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ON RESOLVENT OF MULTI-DIMENSIONAL OPERATORS
WITH FREQUENT ALTERNATION OF
BOUNDARY CONDITIONS: CRITICAL CASE

T.F. SHARAPOV

Abstract. We consider an elliptic operator in a multi-dimensional domain with frequent
alternation of Dirichlet and Robin conditions. We study the case, when the homogenized
operator has Robin condition with an additional coefficient generated by the geometry of
the alternation. We prove the norm resolvent convergence of the perturbed operator to
the homogenized one and obtain the estimate for the convergence rate. We construct the
complete asymptotic expansion for the resolvent in the case, when it acts on sufficiently
smooth functions.
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1. INTRODUCTION

Elliptic boundary value problems with frequent alternation of boundary conditions arise in
various applications. Let us describe briefly the formulation of such boundary value problems.
On the boundary of a domain one chooses a set consisting of many disjoint pieces. This set
depends on one or several small parameters. The measure of each part and the distances
between neighbouring components tend to zero as these small parameter tend to zero, while
the total amount of the pieces in the chosen set increases unboundedly. On these sets we
impose Dirichlet condition, while on the other part of the boundary is subject to Neumann or
Robin condition. There were considered also the cases, when the described alternation of the
boundary conditions was imposed not on the whole boundary but only on its fixed part. The
rest of the boundary was subject to one of the classical condition.

The homogenization of the elliptic boundary value problems in domains with frequent al-
ternation of boundary conditions were considered in many works [I]-[I4]. Most part of them
were devoted to the case of bounded domains with a sufficiently smooth boundary. The main
results of these works were the determination of the homogenized (limiting) problem and the
proof of the convergence theorems for their solutions. The homogenized problems were the
problems for the same equations in the same domains but subject to one of the classical bound-
ary condition instead of the frequent alternation. It was shown in these works that the form
of the homogenized operator, namely, the boundary condition depends on the ratio between
the measures of parts of the boundary with different types of boundary conditions. The most
part of the results on the convergence of the solutions were proved in the sense of the weak or
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strong resolvent convergence. Namely, the solution to the perturbed problem converges to the
solution of the homogenized one weakly or strongly in W3 or strongly in Ly. In [I], [6], for a
bounded domain with a periodic alternation of Dirichlet and Neumann or Robin conditions,
homogenized problems were described. The convergence in a non-periodic case was studied
in [3], [4]. Apart from determining the form of the homogenized problems, in some cases the
estimates for the convergence rate were proved. The estimates for the convergence rate f a
periodic alternation of boundary conditions were obtained in [1], [I0]. Similar estimates for a
non-periodic alternation were established in [3], [7], [8], [9], [13], [14].

One more type of the convergence is the norm resolvent convergence. In [15]-[20] there were
considered elliptic operators in an infinite straight planar strip with a frequent alternation of
boundary conditions. The norm resolvent convergence was proved for all possible homogenized
operators as well as for periodic and non-periodic alternations. The estimates for the rate of
convergence were obtained. Similar results with a periodic alternation of boundary conditions
were established in [21], [22]. In [13], [14], an elliptic operator was considered in a multi-
dimensional unbounded domain with a non-periodic alternation of boundary conditions. The
norm resolvent convergence was proved and the sharp order estimates for the convergence rate
were obtained.

There are many works in which the asymptotics for solutions of problems with frequent
alternation of boundary conditions were constructed (see, for instance, [9], [13], [14], [17],
18], 23]-[27]). In [23], [24], [26] there were constructed the asymptotics for two-dimensional
problems with a periodic alternation of Dirichlet and Neumann conditions, while in [9] the same
was done for a non-periodic alternation of Dirichlet and Robin conditions. Similar results were
obtained in work [27] for a three-dimensional cylinder with a frequent alternation of Dirichlet
and Neumann conditions on thin strips located on the lateral surface. In work [25], the boundary
value problem for Poisson equation was considered in a multi-dimensional layer bounded by
two hyperplanes, the solution was assumed to be periodic. A complete asymptotic expansion
was obtained for the solution of the considered problem. In [I3], [I4] there were considered
boundary value problems for a second order elliptic equation in an unbounded multi-dimensional
domain with frequent alternation of Dirichlet and Robin conditions. For the solutions of the
considered problems the complete asymptotic expansion was constructed in [13] in the case
of the homogenized Dirichlet condition, while in [14] the complete two-parametric asymptotic
expansion was obtained.

In the present work we consider an elliptic operator in an arbitrary unbounded multi-
dimensional domain with a non-periodic alternation of boundary conditions. We also consider
the case, when the domain is bounded. We study the case of alternating Dirichlet and Robin
conditions. The alternation is imposed on the whole boundary or on its fixed part. In the
latter case on the rest of the boundary we impose Robin condition. In the problem we choose
two character small parameters describing the sizes of the Dirichlet and Robin parts of the
boundary. As these parameters tend to zero, the amount of the Dirichlet parts increases un-
boundedly, while the measure of each part and the distances between them tend to zero. We
consider the case, when the homogenized operator involves the Robin condition with an addi-
tional coefficient generated by the geometry of the alternation. We study the behavior of the
resolvent of the perturbed operator when the mentioned small parameter tend to zero. The
first main result result is the proof of the norm resolvent convergence of the perturbed operator
to the homogenized one in the sense of norm of operator acting in L,; the estimates for the
convergence rates are also obtained. Nevertheless, we show that by employing a special bound-
ary corrector we can obtain the convergence of the perturbed operator to the homogenized one
in the sense of the norm of an operator acting from L, into Wj. The second main result is the
complete asymptotic expansion for the resolvent in an unbounded domain with an additional



ON RESOLVENT OF MULTI-DIMENSIONAL OPERATORS ... 67

assumption that the alternation of boundary conditions has a periodic structure and is imposed
on the hyperplane, while the resolvent acts on sufficiently smooth functions.

2. FORMULATION OF THE PROBLEM

Let v = (2/,2,), ¥ = (21,2s,...,2,_1) be Cartesian coordinates in R™ and R™""!, respec-
tively, 2 be an arbitrary domain R™, n > 3 with a boundary in class C2. Domain ) can be
either bounded or unbounded. By 7 we denote the distance from a point to the boundary of
) measured along the inward normal. In the case of an unbounded domain €2 we assume that
there exists 79 > 0 such that variable 7 is well-defined at least for 0 < 7 < 7y. In the case of a
bounded domain this condition is implied the smoothness of the boundary.

We assume that in the vicinity of each point P € 0f) we can introduce local coordinates
s = (s1,...,S,_1) with the following properties: point s = 0 corresponds to point P, coordinates
(s1,...,8n,_1) are orthogonal at point P and there exists constant § > 0 independent on the
choice of point P P such that variables s are well-defined at least in {z: 0 < s; < 0, 1 =
1,...,n—1, 0 <7 < 719/2}, while the Jacobians of passage from variables x to variables (s, 7)
and back are uniformly bounded by some constant for all points and this constant is independent
on P. In the case of a bounded domain the latter condition is implied the smoothness of the
boundary.

By € we denote a small positive parameter, n = n(¢) is some bounded positive function.

Suppose that the boundary of domain (2 consists of two disjoint parts 02 := T UZ=. In set
T we choose a set of bounded disjoint sets fyg CTYT,i=1,...,N(e). If set T is bounded, N (¢)
is an integer-valued function, which tends to mﬁmty as ¢ — 0. If set T is unbounded, we let
N(e) = oo for all e. We shall assume that the boundaries of (n — 1)-dimensional domains A
consist of a finite number of disjoint closed (n — 2)-dimensional surfaces of class C?.

We denote by B,(M) a ball of radius r centered at point M in R". We assume that there

exist points M! € vg) and positive numbers C}, C', R; and R, independent of ¢ such that for
i,j=1,...,N(¢e)

Cie < n;m |M! — M?| < Cae, (2.1)
1#£]
Bstn (Mez) nY - "Yéi) - BR1577 (Mal) ’ BR1€n (MZ) M BR1€n< ) - (Z) i 7& ju (2-2)

hold true. By A;; = A;j(z), A; = A;(z), Ay = Ap(z) we denote functions defined in domain
Q and satisfying conditions A;; € WL(Q), A; € WL(Q), Ay € Lo(2). Functions A;; and
Ap are assumed to be real valued, A; are complex-valued. Moreover, functions A;; satisfy the
ellipticity condition

= Z Z AZJ lej = Co Z |Zi|2, S Q, Z; € C, (23)
=1

1,7=1

where cg is a positive constant independent of x and z;.
In the present work we consider operator depending on e, which we denote by H.. This is
the operator with the differential expression

— A; Ai— A A 2.4
]Z_ Dz, a Z i a oz, 7 T4 (24)
in €2 subject to Dirichlet condition on . and to Robin condition

0
(8y+a)u:() on [.UZ, ZAzﬂyﬂa ZAV],

1,7=1
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(e) .
where v, := |J D T, = T\7,, v = (v1,7a,...,U,) is the inward normal to 092, a = a(x) is a
i=1

some real function defined on 992 and a € WL (99).
By h. we denote a closed symmetric sesquilinear lower-semibounded form

n

a Jdu Ov du
() =3 (A=t 22 iy
el v) Z: ( ! Oz 8xi)L2(Q) N Z ( ! Oz U)L2(Q)

j=1

(2.5)

in Ly(9) on the domain W3 (€2, ~.). Here W(€2, .) is a subspace of functions W3 (€2) vanishing
on .. By W(€, Q) we denote the Sobolev space consisting of functions W2 () with zero trace
on surface ) lying in domain 2 C R™. We define rigorously H. as a self-adjoint operator in
Ly () associated with form b, (u,v).

It was said above that in the vicinity of each point P we can introduce local orthogonal coor-
dinates s. The coordinates corresponding to points M! will be denoted by s = (5%, s5,...,s) ).
The images of sets fyg) in variables s* will be denoted by w,

We introduce the auxiliary problem

AC}/Z = 0, C - S+’ }/EZ = 1’ C c w(l)’ € _ 0’ C c {C . gn — 0}\w(l)’

Here S* = {¢: ¢, > 0}, and w® is a set obtained by dilating set w® in (en)™! times. In
accordance with [I3, Lm. 5.4], the solution to this problem exists and is unique, belongs to
W(ST), uniformly bounded for all ¢ € S, has the differentiable asymptotics

YX(Q) = Nol¢I T2+ O (IgI™) (2.6)

£

as ( — oo and satisfies the inequalities

%
I¢;
Y| <C in {(: ¢ >0, [¢] <6}

SO, Y= N[CIT PP <Ol in {¢: ¢G>0, [¢] =61, 2

Here § is such that the inclusion w® C {¢: ¢, = 0, |¢’| < §} holds true, while function Y7,
coefficient N¢ and constants C' in the latter inequalities depend, generally speaking, on set w(®.
We also assume that
(C1). Coefficients N¢ in (2.8) and constants C' in ([2.7) are uniformly bounded in i and e.
For each R3 > 0, by a. we denote

Ng, s < R
n(s) = ¢ 0 P s | (2.
0,  in other points of domain(2.
In what follows, we shall show in Lemma 3.5 that there exist points M? on boundary T
and domains @, := {z: 0 < s? <b,j=1,...,n—1, 7 =0}, b > 0, such that the inclusion
U®, D T holds true. Here s* = (s},...,sh_,) are orthogonal coordinates associated with

P
points MP? € T.
We impose one more condition.
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(C2). There exists a function o € WL (09Q) and function k = k(g), k(e) — +0, € — 40, such
that for all sufficiently small € the uniform in p estimate
2

P

where - is the scalar product in R"~'. If the intersection of sets T and Z is non-empty, then
function o vanishes on T NEZ.
Throughout the work we assume that

n—2
im ) g (2.10)
e—0 g

where Ky > 0 is a some constant.
The aim of the work is to study the asymptotic behavior of the resolvent of operator H. as

NGNCS

e — 0. We denote K := aKyG,, where G, = Tnf’ I' is the Gamma function, while
2

function « is defined in (C2). We define H, as operator in Ly(2) with differential expression

(Z4) and subject to boundary conditions

0 0
<$+a)u:() on Z, ($+Q+K)u20 on Y. (2.11)
We introduce rigorously H, as the self-adjoint operator in Ly(Q2) associated with the closed
symmetric sesquilinear lower-semibounded form ho(u,v) = b.(u,v) + (Ku,v) ) in La(Q)

with domain W, (). By analogy with [14, Lm. 3.2], [8, Ch. 3, Sect. 7,8] one can prove that
the domain of operator H, reads as

D(Ho) = {u € WZ(Q) text: conditions(ZII)holdtrue}.

We denote
n—2

pi=pE) = T — — K, (2.12)

By || - [|x—y we denote the norm of operator acting from Banach space X into Banach space
Y. The first main result is the following theorem.

Theorem 2.1. Let D be a compact set in the complex plane not intersecting with the spec-
trum of operator Ho, A € D. There exists function W, defined in (3.3) such that for all
sufficiently small € the inequalities

[ =)™ = (Ho = N lta@)sna0) < COL D) (2 + i+ () (2.13)

I(He = 27" = (1= W) (Ho = V) Mlpaoomp@ S CAD) (4t 5(@)  (214)

hold true, where constant C' is independent of €, n and W, but depends on A and on the choice
of compact set D.

The second part of the work is devoted to constructing the complete asymptotic expansion
for the resolvent of the perturbed operator restricted on the functions in Ly(£2) with additional
smoothness conditions. The asymptotics of the resolvent for an unbounded domain €2 lying in
the upper half-plane. Namely, we assume that there exists 75 > 0 such that QN {z: 0 <z, <
7 ={r: 0 <z, <1} In addition we assume that the boundary of domain is piece-wise
continuous and consists of two disjoint parts: 0Q = YT U=, where T := {z : z, = 0}. We
assume also that the coefficients of the perturbed operator and function a(x) are infinitely
differentiable as 0 < x, < 79, and all these derivatives and these functions are uniformly
bounded 0 < z,, < 75. We shall assume that on boundary T functions A;;(z) vanish as i # j
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and is equal to i = j. Here it is convenient to count the points M! not by index i but multi-
index k£ € Z" ! and these points read as Mf = (earky,...,ean_1k,—1). We denote by 7 a set
of dimension (n — 1) with boundary in class C? lying in (n — 1)-dimensional parallelepiped

{freR: —% <z <%, i=1,...,n—1, z, = 0}, where q; are positive constants. We let
Ve 1= U {x ER"i(en) " (x—M) ey, ke Z"‘l}.
k

We also note that in this part of the work the additional coefficient in the boundary condition
No (1 + Ko)
Ty
sections. Here Ny is the coefficient at the leading term in the asymptotics at infinity of the
solution to an auxiliary problem (£24]). While constant 7Ty is represented by the identity

1 n—1
Ty = —m [T @i, where |C,,| is the surface area of the unit half-sphere in R™~!.

on T of the limiting operator is K := , see the constructions of the fourth and fifth

Let f is an arbitrary function in Lo(2) NWJ'({z : 0 < z, < 710}) for all m € N, u. =
(He— N7 f.

The second main result of the work is as follows.

Theorem 2.2. The asymptotics of function u. in norm of Wy (2) is

X _
us(x,u,n)z( (2, 1, 1) + Xo (2n) u bl(g,x’,u,n» IT xi (o= pfjety'7)

keZn— 1

_Mk

kezn—1

(2.15)

where xo(x,) is an infinitely differentiable cut-off function vanishing as x,, > 1o and being equal
to one as v, < 2, x1(t) is an infinitely differentiable cut-off function vanishing ast < 1 and

being equal to t > 2, while the symbols us™, ul, u™ denote the asymptotic series

oo Q‘IE »dn

u(z ) = Y > eI g g, g (2, ), (2.16)

Ge,qn=0 q;=0

o0 [ee] QQE qan

ul (2!, €)= Py Z a"f "™ Vg gy (2 1 €) (2.17)

q==1qy=0 q=

QQE qan
ul (2, p, ¢, m) = e Z Z 0™ In"" ) W, g, (', 1,C), (2.18)
Ge,gn=0 q=

where p(z') = A,(2',0) —a(2’), ¥ is equal to zero as (g, q,) = (0,0) and to one in other cases,

Qqe.q, = min(ge, qy). The coefficients of series (210), (2.17) and (2Z18) are determined by
Lemmata[4.9 and[{.4. In particular, function vy is of the form

X(6),

xn,=0

, 0
v100(2, 1, &) = — (@ + a) U0,0,0

where function X is introduced as the solution to the auxiliary problem ({11]). Function uggo
18 the solution to problem

(‘C_)\)UO,O,OZfa er)

0 0 _ (2.19)
—t+a+ K )uppo=¢, z€T, —4a)uggo=0, z€Zz.
al/ "y 8V sy
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in W3(Q). Function wg oo is of the form wogo(2’, p, ¢) = uooo(2’,0, 1) (1 =Y (Q)).

Let us discuss briefly the results of the work. We stress first of all that the result of Theo-
rem [2.1] is true for an arbitrary structure of the frequent alternation of boundary conditions.
There are no essential restrictions for the parts of the selected Dirichlet part of boundary. The
amount of the parts of these subsets can be finite or infinite, while the result of the theorem is
true no matter whether the domain is bounded or not.

We note that in the statement of Theorem 2.1l we have only the norm resolvent convergence
of the perturbed operator to the homogenized one in the sense of the norm || - ||1,@)-L.@);
while the convergence in the sense of the norm || - ||1,)~wi(q) is impossible. Indeed, let f
be a function in Ly(). Then for u. := (H. — A\)7'f and ug := (Ho — \)~'f we write the
corresponding integral identities:

Be (e, ue) — Mue, Us) 1o = (f5 Ue) Lo(0)5 Bo(uo, o) — A(uo, o) o) = (f, %0) La(02)-

We assume that the resolvent of the perturbed operator converges to the resolvent of homoge-
nized one in the norm of operators acting from Lo () into W (€2), then u. converge to ug in the
norm of W3 (€). Therefore, all the terms in the first integral identity converge to similar terms
in the second integral identity. But in the left hand side of second integral identity there is one
more term (Ko, uo)r,(r) and this is why the original assumption on the convergence of u. to
up is wrong. At the same time, the convergence in the norm || - || ,(0)- 1.0 is sufficient to prove
the convergence of the spectrum of the perturbed operator to the spectrum of the homogenized
one. Moreover, if we employ a special boundary corrector, we can obtain the convergence in
the norm || - |[1,)»w; (), see 2.14).

Theorem 2] states not only the presence of the norm resolvent convergence, but it also
gives the estimate for the convergence rate, see (ZI3)), (2I4]). The right hand sides in these
inequalities tend to zero due to (ZI0), (Z12) and Assumption (C2).

Let us discuss Assumption (C2). In this assumption we introduce function «, which, in its
turn, determines function K. This function in boundary condition (2.I1]) for the homogenized
operator describes the distribution of selected Dirichlet subsets. For a periodic structure of
alternating boundary conditions, function K exists and estimate (3) holds true for £(¢) = Ce,
where constant C' is independent of ; this will be proved in fifth section. Here the alternation
is chosen the same as in Theorem 2.1l In the case of non-periodic structure we can mention the
example, when we consider a periodic structure of alternating boundary conditions, but the
we change a little the geometry and location of the selected subsets with Dirichlet condition
so that the total amount of changed sets is relatively less than the amount of unchanged sets.
Then inequality (2.9]) still remains true. We also note that assumption (C2) is needed to prove
Lemma [3.5] which, in its turn, is employed in the proof of Theorem 2.1l The this lemma is
based on sharp estimates. And this gives an opportunity to suppose that the final estimate in
this lemma is sharp. This is why term k(e) in inequalities (213)), (2I4) for the resolvent is
likely to be also sharp.

The second main result, Theorem 2.2 gives a complete asymptotic expansion for the resol-
vent. In order to construct such asymptotics, we have to assume additional smoothness for
functions A;;, A;, Ay, a and f in the vicinity of the part of the boundary with the alternation
of boundary conditions. We also assume in addition, that the alternation of boundary condi-
tions is strictly periodic and is imposed on the hyperplane. The coefficients of the series are
constructed as the solutions to some sequence of the problems, see the arguments of the forth
section.

Let us discuss also an additional coefficient in boundary condition (2.I9). This constant K
can be calculated by two ways. First, it is determined by the matching condition of asymptotics
for function u. and also identities (£.26]), (£28)). In particular, it will be shown in the end of
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the forth section that the additional coefficient in identity (4.28) is equal to constant K. In
the second way, coefficient K can be determined by means of Assumption (C2) for the periodic
structure of alternation of boundary conditions, see fifth section. Here we also employ the
identities for (G,, and Ty. We note that the constants determined in both cases will coincide.

3. RESOLVENT CONVERGENCE

In the present section we prove Theorem 2.1
Let f € Ly(Q) be an arbitrary function, u. := (H.—\) "' f, ug := (Ho —A)~'f. We introduce
the matrix

App(x) Ap(x) ... Ap(o)
Alz) = Amfx) A”E(x) o AQ’é(x) L AL= AQMD),
Api(z) Apa(z) ... Apa(z)

and for each i = 1,..., N(g) by Q we define one matrix by the conditions
(Q)T(Q) = (4D, (Q)"(AD(QL) = E,

where F is the unit matrix. Matrix Q! is determined non-uniquely up to the multiplication by
an orthogonal matrix. It is easy to check that this orthogonal matrix can be chosen so that
y. = 7, where y! is n-th coordinate of the vector y* = (yi,... 9. ,vy)) = Q'z', 2" = (s', 7).
Hereafter matrix Q' is chosen exactly in this way. By condition (23]), matrix A is symmetric,
lower-semibounded and uniformly bounded for all x € Q. This is why matrix Q). is lower-
semibounded and is uniformly bounded for all i and €. Therefore, we have the estimate

0 < Clz| < 1@z < C7'z] (3.1)

foralli=1,...,N(¢), small € and z € R". Here constant C' is independent of ¢, i and z.

In the previous section, in the vicinity of each point M! on the boundary of domain  we
introduced orthogonal coordinates s*. As a result of the passage from variables z to variablesy’,
operator V is recalculated as follows: V = JiV,:, where J{ is some matrix satisfying the
inequalities

a.Ji

0y;
_ N(e) ‘
where constant C' is independent of y*, i and . Let w. := | wg), where, we recall, sets wS’
i=1

we introduced in the previous section as the images of sets %@.
We denote B! := {x: |y’| < Rze} N . Here R is a positive constant such that for all e,
i=1,...,N(e) the inclusions w!” C Bi C Br,: (M) hold true.
2
Let x2(t) is an infinitely differentiable cut-off function equalling to one as ¢ < % and vanishing
ast > 1. Let

Zi(w,m) = Nig™2 (2| =™+ — Ry+?)
Wia,n) — (Xz (Ry'e ') Y (y—n) (1= e (R ) Z;<x,u,n>),

Wi(z,n), z€ B, i=1,...,N(e),

. . U (3.3)
0, in other points of domain €.

We(z,n) = {
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By the definition of functions x, and Y2, function W, is continuous in €, uniformly bounded
for all x € € and satisfies the inequality

0<W. <1 (3.4)

Hereinafter by C' we denote inessential constants independent of f, ug, u., We, €, n and x.
()

In the case of local estimates in the vicinities of sets ws’ constants C' are independent of the
choice of a particular set w. In accordance with [28, Ch. 5, Sect. 5.3, Ineq. (5.3)], we have
[uol| o) < Cllf o) (3.5)
Lemma 3.1. For each function u € W3(Q,~.) the estimate
iy < C (he(u,w) + [lullZyq)

holds true.

This lemma can be proved in the same way as [13, Lm. 3.1].

Lemma 3.2. For each function uw € D(by), the estimate

lullwz) < C (IHoul Lo + lullzo@)

holds true.

The proof of this lemma is similar to [I3, Lm. 3.2]. In the proof of this lemma we also employ
the results of [29, Ch. 3, Sect. 7.8].
In accordance with the definition, function u. satisfies the integral identity

h&‘(utf) ua) + )\(U&-, ua)LQ(Q (f ua)Lg(Q)

In addition we assume that A has a non-zero imaginary part. In accordance with [28, Ch. 5,
Sect. 5.3, Ineq. (5.3)], for such A the esimate

el o) < Cllfll Lo (3.6)
holds true. It follows from Lemma 3] that
ClHufwal Q) X < Be(ue, ue) < CHJC”%Q(Q)
It implies the inequality
[uellwy) < Cllfllza)- (3.7)
By analogy with [14, Lm. 3.3] one can prove

Lemma 3.3. For each function v € W} (), the inequalities

N(e) N(e)

Z”UHLQOBZ Cllvliv ) ZHUHLQ(Bz Cellvlliy )

hold true, where constant C' is independent of € and v.

Lemma 3.4. Function ugW, belongs to W4 (2) and this functions satisfies the estimates

|uoWell o) < Ce || fl Ly, (3.8)
1

[WeVuol| Loy < Ce? || fl o), (3.9)

o VWellr20) < Cllf 2200 (3.10)

where constant C' is independent of €, ug, f and W-.
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Proof. Tt is sufficient to prove the lemma for real-valued uq € C*(Q) with a compact support,
since the linear combinations of such functions are dense in space WZ(Q2). By the properties
of function Y7, functions W.ug, W.Vug belong to Ly(€2) and it follows from the definition of
function W, inequality (B.4]), Lemmata B.2] that

N(e) N(e)

IWeVuolIZ, o) CZ/IWI Vauo|* dz < CZHVUOHLQ(BZ Cell £l L.,

N(E)
Weuo|Z, ) < CZ/\WI [uol* dz < CZHuoHL2 5i) < CellfllLy @)

N(e

luo VIV, @) C’Z/UO|VW| dz.

The first two inequalities in the statement of the lemma are proved. It remains to check that
ug VW, € Ly(2) and to prove inequality (B.10).
We pass to variables y' in integral [ u3|VW.|*dz. The passage to variables y’' make one-to-
Bt
one correspondence between sets B! B! := {y': |y'| < Rse, y. > 0}. In accordance with the
definition of function W., we integrate by parts as follows:

: OW. 1 : .
/ w2 |V W dy' = / Woug——dS — 3 / Vg -V, W2dy' + / WougA,We.dy'

ov
Bi oBi Bi Bi
3W 28u0 25
dBi OB Bi
+/W5u%Ain€dyi.
Bi

Then by the definition of function W, the belongings uy, % € Ly(0BL), ug € W5(Q), inequali-
ties (B.4), (3.8), (3.9), Lemmata3.2] B3] inequalities in (B8.2]), the boundedness of the Jacobians
and ([B.I1) we obtain

N

N(e N(e) Oun |12
2 i 0
||UOVW€||12/I/21(Q) < C/“S’Vyiwe} dy* < C Z ||U0||%2(aBg) Z Y
< i=1 i=1 L2(0BY)
Bi
N(e) N(e) 2 [ N(e) 2
+ Z HVUOHLQ(BZ Z HUOHL2 B?) Z HAUOH%Q(BQ
i=1
N(e)
# 2 (107 = 20l gy + ¥ (V2 = 209l )

< C||u0||w22(g) < C||f||%2(ﬂ)

It follows that ueW. € W} (Q) and estimate (3.I0) holds true. The proof is complete. O
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We denote Pe = U — (1 — W.)ug. By the last lemma and the definition of function W, we

obtain ¢, € T/V2 (Q, we). For the resolvents of operators H. and H, we write the corresponding
integral identities choosing . as the test-function

h€<u€7 @6) - )\<u€7 (ps)Lg(Q (f QOE)LQ (€2)» bo(Uo, 906) - )\<u07 QOE)LQ(Q) = (fa ()0€>L2(Q)-

Let us calculate the difference of these identities:

0 = be(ue — uo, ) — Mue — o, V) o) + (Ko, c) Ly (1)
= be(e; e) — )‘”‘PeH%Q(Q) — b (Weug, ¢c) + Auo, ‘PeWe)Lz(Q) + (Kuo, SOE)LQ(T)-
It implies the integral identity for function ¢.:

bz—:((psa @6) - )\”QOEH%Q(Q) = g€<Weu07 @6) + (Ku07 ()Os)Lg(T)a (312)
where we denote
g€<W€u07 @6) = Kf + K;a

N(e)

Ki = 3 (A VW, Vipd)
i=1
N(e) 3

4 OW.
K5 =Y [(A=ADugVIW., V), =D (Ao — ¢
2(B2) O Lo(Bi)

i=1 j=1

+ (AW.Vuo, Vo) 1 gy + Z (A W= )
Ly (BY)

e
= Auo, 9 We) o1y + (AoWetto, 02) 1asr) + Z <Wer7 A‘i> ] |
Lo(BY)

j
=t Oz,

Our next step is to estimate the right hand side in (8.12) and to obtain the estimate for ¢,
and then to estimate the norm of function u, — ug.

We first estimate K5. By the definition of function W,, Lemmata 3.2 B3] B.4] and inequality
| Aij(z) — Ay(M)| < e in B,

we get
N(e) 2 [ N(e) 2
K5 < C e Z luo VW12, () Z |’906H12/I/21(B§)
i=1 i=1
N 2 /NG P /NG 2 /NG :

+ Z ||U0VW5||%2(B;') Z ||§06||L2 By | T Z ||Wavu0||%2(Bg) Z ||S05||W1 Bi)
i=1 =1

1
+ D IWeuollF, > lleelifvacs < Ce? || fll Lo 1@ lwy )-
= =1

We denote T'; := 0B: N 9N, S; := 0B\0Q. Employing the definition of function W, we
integrate by parts as follows:

Kf:KijLK 2+K137
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N(e) N(e)
Kiyi=) (v AV, UOQOE)Lg(aBzL) o Koy = o Z (divALVIVE, %uo)Lz(Bé) :
i=1 i=1
N(e)
Ki3 c= Z (AZVuO, VW, )L (Bi) = Kg,l + K;za
i=1

K5,:= ( (AéVuo, ng%)LQ(BD + (diVAiVuo, QOEWE)LQ(B;.) ),

N(e) N(e)
K;,Z = Z (V : Aévum SOEWE)LQ(@BQ) = - Z (V ' Aévum SOEWH )Lz(Fi) )
=1 =1

where v is the outward normal to OB,
Let wus estimate K35;. In accordance wit the definition of function W, Lem-

mata 3.2 and 34 and inequality (3:4]) we get:

N(e) % N(e) %
|K§71‘ <C Z ”WEVUOH%Q(BQ Z HV%HLQ(BZ
i=1
1 1
N(e) 2 [N(g) 2
1
Z luoll (s Z lpell, (e < Ce? || fll Lo 1@ llwy ()-

We rewrite K7, and K7, in local variables y'. Since V = J{V,, in accordance with the
definition of function W, the inequalities in (3:2]), Lemmata [3.2] and B.4], inequality (3.4)
and the boundedness of Jacobians, we arrive at the estimate for K7 ,:

1
N(e) 2 [N(e) 2

K5l <0 | | X102 - 2wl | | Sl iy

N
NI

* Znuov ZYV el 5 Zn%nh 5)

3
<Cell fllzatey | Do el | < Ol fllra@lle:lwyey-
i=1

Let us estimate K3,. By analogy with the proof of Lemma 3.4 in [14], using the definition
of function W, Lemmata B.2] B3] B4 and inequality (3.4]), we obtain

[ o < Cellfll ol el

Let ¢ be Cartesian coordinates in R, 3 := {&: |¢] < R3, &, > 0}, ST := 9¥\{¢: &, = 0},
't :=0xnN{¢: & = 0}. We introduce the problem

ov ov
A§V:O7 geza —:17 56517 —:Gn7 gel‘\l’
v v
where v is the outward normal for 0% and constant (,, was introduced in the previous section.
The solution to this problem exists and belongs to Wi (X). Function V and its first derivatives

are uniformly bounded for all £ € . In the vicinity of each point M! we introduce rescaled
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coordinates £ by the rule & = y'e!. We denote X! = {y': & € X}, Vi(y') = V(&),
Sti=08\{y': & =0}, TL:= 05N {y": §, = 0}
We integrate by parts as follows:

0= —N.Koe / Uop A VEidy' = —N§Ko(uo, ©e) 1a(51)

Bl
— NéGnKO(uO; wa)Lg(Fé) + NéKOE/VyZVZVyzuoSOadyl
Bi
We denote
N(e)
i4 = Kil — Z NéKo (UO, %)Lg(sg) )
i=1
Ne)
Kig = 3 NoFoe(Vy Vi, Visttope) 1y oy
i=1
N(e)
K = (Kuo, ¢2)acr) = D NoGuko(uo, @) ra(rs).
i=1

We write the estimate for K7, and K7 ;. Passing to variables z in integrals K7, and Kfj, in
accordance with the definition of functions W, V, inequalities in (8.2)), Lemmata 3.2 3.3l and
B.4] inequality ([B.4) and the boundedness of Jacobians we obtain

5 N(e)

/’771
K2, < ( —Ko) Znuonwm > lieliiany | < Culdllmlichon

N(e) 2 N(e) 2

LSEIRS Z IVuollZ, 5:) > el
i=1

S

1
N(e) 2 [N(e)

Z luollZ, ) Z IVeellZ, s

L 1
<C (e+eb) Ifla@leclngo < Cetlflra@lieclwy

Then by the obtained estimates for K7, Ki,, Kiz, Ki4, Kis K5; and K35, we get the
estimate for Ki:

1
K1 < C (2 + 1) Il el
Let us estimate K3.

Lemma 3.5. The inequality
K3 < Crle)f oo lleellwie

holds true, where constant C' is independent of €, f and ..
Proof. We choose arbitrary point M! on boundary Y. In the vicinity of this point we introduce

orthogonal coordinates s' = (s1,...,s. ;). Then we choose a point M? € T so that it satisfies
the conditoin C1b < min |M?—M'| < Cyb, where b > 0, C; are positive constant. In the vicinity
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of point M? we also introduce orthogonal coordinates s* = (s%,...,s2 ;). Proceeding in the

same way, we choose a set of points MP? satisfying the condition C1b < n;in | M7 — MP| < Cqb

and to introduce the associated orthogonal coordinates s? = (s},...,sh_;). We denote @, :=
{r:0< s’ <b, i=1,...,n—1, 7 = 0}. By the boundedness of Jacobians we can choose
b > 0 so that the inclusion |J@Q, D T holds true.

P
We choose a partition of the unity 1 = > Y,(z) such that for each of functions Y, the

inequality 0 < [[Xpll o2 (qupp 5,y < € holds, Wﬁere constant C' is independent of p. We shall
assume that the support of each cut-off functions is contained in cube @,. Let J, be the
], < Cin
Qp, where constant C' is independent of p. As the result of such change we make one-to-one
correspondence between the boundary T and U Q,. Each point x € U @, belongs to a finite

Jacobian of the passage from variables x to variables s”

amount of supports and this amount is bounded uniformly in p. We denote Be = K —KoGpae.
In accordance with the definition of function . we obtain

K (6&“07905)L2(T / ﬁeXpJ uO‘PadS = /B&Xpt] uO@adS (313)

b SUPPXp

We expand function [, into the Fourier series in ),

2mi s
=Y et Y (R < By < oo

qEZ” 1 qezn—l

27

a5 —lglr
We introduce the function Uy,(s?,7) = — > C, 4

q#0 q
converges Wy (3,), X, := {2#: 0 < 7 < a, s» € Q,}, 2! = (s*,7), a > 0 is an arbitrary
constant. Function U, is the generalized solution to the boundary value problem

. It is easy to check that the series

6U ~
Aszp — O, Zp 6 Zp, /867 Sp 6 Qp?

subject to the homogeneous Neumann condition on the lateral sides of ¥,. Here

1
A / B.ds. (3.14)

Let x3 be an infinitely differentiable cut-off function being equal to one as 7 < ¢ and vanishing
as 7 > 5. We integrate by parts

~ o~ ouU, -~
0= _/XpJpX:%UOSOeAzPUdep = - / Xp‘]puo%s—ayp ds? + / VU - Vo (XpJpXSUOQOa) dz.
Yp Qp

(3.15)
Let us estimate the norm of V,»U, in Ly(X,):

C 2
IVl 5,y = 231G / e liirgr < 031G

q#0 q#0 |Q|
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In accordance with the definition of functions U, the identities in (3.14)), the last inequality,
(B.13), (B15) and the boundedness of Jacobians we get

. 1C,|?
K| < CH“OHV@(Q)HSOeHWQ1 (Z + [(8:)]

|Cyl?
<C Z Iq] i 1 ”Uoﬂwg(g)H%ng(g)-
qunfl

It remains to apply inequality (2.9) to complete the proof. O
It follows from the obtained estimates for K7, K5 and K35 that

1
|9e(Weo, ) + (Ko, ¢e)ryr)| < C <€2 +pt %(6)) o) e llwp -
By Lemmata [3.2, 3.3 and 3.4l we have

1
ez < C (£ + 1+ 5(e)) 1 ooy el 1)

1
ey < C (% + o+ () 1l zage-

By two last inequalities and the first inequality in Lemma B.4] we obtain:
1
lue = wollzagey < C (23 + - 5(2)) 1 ot (3.17)

Together with (3.I6]) it completes the proof of the theorem.

We recall that in the proof we employed the assumption that A has a non-zero imaginary
part. For such A, as two last inequalities say, the resolvent of operator H. converge to the
resolvent of operator Hy as € — 0 in the operator norm. Then by such convergence, the
spectrum of the perturbed operator converges to the spectrum of the limiting operator. Then
by such convergence, the spectrum of the perturbed operator converges to the spectrum of the
limiting operator. This is why, if A belongs to compact set D and this compact set does not
intersect with the spectrum of operator Hy, then A is uniformly separated from the spectrum of
operator H,. for sufficiently small . Then in accordance with [28, Ch. 5, Sect. 5.3, Ineq. (5.3)]
estimate (B.6]) holds true. In other estimate the fact that the imaginary part of A is non-zero
was not used and this is they remain true. Theorem 2.1] is proven.

4. FORMAL CONSTRUCTION OF ASYMPTOTICS

In the present section we prove In what follows by £ we mean differential expression
(24)), while function u. will be treated as the solution to the boundary value problem

(L—Nu.=Ff z€eQ, (4.1)

0
u. =0, x €, ($+a)u€:0, rel.UZE. (4.2)

In this part of the work we make only formal construction for the solution to this problem. The
justification of the asymptotics is made by analogy with the justification of the asymptotics
made in [I4], Sect. 7].

We work [14], the asymptotics to the solution of problem (@.1]), ([4.2]) was constructed as
(2I5). In our case the structure of series m (2.I7), [21]) is different. Namely, in [14],
each of these infinite series was power in ¢, 7, T and Inn, while in our case it is power only
in e, n and Inn. Moreover, in the present work each of the coefficients in these series depend
on parameter p. Of course, we can let € = 7”72 in the asymptotic series in [I4, Thm. 2.2],
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. . . . ogne2 P . .
which, as it was said, were power in *—. As a result, we shall have infinite series, in which

the quotient ”Zj is constant, and then we can apply the obtained series for our case. However,
these series are no more asymptotic. This is why we shall construct the asymptotics of the
solution to problem (4.10), (42) as (2.10), 2.16), ZI7), 2.IF).

We construct the formal asymptotic expansion for the solution of problem (4.1)), (£2) on
the basis of boundary layer method [30], the multiscale method [31] and the method of match-
ing asymptotic expansions [32]. Outside small neighbourhoods of boundary ~., we shall seek
function u. as the sum of external expansion and the boundary layer:

ua(x, 22 7)) = ugx(x, 7, N) + ugl(l‘/? ;5 s 5)

We shall construct the external expansion u*(z, i, ) in the form of (2.16]). It is easy to see that
function uf(x, p,n) solves equation (AI]) and satisfies boundary condition on =, but it does
not satisfy the required boundary conditions on =, and F This is why in the neighbourhood
T :={x: = 0} we construct the boundary layer u™ (¢, 2/, u) as (2I7) in order to satisfy
the boundary conditions in (Z2)), where ¢ = (¢,¢&,) = (2/¢7 !, 2,e7!). In order to construct
the boundary layer, we shall employ the boundary layer method and the multiscale method.
The sum of external expansion and boundary layer does not satisfy the Dirichlet condition
on 7. This is why in the neighbourhoods of points M* we introduce the rescaled coordinates
C= (1 6n™) = (' —MPF)(en)=t, x,(en) 1), and we construct the asymptotics of function
u. on the basis the method of matching asymptotic expansion in small neighbourhoods of points
MF in the form of (2.I8). The aim of the formal construction is to determined functions ug, 4, 4,
Vge gy AN W g, ;-

Although the structure of the series in [I4, Thm. 2.2] differs from ours, the problems for
the coefficients of the boundary layer, external and internal expansions will be similar to the
corresponding problems in Sections 4, 5 and 6 in [14]. This is why in this part of the work we
write out only the problems for the coefficients. The solvability of these problems can be proved
in the same way as in [14]. All the lemmata in this part of the work will be given without the
proofs. They can be proved in the same way as in [14].

We begin with the external expansion. Substituting expansion (2.I6]) into (4.1), (42) and
equating the coefficients at the like powers of €, n and In7, we obtain the equations for the
coefficients of the external expansion:

(‘C - >\) u0,0,0 = f’ T € Qa (43)
(‘C - )\) uqa,qn,ql = 07 S Qu <QE7 qn, Ql) 7£ (07 07 0)7

as well as the boundary conditions for ug, g, ¢

0 -
(% + a) Uge gy =0, T E€Z. (4.5)

The boundary conditions on T for the coefficients of the external expansion will be determined
later while constructing the internal expansion.

We expand coefficients A;;(x), A;(z) and Ay(z) into the Taylor series as x, — 0, and then
we shall make the change x,, = €&,:

Zﬁnak Jz}]&ﬁaA(’O—%+Xk& ‘i@w% (4.6)

k=0 T

=~ 0"A o ROFA,
}:ﬁfxp 0) =Y (&) ==2(,0), p=0,...,n, (4.7)

k
ox
k=0 n
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where 0;; is the Kronecker delta. The convergence of these series is not assumed, the series are
treated as asymptotic ones.

Following the boundary layer method, we postulate that the sum of functions v and u!!
satisfies required homogeneous condition everywhere on T except points ME:

(8 +a) (u?‘+u'§1):0, reR"™Y @ #£ M
ov

We substitute (£.0), (£1) into (£2), rewrite the second term of the last identity in variables &,
replace functions u®* and u”! by the right hand sides of identities (ZI6) and ([ZI7), respectively.
In the obtained formula we calculate the coefficients at the like powers of €, n and In 7 and equate
these coefficients with zero. As the result we obtain the boundary conditions for functions
Yae,qn.ai*

vy, @,

9

0
. /
\I/qs,qqu = \Ilqqun,qz(x ) = <81/ a | Ug.qnq

= \I,qsflquqﬂ g e ]R‘n717 § # Mk7 (48)

, (4.9)

n,=0

MP* are the images of points M* under the mapping x + £~!¢ and these points are of the form
Mk = (0,1]{31, e ,an_lkn_l).

We substitute expansion (2.17) and series (4.6]), (A7) into equation (A1), pass to variables &
and in the obtained identity we write out the terms with the like powers of €,  and In7n. Then
for functions vy, we obtain the equation

»dn»q1
AeVge gna = Foegnar & >0, (4.10)
q:‘_l n
0? -1g . 0
qs,qqu : Z Z [ < n zg _é zg ) U(Is*ly(]m%
=1 i,5=1 a&ag agj

_ 02 0

+ §7l'1 ! <2Ai‘770 (é-n agz 861837]) + Bllj (p a ) + AO ) U(IE*(H’l)vq?]v(Il
op dp O 0

_'_ <£ (Bij la Aﬁ.,]l <p2 - T%agl)) - 25[ 1Aijoa— ) quf(l+2)7q717%
0 0? dp 0

gl A0 () 2P P r9

2§nAzj < a + &n (81}'81‘]‘ + o, axj)) Uge—(143),qn,q
dp 0 0 0?
1+2 410 9P 9P 29— 7
+ (gn ij 8372 axj) Vge—(1+4),q9,a + ( pagn aéjaxj Vge—1,qn,01

0? 0 &p ., 0p
+ <p2 + 92 5”8—8_5] - ) Vge—2,qn,q0 T &n <W + 26—%) Vg==3,qn.

)
J
ap 2
+ (fn%) qu4,qn,qz}v
J
o\ al“’A — 1
. Lp ._ ol . l + 1. _
Aq = axlq’ Z.jp = e 8xp’ A = A Aj , sz = AJ A AZ], p=0,1, ¢ > 0.

Here the derivatives of coefficients A;; and A, are taken at points (2’,0).

Thus, for functions v, g4, 4, We obtain problems (A8), (£I0) with a periodic structure in
variables £’. In accordance with boundary layer method, these functions are to be exponentially
decaying as &, — 400. In constructing the boundary layer, we shall also employ the multiscale
method. In addition we shall assume that functions v, g, 4 are C-periodic in variables &', where
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O:={¢:-% <& < %, & = 0}. Then the original boundary value problem is reduced to
the problem in IT = {{ : =% < & < %, & > 0} with periodic boundary conditions on the
lateral sides of II. Hereinafter, the solutions to the problems considered in II will be assumed
to satisfy periodic boundary conditions on the lateral sides of II.

We denote: [ := {{: —% <& < %, & = 0} \ {0}. We treat the solutions to boundary
value problem (4.8)), (4.10]) in the generalized sense. Namely, the solution are functions in space

WH(TI) satisfying the integral identity
= (Vevg gnar Ve@) o1 + (Yo 1,050 @) 120) = (Foegy.q0 @) La()

for all functions @ € C*(Ilg), where Il = {¢: —% < & < %, 0 <&, < R}, R = const > 0,
functions w should vanish as &, > R and satisfy periodic boundary conditions on the lateral
sides of II.

In order to solve problems ([4.]), (£.10) subject to periodic boundary conditions on the lateral
sides of II, we introduce the auxiliary problem

ox
0&,
The solution to this problem exists, it is unique, satisfies periodic boundary conditions on

the lateral sides of II and decays exponentially as &, — 400 (see [I4, Lm. 5.2]). In a small
neighbourhood of zero, the identity X = Ty|¢|™" + X holds true, where constant Ty, we

AX =0, ¢ell 1, ¢eld (4.11)

O -
recall, has the form T, := — ‘| c “, while X is an infinitely differentiable function in the same
neighbourhood.
We introduce spherical coordinates (r,0), where r = |{], and 6 are coordinates on the

unit half-sphere in R®. We denote A} the Laplace-Beltrami operator on the unit (n — 1)-
dimensional half-sphere S7! located in the half-space {¢ : &, > 0} subject to Neumann condi-
tion on the edge of the sphere.

By [33, Ch. 5, Sect. 2], the eigenvalues of operator A are numbers s(s +n — 2), where s is
an integer positive number. These eigenvalues are simple. We denote by Y;(0) the eigenvalues
of operator A} corresponding to the eigenvalues of s(s +n — 2). These eigenfunctions are
chosen orthonormalized in Lo (S{‘_l).

In accordance with [33, Ch. 5, Sect. 2|, function Y,(8) (|¢]7""2* + |£|®) is the solution to
the Laplace equation in the small neighbourhood of zero, satisfying Neumann condition on the
boundary of this neighbourhood as &, = 0. In [14], the following Lemma 5.3 was proved.

Lemma 4.1. There exist functions X, being solutions to the problem
0X,
06,
satisfying pertodic boundary conditions on the lateral sides of 11, having the asymptotics

Xo(€) = Ya(0) (|51 4 [€) + ) Gat®

a€Z’y

AX,=0, el 0, ¢el,

a2 (e 7%

in the small neighbourhood of zero, where s > 0, £ := £71€52 ... o,
stants.

and G, are some con-

As it was said, the solvability of problems (48], (£I0) with periodic boundary conditions on
the lateral sides of II can be prove in the same way as in Sections 4 and 5 in [I4]. By analogy
with Section 5 in [14], one can also prove that tcoefficients vg, 4, 4, of the boundary layer are of
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the form:

an—q—1

qu,qqu(xla w€) = U257qn,ql(x/’ &) + Vo —1am.a (', 1) X (€) + Z Azqs,qn,qz(x/’ ) Xi(€).

=0

Coefficients A% (', 1) will be determined in what follows. The obtained solutions in a small
neighbourhood of zero have the asymptotics:

Uqaqn,qz(ffla K, f) :\I/qs—l,qqu (x/a N)T0|§|7n+2 + qu’qn’ql(ffla N) + Z }/2‘17377,(11 (x/, 22 0)|§|Z
i=0

qn+qe—q— 1

D DR i TN
=0

_ e—q1—1qn—2j+q:—1 ~ |
Finen ( DD I G e

j=1
4.12
qe—q— n+1[ ] ( )

+ > Z Y5t (!, 0)1€) I [¢]
=0 J=1

ge—q1—1 oo
+ 3 STy, 0) € I |§|> ,
j=1 =0

where I?j =14+q¢—J—q+ gqhqs_l, gpvq =1—10p4
B ) = Wy g 10 Ko + AT ),
an—q—1 (413)
AT ) =G Y AP ).
=0

Here X, is the leading coefficient in the Taylor series for function X in a small neighbourhood
of zero.

Remark 4.1. Functions qu’q”’ql(:p',,u, 0), q- = 1, satisfy the identity

k,i,j
M
de,49n,q1 / _ Qe,qn,q /
Yk,z,] (SL’ ) 9) - E wms ! l<x 7M>Ym,k‘7i7j<9>7
m=0
qs,4n,q91 - - - . - . -
where VYm, is a linear combination of functions g, 24, and the derivatives of these func-

tions, M, is some number depending on the superscripts of functions ", while Yo 1. ;

are infinitely differentiable functions on half-sphere S~ satisfying Neumann condition on its
edge. This fact for q. > 2 will be checked while constructmg the internal expansion and match-
ing the asymptotics. In particular, for functions Y, " 21 (', u, 0), this identity is implied by the
asymptotics of functions vy g, o 1n a small nezghbourhood and identity {{.10) for right hand sides
Fy

»dn,q1 *

Remark 4.2. While constructing boundary layer, we added some solutions of the homoge-
neous problem in Lemma [{.1) with arbitrary coefficients to functions vy, 4, . In accordance
with Lemmal[4.1], this problem has infinitely many solutions. At that, among the existing set of
solutions, we added only the above mentioned. Our apriori choice of the added solutions is due
to the conditions appearing in matching of internal and external expansions.
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We denote: Ty := {€: &, =0, £ # MF, ke zZn 1}, T° .= 11N {¢: €] > 6}. Since the
coefficients of boundary layer are (J-periodic in &', the solutions to the considered problems in
IT are continued periodically for the whole half-space {¢ : &, > 0}. By analogy with [I4, Lm.
5.5] we prove

Lemma 4.2. Problems ({{.8), (4-10) are solvable, functions vg. g, q Fy q,.q con be repre-
sented as the sums

Uq67qnvql .T ’ué‘ ququnm %7‘1777‘11<£>

Fqquﬂv‘ﬂ l’ Mé— ququ7ﬁql ) M ‘iv‘ImQZ(g)

are finite linear combinations of the
E LQ(H(;). Here

j q q
where M are some numbers, i . .. VI . o

traces of the coefficients of the external expansion and their derivatives, v
vd eC>®(TyUu{:¢, >0}, F € C*(Tyu{¢:¢ >0}, F

qe,9n,91 QE an»q1
> 0 is an arbitrary sufficiently small number.

QE qn,qi

Formal construction of boundary layer (2.17)) is completed.

In view of the construction of the boundary layer functions, Lemma [£.1] and the definition of
function X, these coefficients have a singularity at zero. Moreover, we recall that in accordance
with the definition of functions v, 4, 4, the sum of the external expansion and boundary layer
does not satisfy Dirichlet condition on 7.. This is why following the method of matching
asymptotics expansions, in the vicinities of points Mf we construct the internal expansion.
First, this expansion controls the required boundary conditions in the vicinity of 7., and second,
it should be matched at infinity with previously constructed formal asymptotic solutions for the
coefficients of the boundary layer in a small neighbourhood of points M*. Since the functions
of boundary layer are [J-periodic in variables £’, it is sufficient to match asymptotic expansion
in the vicinity of zero. In the vicinities of points M?¥ the internal expansion is constructed in
the same way but in term of variables ¢* = ((2' — M¥)(en)~L, z,(en)™1).

We expand the coefficients of the external expansion and function e #(*)#» in ([2I7) into the
Taylor series w.r.t. variable x,, in a small neighbourhood of zero and then we make the change

Tp = NGy

—p(a)zn N i~ (o) j /
€ Ugeqna (T, 1) = Z(gﬁfn) Z ﬂfyq&qn,ql (@', 1),
i=0 §=0 J: J):
where we denote
Dy,
Vaesanar = ﬁ(l‘ﬂ@). (4.14)
It follows that
e i (o)
Uge gy g (1) = 0 Z(Eﬁgn) Z W%quql (z', 1, m). (4.15)
i=0 j=0 J° :

We rewrite asymptotics (2.I6) and ([2.I7) in variables ¢ = n~'&:

o QQE,CM

uS (@, ) +ul (€2, ) = 0 NN e T InY g gy g0 (2 1, ). (4.16)

Ge,qn=0 q;=0
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Here g 4,0 and ¢4, 0,0, ¢c, g, = 0 are introduced by the identities

1,gn—1,0 n
Poamola’.11.C) 278,(;,,,0($’>M)+Pe((‘I’O,qn,o(xl,M)To+Aoqn @) ¢

) 1 ZO —n —1
+Z Y0, )¢ )
(4.17)

Cae0.0(' 11, C) =7a 00(@, ) + g 0B (2!, ) + p- <\I’q5,o,o($'a ) Tol¢| 2

n Z YaHEO g e>|<|"+“'),

& —
where p. := et dpq =1 —0p4 The formulae for other ¢, 4 o are as follows:
Qqa qan i ; )
¢QE7QW7QI C ZU :u Z Z j' ' fyqs 1,qn— z,ql<xl u)Cfl
=0 7=0

! pg( <\Dq€v%qz (2, )Ty + AFTH (o ,u)> [

quﬂln_(ﬂ e’} ~
DD B S CO Sl |<|)
j=0  i=0
Q‘ZE an (Ilqn—Z

B 2—1, 3 j e \qns
+ 0 Oua Z Z Yyl 200 o, 9)|C| 2 Ind || + B (o, )

—(q+1)

1 2
- Z Yolan ™ (a , 0)[C ) DY Y (2!, 0)[¢) I ¢,

7=1 =0

(4.18)

where Q. 4, = min(q., q,), Gy ¢, @ = 0, Pi, P, are integer numbers depending on n, K; :=
Qugy—J+1—aq+ g‘lvaQs,qn_l' By the method of matching asymptotic expansions and taking

into consideration the coefficient e”®)?» in ([2I8), the terms of the internal expansions have
the following asymptotics at the infinity:

Wy gnar = Pacsamars 6 = 00, G > 0. (4.19)

We introduce spherical coordinates (p, #), where p = |(], and 6 are coordinates in the unit
half-sphere S7!. Then we rewrite functions Pae ansar A5

e+1,qp—1, —n
‘qu,qqu(Cv x/v/i) o (J:/, 1) + pe (qlqs,qn,qz (x/, w)To + Ag b (xla :“)) q +2

Qqe, an—q1 _
+ Z Y, )¢ I ()
j= i=
QQE an —4q1 gn—2 ) (420)
S L ¢
'l
—(q1+1) P P

Z Yalam (2, 0)[C+ ) ) VI (!, 0)|¢[ I ¢,

7j=1 =0
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where
Tttt = ) g 0BT = (Aqf’q”’q’ + ‘I’qu,qquXo> + Vgoapar €= S0q.0  (421)

Here function ¢ vanishes as ¢, = Q. 4, 7 0 and is equal to one in other cases, while functions
Y, =99 are defined by the identities

k,i,j
qe Gn>q . __ i qe+1,qn—1-K;+i,q y e dnd . ydedn— 2—i,q
47i7j - 17/[:7.7 ? 5727.] 2727.] ’
Pe
Qq:- qan ) (422)
GesGnyi e qn—1q1
Y507 =Y + § : E : (i — ) |7qs i1
=1 j= 0

Functions A%%% are defined in (£I13)).

Now we write out the problems for the coefficients of the internal expansion. In order to
do it, we expand function f into the Taylor series as z,, — 0, make the change x, = en(,,
substitute (2.I8) into (41]), (42) and equate the coefficients at the like powers of €, n and ln 7.
As the result we obtain the equations and boundary conditions for functions w,,

_ +
ACquvqqu = anqn,qw cest,

7q’f]7ql:

ow 4.23
wQEanv‘]l = 07 C € Fl? % == 07 C I~ FQ. ( )

Here S* ={C:¢, >0}, Ty :={C€R": ('€, ¢ =0}, Ty:={C:¢ =0\,

Qqa an n 82 a
, 10 -1 pl-1
quQm(Il : Z Z [ <2CnAz] W T Sn Bzg agj) Wy, ~1,qn—1,q1

=1 4,5=1

_ 0? 0
+¢ (QAlz’jO (Cn Pac, 6@6:::]») +Bj; ( - 8—%) Aﬂ) Wa. —(1+1),q5— (1)1
., 0 dp 0 _ 0
+ <C,i (ij la—p, + Ajj </)2 - a—xp, 0(-)) -2, lAﬁ}Q% ) Wae—(142).q9—(142).01
J ? J

Op 5?p op 0
— 2C5LA§30 < a -+ G ( 01,0z, + o, 0, Wae —(143),q7— (143).a1

dp Op o) 0?
10
+ (CrleAz‘j 3—3—%) Wae—(1+4),09-(1+4).a1 T (203—% ~ 9¢;01; Wee—1,an—La1

o2 P 5?p dp
+ </) + 81‘? Cna 8C] )\) Wq.—2,g,~2, T Cn (8 2 + 28%) Wa:—3,a1=3,a
2

ap o
+ (Cna—l‘]) wq54,qn47ql] ’ A2l AOl ax%.

The derivatives of coefficients A;; and A; as well as the derivatives of function f are taken at
points (2',0). Thus, functions wy, 4, of internal expansion are solutions to problems (£.23),
(419). In order to study he solvability of these problems, we shall need auxiliary statements.

We recall that functions Ys(#) were introduced in the previous section as eigenfunctions of
operator AY associated with the eigenvalues s(s +n —2). In accordance with [33, Ch. 5, Sect.
2], function Y,(0) (|| + [¢|7"%7%) is the solution to Laplace equation at the infinity. In work
[14], the following lemma was proven (see Lemma 6.2 in this work).

Lemma 4.3. There exist functions Vs solving the problems
oV,

AT, =0, St W, =0, T,
¢ € cely ac,

=0, QGFQ,
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having the asymptotics

\IIS<C) = Y;(@) (|<‘S + ‘C|*n+2*8) 4 Z Ua<a|<‘f2\a|fn+2

a€Z’y
as ( — oo, where s > 0, U, are some constants.

To solve problems (E23), we shall make use of problem (Z6). In problem (Z6), as set w®
we take I'y and we denote by Y the solution of such changed problem (2.6). In accordance with
[T4, Lm. 5.4], the solution to this problem exists, unique and has the asymptotics

_ Z Ny C¥|¢|2ol=—nt2 (4.24)

a€Z’y

as ( — 0o, where NN, are some constants. We shall also need the asymptotics of function Y (¢)
Y( ) Ny ‘C| nt2 | ZZLZ,O |<‘ —n-+1—i

at infinity. Here Zm;o are infinitely differentiable functions on the unit half-sphere S7'~! satis-
fying Neumann condition on its edge. The convergence of this series is not assumed, the series
is treated as an asymptotic one.

Solvability of problems (£23)), (420]) can be proved by analogy with Section 6 in [14]. Then in
the same way as in Section 6 in [14], one can show that coefficients wq, 4, 4 of internal expansion
are of the form:

an—(q1+1)

w‘]s,‘]m‘ll ($/, ILL’ g) :ququ‘H(:L‘/’ ,LL)(]_ - Y(g)) + g‘kyo Z ng’q”"” $ NJ) (g) + Qm(In,ql( /’ M? C) )

where functions T %% are given by the formulae:

Tq57q7]7QI = TQE7Q7]7QI _ 5q8700857q7]7QI’

while coefficients C7*"%(2', i) will be determined later. The obtained solutions have the
following asymptotics

an—(qi+1)
Wae gun (1, Q) =TT0% (! ) + BEw (! )¢ ™24 Y Z350" (2!, . 0)[C]
=0
QQE an —4q1 _
+ ZZ?Z";"”’ (&', 1, O)ICI 5~ ||

Jj=
qu,qn —qy qn—Z

D DD DY el TR0 S 1S
j=1 =0

+ Z4 " (!, 0)[¢ P In ¢,
=0 Jj=1
at infinity, where B% %% are of the form:

n—(@+1)
Bq£7Qn7(Il — _T%,%}#HNO + 5%’00%7(}%%’ C(IE,Qny(H g Cga‘hﬁfﬂ + UO E C;k#lm‘]l. (425)
=0
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Remark 4.3. Functions Z,Z;’%"’ql (', i, 0) satisfy the identity:

My
ZZ;,an’ql (ZL‘/, M, 0) = Z ¢g§’qn’ql (l‘,, M)Ym,k,i7j(0)7
m=0

where Y™ is a linear combination of functions Ug.—1,q,-1,¢ @nd the derivatives of these
functions, My is some number depending on the superscripts of functions ¥ ™", and Zp 1. ;

are infinitely differentiable functions on the half-sphere ST~ satisfying Neumann condition on

its boundary. We shall check this statement later. In particular, functions Z;’%’O(x', w, 0) satisfy
the identity:

My
Zyan (! 1, 0) = b0 1) Zu i (6),
m=0

where 1/1,17;'1"’0 is a linear combination of functions ug 4, 1,0 and the deriwatives of these functions.
This identity is implied by the asymptotics of function woq, 1,0 and right hand sides Gy 4, o at

nfinity.

We return back to constructing functions wy, g4, ¢,- Asymptotics of functions wg, 4, 4, at infinity
should satisfy (420]). As the result, we arrive at the identities:

B9 — Pe (TO\I’qE,qn,ql 4 Ags-l-l,qn—l,QI) , ZQs,qm‘H (.T/, 1, 9) — YQs,qm‘IL (x/’,u7 9)’ (4.26)

2,7 5,4,7
2335 @ s 0) = YiE a1, 6) 2553 ', 8) = Y ). (427)

The first identity in (4.26)) is the solvability condition of the problems for functions wg, 4, 4
The validity of the second identity in (£.26]) and the identity in (£27]) is proven in the same
way as in Section 7 in [14]. Identities ([&26]), (E27) determine coefficients A% (2, ) and
CE (2! 1) considered in ([I3) and (&25]), respectively. We recall that these coefficients and
the solutions from Lemmata [£T] were added to functions v,_g, 4 of boundary layer and to
functions wy, 4, 4 of internal expansion, respectively. And each of these coefficients is a linear
combination of all corresponding functions of the external expansion and their derivatives. This
statement is implied by Remark [4.1] and [4.3] identities for the right hand sides in the definition
of functions Gy, 4, 4, the identities in (Z26), (@27) and the definition of operator Aj. The
asymptotics of function Y and identities (4.26), (£27) explain the choice of solutions to the
homogeneous problem in the boundary layer described above in Remark By the first

identity in (A26) and by (212), (£13), (£14), (£2I) we obtained boundary conditions for the

remaining terms ug, 4, o, of external expansion:

0 No (1 + K, o+ K ~
(5 +a+ %) e Gn Q1 :TO ( — N <QAq8’q"’ql + \I,(IE*L(]m(IlXO)
_ AQaQn_LQL (428)
+ 5q570Cq5’q7”ql) — =0 7 as r €.
0

Here constant X, and function g are defined in (@II) and ([@2I), respectively. It is clear
that denominators in these identities are non-zero, since 7Ty is non-zero (see the asymptotics of
function X), while p. tends to a constant as ¢ — 0 by (2.10). Moreover, we mention that as
(4=, Gy, @) = (0,0,0), the right hand side in (4.28) vanishes due to the definition of functions p,
A% Gt and AF? " Relations (&3), (E4), (E5) and [#28) define the problems for

coefficients wu,_ g, 4,-

Remark 4.4. While constructing the coefficients of internal expansion, we added some so-
lutions to the homogeneous problem in Lemma [f.3 with arbitrary coefficients C{~* " (z', n). In
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accordance with Lemmal[{.3, this problem has infinitely many solutions. At that, among the ex-
isting infinite set of solutions in this lemma, we added only the above mentioned ones. Adding
of these terms is sufficient to satisfy ([4.20) by the asymptotics of the constructed terms of the
internal expansions. Thus, our apriori choice of the added solutions is due to the conditions,
which appeared in matching with the coefficients of the internal expansion.

We denote T's := {( : (, = 0, ¢ & 9I'1 x {0}}. We choose § > 0 such that the inclusion
or'y € {¢ :|¢'| <6, ¢ = 0} holds true. Here OI'; is treated as the boundary of setl'; of
dimension n — 1. By analogy with [I4, Lm. 6.3] one can prove the next lemma.

Lemma 4.4. Problems (4.23) are solvable, functions wy, 4, 4 and Gg, g4, 4 are represented as
the sums

QE qan

wQs,an‘]l ', C) = Z pqs,qn,qz qs,qn,qz@)

lls an

Gqs,qn,qz ', Q) = Z (bqg,qqu , 1) QE7Q777QI<C>

/[: q . . . .
where M, are some numbers, pl_ i’ gbqg o OT€ finite linear combinations of the traces

of the coe]fﬁczents of the external expanswns and of their derwatives, wi ., .~ € C (T3),

Wi gpa € Wa({C: G >0, [¢] < 6}), GF, € O (Is), GY_y, 4 € La({C: G > 0, [¢] < 6}).
We denote Q, s:={x: 0<7 <719—0}.

Lemma 4.5. Let functions f € Wi () N Ly(Q) and ¢ € W(Y) are holomorphic in
p in the sense of the norms in Wit () N Ly(QY) and W () for all m € N and u is the
solution to the problem

(L-Nu=f z€9Q,

N, K 4.29
ov Ty ov

Then this problem is solvable in W2(2), for each m € N and each 6 > 0 function u belongs to
W3 t2(Q,_s), is holomorphic w.r.t. u in the sense of the norm in Wa'(Q,,_s) N W2Z(Q) and
the estimate

HuHWQMH(Qm_(;) <C

holds true, where constant C' is independent of u, f, p and @ but depends on m and §.

Proof. The solvability of the problem for ;1 = 0 is implied by the assumption that A does not
belong to the spectrum of operator Hy. Therefore, there exists the inverse bounded operator
(Ho — N) 7L Ly(92) — WE(RQ).

Let x4 be an infinitely differentiable cut-off function vanishing as x,, > %} and being equal to
one as 0 < x, < 3. We make the change of function u:

N,
v(, 1) = w(@, Wbo(Tn, 1),  YolTn, ) =1 — xa(x,) (e7OH" — 1), q,:?f

By (4£29)), function v is the solution to operator equation (Hg — A — pLo) v = F, where F' :=
Yo f, while Ly is a bounded operator from W3 () into Ly(Q2) and has the form

wl 1 8A]n ,QZ)Q 277Z)1 & 0
Lo= (A A, A, + +A Y2 A, 2 4.30
* o ( Z Oz (o wo Z O, (4:30)
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where

2
+ e (1 — xy), Uy = % — e onen (QZ—Xi + Cop(1 — X4)) :
We note that denominators in (£30) are non-zero since function 1, tends to a constant as
pu — 0. Tt follows from the definition of operators Ly and (Ho — A)~! that (Ho — \)"'Lg is a
bounded operator in Ly(2). Hence, function v is represented by the identity v = (I — pu(Ho —
A)1Lo) 71 (Ho — A)7LF, which proves the solvability of the problem. Then expanding operator
(I —p(Ho—A)"'Lo)~! into Neumann series and using the definition of function v, we establish
the holomorphy of function w w.r.t. x in the sense of norm in W3 ().

By the smoothness of functions f and ¢, the holomorphy of these functions in  and by the
smoothness improving theorems [29, Ch. 4, Sect. 2] we establish that for each integer m > 0
and each § > 0, function u belongs to space W3""2(€2,,_s) and satisfies the inequality

dxa
dz,

Py =

el o < C (I lwg@m + i@ + Ielypam ) -

Then by induction in m one can prove easily the statement of the lemma on the holomorphy
of function u w.r.t. u in the norm in W"*2(Q,, _s) N W2(Q). O

In accordance with the last lemma, the coefficients of the external expansion are holomorphic
w.r.t. p. Together with the identities for the functions of the boundary layer and internal
expansion it follows that these coefficients are also holomorphic w.r.t. p in the norms in
W (I1°) and Wi(¢: ¢, > 0, [¢| < 6), respectively. By the previous lemma, functions P

o g and pl 9l considered in Lemmata @2l and B4l belong to W3 (T) for all m > 0.
The formal construction of external expansion (2.10) and internal expansion (ZI8)) is complete.
The justification reproduces that in [14, Sect. 7]. While justifying, various estimates for the
norms of the coefficients of the boundary layer, external and internal expansions are obtained
as well as the estimates for the error terms. At that, all the constants in these inequalities are
uniformly bounded in e, n and p. This fact is implied by Lemma 4.5 and the explicit form of
functions of boundary layer and internal expansion.

5. SHARPNESS OF ESTIMATE

In the present section we discuss the sharpness of the estimates established in Theorem 2.1
We shall show first the estimate (2.9]) is true for a periodic structure of the alternation of
boundary conditions. As an example we consider the hyperplane T := {z: z, = 0} and we
introduce set 7.. This set is introduced in the same way as in the previous section. Let
N = [ﬂ, [-] be the integer part of a number, b := Ne, (0! C T be a cube with side ¢ such that

véi) C 0. In hyperplane T we choose a cube @ with side b containing an integer amount of
sets [J. such that the union of these cubes covers Y.
We denote B, := a — a.. We expand function S, into Fourier series Q):
by = Y O
qunfl
o5 e’ (lgl+1)zn

We take the function U(z) = — C,
qe;*l ! ‘Q| _'_ 1

converges in W}(X), ¥ := {z: z, > 0, 2’ € Q}. Function U is a generalized solution to the
boundary value problem

. It is easy to check that the series

ou

AU =0 5
, T E 2, oz,

:/867 xleQa
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with the homogeneous Neumann conditions on the lateral sides of 3.
In accordance with the definition of function (., the identity

2
'/558221”% = G~
lq| +1 g + 1

qGZn—l
holds true. On the other side, in accordance with the definition of function U, we have

. |Cyl?
IVUIZ, 5 =2 D \C|2/ ey, = 0N \q|q+1'

qun 1 qunfl

ezn 1

Therefore, we obtain

< C|IVUIl; (5.1)

Ly(2)"

27i
Fraa gy
|q|+1‘/ﬁge )

Our next step is to estimate the right hand side of the last inequality. In order to

do it, we introduce the following notations: 0. := {z € R"': — ﬁ < x5 < ﬁ,

j=1...,n—1, z, = 0}, ¥, = {z:2,>0, 2 e .}, &£ =ae !, in ={¢: & >0, ¢ e},
where [J is the domain obtained by dilation of domain [J, in £~ times.
By analogy with [’%4] for n > 3 we can calculate the asymptotics for the lowest eigenvalue

EZn 1

of Laplace operator in Z subject to Neumann condition on [0\ {0}. The first non-zero term
in the asymptotics is of order ¢. Indeed, function U satisfies

U = 2ullyy 5,y = O (en).

Here function u is a solution to the problem

Au—0, €€5, gg:m ¢\ {0},

subject to periodic boundary conditions on the lateral sides of in, having the asymptotics
u=[¢[7"+ O (|7 as [¢] = 0. N
In the same way as [14, Lm. 7.3], for U € W3 (3, one can prove the estimate ”vﬁUHig(i ) S
n

Ces. Returning back to variables x and taking into account that set @ contains O (e7"*!) of
periodicity cells, we obtain the estimate

IVUI2, 5 < < Cer,
By (5.1)) it follows that function x(e) in (ZJ) should be chosen as Cei to satisfy this estimate
for our example. It remains to check that function « vanishes on Y N Z if this intersection is
non-empty. In our case these sets are disjoint and we do not need to assume the vanishing of
a on T NZE. Thus, we have shown that for a periodic alternation there exists a function a and
Condition (C2) is satisfied.

We proceed to discussing the sharpness of the estimates established in Theorem 2.1 If we
try to prove the sharpness of estimate (21I3)), it leads us to some rough estimates only. This is
why we shall study only the sharpness of estimate (2.14]).

In this section, by C' we denote inessential constants independent of the coefficients of external
and internal expansions and boundary layer, as well as of f, e, n, u, k(¢) and z. In addition we
assume that ugoo and f are compactly supported infinitely differentiable functions. We recall
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that the asymptotics of function u. in the norm in W3 (Q) is of the form (2.I5). Then

Jue — (1 = We)uoo0llwio :H (Eul,o,o + No,1,0 + EX0V1,00 t - - )X5
(5.2)

Y

w3 ()

+ (x5 — 1+ Wo)ugoo + <w0,0,0 + .. -)X6

where by “...” we denote the next terms of the asymptotic series, function W, is defined in

(B3), while functions xs, x¢ are of the form:

= I ale—ME=), o= 3 (= (o= M 7).

kezn—1 kezn—1

Let us estimate the norm of xgwo 0,0+ €X0X5v1,0,0 + U0,00We in W2H(€). In accordance with the
definition of functions xo, X1, X2, Wo,0,0 V1,00, W= and the properties of function g we obtain

| Ownon oW |
[ X6wo0,0,0 + €X0X5V1,00 + Uo,o,OWeH?/V;(Q) > Cy Z B —— + U0,0,0 E
i=1 n n L2(Bk’1)
N(e) 2
8 U1,0,0 oW, |I? 9 0.009Y Y
+ Cz + 10,0,0 = Ci(en)” — T o+ w005~
i=1 8xn a:L‘n Lg(Bkv2) zzl agn agn Lg(Bkvl)
N(e) 2
0X oW,
+ Cae Vo005 + %000 57— )
Z 85 agn LQ(BIQ,Q)
where sets B and BF? are of the form B*!' = {z: |z — MFle'n7'/2 < 1},

B*? = {z: |z — MFle7'n7/2 > 1} NQ,,. The last identity, (28], asymptotics of functions
X in a small neighbourhood of zero and of Y at infinity, as well as the definitions of functions
7900 W, imply

1
1 X6wo,0,0 + €X0X5V1,00 + uO,O,OWEHI/VQI(Q) > Cez.
By (£2), Lemma 7.3 in [14] and the definition of function W it follows that

e — (1 — Weuopollwi ) > Cex. (5.3)

This estimate differs from the right hand side of inequality (ZI4]). Namely, the first term
coincides with the similar one in the estimate for the convergence rate. It means that this term
is sharp. The third term, x(¢), in our estimate comes from Lemma B3 And as it was said,
the proof of this lemma is based on sharp estimates. It gives us an opportunity to assume that
term k(e) in inequality (2.I4) is also sharp.

Let us study the sharpness of term g in the right hand side of (2.I4]). Since the coefficients
of the boundary layer, external and internal expansions are holomorphic in pu, as well as by the
fact that we do not construct asymptotics of function wu. in powers of i, we obtain an error of
order u. Hence, by inequality (B.3]), Lemma 7.3 in [I4] we obtain that

1
Jue = (1 = Wo)uooollwi) = C <€2 + ,LL) :

Thus, our estimate (2.I4]) is close to being sharp.
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