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THE REAL AXIS
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Abstract. In the work we consider a topological module 𝒫(𝑎; 𝑏) of entire functions,
which is the isomorphic image under the Fourier-Laplace transform of the Schwarz space
of distributions with compact supports in a finite or infinite interval (𝑎; 𝑏) ⊂ R. We prove
that each weakly localizable module in 𝒫(𝑎; 𝑏) is either generated by its two elements or
is equal to the closure of two submodules of special form. We also provide dual results on
subspaces in 𝐶∞(𝑎; 𝑏) invariant w.r.t. the differentiation operator.
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1. Introduction

Let [𝑎1; 𝑏1] b [𝑎2; 𝑏2] b . . . be a sequence of a finite of infinite interval (𝑎; 𝑏) of the real axis,
𝑃𝑘 be a Banach space formed by all entire functions 𝜙 having a finite norm

‖𝜙‖𝑘 = sup
𝑧∈C

|𝜙(𝑧)|
(1 + |𝑧|)𝑘 exp(𝑏𝑘𝑦+ − 𝑎𝑘𝑦−)

, 𝑦± = max{0,±𝑦}, 𝑧 = 𝑥+ i𝑦. (1.1)

We denote by 𝒫(𝑎; 𝑏) the inductive limit of the sequence {𝑃𝑘}. Each of the embeddings 𝑃𝑘 ⊂
𝑃𝑘+1 is completely continuous and hence, 𝒫(𝑎; 𝑏) is a locally convex space of type (𝐿𝑁*) (see
[1]). It is known (see, for instance, [2, Sect. 16.1]) that each element 𝜙 of space 𝒫(𝑎; 𝑏) is an
entire function of completely regular growth at order 1, and its indicator diagram is a segment
of the imaginary axis i[𝑐𝜙; 𝑑𝜙] ⊂ i(𝑎; 𝑏).

By 𝒫0(𝑎; 𝑏) we denote a linear subspace of space 𝒫(𝑎; 𝑏) formed by all functions 𝜙 which
decay fast on the real axis:

|𝜙(𝑥)| = 𝑜(|𝑥|𝑛), 𝑛 ∈ N.
In the space 𝒫(𝑎; 𝑏), the multiplication by the independent variable 𝑧 is a continuous mapping,

and this is why 𝒫(𝑎; 𝑏) is a topological module over the ring of polynomials C[𝑧]. For the sake
of brevity, if else is not said, we shall use the word “submodule” for a closed submodule of
module 𝒫(𝑎; 𝑏), i.e., a closed subspace invariant w.r.t. the multiplication by 𝑧.

We denote by 𝒥𝜙1,...,𝜙𝑚 a submodule generated by functions 𝜙1, . . . , 𝜙𝑚 ∈ 𝒫(𝑎; 𝑏) (or 𝑚-
generated):

𝒥𝜙1,...,𝜙𝑚 = {𝑝1𝜙1 + · · ·+ 𝑝𝑚𝜙𝑚, 𝑝1, . . . , 𝑝𝑚 ∈ C[𝑧]}, (1.2)
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Functions 𝜙1, . . . , 𝜙𝑚 are called generators of submodule 𝒥𝜙1,...,𝜙𝑚 . A submodule with a single
generator is called principle.

In what follows we provide the definition of notions characterizing the properties of the
submodules and used in the issues on the local description (see [3] – [6]).

Given a submodule 𝒥 ⊂ 𝒫(𝑎; 𝑏), we let 𝑐𝒥 = inf
𝜙∈𝒥

𝑐𝜙, 𝑑𝒥 = sup
𝜙∈𝒥

𝑑𝜙. The set [𝑐𝒥 ; 𝑑𝒥 ] is called

the indicator segment of submodule 𝒥 .
The divisor of a function 𝜙 ∈ 𝒫(𝑎; 𝑏) is defined by the formula

𝑛𝜙(𝜆) =

{︃
0, if 𝜙(𝜆) ̸= 0,

𝑚, if 𝜆 is a zero of multiplicity 𝑚,

for all 𝜆 ∈ C.
The divisor of a submodule 𝒥 ⊂ 𝒫(𝑎; 𝑏) is defined by the formula 𝑛𝒥 (𝜆) = min

𝜙∈𝒥
𝑛𝜙(𝜆). Then

we introduce the zero set Λ𝜙 of a function 𝜙:

Λ𝜙 = {(𝜆𝑘;𝑚𝑘) : 𝑛𝜙(𝜆𝑘) = 𝑚𝑘 > 0},
and the zero set Λ𝒥 of submodule 𝒥 :

Λ𝒥 = {(𝜆𝑘;𝑚𝑘) : 𝑛𝒥 (𝜆𝑘) = 𝑚𝑘 > 0}.
Submodule 𝒥 is weakly localizable if it contains all functions 𝜙 ∈ 𝒫(𝑎; 𝑏) satisfying the

conditions:
1) 𝑛𝜙(𝑧) > 𝑛𝒥 (𝑧), 𝑧 ∈ C;
2) the indicator diagramm of function 𝜙 is contained in the set i[𝑐𝒥 ; 𝑑𝒥 ]. In the case 𝑐𝒥 = 𝑎

and 𝑑𝒥 = 𝑏 the weak localizable property of 𝒥 means that this submodule is localizable (ample).
Let 𝜙 ∈ 𝒫(𝑎; 𝑏), 𝑐, 𝑑 ∈ R and

𝑎 6 𝑐 6 𝑐𝜙 6 𝑑𝜙 6 𝑑 6 𝑏.

We denote by 𝒥 (𝜙, ⟨𝑐; 𝑑⟩) a submodule in 𝒫(𝑎; 𝑏) formed by all functions 𝜓 ∈ 𝒫(𝑎; 𝑏) with
the set of zeroes Λ𝜓 ⊃ Λ𝜙 and the indicator diagram i[𝑐𝜓; 𝑑𝜓] ⊂ i⟨𝑐; 𝑑⟩; hereinafter symbol “⟨”
stands for the bracket “[” or “(” subject to which of the relations 𝑎 = 𝑐 or 𝑎 < 𝑐 holds true.
In the same way we treat the bracket “⟩”. It is clear that the submodule 𝒥 (𝜙, ⟨𝑐; 𝑑⟩) is weakly
localizable. For the submodule 𝒥 (𝜙, [𝑐𝜙; 𝑑𝜙]) we shall employ a shorter notation 𝒥 (𝜙).

A submodule 𝒥 is called stable at a point 𝜆 ∈ C if conditions 𝜙 ∈ 𝒥 and 𝑛𝜙(𝜆) > 𝑛𝒥 (𝜆)
imply the belonging 𝜙

𝑧−𝜆 ∈ 𝒥 . A submodule 𝒥 is stable if it is stable at each point 𝜆 ∈ C.
It is easy to see that a stability of submodule 𝒥 is a necessary condition for its weak localizable

property. However, not each stable submodule 𝒫(𝑎; 𝑏) is weakly localizable. Indeed, it follows
from the results of work [7, Sect. 4] that each principle submodule in 𝒫(𝑎; 𝑏) is stable. It can be
also checked straightforwardly by employing the definition of stability and the description of the
topology in 𝒫(𝑎; 𝑏). On the other hand, an example constructed in [8] as well as Theorem 3 of
work [9] show that not all principle submodules in the submodule 𝒫(𝑎; 𝑏) are weakly localizable.
Thus, the statement that each stable finite generated submodule in 𝒫(𝑎; 𝑏) is weakly localizable
is wrong.

In the present work we prove the inverse statement: each weakly localizable submodule
𝒥 ⊂ 𝒫(𝑎; 𝑏) either is generated by two (probably, coinciding) elements or is equal to the
closure of the sum of two (probably, coinciding) submodules of the form 𝒥 (𝜙, ⟨𝑐; 𝑑⟩). In [3,
Thms. 4, 5] we announced less general statements.

The issue on 2-degenerateness in a wide sense was studied earlier for localizable (ample)
submodules in the module of entire functions of finite order determined by restrictions for
the indicator [10], [11], for localized (ample) submodules in abstract weighted submodules of
holomorphic functions [12], for submodules with a finite zero set in the module 𝒫(𝑎; 𝑏) [4]. One
of the results of work [12] is the theorem stating that localizable (ample) submodules of the
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module 𝒫(𝑎; 𝑏) are generated by two submodules of the form 𝒥 (𝜙, (𝑎; 𝑏)). We note that by the
abstract part of the paper [12] one can get Statement 1) of Theorem 1 in the present for the case
𝑐𝒥 = 𝑎 or (and) 𝑑𝒥 = 𝑏. Other statements on 2-generateness on weakly localizable submodules
in 𝒫(𝑎; 𝑏) proven here, namely, Statement 2) of Theorem 1, Theorem 3 and Statement 1) of
Theorem 1 in the general formulation, can not be obtained by means of the results of the work
[12].

The further presentation is as follows. The second section contains theorems on 2-
generateness in a wide sense of an arbitrary localizable submodule 𝒥 in 𝒫(𝑎; 𝑏) (Theorems 1
and 3). In the third section by these theorems we obtain dual statements on the structure of
closed subspaces in space 𝐶∞(𝑎; 𝑏) invariant w.r.t. the differentiation operator.

2. Structure of weakly localizable submodules

Theorem 1. Let 𝒥 ⊂ 𝒫(𝑎; 𝑏) be a weakly localizable submodule.
1) If 𝒥 contains functions in 𝒫0(𝑎; 𝑏), then for each function 𝜙1 ∈ 𝒥

⋂︀
𝒫0(𝑎; 𝑏) there exists

infinitely many functions 𝜙2 ∈ 𝒥
⋂︀
𝒫0(𝑎; 𝑏) possessing the property

𝒥 = 𝒥 (𝜙1, ⟨𝑐𝒥 ; 𝑑𝒥 ⟩) + 𝒥 (𝜙2, ⟨𝑐𝒥 ; 𝑑𝒥 ⟩). (2.1)

2) If 𝒥
⋂︀
𝒫0(𝑎; 𝑏) = ∅, there exists a function 𝜙0 ∈ 𝒥 such that

𝒥 = 𝒥𝜙0 = {𝑝𝜙0, 𝑝 ∈ C[𝑧]}. (2.2)

Proof. 1) The first of the formulate statements can be proved in the same way as Theorem 2
in the work [4], where stable submodules with a finite set of zeroes were considered.

Without loss of generality we can assume that 0 ̸∈ Λ𝒥 and 𝜙1(0) = 1. Let Λ𝜙1 = {𝜆𝑗},
|𝜆1| 6 |𝜆2| 6 . . . , and each zeroes is taken counting the multiplicity.

We choose and fix two numbers 𝑎′, 𝑏′ ∈ R satisfying the conditions

𝑎 6 𝑎′ < 𝑐𝜙1 6 𝑑𝜙1 < 𝑏′ 6 𝑏, 𝑎′ 6 𝑐𝒥 , 𝑑𝒥 6 𝑏′,

where 𝑐𝜙1 = ℎ𝜙1(−𝜋/2), 𝑑𝜙1 = ℎ𝜙1(𝜋/2), ℎ𝜙1 is the indicator of the function 𝜙1. We also choose

and fix a sequence ̃︀Γ = {𝛾𝑘}, 0 ̸∈ ̃︀Γ close to Λ𝜙1 so that both sequences Λ𝜙1 and ̃︀Γ satisfy the
condition

∞∑︁
𝑗=1

|𝜆𝑗 − 𝛾𝑗|
1 + |Im𝜆𝑗|+ |Im 𝛾𝑗|

< +∞. (2.3)

We let ̃︀𝐶 =
∞∑︁
𝑗=1

|𝜆𝑗 − 𝛾𝑗|
1 + |Im𝜆𝑗|

, ̃︀𝐴𝑚 = 𝑒2
̃︀𝐶‖𝑠(𝑚+1)

1 ‖𝐿1(𝑎′;𝑏′),

where 𝑠1 ∈ 𝐶∞
0 (𝑎′; 𝑏′) is the image of the function 𝜙1 under the Fourier-Laplace transform ℱ .

The convergence of the series in the definition of the quantity ̃︀𝐶 is implied by condition (2.3)
(see the proof of Theorem 5.1.2 in [13]).

Let us consider an arbitrary sequence Γ = {𝛾𝑘}, 0 ̸∈ Γ, for which

|𝛾𝑘 − 𝜆𝑘| 6 |𝛾𝑘 − 𝜆𝑘|, 𝑘 = 1, 2, . . . (2.4)

In accordance with Proposition 3 and Remark 1 in the work [4], a function 𝜙2 defined in terms
of the function 𝜙1 and the sequence Γ by the identity

𝜙2(𝑧) = 𝑒−i𝑐𝑧 lim
𝑅→∞

∏︁
|𝛾𝑘|<𝑅

(︂
1− 𝑧

𝛾𝑘

)︂
, where 𝑐 =

𝑐𝜙1 + 𝑑𝜙1

2
, (2.5)
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is the Fourier-Laplace transform of some function 𝑠2 ∈ 𝐶∞
0 (𝑎′; 𝑏′) ⊂ 𝐶∞

0 (𝑎; 𝑏), at that,
ch supp 𝑠2 = [𝑐𝜙1 ; 𝑑𝜙1 ] and

|𝑠(𝑚)
2 (𝑡)| 6 𝐴𝑚, 𝑡 ∈ (𝑎; 𝑏), 𝑚 = 0, 1, . . . (2.6)

Here ch supp 𝑠2 is the closure of the convex hull of the support of the function 𝑠2.
Let {𝑟𝑘}∞𝑘=0 be an increasing sequence of real numbers greater than 2 such that

|𝜙1(𝑥)| 6 |𝑥|−𝑘, 𝑥 ∈ R, |𝑥| > 𝑟𝑘. (2.7)

We let
𝑅𝑘 = max{𝑟𝑘, 𝐴𝑘+1(𝑏

′ − 𝑎′)}, 𝑘 = 0, 1, 2, . . . (2.8)

By the relation 𝜙2 = ℱ(𝑠2), 𝑠2 ∈ 𝐶∞
0 (𝑎′; 𝑏′) and estimates (2.6), for the function 𝜙2 we have

|𝜙2(𝑥)| 6 𝐴𝑘+1(𝑏
′ − 𝑎′)

|𝑥|𝑘+1
6

1

|𝑥|𝑘
, |𝑥| > 𝑅𝑘, 𝑘 = 0, 1, . . . (2.9)

We observe that the latter estimates are valid for all functions 𝜙2 defined by formula (2.5) via
the function 𝜙1 and the sequence Γ provided Γ satisfies (2.4).

The sequences Λ and Γ have the same density; we denote it by ∆0. For arbitrary fixed
numbers ∆ > ∆0, 𝛿 > 0 we let 𝑅*

𝑗 = 𝜇(𝛿/∆) max{|𝜆𝑗|, |𝛾𝑗|}, where a function 𝜇(𝜒) is the
inverse one for the function

𝜒(𝜇) =
1

𝜇
ln (1 + 𝜇) + ln

(︂
1 +

1

𝜇

)︂
. (2.10)

Let us make use of the following statement valid for functions 𝜙1, 𝜙2 ∈ ℱ(𝐶∞
0 (𝑎; 𝑏)) satisfying

the conditions
𝜙1(0) = 𝜙2(0) = 1, ℎ𝜙1(𝜃) = ℎ𝜙2(𝜃), 𝜃 ∈ [0; 2𝜋).

Theorem A [4, Thm. 1]. Assume that for some numbers ∆ > ∆0, 𝛿 > 0 and an increasing
sequence 𝑅𝑘 > 2, 𝑘 = 1, 2, . . . , such that

|𝜙(𝑥)| 6 1

|𝑥|𝑘
, |𝜓(𝑥)| 6 1

|𝑥|𝑘
, 𝑥 ∈ R, |𝑥| > 𝑅𝑘, 𝑘 = 1, 2, . . . ,

the relation

lim sup
𝑘→∞

ln 1
𝑆𝑘+1

max{𝑅𝑘, 𝑅*
𝑘}

> 𝛿 (2.11)

holds true, where

𝑆𝑘 =
∑︁
𝑗>𝑘

⃒⃒⃒⃒
1

𝜆𝑗
− 1

𝛾𝑗

⃒⃒⃒⃒
.

Then the submodule 𝒥𝜙1,𝜙2 generated by functions 𝜙1 and 𝜙2 in the module 𝒫(𝑎; 𝑏) is stable.

We fix an arbitrary sequence Γ satisfying, apart of (2.4), additional requirements: the inter-
section Γ

⋂︀
Λ is Λ𝒥 and the sequences Λ and Γ satisfy relation (2.11). Since 𝒥 is a weakly

localizable submodule, the function 𝜙2 defined by formula Relations (2.7), (2.9) and (2.11) mean
that the assumptions of Theorem A hold true with the numbers 𝑅𝑘 defined by formula (2.8).
Hence, according to this theorem, 2-generated submodule 𝒥𝜙1,𝜙2 is stable or, that is equivalent
in our case (see [7, Prop. 4.9]), the identical zero can be approximated by the functions of the
form (𝑝𝜙1 − 𝑞𝜙2) in the topology of 𝒫(𝑎; 𝑏), where 𝑝, 𝑞 are polynomials and 𝑝(0) = 𝑞(0) = 1.
Due to [7, Prop. 4.8], this fact is a sufficient condition for the stability of the submodulẽ︀𝒥 := 𝒥 (𝜙1, ⟨𝑐𝒥 ; 𝑑𝒥 ⟩) + 𝒥 (𝜙2, ⟨𝑐𝒥 ; 𝑑𝒥 ⟩).

A stable submodule ̃︀𝒥 contains a weakly localizable submodule 𝒥 (𝜙1). Theorem 1 in [3]

states that then ̃︀𝒥 is a weakly localizable submodule. Taking into consideration that submod-

ules 𝒥 and ̃︀𝒥 have the same indicator segments and zero sets, we conclude that 𝒥 = ̃︀𝒥 .
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2) It is easy to check that if the submodule 𝒥 contains no functions in the subspace 𝒫0(𝑎; 𝑏),
then [𝑐𝒥 ; 𝑑𝒥 ] ⊂ (𝑎; 𝑏) and 2𝜌Λ𝒥 = 𝑑𝒥 − 𝑐𝒥 . Moreover, in this case the set Λ𝜓 ∖ Λ𝒥 is finite for
each function 𝜓 ∈ 𝒥 . Indeed, if this is not the case, letting

𝜔(𝑧) =
∞∏︁
𝑗=1

(︂
1− 𝑧

𝜇𝑗

)︂
,

where sequence {𝜇𝑗} ⊂ Λ𝜓 ∖ Λ𝒥 is “sparse”, i.e., lim
𝑗→∞
|𝜇𝑗+1|/|𝜇𝑗| = +∞, we obtain that 𝜓

𝜔
∈

𝒥
⋂︀
𝒫0(𝑎; 𝑏).

It follows from the above that for some 𝑐 ∈ R the function

𝜙0(𝑧) = 𝑒i𝑐𝑧 lim
𝑅→+∞

∏︁
𝜆𝑗∈Λ𝒥 ,|𝜆𝑗 |<𝑅

(︂
1− 𝑧

𝜆𝑗

)︂
is contained in 𝒥 and generates this submodule, more precisely, relation (2.2) holds true.

In the rest of this section we prove the following fact: if the indicator segment of a weakly
localizable submodule 𝒥 is the proper set of the interval (𝑎; 𝑏), then this submodule is either
principal or 2-generated in the sense of (1.2).

Let a function Φ ∈ 𝒫(𝑎; 𝑏) be such that

𝒥 (Φ) = 𝒥Φ = {𝑝Φ, 𝑝 ∈ C[𝑧]}. (2.12)

Then 𝒥Φ is weakly localizable submodule and in accordance with Theorem 2 [9], Φ ̸∈ 𝒫0(𝑎; 𝑏).
As we shall see later in the proof of Theorem 3, in each weakly localizable submodule there
exists a function with such properties.

Let us consider an arbitrary sequence {𝜇𝑗} ⊂ ΛΦ ∖ {0}, for which

lim inf
𝑗→∞

|𝜇𝑗+1|
|𝜇𝑗|

= 𝛼0 > 1. (2.13)

We define the functions

𝜔(𝑧) =
∞∏︁
𝑗=1

(︂
1− 𝑧

𝜇𝑗

)︂
, 𝜙 =

Φ

𝜔
.

For 𝑧 ∈ C, 𝑀 ⊂ C, by the symbol dist(𝑧,𝑀) we denote the distance from a point 𝑧 to a set
𝑀 .

Theorem 2. Function 𝜙 belongs to 𝒫0(𝑎; 𝑏) and generates a weakly localizable principle sub-
module 𝒥𝜙.

In order to prove this theorem, we shall make use of the three lemmata.

Lemma 1. 1) For each natural number 𝑛 there exists a representation of function 𝜔 as
a product of two entire functions 𝜔1,𝑛 and 𝜔2,𝑛 such that for all 𝑧, dist(𝑧,Λ𝜔) > 𝛿 > 0 the
inequality ⃒⃒

ln |𝜔1,𝑛(𝑧)| − 2−𝑛ln |𝜔(𝑧)|
⃒⃒
6 𝐴ln (𝑒+ |𝑧|) (2.14)

holds true, where 𝐴 is a positive constant dependent only on the function 𝜔 and the quantity 𝛿,
Λ𝜔 = {𝜇𝑗} is the zero set of function 𝜔.

2) There exists a sequence {𝜔2,𝑛𝑘
𝜙}∞𝑘=1 converging to a function ̃︀Φ in the sense of the topology

in the space 𝒫(𝑎; 𝑏) and
(︁

Φ/̃︀Φ)︁
is a polynomial.
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Proof. 1) Let ̃︁ℳ = {𝜇𝑗 ∈ Λ𝜔 : |Im𝜇𝑗| < 1}, ̂︁ℳ = Λ𝜔 ∖ ̃︁ℳ,

�̃�(𝑧) =
∏︁
𝜇𝑗∈̃︁ℳ

(︂
1− 𝑧

𝜇𝑗

)︂
, �̂�(𝑧) =

∏︁
𝜇𝑗∈̂︁ℳ

(︂
1− 𝑧

𝜇𝑗

)︂
.

It is clear that 𝜔 = �̃��̂�.
In order to obtain the representation �̃� = �̃�1,𝑛�̃�2,𝑛, we employ the following theorem.

Theorem B [15, Thm. 2]. Let {𝑧𝑘}, 𝑘 ∈ Z, be the zeroes of an entire function 𝑣 taken so
that Re 𝑧𝑘 is an ascending sequence and

Re 𝑧0 = min
𝑘
{Re 𝑧𝑘, Re 𝑧𝑘 > 0}.

If all points 𝑧𝑘 are located in the strip |Im 𝑧| < 1, and |Re 𝑧𝑘| > 1, and each square

Π𝑗 = {𝑧 : |Im 𝑧| < 1, 2𝑗 − 1 6 Re 𝑧 < 2𝑗 + 1}, 𝑗 ∈ Z,
contains at most one point 𝑧𝑘, then function 𝑣 can be represented as the product of entire
functions 𝑣1, 𝑣2 so that

|ln |𝑣1(𝑧)| − ln |𝑣2(𝑧)|| 6 𝐶1ln
+ |𝑧|+ 𝐶2ln

+ 1

𝑑(𝑧)
+ 𝐶3,

where 𝑑(𝑧) is the distance from point 𝑧 to the set of zeroes of the function 𝑣, and 𝐶𝑖 > 0 are
absolute constants independent of the function 𝑣.

Neglecting if needed finitely many zeroes of the function �̃� and reordering the remaining

zeroes so that their real parts ascend, we see that the sequebce ̃︁ℳ = {�̃�𝑘}, 𝑘 ∈ Z, satisfies

the assumptions of Theorem B. According to this theorem, for all 𝑧, dist(𝑧, ̃︁ℳ) > 𝛿 > 0, the
function

�̃�1,𝑛(𝑧) =
∏︁
𝑘∈Z

(︂(︂
1− 𝑧

�̃�2𝑛+1𝑘

)︂(︂
1− 𝑧

�̃�2𝑛+1𝑘+1

)︂)︂
, 𝑛 ∈ N, (2.15)

satisfies the relation ⃒⃒
ln |�̃�1,𝑛(𝑧)| − 2−𝑛ln |�̃�(𝑧)|

⃒⃒
6 𝐴ln (𝑒+ |𝑧|), 𝑛 ∈ N, (2.16)

where constant 𝐴 > 0 depends only on 𝛿, while the choice of indices 2𝑛+1𝑘, 2𝑛+1𝑘+1 in formula
(2.15) is made in accordance with the arguments in the proof of Theorem B [15, Thm. 2]. We
shall obtain the same statement for the function �̂� by employing one more result of work [15].
In order to do it, we recall needed notations. Let

𝑃𝑘 = {𝑧 : 1 6 Im 𝑧 6 2𝑘 + 1, 0 6 Re 𝑧 6 2𝑘}, 𝑘 = 0, 1, 2, . . .

Then the difference 𝑃𝑘 ∖ 𝑃𝑘−1, 𝑘 = 1, 2, . . . , consists of three squares congruent to 𝑃𝑘−1. By
the symbols 𝑃𝑚

𝑘 , 𝑚 = 1, 2, . . . , 12, we denote these three squares as well as those symmetric
w.r.t. both the axes and the origin. We locate the boundary segments and vertices so that the
squares 𝑃𝑚

𝑘 are mutually disjoint and cover the set {𝑧 : |Im 𝑧| > 1}.
Theorem C [15, Thm. 3]. Let {𝑧𝑘}, 𝑘 ∈ Z, be the zeroes of an entire function 𝑣 taken so

that |𝑧𝑘| ascend. Assume that |Im 𝑧| > 1, and each square 𝑃𝑚
𝑘 contains at most one zero of

function 𝑣. Then function 𝑣 is represented as the product of two entire functions 𝑣1, 𝑣2 so that

|ln |𝑣1(𝑧)| − ln |𝑣2(𝑧)|| 6 𝐶1ln
+ |𝑧|+ 𝐶2ln

+ 1

𝑑(𝑧)
+ 𝐶3,

where 𝑑(𝑧) is the distance from a point 𝑧 to the set of zeroes of the function 𝑣 and 𝐶𝑖 are
absolute constants independent of the function 𝑣.
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We fix a number 𝛼 ∈ (1;𝛼0). Neglecting if needed finitely many zeroes �̂�𝑘 of the function �̂�
and then reordering the remaining zeroes so that |�̂�𝑘| ascend, in view of condition (2.13) we
have

|�̂�𝑘+1| > 𝛼|�̂�𝑘|, 𝑘 = 1, 2, . . .

We let

𝑚 =
[︁
log𝛼
√

5
]︁

+ 1.

It is easy to confirm that all functions

�̂�𝑗(𝑧) =
∞∏︁
𝑘=0

(︂
1− 𝑧

�̂�𝑚𝑘+𝑗

)︂
, 𝑗 = 1, . . . ,𝑚,

satisfy the assumption of Theorem C. Applying this theorem 𝑛 times to each function �̂�𝑗,
𝑗 = 1, . . . ,𝑚, we obtain the representation

�̂�𝑗 = �̂�𝑗,1,𝑛�̂�𝑗,2,𝑛,

at that, ⃒⃒
ln |�̂�𝑗,1,𝑛(𝑧)| − 2−𝑛ln |�̂�𝑗(𝑧)|

⃒⃒
6 ̂︀𝐴ln (𝑒+ |𝑧|), dist(𝑧, ̂︁ℳ) > 𝛿, (2.17)

where constant ̂︀𝐴 > 0 depends only on 𝛿 and 𝜔. Letting

�̂�1,𝑛 = �̂�1,1,𝑛 . . . �̂�𝑚,1,𝑛, �̂�2,𝑛 =
�̂�

�̂�1,𝑛

,

we obtain the required factorization
�̂� = �̂�1,𝑛�̂�2,𝑛.

By estimates (2.16), (2.17) we see that the functions

𝜔1,𝑛 = �̃�1,𝑛�̂�1,𝑛, 𝜔2,𝑛 =
𝜔

𝜔1,𝑛

satisfy the first statement of the lemma.

2) It follows from the relations 𝜔 = 𝜔1,𝑛𝜔2,𝑛 and (2.14) that for all natural 𝑛 and all 𝑧 ∈ C,
dist(𝑧,Λ𝜔) > 𝛿, the estimates

|𝜔2,𝑛(𝑧)𝜙(𝑧)| 6 (𝑒+ |𝑧|)[𝐴]+1|Φ(𝑧)|
hold true. By the topological properties of the space 𝒫(𝑎; 𝑏), the sequence {𝜔2,𝑛𝜙}∞𝑛=1 is rel-
atively compact in this space. Hence, there exists a sequence {𝜔2,𝑛𝑘

𝜙}∞𝑘=1 converging to some

function ̃︀Φ in the topology of 𝒫(𝑎; 𝑏) and the indicator of this function is equal to with to the
coinciding indicator of the functions Φ and 𝜙. The corresponding sequence of entire functions
of minimal type at order 1

𝜔1,𝑛𝑘
=

Φ

𝜔2,𝑛𝑘
𝜙

converges to the entire function (Φ/̃︀Φ) having a minimal type at order 1. Passing to the limit,

by means of estimates (2.14) we obtain the upper polynomial bound for |Φ/̃︀Φ| on the real axis.

Applying the corollary of Phragmén-Lindelöf theorem [2, Sect. 6.1], we conclude that (Φ/̃︀Φ) is
a polynomial.

Let 𝑛(𝑟) =
∑︀

|𝜇𝑗 |<𝑟
1 be the counting function of the sequence Λ𝜔, 𝑁(𝑟) =

𝑟∫︀
0

𝑛(𝜏)
𝜏

d𝜏 , 𝑀(𝑟) =

max
|𝑧|=𝑟
|𝜔(𝑧)|, 𝑚(𝑟) = min

|𝑧|=𝑟
|𝜔(𝑧)|.

Condition (2.13) for the sequence Λ𝜔 implies that

𝑛(𝑟) = 𝐶0ln (1 + 𝑟), 𝑟 > 0, (2.18)
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where 𝐶0 is a positive constant. By Lemma 3.5.8 in the monograph [22], in view of (2.18) and
Jensen formula (see, for instance, [22, Sect. 1.2]) we obtain the double inequality

𝑁(𝑟) 6𝑀(𝑟) 6 𝑁(𝑟) + 𝐶0ln (1 + 𝑟). (2.19)

Lemma 2. 1) For all 𝑧 ∈ C the estimate from above

ln |𝜔(𝑧)| 6 𝑁(|𝑧|) + 𝐶0ln (1 + |𝑧|) (2.20)

holds true.
2) For all 𝜀 > 0 and 𝛿 > 0 and all 𝑧 ∈ C, dist(𝑧,Λ𝜔) > 𝛿 the estimate from below

ln |𝜔(𝑧)| > (1− 𝜀)𝑁(|𝑧|)− 𝐶1ln(1 + |𝑧|)− 𝐶2,𝜀 (2.21)

holds true, where constant 𝐶2,𝜀 > 0 depends on Λ𝜔, 𝛿 and 𝜀, while constant 𝐶1 > 0 depends
only on Λ𝜔.

Proof. 1) Required estimate (2.20) is implied by the right inequality in (2.19).
2) It is known that for an entire function, whose zero set satisfies condition (2.18), the relation
ln𝑚(𝑟) ∼ ln𝑀(𝑟) holds true as 𝑟 → ∞ over a set of unit relative measure [22, Thm. 3.6.1].
An exceptional set of values of 𝑟 can be covered by a countable set of segments disjoint thanks
to (2.13)and centred together with the set {|𝜇𝑗|} (i.e., each interval contains exactly one point
|𝜇𝑗|). This set of the intervals has a zero relative length. Without loss of generality we can
assume that there exists a decreasing sequence of positive numbers 𝛿𝑗, 𝑗 = 1, 2, . . . , such that
for each 𝜀 > 0 the inequality

ln𝑚(𝑟) > (1− 𝜀)ln𝑀(𝑟), 𝑟 > 𝑟𝜀, 𝑟𝑡 ∈
∞⋃︁
𝑗=1

((1− 𝛿𝑗)|𝜇𝑗|; (1 + 𝛿𝑗)|𝜇𝑗|)

holds true. By (2.13) and (2.18) one can get easily that

𝑁(𝑟) 6 𝑁((1− 𝛿𝑗)𝑟) + (𝐶0ln 2 + 1)ln(1 + 𝑟) + 𝐶2,𝜀, 𝑟 > 0,

where constant 𝐶2,𝜀 > 0 depends only on Λ𝜔, 𝛿 and 𝜀.
Desired lower bound (2.21) is obtained by standard methods by two last estimates and the

left inequality in (2.19).

Lemma 3. For each natural 𝑛 function 𝜔2,𝑛𝜙 is contained in the submodule 𝒥𝜙.

Proof. For a fixed 𝑛 ∈ N by (2.14) we have

ln |𝜔2,𝑛(𝑧)| 6 (1− 2−𝑛)ln |𝜔(𝑧)|+ 𝐴ln (𝑒+ |𝑧|), dist (𝑧,Λ𝜔) > 𝛿. (2.22)

In view of (2.13) and (2.20) it implies the estimate

ln |𝜔2,𝑛(𝑧)| 6 (1− 2−𝑛)𝑁(|𝑧|) + 𝐴ln (𝑒+ |𝑧|), 𝑧 ∈ C. (2.23)

We consider the weight function ̃︀𝑉 (𝑥) = (𝑒+ |𝑥|)𝐴+1 exp ((1− 2−𝑛)𝑁(|𝑥|)) > 1, 𝑥 ∈ R. This
function is even, convex in ln |𝑥|, and for all 𝑘 = 0, 1, . . . the relation

|𝑥|𝑘 = 𝑜(̃︀𝑉 (𝑥)), |𝑥| → +∞,
holds true. By estimate (2.23) it yields for the function 𝜔2,𝑛 that

|𝜔2,𝑛(𝑥)|̃︀𝑉 (𝑥)
→ 0, |𝑥| → +∞.

Arguing as in the proof of Lemma 3 in the work [9], we obtain that there exists a sequence of

polynomials {𝑝𝑗} converging to the function 𝜔2,𝑛 in the weighted norm ‖ · ‖ = sup
𝑥∈R

| · |
𝑉 (𝑥)

, where

𝑉 (𝑥) = (1 + |𝑥|)2̃︀𝑉 (𝑥).
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We let 𝑣(𝑥) = ln𝑉 (𝑥),

𝑃𝑣(𝑧) =
|𝑦|
𝜋

∫︁ ∞

−∞

𝑣(𝜏)

(𝜏 − 𝑥)2 + 𝑦2
d 𝜏

is the Poisson integral of a function 𝑣, 𝑧 = 𝑥 + i𝑦. By condition (2.13) it is easy to obtain
that the function 𝑣 belongs to the class of slowly varying canonical weights introduced in the
monograph [19, S1.3]. This is why (see [19, Sect. 1.4]) the function 𝑃𝑣 is harmonic in the upper
and lower half-planes, is continuous and subharmonic in the whole complex plane and satisfies
the estimate

𝑃𝑣(𝑧) > 𝑣(|𝑧|), 𝑧 ∈ R,
and the relation

lim sup
𝑧→∞

𝑃𝑣(𝑧)

𝑣(|𝑧|)
= 1. (2.24)

Since 𝒫(𝑎; 𝑏) is a locally convex space of type (𝐿𝑁*), the sequence 𝑝𝑗𝜙 in this space if and
only if it is bounded in one of norms (1.1) (see [1]). Taking into account estimate (2.21), the
definition of the weight 𝑉 , relation (2.24) and the properties of the function 𝑁(𝑟) implied by
condition (2.13), and employing the Phragmén-Lindelöf we establish

|𝑝𝑗(𝑧)𝜙(𝑧)| 6 (𝑒+ |𝑧|)const exp(𝑑𝜙𝑦
+ − 𝑐𝜙𝑦−),

where 𝑑𝜙 (𝑐𝜙) is the value of the indicator of the function 𝜙 at the point 𝜋/2 (respectively, at
the point −𝜋/2). The last estimate is equivalent to the boundedness of the sequence {𝑝𝑗𝜙} in
one of norms (1.1).

Employing once again the properties of locally convex space of type (𝐿𝑁*) (see [1]), by the
above fact we obtain that there exists a subsequence of this sequence converging to the function
𝜔2,𝑛𝜙 in 𝒫(𝑎; 𝑏).

Proof of Theorem 2. The belonging 𝜙 ∈ 𝒫0(𝑎; 𝑏) is obvious. It follows from Statement 2) of
Lemma 1 and Lemma 3 that

Φ ∈ 𝒥𝜙. (2.25)

By (2.12) we have 𝒥 (Φ) ⊂ 𝒥𝜙. As it is stated in Theorem 1 of work [3], thanks to the stability
of submodule 𝒥𝜙, this relation is equivalent to the weak localizable property of 𝒥𝜙.

Theorem 3. Assume that the submodule 𝒥 is weakly localizable and [𝑐𝒥 ; 𝑑𝒥 ] ⊂ (𝑎; 𝑏). Then
either 𝒥 is the principal submodule or 𝒥 = 𝒥𝜙1,𝜙2 , where 𝜙1, 𝜙2 ∈ 𝒥

⋂︀
𝑃0(𝑎; 𝑏).

Proof. If 𝒥
⋂︀
𝒫0(𝑎; 𝑏) = ∅, then, as it was shown in Statement 2) of Theorem 1, 𝒥 is the

principal submodule. This is why we shall argue assuming that 𝒥
⋂︀
𝒫0(𝑎; 𝑏) ̸= ∅.

Let us show first that the submodule 𝒥 contains a function 𝜙1 ∈ 𝒫0(𝑎; 𝑏) with the properties:
𝑐𝜙1 = 𝑐𝒥 , 𝑑𝜙1 = 𝑑𝒥 , the principle submodule 𝒥𝜙1 is weakly localizable.

In order to do it, we consider an arbitrary function 𝜙 ∈ 𝒥
⋂︀
𝒫0(𝑎; 𝑏) and we let

𝜙 =
(︀
𝑒i(𝑐�̃�−𝑐𝒥 )𝑧 + 𝑒i(𝑑𝒥−𝑑�̃�)𝑧

)︀
𝜙.

It is clear that the function 𝜙 belongs to the set 𝒥
⋂︀
𝒫0(𝑎; 𝑏) and its indicator diagram is

i[𝑐𝒥 ; 𝑑𝒥 ]. If the principle submodule 𝒥𝜙 is weakly localizable, we let 𝜙1 = 𝜙. Otherwise we
consider the maximal subharmonic minorant 𝑣(𝑧) of the function (𝐻(𝑧) − ln |𝜙(𝑧)|), where
𝐻(𝑧) = 𝑑𝒥 (Im 𝑧)+ − 𝑐𝒥 (Im 𝑧)−.

The function 𝑣 satisfies the relation 𝑣𝑡 ≡ −∞. Indeed, by the inclusion 𝜙 ∈ 𝒫0(𝑎; 𝑏), for each
𝑘 = 0, 1, 2, . . . we have 𝑀𝑘 = max

𝑥∈R
|𝜙(𝑥)𝑥𝑘| < +∞, as well as

𝜙(𝑧) =

𝑏∫︁
𝑎

𝑠(𝑡)𝑒−i𝑡𝑧d 𝑡, 𝑠 ∈ 𝐶∞
0 (𝑎; 𝑏).
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The class 𝒞(𝑎;𝑏)({𝑀𝑘}) (see, for instance, [21, Sect. IV.A]), contains a non-zero function 𝑠, and
therefore, it is not quasi-analytic. In accordance with Carleman criterion, it is equivalent to
the relation

∞∫︁
ln𝑇 (𝑟)

1 + 𝑟2
d 𝑟 < +∞,

where 𝑇 (𝑟) = sup
𝑘>0

𝑟𝑘

𝑀𝑘
is the trace function of the sequence {𝑀𝑘}, (see, for instance, [21,

Sect. IV.A]). Thus, ln𝑇 (𝑒𝑡) is a finite function convex in 𝑡 ∈ R. Therefore, function
𝑢(𝑧) = ln𝑇 (|𝑧|)𝑡 ≡ −∞ is subharmonic in C [23, Thm. 2.1.2]. The definition of 𝑢 yields
the estimate

𝑢(𝑥) + ln |𝜙(𝑥)| 6 0, 𝑥 ∈ R. (2.26)

Function 𝜙, as well as all the elements of the space 𝒫(𝑎; 𝑏) has a completely regular growth in
the entire plane, while the function 𝑢 depends only on |𝑧|. Applying the theorem on summation
of indicators [24, Thm. 1], by (2.26) we obtain that 𝑢 has the minimal type at order 1. This
fact, estimate (2.26), Phragmén-Lindelöf theorem for subharmonic functions [2, Sect. 7.3] imply
the estimate

𝑢(𝑧) + ln |𝜙(𝑧)| 6 𝐻(𝑧), 𝑧 ∈ C,
which yields the inequality 𝑢(𝑧) 6 𝑣(𝑧), 𝑧 ∈ C. Hence, 𝑣𝑡 ≡ −∞.

Let 𝜔 be an entire function (of a minimal exponential type) satisfying the relation

|ln |𝜔(𝑧)| − 𝑣(𝑧)| 6 𝐶ln (1 + |𝑧|), 𝑧𝑡 ∈ 𝐸, (2.27)

with some constant 𝐶 > 0 whose exceptional set 𝐸 can be covered by a countable union of
circles with a finite sum of radii. The existence of such function is implied by Theorem 5 of the
work [14]. We let Φ = 𝜔𝜙. It is clear that Φ ∈ 𝒥 . The fact that the function 𝑣 is the maximal
subharmonic minorant function (𝐻 − ln |𝜙|) and estimate (2.27) imply relations (2.12) for the
function Φ. We choose a sequence {𝜇𝑗} ⊂ ΛΦ ∖ Λ𝒥 satisfying conditions (2.13), 𝜇𝑗 ̸= 0. Let

𝜙1 =
Φ

∞∏︀
𝑗=1

(︁
1− 𝑧

𝜇𝑗

)︁ .
For this function, Theorem 2 holds true and therefore, 𝐽𝜙1 is a weakly localizable submodule.

Now we argue as in the proof of Statement 1 of Theorem 1. We introduce the function 𝜙2 by
formula (2.5), where the sequence Γ satisfies the condition Γ

⋂︀
Λ𝜙1 = Λ𝒥 and is so close to the

sequence Λ𝜙1 that the submodule 𝒥𝜙1,𝜙2 is stable. Moreover, this stable submodule contains a
weakly localizable submodule 𝒥 (Φ). Theorem 1 in the work [3] states that then the submodule
𝒥𝜙1,𝜙2 is weakly localizable. The indicator segment and the zero set of the submodule 𝒥𝜙1,𝜙2

are the same as for the original submodule 𝒥 . Therefore, 𝒥 = 𝒥𝜙1,𝜙2 .

3. Representation for invariant subspaces admitting a weak spectral
synthesis

We consider the Schwarz space ℰ(𝑎; 𝑏) = 𝐶∞(𝑎; 𝑏) equipped with the metrizable topology
of the projective limit of the Banach spaces 𝐶𝑘[𝑎𝑘; 𝑏𝑘], where [𝑎1; 𝑏1] b [𝑎2; 𝑏2] b . . . is some
sequence of the segments exhausting the interval (𝑎; 𝑏). It is known that ℰ(𝑎; 𝑏) is the reflexive
Fréchet space. By 𝑊 is a closed subspace of this space invariant w.r.t. the differentiation
operator 𝐷 = d

d 𝑡
(shortly, 𝐷-invariant). If else is not said, in what follows we consider only

closed subspaces in ℰ(𝑎; 𝑏).
Let Exp𝑊 be all root elements of the operator 𝐷 (exponential monomials 𝑡𝑗𝑒−i𝜆𝑡) contained

in 𝑊 . For a non-trivial not coinciding with the entire space ℰ(𝑎; 𝑏)) subspace 𝑊 , the set Exp𝑊
is at most countable.
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We let
𝑊𝐼 = {𝑓 ∈ ℰ : 𝑓 (𝑘)(𝑡) = 0, 𝑡 ∈ 𝐼, 𝑘 = 0, 1, 2, . . . }, (3.1)

where 𝐼 ⊂ (𝑎; 𝑏) is a relatively closed non-empty segment and denote by 𝐼𝑊 the minimal
relatively closed in (𝑎; 𝑏) non-empty segment satisfying the condition 𝑊𝐼 ⊂ 𝑊 (the existence
of such segment is implied by Theorem 4.1 in [16]).

The Fourier-Laplace transform ℱ acting in the strongly dual space ℰ ′(𝑎; 𝑏) by the rule

ℱ(𝑆)(𝑧) = (𝑆, 𝑒−𝑖𝑡𝑧), 𝑆 ∈ (𝐶∞(𝑎; 𝑏))′,

is a linear topological isomorphism of space (𝐶∞(𝑎; 𝑏))′ and 𝒫(𝑎; 𝑏) [17, Thm. 7.3.1]. We have
the following
Duality principle There exists a one-to-one correspondence between the set {𝒥 } of weakly
localizable submodules of the module 𝒫(𝑎; 𝑏) and the set {𝑊} of 𝐷-invariant subspaces of the
space ℰ(𝑎; 𝑏) determined by rule 𝒥 ←→ 𝑊 if and only if 𝒥 = ℱ(𝑊 0), where a closed subspace
𝑊 0 ⊂ ℰ ′(𝑎; 𝑏) is formed by all the distributions 𝑆 ∈ ℰ ′(𝑎; 𝑏) annulating 𝑊 ; at that,

𝐼𝑊 = [𝑐𝒥 ; 𝑑𝒥 ], Exp𝑊 = {𝑡𝑗𝑒−i𝜆𝑘𝑡, 𝑗 = 0, . . .𝑚𝑘 − 1, (𝜆𝑘,𝑚𝑘) ∈ Λ𝒥 },
where Λ𝒥 is the set of the zeroes of the submodule 𝒥 ([3, Duality principle], [4, Prop. 1]).

It is known (see [16, Thm. 2.1]) that given a nontrivial 𝐷-invariant subspace 𝑊 , the spectrum
𝜎𝑊 of the operator 𝐷 : 𝑊 → 𝑊 either coincides with the entire complex plane or is discrete;
in the second case 𝜎𝑊 = Λ𝒥 according the duality principle.

A nontrivial 𝐷-invariant subspace admits a weak spectral synthesis if

𝑊 = 𝑊𝐼𝑊 + ℒ(Exp𝑊 ), ℒ( · ) is the linear span of a set. (3.2)

It is clear that a 𝐷-invariant subspace 𝑊 admitting a weak spectral synthesis is minimal

among all 𝐷-invariant subspaces ̃︁𝑊 satisfying

𝐼̃︁𝑊 = 𝐼𝑊 , Exp ̃︁𝑊 = Exp𝑊.

By the duality principle, the annulating submodule 𝒥 = ℱ(𝑊 0) of such subspace is the

maximal one among all maximal submodules ̃︀𝒥 ⊂ 𝒫(𝑎; 𝑏), with the zero set and the indicator
diagram satisfying the conditions:

Λ ̃︀𝒥 = Λ𝒥 , [𝑐 ̃︀𝒥 ; 𝑑 ̃︀𝒥 ] = [𝑐𝒥 ; 𝑑𝒥 ].

Therefore, 𝒥 is a weakly localizable submodule. It is clear that the opposite is true as well: if
an annulating submodule of a 𝐷-invariant subspace is weakly localizable, then this subspace
admits a weak spectral synthesis.

We recall that the completeness radius 𝜌(Λ) of a sequence of multiple points Λ = {(𝜆𝑗,𝑚𝑗)}
is defined as the infimum of the radii of open intervals 𝐼 ⊂ R, for which the system of the
exponential monomials {𝑡𝑘𝑒−i𝜆𝑗𝑡, 𝑘 = 0, . . . ,𝑚𝑗 − 1, 𝑗 ∈ N}, is incomplete in the spaces ℰ(𝐼),
𝐶(𝐼), 𝐿𝑝(𝐼), 1 6 𝑝 <∞ (see [18]).

Given arbitrary subsets 𝐴, 𝐵 ⊂ R, we denote by 𝐴÷ 𝐵 their geometric difference, i.e., the
set of all 𝑥 ∈ R obeying 𝑥+𝐵 ⊂ 𝐴. Let 𝑆 ∈ ℰ ′(𝑎; 𝑏) and ℎ ∈ (𝑎; 𝑏)÷ ch supp𝑆, where ch supp𝑆
is the convex hull of supp𝑆. We define a functional 𝑆ℎ ∈ ℰ ′(𝑎; 𝑏) by the formula

(𝑆ℎ, 𝑓) = (𝑆, 𝑓(𝑡+ ℎ)), 𝑓 ∈ ℰ(𝑎; 𝑏).

Given a distribution 𝑆 ∈ ℰ ′(𝑎; 𝑏) and a non-empty relatively closed in (𝑎; 𝑏) segment ⟨𝑐; 𝑑⟩
satisfying the condition

ch supp𝑆 b ⟨𝑐; 𝑑⟩, (3.3)

we let

𝑊 (𝑆, ⟨𝑐; 𝑑⟩) = {𝑓 ∈ ℰ(𝑎; 𝑏) : (𝑆 * 𝑓)(ℎ) = (𝑆ℎ, 𝑓) = 0, ∀ℎ ∈ ⟨𝑐; 𝑑⟩ ÷ ch supp𝑆}.
It is clear that 𝑊 (𝑆, ⟨𝑐; 𝑑⟩) is a 𝐷-invariant subspace.
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Lemma 4. A 𝐷-invariant subspace 𝑊 (𝑆, ⟨𝑐; 𝑑⟩) admits a weak spectral synthesis, its annu-
lating submodule is 𝒥 (𝜙, ⟨𝑐; 𝑑⟩), where 𝜙 = ℱ(𝑆).

Proof. By the arguments given after the duality principle we see that the first statement
of the lemma is implied by the first one. We denote by 𝒥1 the annulating submodule of the
subspace 𝑊 (𝑆, ⟨𝑐; 𝑑⟩). In accordance with the duality principle we have the inclusion

𝒥1 ⊂ 𝒥 (𝜙, ⟨𝑐; 𝑑⟩).

Since the zero set Λ𝒥1 of the submodule 𝒥1 coincides with the zero set Λ𝜙 of the function 𝜙 and
the indicator segment of this submodule is equal to [𝑐; 𝑑], it follows from (3.3) that the quantity
𝜌(Λ𝒥1) is less than the half of the length of the segment [𝑐; 𝑑]. Statement 3) of Theorem 2 in
work [3] states that in this case the submodule 𝒥1 is weakly localizable only if it is stable.

As we mentioned earlier [4, Introduction], the module 𝒫(𝑎; 𝑏) is a a bornological and 𝑏-stable
space (the latter notion was introduced in the work [5]). This is why it belongs to the class of
the topological modules, for which it was proved in the work [7] (Proposition 4.2 and Remark 1
in the end of Subsection 1 of Section 4) that the stability of the submodule 𝒥 ⊂ 𝒫(𝑎; 𝑏) at each
point 𝜆 ∈ C is implied by its stability at some single point. Thus, in order to prove the identity

𝒥1 = 𝒥 (𝜙, ⟨𝑐; 𝑑⟩)

(which is equivalent to the weak localizable property of the submodule 𝒥1), it is sufficient to
check the stability of the submodule 𝒥1 at some point 𝜇 ̸∈ Λ𝜙. Without loss of generality we
can assume that 𝜇 = 0, 𝜙(0) = 1.

Let 𝜓 ∈ 𝒥1, 𝜓(0) = 0. The function 𝜓 is the limit of a generalized sequence of the form
(𝑎1𝑒

iℎ1𝑧 + · · · + 𝑎𝑚𝑒
iℎ𝑚𝑧)𝜙 in the topology of the space 𝒫(𝑎; 𝑏), where ℎ𝑗 ∈ ⟨𝑐; 𝑑⟩ ÷ [𝑐𝜙; 𝑑𝜙],

𝑗 = 1, . . . ,𝑚; i[𝑐𝜙; 𝑑𝜙] is the indicator diagram of the function 𝜙 (coinciding with ch supp𝑆 by
Paley-Wiener theorem). Since it is obvious that 𝑒iℎ

′𝑧𝜙 → 𝑒iℎ𝑧𝜙 as ℎ′ → ℎ in the topology of
𝒫(𝑎; 𝑏), we can assume that

ℎ𝑗 ∈ (𝑐; 𝑑)÷ [𝑐𝜙; 𝑑𝜙], 𝑗 = 1, . . . ,𝑚. (3.4)

By the definition of the topology in 𝒫(𝑎; 𝑏) it is easy to obtain that the generalized sequence(︂
𝑎1
𝑒iℎ1𝑧 − 1

𝑧
+ · · ·+ 𝑎𝑚

𝑒iℎ𝑚𝑧 − 1

𝑧

)︂
𝜙 (3.5)

converges to the function 𝜓
𝑧
.

By belongings (3.4), each element of generalized sequence (3.5) belongs to a localizable
submodule 𝒥 (𝜙, (𝑐; 𝑑)) of the module 𝒫(𝑐; 𝑑). By the duality principle and a well-known result
on a spectral synthesis in the kernel of the convolution operator (see, for instance, [20, Thm.
16.4.1]), this submodule coincides with the annulating submodule 𝒥2 ⊂ 𝒫(𝑐; 𝑑) of a 𝐷-invariant
subspace 𝑊 (𝑆, (𝑐; 𝑑)) ⊂ ℰ(𝑐; 𝑑), where

𝑊 (𝑆, (𝑐; 𝑑)) = {𝑓 ∈ ℰ(𝑐; 𝑑) : (𝑆 * 𝑓)(ℎ) = (𝑆ℎ, 𝑓) = 0, ∀ℎ ∈ (𝑐; 𝑑) ÷ ch supp𝑆}.

In view of the above, we conclude that each function in generalized sequence (3.5) belongs to
the submodule 𝒥2 = 𝒥 (𝜙, (𝑐; 𝑑)), which, in its turn, is contained in 𝒥1. And therefore, the
limiting function 𝜓

𝑧
of generalized sequence (3.5) satisfies also the belonging 𝜓

𝑧
∈ 𝒥1, that is,

the submodule 𝒥1 is stable at point 0. This fact implies both statements of the lemma.

Remark 1. We note that the proven lemma is true if we replace condition (3.3) by a weaker
condition: the length of the segment ch supp𝑆 is less than (𝑑 − 𝑐) (the latter can be equal to
+∞).
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Theorem 4. Each 𝐷-invariant subspace with a discrete spectrum 𝜎𝑊 satisfying the condition
2𝜌(𝜎𝑊 ) < |𝐼𝑊 |, where |𝐼𝑊 | 6 +∞ is the length of the segment 𝐼𝑊 , can be represented as the
set of the solutions to two (probably, coinciding) homogeneous convolution equations:

𝑓 ∈ 𝑊 ⇐⇒

{︃
(𝑆1 * 𝑓)(ℎ) = 0, ℎ ∈ 𝐼𝑊 ÷ ch supp𝑆1,

(𝑆2 * 𝑓)(ℎ) = 0, ℎ ∈ 𝐼𝑊 ÷ ch supp𝑆2.
(3.6)

Proof. Corollary 2 in the work [3] states that a 𝐷-invariant subspace 𝑊 satisfying the assump-
tions of the proven theorem admits a weak spectral synthesis and its annulating submodule 𝒥
is weakly localizable. It is easy to see that this submodule contains a function 𝜙1 in 𝒫0(𝑎; 𝑏)
with an indicator diagram compactly embedded in the segment i𝐼𝑊 . And thus, in accordance
with Statement 1 of Theorem 1 and the duality principle

𝒥 = 𝒥 (𝜙1, 𝐼𝑊 ) + 𝒥 (𝜙2, 𝐼𝑊 ),

where function 𝜙2 ∈ 𝒥
⋂︀
𝒫0(𝑎; 𝑏) has the same indicator diagram as the function 𝜙1. Applying

Lemma 4, in view of the reflexivity of the space ℰ(𝑎; 𝑏) we obtain relation (3.6) with 𝑆1 =
ℱ−1(𝜙1), 𝑆2 = ℱ−1(𝜙2).

Theorem 5. If a 𝐷-invariant subspace 𝑊 admits a weak spectral synthesis and 𝐼𝑊 ⊂ (𝑎; 𝑏),
then there exist distributions 𝑆1, 𝑆2 ∈ 𝑊 0 (probably, 𝑆1 = 𝑆2) such that

𝑓 ∈ 𝑊 ⇐⇒

{︃
(𝑆1, 𝐷

𝑗𝑓) = 0, 𝑗 = 0, 1, 2, . . . ,

(𝑆2, 𝐷
𝑗𝑓) = 0, 𝑗 = 0, 1, 2, . . .

(3.7)

Proof. The annulating submodule 𝒥 = ℱ(𝑊 0) is weakly localizable and satisfies the assump-
tions of Theorem 3. Therefore, either 𝒥 = 𝒥𝜙 or 𝒥 = 𝒥𝜙1,𝜙2 . In view of the duality principle
and the reflexivity of the space ℰ(𝑎; 𝑏), it follows that (3.7) holds true with 𝑆1 = ℱ−1(𝜙1),
𝑆2 = ℱ−1(𝜙2) (at that 𝑆1 = 𝑆2, if 𝒥 is the principle submodule).
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