢0𝑘(𝛼, 𝑧), 𝑘 = 1, 2. (3.16)
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Proof. We have

𝜙0
1(𝛼, 𝑧) =

𝛼3/2

2
√
𝑧
𝐽 ′
0(
√
𝑧𝛼), 𝜙0

2(𝛼, 𝑧) =
𝛼3/2

2
√
𝑧
𝑌 ′
0(
√
𝑧𝛼). (3.17)

The derivatives w.r.t. 𝛼 satisfy

𝑢0 ′1 (𝛼, 𝑧) =
1

2
√
𝛼
𝐽0(

√
𝑧𝛼) +

√
𝑧𝛼𝐽 ′

0(
√
𝑧𝛼), (3.18)

𝑢0 ′2 (𝛼, 𝑧) =
1

2
√
𝛼
𝑌0(

√
𝑧𝛼) +

√
𝑧𝛼𝑌 ′

0(
√
𝑧𝛼), (3.19)

that yields

𝐽 ′
0(
√
𝑧𝛼) =

1√
𝑧𝛼
𝑢0 ′1 (𝛼, 𝑧) − 1

2
√
𝑧𝛼3/2

𝑢01(𝛼, 𝑧),

𝑌 ′
0(
√
𝑧𝛼) =

1√
𝑧𝛼
𝑢0 ′2 (𝛼, 𝑧) − 1

2
√
𝑧𝛼3/2

𝑢02(𝛼, 𝑧).

Now by (3.17), (3.18) and (3.19) we obtain (3.16). The proof is complete.

Lemma 7. For all real 𝑧 > 0

max
06𝛼6𝜋

2

|𝜙0
𝑘(𝛼, 𝑧)| 6 𝑐0|𝑧|−3/4, 𝑘 = 1, 2, (3.20)

where 𝑐0 > 0 is a constant independent of 𝑧.

Proof. According to (3.11), the second term in (3.16) can be estimated as 𝑂(|𝑧|−5/4) uniformly
in 𝛼 ∈ [0, 𝜋

2
], and in accordance with (3.18), (3.19),

𝛼

2
𝑢0 ′1 (𝛼, 𝑧) =

1

2𝑧
𝑢01(𝛼, 𝑧) +

𝛼

𝑧3/4

[︂√︁√
𝑧𝛼𝐽 ′

0(
√
𝑧𝛼)

]︂
,

𝛼

2
𝑢0 ′2 (𝛼, 𝑧) =

1

2𝑧
𝑢02(𝛼, 𝑧) +

𝛼

𝑧3/4

[︂√︁√
𝑧𝛼𝑌 ′

0(
√
𝑧𝛼)

]︂
.

By identities (2.10)–(2.13), for the derivatives of the functions 𝐽0(𝑠) and 𝑌0(𝑠) we obtain

𝐽 ′
0(𝑠) =

∞∑︁
𝑘=1

(−1)𝑘𝑘

(𝑘!)2

(︁𝑠
2

)︁2𝑘−1

, (3.21)

𝑌 ′
0(𝑠) =

2

𝜋𝑠
𝐽0(𝑠) +

2

𝜋
𝐽 ′
0(𝑠) ln

𝑠

2
− 2

𝜋

∞∑︁
𝑘=1

(−1)𝑘𝑘

(𝑘!)2

(︁𝑠
2

)︁2𝑘−1

𝜓(𝑘 + 1), (3.22)

while as 𝑠≫ 1,

𝐽 ′
0(𝑠) = − 1

2𝑠
𝐽0(𝑠) −

√︂
2

𝜋𝑠
sin
(︁
𝑠− 𝜋

4

)︁[︃ 𝑛∑︁
𝑘=0

(−1)𝑘(0, 2𝑘)(2𝑠)−2𝑘 +𝑂(𝑠−2𝑛−2)

]︃

−
√︂

2

𝜋𝑠
cos
(︁
𝑠− 𝜋

4

)︁[︃
4

𝑛∑︁
𝑘=0

(−1)𝑘(0, 2𝑘)𝑘(2𝑠)−2𝑘−3 +𝑂(𝑠−2𝑛−3)

]︃

−
√︂

2

𝜋𝑠
cos
(︁
𝑠− 𝜋

4

)︁[︃ 𝑛∑︁
𝑘=0

(−1)𝑘(0, 2𝑘 + 1)(2𝑠)−2𝑘−1 +𝑂(𝑠−2𝑛−3)

]︃

+

√︂
2

𝜋𝑠
sin
(︁
𝑠− 𝜋

4

)︁[︃
2

𝑛∑︁
𝑘=0

(−1)𝑘(0, 2𝑘 + 1)(2𝑘 + 1)(2𝑠)−2𝑘−2 +𝑂(𝑠−2𝑛−4)

]︃
,

(3.23)
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𝑌 ′
0(𝑠) = − 1

2𝑠
𝑌0(𝑠) −

√︂
2

𝜋𝑠
sin
(︁
𝑠− 𝜋

4

)︁{︃[︃ 𝑛∑︁
𝑘=0

(−1)𝑘(0, 2𝑘 + 1)(2𝑠)−2𝑘−1 +𝑂(𝑠−2𝑛−3)

]︃

−

[︃
4

𝑛∑︁
𝑘=0

(−1)𝑘(0, 2𝑘)𝑘(2𝑠)−2𝑘−1 +𝑂(𝑠−2𝑛−3)

]︃}︃

+

√︂
2

𝜋𝑠
cos
(︁
𝑠− 𝜋

4

)︁[︃ 𝑛∑︁
𝑘=0

(−1)𝑘(0, 2𝑘)(2𝑠)−2𝑘 +𝑂(𝑠−2𝑛−2)

]︃

−
√︂

2

𝜋𝑠
cos
(︁
𝑠− 𝜋

4

)︁[︃
2

𝑛∑︁
𝑘=0

(−1)𝑘(0, 2𝑘 + 1)(2𝑘 + 1)(2𝑠)−2𝑘−2 +𝑂(𝑠−2𝑛−4)

]︃
.

(3.24)

Let 𝑁 be a sufficiently large fixed number. Then by (3.21), (3.22) we find that as |𝑠| 6 𝑁 , the
estimates

|𝐽 ′
0(𝑠)| 6 𝑐1𝑠, |𝑌 ′

0(𝑠)| 6 𝑐2
𝑠

+ 𝑐3𝑠| ln 𝑠| (3.25)

hold true, where 𝑐𝑘, 𝑘 = 1, 2, 3, are some positive constants.
Then identities (3.16) and estimates (3.25) lead us to the following inequalities:

|𝜙0
1(𝛼, 𝑧)| 6𝑐1

√
𝑧𝛼5/2

2
√
𝑧

6
𝑐1𝑁

5/2

𝑧5/4
,

|𝜙0
2(𝛼, 𝑧)| 6 𝑐2𝛼

3/2

2
√
𝑧
√
𝑧𝛼

+
𝑐3| ln

√
𝑧𝛼|

√
𝑧𝛼𝛼3/2

2
√
𝑧

=
𝑐2
√
𝛼

2𝑧
+
𝑐3(

√
𝑧𝛼)5/2| ln

√
𝑧𝛼|

2𝑧5/4
6

𝑐3𝑐4
2𝑧5/4

+
𝑐2
√
𝛼

2𝑧
,

as 𝛼
√
𝑧 6 𝑁 , where 𝑐4 = max

06𝑡6𝑁
𝑡5/2| ln 𝑡|.

If 𝛼
√
𝑧 > 𝑁 , in order to estimate 𝐽 ′

0(
√
𝑧𝛼) and 𝑌 ′

0(
√
𝑧𝛼), we employ identities (3.23) and

(3.24), which imply straightforwardly that as 𝛼
√
𝑧 > 𝑁 , (3.20) holds true. The proof is

complete.

Lemma 8. As 𝑘 = 1, 2,

𝜓0
𝑘(𝛼, 𝑧) =

𝜕

𝜕𝑧
𝜙0
𝑘(𝛼, 𝑧) = −1

𝑧
𝜙0
𝑘(𝛼, 𝑧) − 𝛼2

4𝑧
𝑢0𝑘(𝛼, 𝑧)

=

(︂
1

4𝑧2
− 𝛼2

4𝑧

)︂
𝑢0𝑘(𝛼, 𝑧) − 𝛼

4𝑧2
𝑢0 ′𝑘 (𝛼, 𝑧)

(3.26)

for all 𝛼 > 0 and 𝑧 > 0.

Proof. According to (3.17), we have

𝜓0
1(𝛼, 𝑧) = − 𝛼3/2

4𝑧3/2
𝐽 ′
0(
√
𝑧𝛼) +

𝛼5/2

4𝑧
𝐽 ′′
0 (
√
𝑧𝛼).

Since 𝐽0(𝑠) satisfies the equation

𝐽 ′′
0 (𝑠) +

1

𝑠
𝐽 ′
0(𝑠) + 𝐽0(𝑠) = 0, (3.27)

employing (3.16), we obtain

𝜓0
1(𝛼, 𝑧) = − 𝛼3/2

4𝑧3/2
𝐽 ′
0(
√
𝑧𝛼) − 𝛼5/2

4𝑧

[︂
1√
𝑧𝛼
𝐽 ′
0(
√
𝑧𝛼) + 𝐽0(

√
𝑧𝛼)

]︂
= − 𝛼3/2

2𝑧3/2
𝐽 ′
0(
√
𝑧𝛼) − 𝛼5/2

4𝑧
𝐽0(

√
𝑧𝛼) = − 1

4𝑧
𝜙0
1(𝛼, 𝑧) − 𝛼2

4𝑧
𝑢01(𝛼, 𝑧)
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= − 𝛼

2𝑧2
𝑢0 ′1 (𝛼, 𝑧) +

(︂
1

4𝑧2
− 𝛼2

4𝑧

)︂
𝑢01(𝛼, 𝑧).

Similar calculations are true also for 𝜓0
2(𝛼, 𝑧). The proof is complete.

Lemma 9. As 𝑘 = 1, 2,

𝜙0 ′
𝑘 (𝛼, 𝑧) =

𝜕

𝜕𝛼
𝜙0
𝑘(𝛼, 𝑧) = − 1

4𝑧
𝑢0 ′𝑘 (𝛼, 𝑧) −

(︂
1

8𝛼𝑧
+
𝛼

2

)︂
𝑢0𝑘(𝛼, 𝑧)

for all 𝛼 > 0 and 𝑧 > 0.

Proof. We differentiate w.r.t. 𝛼 in (3.17). Employing (3.16) and (3.27), we obtain

𝜕

𝜕𝑧
𝜙0
1(𝛼, 𝑧) =

3𝛼1/2

4
√
𝑧
𝐽 ′
0(
√
𝑧𝛼) +

𝛼3/2

2
𝐽 ′′
0 (
√
𝑧𝛼)

=
3𝛼1/2

4
√
𝑧
𝐽 ′
0(
√
𝑧𝛼) − 𝛼3/2

2

[︂
1√
𝑧𝛼
𝐽 ′
0(
√
𝑧𝛼) + 𝐽0(

√
𝑧𝛼)

]︂
=

1

2𝛼
𝜙0
1(𝛼, 𝑧) − 𝛼

2
𝑢01(𝛼, 𝑧) =

𝑢0 ′1 (𝛼, 𝑧)

4𝑧
−
(︂

1

8𝛼𝑧
+
𝛼

2

)︂
𝑢01(𝛼, 𝑧).

Similar relations are also true for 𝜕
𝜕𝛼
𝜙0
2(𝛼, 𝑧). The proof is complete.

In the same way, employing (3.26), let us prove the following statement.

Lemma 10. As 𝑘 = 1, 2,

𝜓0 ′
𝑘 (𝛼, 𝑧) =

𝜕

𝜕𝛼
𝜓0
𝑘(𝛼, 𝑧) =

(︂
1

16𝛼𝑧2
− 𝛼

4𝑧

)︂
𝑢0𝑘(𝛼, 𝑧) − 𝛼2

4𝑧
𝑢0 ′𝑘 (𝛼, 𝑧)

for all 𝛼 > 0 and 𝑧 > 0.

Now it is easy to study the asymptotic behavior of the functions 𝜙𝑘(𝛼, 𝑧) and 𝜓𝑘(𝛼, 𝑧) and
of their derivatives by using the above lemmata and equations (3.3), (3.5), respectively.

4. Estimates needed for calculating the asymptotics of the reduced
resolvent

Thanks to formulae (2.12), (2.13) and the definition of the functions 𝑢0𝑘(𝛼, 𝑧), 𝑘 = 1, 2, see
(2.9), as 𝛼

√
𝑧 > 𝑁 ≫ 1 we have

𝑢01(𝛼, 𝑧) =

√︂
2

𝜋
𝑧−1/4

{︁
𝛾1(

√
𝑧𝛼) cos

(︁√
𝑧𝛼− 𝜋

4

)︁
+ 𝛾2(

√
𝑧𝛼) sin

(︁√
𝑧𝛼− 𝜋

4

)︁}︁
, (4.1)

𝑢02(𝛼, 𝑧) =

√︂
𝜋

2
𝑧−1/4

{︁
𝛾1(

√
𝑧𝛼) sin

(︁√
𝑧𝛼− 𝜋

4

)︁
− 𝛾2(

√
𝑧𝛼) cos

(︁√
𝑧𝛼− 𝜋

4

)︁}︁
, (4.2)(︀

𝑢01
)︀2

(𝛼, 𝑧) =
1

𝜋
√
𝑧
{[𝛾21(

√
𝑧𝛼) + 𝛾22(

√
𝑧𝛼)] + [𝛾21 − 𝛾22 ] sin 2(

√
𝑧𝛼)

− 2𝛾1(
√
𝑧𝛼)𝛾2(

√
𝑧𝛼) cos 2(

√
𝑧𝛼)},

(4.3)

(︀
𝑢02
)︀2

(𝛼, 𝑧) =
𝜋

4
√
𝑧
{[𝛾21(

√
𝑧𝛼) + 𝛾22(

√
𝑧𝛼)] − [𝛾21 − 𝛾22 ] sin 2(

√
𝑧𝛼)

+ 2𝛾1(
√
𝑧𝛼)𝛾2(

√
𝑧𝛼) cos 2(

√
𝑧𝛼},

(4.4)

𝑢01(𝛼, 𝑧)
0
𝑢2 (𝛼, 𝑧) = − 1

2
√
𝑧
{[𝛾21(

√
𝑧𝛼) − 𝛾22(

√
𝑧𝛼)] cos 2(

√
𝑧𝛼)

+ 2𝛾1(
√
𝑧𝛼)𝛾2(

√
𝑧𝛼) sin 2(

√
𝑧𝛼)},

(4.5)
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Here

𝛾21 + 𝛾22 = 1 − 1

8𝑡2
+𝑂(𝑡−4), 𝛾21 − 𝛾22 = 1 − 5

32𝑡2
+𝑂(𝑡−4), 𝛾1𝛾2 =

1

8𝑡
+𝑂(𝑡−3).

Since we need the values of the functions 𝑢𝑘(𝛼, 𝑧) and their derivatives at the point 𝛼 = 𝜋
2
,

in view of formulae (2.15), (2.16) we shall need the estimates of the functions

𝑓1(𝛼, 𝑧) =

𝛼∫︁
0

𝑢02(𝑡, 𝑧)𝑞(𝑡)𝑢1(𝑡, 𝑧)𝑑𝑡, 𝑓2(𝛼, 𝑧) =

𝛼∫︁
0

𝑢01(𝑡, 𝑧)𝑞(𝑡)𝑢1(𝑡, 𝑧)𝑑𝑡, (4.6)

𝑓3(𝛼, 𝑧) =

𝛼∫︁
0

𝑢02(𝑡, 𝑧)𝑞(𝑡)𝑢2(𝑡, 𝑧)𝑑𝑡, 𝑓4(𝛼, 𝑧) =

𝛼∫︁
0

𝑢02(𝑡, 𝑧)𝑞(𝑡)𝑢2(𝑡, 𝑧)𝑑𝑡. (4.7)

Employing (4.6), (4.7), (3.10), we represent the functions 𝑓𝑘(𝛼, 𝑧) as

𝑓1(𝛼, 𝑧) =

𝛼∫︁
0

𝑢02(𝑡, 𝑧)𝑞(𝑡)𝑢01(𝑡, 𝑧)𝑑𝑡+ 𝐹1(𝛼, 𝑧), (4.8)

𝐹1(𝛼, 𝑧) =

𝛼∫︁
0

𝑢02(𝑡, 𝑧)𝑞(𝑡)𝑤1(𝑡, 𝑧)𝑑𝑡, (4.9)

𝑓2(𝛼, 𝑧) =

𝛼∫︁
0

(︀
𝑢01
)︀2

(𝑡, 𝑧)𝑞(𝑡)𝑑𝑡+ 𝐹2(𝛼, 𝑧), (4.10)

𝐹2(𝛼, 𝑧) =

𝛼∫︁
0

𝑢01(𝑡, 𝑧)𝑞(𝑡)𝑤1(𝑡, 𝑧)𝑑𝑡, (4.11)

𝑓3(𝛼, 𝑧) =

𝛼∫︁
0

𝑢02(𝑡, 𝑧)𝑞(𝑡)𝑢01(𝑡, 𝑧)𝑑𝑡+ 𝐹3(𝛼, 𝑧), (4.12)

𝐹3(𝛼, 𝑧) =

𝛼∫︁
0

𝑢21(𝑡, 𝑧)𝑞(𝑡)𝑤2(𝑡, 𝑧)𝑑𝑡, (4.13)

𝑓4(𝛼, 𝑧) =

𝛼∫︁
0

(︀
𝑢02
)︀2

(𝑡, 𝑧)𝑞(𝑡)𝑑𝑡+ 𝐹4(𝛼, 𝑧), (4.14)

𝐹4(𝛼, 𝑧) =

𝛼∫︁
0

𝑢02(𝑡, 𝑧)𝑞(𝑡)𝑤2(𝑡, 𝑧)𝑑𝑡. (4.15)

Lemma 11. For all 𝛼 ∈ [0; 𝜋/2] and 𝑧 > 0 the estimate

|𝐹𝑘(𝛼, 𝑧)| 6 𝑐

𝑧
𝛼2, 𝑐 > 0, 𝑘 = 1, 2, 3, 4,

holds true.

Proof. Indeed, by the definition of the functions 𝐹𝑘 and estimates (3.11), (3.12) we have

|𝐹𝑘(𝛼, 𝑧)| 6 𝑐

𝑧

𝛼∫︁
0

𝑡𝑑𝑡

that proves the lemma.
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Lemma 12. Let 𝑧𝑛 ≫ 1, then

𝜋
2∫︁

0

𝑢0𝑖 (𝑡, 𝑧𝑛)𝑞(𝑡)𝑢𝑗(𝑡, 𝑧𝑛)𝑑𝑡 = 𝑂(𝑧−1
𝑛 ), 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2,

𝜋
2∫︁

0

𝑢01(𝑡, 𝑧𝑛)𝑞(𝑡)𝑢1(𝑡, 𝑧𝑛)𝑑𝑡 =
1

2𝜋2
√
𝑧𝑛

+𝑂

(︂
1

𝑧𝑛

)︂
,

𝜋
2∫︁

0

𝑢02(𝑡, 𝑧𝑛)𝑞(𝑡)𝑢2(𝑡, 𝑧𝑛)𝑑𝑡 =
1

8
√
𝑧𝑛

+𝑂

(︂
1

𝑧𝑛

)︂
.

Proof. Let 𝑁 be a sufficiently large fixed number. Since 𝐽0(𝑠) ≈ 1, 𝑠 → 0, as 𝑡
√
𝑧𝑛 6 𝑁 , by

expansions (2.10), (2.11) we have

𝑢01(𝑡, 𝑧𝑛)| 6 𝑐1
√
𝑡, |𝑢02(𝑡, 𝑧𝑛)| 6 𝑐2

𝑡
1
2
−𝛿

𝑧
𝛿
2
𝑛

|𝑢01(𝑡, 𝑧𝑛)𝑢02(𝑡, 𝑧𝑛)| 6 𝑐3
𝑡1−𝛿

𝑧
𝛿
2
𝑛

, (4.16)

where 0 < 𝑐𝑖, 𝑖 = 1, 2, 3, are constants, 𝛿 is a sufficiently small positive number. Therefore,⃒⃒⃒⃒
⃒⃒⃒⃒

𝑁√
𝑧𝑛∫︁

0

(︀
𝑢02
)︀2

(𝑡, 𝑧𝑛)𝑞(𝑡)𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒⃒ < 𝑐

𝑧𝛿

𝑁√
𝑧∫︁

0

𝑡1−2𝛿𝑑𝑡 =
𝑐

(2 − 2𝛿)𝑧𝛿

(︂
𝑁√
𝑧𝑛

)︂2−2𝛿

= 𝑂

(︂
1

𝑧𝑛

)︂
. (4.17)

In the same way we confirm that

𝑁√
𝑧𝑛∫︁

0

(︀
𝑢01
)︀2

(𝑡, 𝑧𝑛)𝑞(𝑡)𝑑𝑡 = 𝑂

(︂
1

𝑧𝑛

)︂
,

𝑁√
𝑧𝑛∫︁

0

𝑢01(𝑡, 𝑧𝑛)𝑢02(𝑡, 𝑧𝑛)𝑞(𝑡)𝑑𝑡 = 𝑂

(︂
1

𝑧𝑛

)︂
. (4.18)

As 𝑡
√
𝑧𝑛 > 𝑁 ≫ 1, in order to analyse the integrals

𝜋
2∫︁

𝑁√
𝑧𝑛

𝑢0𝑖 (𝑡, 𝑧𝑛)𝑢0𝑗(𝑡, 𝑧𝑛)𝑞(𝑡)𝑑𝑡,

we employ asymptotics formulae (4.1)–(4.5). Thus,

𝜋
2∫︁

𝑁√
𝑧𝑛

𝑢01(𝑡, 𝑧𝑛)𝑢02(𝑡, 𝑧𝑛)𝑞(𝑡)𝑑𝑡 = − 1

2
√
𝑧𝑛

𝜋
2∫︁

𝑁√
𝑧𝑛

cos 2
√
𝑧𝑛𝑡

[︂
1 +𝑂

(︂
1

𝑧𝑛𝑡2

)︂]︂
𝑞(𝑡)𝑑𝑡

= −𝑞(𝑡)
4𝑧𝑛

sin 2
√
𝑧𝑛

[︂
1 +𝑂

(︂
1

𝑧𝑛𝑡2

)︂]︂ ⃒⃒⃒⃒
⃒
𝜋
2

𝑁√
𝑧𝑛

+
1

4𝑧𝑛

𝜋
2∫︁

𝑁√
𝑧𝑛

𝑂

(︂
1

𝑧𝑛𝑡3

)︂
sin 2

√
𝑧𝑛𝑡𝑞(𝑡)𝑑𝑡

+𝑂

(︂
1

𝑧𝑛

)︂
= 𝑂

(︂
1

𝑧𝑛

)︂
,

(4.19)
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since we can choose 𝑁 so that sin 2𝑁 = 0 and
𝜋
2∫︁

𝑁√
𝑧𝑛

sin 2
√
𝑧𝑛𝑡

𝑧𝑛𝑡3
𝑑𝑡 =

𝜋
2

√
𝑧𝑛∫︁

𝑁

sin 2𝜏

𝜏 3
𝑑𝜏

is bounded. In the same way, employing the asymptotic representations for the functions
(𝑢01)

2
(𝑡, 𝑧𝑛) and (𝑢02)

2
(𝑡, 𝑧𝑛) from (4.1)–(4.5), we obtain:

𝜋
2∫︁

𝑁√
𝑧𝑛

(︀
𝑢01
)︀2

(𝑡, 𝑧𝑛)𝑞(𝑡)𝑑𝑡 =
1

𝜋
√
𝑧𝑛

𝜋
2∫︁

𝑁√
𝑧𝑛

𝑞(𝑡)𝑑𝑡+𝑂

(︂
1

𝑧𝑛

)︂
, (4.20)

𝜋
2∫︁

𝑁√
𝑧𝑛

(︀
𝑢02
)︀2

(𝑡, 𝑧𝑛)𝑞(𝑡)𝑑𝑡 =
𝜋

4
√
𝑧𝑛

𝜋
2∫︁

𝑁√
𝑧𝑛

𝑞(𝑡)𝑑𝑡+𝑂

(︂
1

𝑧𝑛

)︂
. (4.21)

We note that
𝜋
2∫︁

0

𝑞(𝑡)𝑑𝑡 =
1

2𝜋
. (4.22)

Now the statement of the lemma is implied by representations (4.6), (4.7), (4.8)–(4.15),
Lemma 11 and relations (4.17)–(4.22).

5. Asymptotics for the second corrector of the perturbation theory and
the trace formula

Basing on Theorem 2 and Lemmata 5–12, we proceed to the studying of the asymptotics for
the second corrector 𝛼𝑛 of the perturbation theory, which, as it was mentioned above, is the
key point in finding the regularized trace formula for the operator 𝐻. Namely, the following
statement holds.

Theorem 3. Let 𝑔 ∈ 𝑊 1
2 [0;𝜋] and 𝑧𝑛 ≫ 1. Then the estimate

𝛼𝑛 = 𝑂
(︁
𝑧
− 3

4
𝑛

)︁
= 𝑂

(︁
𝑛− 3

2

)︁
holds true, i.e., the sequence 𝛼𝑛 is absolutely summable.

Proof. According to Theorem 2 and (3.9), we have

𝛼𝑛 =
1

4𝜋

𝜋∫︁
0

(2𝑛+ 1)𝑔(𝛼)𝑃𝑛(cos𝛼)𝑅0𝑛(𝜔, 𝜔0, 𝜆𝑛) sin𝛼𝑑𝛼

=
1

16𝜋2

𝜋∫︁
0

𝑔(𝛼)
√
𝑧𝑛𝑢1(𝛼, 𝑧𝑛)[𝑢2(𝛼, 𝑧𝑛) −

√
𝑧𝑛𝜙1(𝛼, 𝑧𝑛) − 𝑎𝑛𝑢1(𝛼, 𝑧𝑛)]𝑑𝛼.

(5.1)

Since as 𝛼 ∈
(︀
𝜋
2
; 𝜋
)︀
𝑢𝑘(𝛼, 𝑧) = 𝑎𝑘1(𝑧)𝑢1(𝜋 − 𝛼, 𝑧) + 𝑎𝑘2(𝑧)𝑢2(𝜋 − 𝛼, 𝑧), 𝑘 = 1, 2, (5.2)

for 𝛼 ∈
(︀
𝜋
2
; 𝜋
)︀

we have

𝜙1(𝛼, 𝑧) =𝑎11(𝑧)𝜙1(𝜋 − 𝛼, 𝑧) + 𝑎12(𝑧)𝜙2(𝜋 − 𝛼, 𝑧)

+ 𝑎′11(𝑧)𝑢1(𝜋 − 𝛼, 𝑧) + 𝑎′12(𝑧)𝑢2(𝜋 − 𝛼, 𝑧).
(5.3)
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Therefore, to study the asymptotic behavior of 𝛼𝑛 as 𝑛≫ 1, in view of (5.1) and (5.2), we need
to study the asymptotics of the numbers 𝑎𝑘𝑖(𝑧𝑛), 𝑎′11(𝑧𝑛), 𝑎′12(𝑧𝑛) and 𝑎𝑛.

Let 𝑛 = 2𝑘 + 1, i.e., 𝑢1(
𝜋
2
, 𝑧𝑛) = 0 (the case 𝑛 = 2𝑘, 𝑘 = 1, 2, . . . can be studied in the same

way). Since 𝑊 (𝑢1, 𝑢2) = 1, we observe that

𝑎11(𝑧) = 2𝑢1

(︁𝜋
2
, 𝑧
)︁
𝑢′2

(︁𝜋
2
, 𝑧
)︁
− 1.

This is why, for 𝑛 = 2𝑘 + 1 it follows from formulae (2.17), (5.3) that

𝑎11(𝑧𝑛) = −1, 𝑎22(𝑧𝑛) = 1, 𝑎12(𝑧) = −2𝑢1(
𝜋

2
, 𝑧𝑛)𝑢′1(

𝜋

2
, 𝑧𝑛) = 0, (5.4)

𝑎21(𝑧𝑛) = 2𝑢2

(︁𝜋
2
, 𝑧𝑛

)︁
𝑢′2

(︁𝜋
2
, 𝑧𝑛

)︁
, 𝑎′12(𝑧𝑛) = −2𝜙1

(︁𝜋
2
, 𝑧𝑛

)︁
𝑢′1

(︁𝜋
2
, 𝑧𝑛

)︁
, (5.5)

𝑎′11(𝑧𝑛) = 2𝜙1

(︁𝜋
2
, 𝑧𝑛

)︁
𝑢′2

(︁𝜋
2
, 𝑧𝑛

)︁
, (5.6)

𝜙1(𝛼, 𝑧𝑛) = −𝜙1(𝜋 − 𝛼, 𝑧𝑛) + 𝑎′11(𝑧𝑛)𝑢1(𝜋 − 𝛼, 𝑧𝑛) + 𝑎′12(𝑧𝑛)𝑢2(𝜋 − 𝛼, 𝑧𝑛). (5.7)

Employing formulae (3.8), (4.1)–(4.5) and Lemmata 6 and 8 for 𝑛≫ 1, 𝑛 = 2𝑘 + 1, we obtain

𝑎21(𝑧𝑛) = 𝑂

(︃
1

𝑧
3
2
𝑛

)︃
, 𝑎′11(𝑧𝑛) = 𝑂

(︃
1

𝑧
3
2
𝑛

)︃
, 𝑎′12(𝑧𝑛) = − 1

√
𝑧𝑛

{︂
1 +𝑂

(︂
1

√
𝑧𝑛

)︂}︂
. (5.8)

𝑎𝑛 =

[︂
𝑢′2(

𝜋
2
, 𝑧𝑛)

𝑢′1(
𝜋
2
, 𝑧𝑛)

+
𝑧𝑛𝜙2(

𝜋
2
, 𝑧𝑛)

𝑢2(
𝜋
2
, 𝑧)

−
𝑧2𝑛𝜓1(

𝜋
2
, 𝑧)

𝑢2(
𝜋
2
, 𝑧)

]︂
=

= [𝑂(𝑧−1
𝑛 ) − 1

4
√
𝑧𝑛

+𝑂(𝑧−1
𝑛 ) +

1

2
√
𝑧𝑛

+𝑂(𝑧−1
𝑛 )] =

1

4
√
𝑧𝑛

{︂
1 +𝑂

(︂
1

√
𝑧𝑛

)︂}︂
.

(5.9)

We split the integral in formula (5.1) into that over the segments [0; 𝜋
2
] and [𝜋

2
; 𝜋]. We consider

the integral over the second segment and use relations (5.2) and (5.3), make the change of the
variable 𝜋 − 𝛼 = 𝑡 and take into consideration identities (5.4)–(5.9) for the numbers 𝛼𝑛 as
𝑛≫ 1. As a result, thanks to (5.1), we obtain the following representation:

𝛼𝑛 =
1

16𝜋2

{︃ 𝜋
2∫︁

0

[𝑔(𝑡) − 𝑔(𝜋 − 𝑡)]
√
𝑧𝑛𝑢1(𝑡, 𝑧𝑛)𝑢2(𝑡, 𝑧𝑛)𝑑𝑡

−

𝜋
2∫︁

0

[𝑔(𝑡) + 𝑔(𝜋 − 𝑡)]𝑧𝑛𝜙1(𝑡, 𝑧𝑛)𝑢1(𝑡, 𝑧𝑛)𝑑𝑡

−

𝜋
2∫︁

0

[𝑔(𝑡) + 𝑔(𝜋 − 𝑡)]
1

4
√
𝑧𝑛

{︂
1 +𝑂

(︂
1

√
𝑧𝑛

)︂}︂
𝑢21(𝑡, 𝑧𝑛)𝑑𝑡

−

𝜋
2∫︁

0

𝑔(𝜋 − 𝑡)
√
𝑧𝑛𝑢1(𝑡, 𝑧𝑛)𝑢2(𝑡, 𝑧𝑛)𝑑𝑡+𝑂

(︁
𝑧
− 3

4
𝑛

)︁}︃

=𝐼1(𝑛) + 𝐼2(𝑛) + 𝐼3(𝑛) + 𝐼4(𝑛) +𝑂
(︁
𝑧
− 3

4
𝑛

)︁
.

(5.10)

Let us study the asymptotic behavior of 𝐼𝑗(𝑛), 𝑗 = 1, 2, 3, 4, as 𝑛 → ∞. We begin with the
term 𝐼1(𝑛). First we integrate by parts and then, employing estimates (3.11), (3.12) and (4.18)
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and asymptotic representation (4.5), we conclude that

𝐼1(𝑛) = −
√
𝑧𝑛

16𝜋2

𝜋
2∫︁

0

[𝑔′(𝑡) + 𝑔′(𝜋 − 𝑡)]

𝑡∫︁
0

𝑢1(𝜏, 𝑧𝑛)𝑢2(𝜏, 𝑧𝑛)𝑑𝜏𝑑𝑡

= −
√
𝑧𝑛

16𝜋2

⎧⎪⎪⎨⎪⎪⎩
𝑁√
𝑧𝑛∫︁

0

𝑡∫︁
0

+

𝑁√
𝑧𝑛∫︁

0

𝜋
2∫︁

𝑁√
𝑧𝑛

+

𝜋
2∫︁

𝑁√
𝑧𝑛

𝑡∫︁
𝑁√
𝑧𝑛

⎫⎪⎪⎬⎪⎪⎭ [𝑔′(𝑡) + 𝑔′(𝜋 − 𝑡)]𝑢1(𝜏, 𝑧𝑛)𝑢2(𝜏, 𝑧𝑛)𝑑𝜏𝑑𝑡

=𝑂
(︁
𝑧
− 3

4
𝑛

)︁
,

(5.11)

where 𝑁 is a sufficiently large fixed number.
In order to study 𝐼2(𝑛), we employ representations (2.15), (3.3) and (3.16), estimates (3.11),

(3.12) and Lemma 12, as well as asymptotic representations (4.1)–(4.5), to establish that

𝐼2(𝑛) = − 1

16𝜋2

𝜋
2∫︁

0

[𝑔(𝑡) + 𝑔(𝜋 − 𝑡)]
𝑡

2
𝑢0 ′1 (𝑡, 𝑧𝑛)𝑢1(𝑡, 𝑧𝑛)𝑑𝑡

+
1

64𝜋2

𝜋
2∫︁

0

[𝑔(𝑡) + 𝑔(𝜋 − 𝑡)]
(︀
𝑢01
)︀2

(𝑡, 𝑧𝑛)𝑑𝑡+𝑂
(︁
𝑧
− 3

4
𝑛

)︁
=𝐼

(1)
2 (𝑛) + 𝐼

(2)
2 (𝑛) +𝑂

(︁
𝑧
− 3

4
𝑛

)︁
.

(5.12)

We split the integral 𝐼
(1)
2 (𝑛) into two integrals over the segments [0; 𝑁√

𝑧𝑛
] and [ 𝑁√

𝑧𝑛
; 𝜋
2
]. Then,

using estimates (3.25), (4.16), we get

− 1

16𝜋2

𝑁√
𝑧𝑛∫︁

0

[𝑔(𝑡) + 𝑔(𝜋 − 𝑡)]
𝑡

2
𝑢0 ′1 (𝑡, 𝑧𝑛)𝑢1(𝑡, 𝑧𝑛)𝑑𝑡 = 𝑂

(︁
𝑧
− 3

4
𝑛

)︁
.

For the second segment, employing the asymptotic representation of the function 𝑢01(𝑡, 𝑧𝑛) in
(4.1)–(4.5) and integrating once by parts, by the Cauchy-Schwarz inequality and the condition
𝑔 ∈ 𝑊 1

2 (0;𝜋) we conclude that

− 1

16𝜋2

𝜋
2∫︁

𝑁√
𝑧𝑛

[𝑔(𝑡) + 𝑔(𝜋 − 𝑡)]
𝑡

2
𝑢0 ′1 (𝑡, 𝑧𝑛)𝑢1(𝑡, 𝑧𝑛)𝑑𝑡 =

1

64𝜋2
√
𝑧𝑛
𝑔
(︁𝜋

2

)︁
+𝑂

(︁
𝑧
− 3

4
𝑛

)︁
. (5.13)

Then we observe that

𝐼3(𝑛) + 𝐼
(2)
2 (𝑛) = 𝑂(𝑧−1

𝑛 ). (5.14)

Finally, let us study the asymptotic behavior of the term 𝐼4(𝑛) in formula (5.10). In order
to do it, we integrate by parts:

𝐼4(𝑛) = −
√
𝑧𝑛

16𝜋2
𝑔
(︁𝜋

2

)︁ 𝜋
2∫︁

0

𝑢1(𝑡, 𝑧𝑛)𝑢2(𝑡, 𝑧𝑛)𝑑𝑡

−
√
𝑧𝑛

16𝜋2

𝜋
2∫︁

0

𝑔′(𝜋 − 𝑡)

𝑡∫︁
0

𝑢1(𝜏, 𝑧𝑛)𝑢2(𝜏, 𝑧𝑛)𝑑𝜏𝑑𝑡+𝑂(𝑧−1
𝑛 ).

(5.15)
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Since
𝜋
2∫︁

0

(︀
𝑢01
)︀2

(𝑡, 𝑧𝑛)

𝑡∫︁
0

(︀
𝑢02
)︀2

(𝜏, 𝑧𝑛)𝑞(𝜏)𝑑𝜏𝑑𝑡−

𝜋
2∫︁

0

(︀
𝑢02
)︀2

(𝑡, 𝑧𝑛)

𝑡∫︁
0

(︀
𝑢01
)︀2

(𝜏, 𝑧𝑛)𝑞(𝜏)𝑑𝜏𝑑𝑡 = 𝑂
(︁
𝑧
− 3

2
𝑛

)︁
,

due to Lemmata 5 and 12 we obtain
𝜋
2∫︁

0

𝑢1(𝑡, 𝑧𝑛)𝑢2(𝑡, 𝑧𝑛)𝑑𝑡 =

𝜋
2∫︁

0

𝑢01(𝑡, 𝑧𝑛)𝑢02(𝑡, 𝑧𝑛)𝑑𝑡+𝑂
(︁
𝑧
− 3

2
𝑛

)︁
. (5.16)

Employing relations (4.1)–(4.5), formula (2) in [10, Sect. 5.12] and the asymptotic represen-
tations for the functions 𝐽1(𝑠), 𝑌1(𝑠) in [11, Ch. XIII, Sect. A.4] we conclude that

𝜋
2∫︁

0

𝑢01(𝑡, 𝑧𝑛)𝑢02(𝑡, 𝑧𝑛)𝑑𝑡 =
𝜋

2

𝜋
2∫︁

0

𝑡𝐽0(
√
𝑧𝑛𝑡)𝑌0(

√
𝑧𝑛𝑡)𝑑𝑡

=
𝜋

4
𝑢01(

√
𝑧𝑛
𝜋

2
)𝑢02(

√
𝑧𝑛
𝜋

2
) +

𝜋3

16
𝐽1(

√
𝑧𝑛
𝜋

2
)𝑌1(

√
𝑧𝑛
𝜋

2
) =

1

4𝑧𝑛
+𝑂

(︁
𝑧
− 3

2
𝑛

)︁
.

(5.17)

Thus, according to estimates (5.11) and (5.16), it follows from identities (5.15) and (5.17)
that

𝐼4(𝑛) = − 1

64𝜋2
√
𝑧𝑛
𝑔
(︁𝜋

2

)︁
+𝑂

(︁
𝑧
− 3

4
𝑛

)︁
. (5.18)

Now the statement of Theorem 3 is implied by formula (5.10) on the base of identities (5.11),
(5.12), (5.13), (5.14) and (5.18).

The proven Theorem 3 allows us to employ the approach of the work [5] for calculating the
regularized trace formula and the definition of the function 𝑔(𝛼) ([5, Formula (7)]) yields that
the smoothness of the functions 𝑔(𝛼) and 𝑣(𝑤) coincide, we arrive at the main result of the
work.

Theorem 4. Let 𝑣(𝑤) ∈ 𝑊 1
2 (𝑆2). Then

∞∑︁
𝑛=0

𝑛∑︁
𝑘=−𝑛

[𝜇(𝑘)
𝑛 − 𝑛(𝑛+ 1) − 𝑐0] =

1

16𝜋3

∫︁
𝑆2

∫︁
𝑆2

𝑣(𝑤)𝑣(𝑤0)√︀
1 − (𝑤,𝑤0)2

𝑑𝜇(𝑤)𝑑𝜇(𝑤0)

− 1

8𝜋

∫︁
𝑆2

𝑣2(𝑤)𝑑𝜇(𝑤),

where 𝜇
(𝑘)
𝑛 are the eigenvalues of the operator 𝐻,

𝑐0 =
1

4𝜋

∫︁
𝑆2

𝑣(𝑤)𝑑𝜇(𝑤),

and the series in the left hand side of the above formula converges absolutely.
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