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GRADIENT METHODS FOR SOLVING STOKES PROBLEM

I.I. GOLICHEV, T.R. SHARIPOV, N.I. LUCHNIKOVA

Abstract. In the present paper we consider gradient type iterative methods for solving
the Stokes problem in bounded regions, where the pressure serves as the control; they are
obtained by reducing the problem to that of a variational type. In the differential form
the proposed methods are very close to the algorithms in the Uzawa family. We construct
consistent finite-difference algorithms and we present their approbation on the sequence of
grids for solving two-dimensional problem with a known analytic solution.
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1. Introduction

In a bounded domain Ω ⊂ R𝑛, (𝑛 = 2, 3) with a smooth boundary 𝑆 ∈ 𝐶2 (that is, twice
continuously differentiable) we consider the Stokes problem

− 𝜈∆v = f−∇𝑝, v|𝑆 = 0, (1)

div v = 0, (2)

(𝑝, 1)𝐿2(Ω) = 0, (3)

where f = (𝑓 (1), . . . , 𝑓 (𝑛)) ∈ L2(Ω) = (L2(Ω))𝑛, v = (𝑣(1), . . . , 𝑣(𝑛)) is the velocity vector, 𝑝 is
the pressure, 𝜈 > 0 is the coefficient of the kinematic viscosity.

In accordance with [1, Ch. III, Sect. 5, Thm. 2], under these assumptions, problem (1)-(3)
has the unique strong solution v ∈ H 2(Ω) = (𝐻2(Ω))

𝑛
, ∇𝑝 ∈ L2(Ω). Hereinafter we employ

standard notations for Sobolev spaces 𝐻 𝑙(Ω) ≡ 𝑊 𝑙
2(Ω), 𝑙 = 1, 2 . . .

We shall treat problem (1)-(3) as the inverse one for (1), (3), in which the pressure gradient
∇𝑝 is not known but an additional condition (2) is prescribed. Such problem can be formulated
as an equivalent to the original problem of optimal control:

𝐽(u) =
1

2
‖div v(u)‖2𝐿2(Ω) → inf, u ∈ 𝐺(Ω),

where 𝐺(Ω) =
{︀
u ∈ L2(Ω) : u = ∇𝑝, 𝑝 ∈ 𝐻1(Ω), (𝑝, 1)𝐿2(Ω) = 0

}︀
is the gradient component in

the orthogonal expansion L2(Ω), while v(u) is a solution to the system

− 𝜈∆v(u) = f− u, v(u)|𝑆 = 0. (4)

The fact that many problems of the mathematical physics can be reduced to extremal problem
is well-known and is widely used. Among known methods of solving stationary Stokes problem
in primitive variables based on variational methods, we first of all mention Arrow-Hurwicz
method and Uzawa method [2], whose differential form based on the variational formulation of
the original problem and dual theory [3] allows one to separate the process of finding unknowns
and to solve in this way the issue on the absence of the equation for the pressure. The approach
we consider below is close in spirit to the methods in [4], [5].
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Together with the problem on minimization of function 𝐽(u) in space L2(Ω), we shall also
consider problems on minimization of 𝐽(∇𝑢) in spaces 𝐻1(Ω) and 𝐿2(Ω), in which pressure 𝑝
serves as control 𝑢. Since the gradients of the functionals in these cases have different forms, it
is convenient to denote them accordingly to the considered problems:

Problem I. Find the minimum of the functional 𝐽0(u) = ‖div v(u)‖2𝐿2(Ω)/2 on the set

𝑈0 = 𝐺(Ω), where v(u) is the solution to problem (4).
Problem II. Find the minimum of the functional 𝐽1(𝑢) = ‖div v(𝑢)‖2𝐿2(Ω)/2 on the set

𝑈1 =
{︀
𝑢 ∈ 𝐻1(Ω) : (𝑢, 1)𝐿2(Ω) = 0

}︀
, where v(𝑢) is the solution to the problem

− 𝜈∆v(𝑢) = f−∇𝑢, v(𝑢)|𝑆 = 0. (5)

Problem III. Find the minimum of the functional 𝐽2(𝑢) = ‖div v(𝑢)‖2𝐿2(Ω)/2 on the set

𝑈2 =
{︀
𝑢 ∈ 𝐿2(Ω) : (𝑢, 1)𝐿2(Ω) = 0

}︀
, where v(𝑢) is the generalized solution to problem (5).

We shall seek the solutions to Problems I-III be the gradient projection method [6], [7]:

𝑢𝑘+1 = 𝑃𝑈𝑙
(𝑢𝑘 − 𝛼𝑘𝐽

′
𝑙 (𝑢𝑘)) , 𝑙 = 0, 1, 2, (6)

where 𝑃𝑈𝑙
is the operator of projection on set 𝑈𝑙, and 𝐽 ′

𝑙 (𝑢𝑘) is the gradient of the functional
𝐽𝑙(𝑢𝑘) at point 𝑢𝑘

1.
In what follows we shall show that

𝐽 ′
0 (u) = w(u), (7)

𝐽 ′
1(𝑢) = 𝜌(w(𝑢)), (8)

𝐽 ′
2(𝑢) = − divw(𝑢), (9)

where w(·) is the dual state of system (4) introduced for all Problems as the solution to the
problem

− 𝜈∆w(·) = ∇div v(·), w(·)|𝑆 = 0, (10)

while 𝜌(w) is determined by the orthogonal expansion of the vector w(𝑢) = ∇𝜌(w) + �⃗� into
the gradient and solenoidal components.

Let us find projection operators for all considered Problems and let us show that Prob-
lems I and II are equivalent.

We note that in [4] an analogue of Problem II for the generalized Stokes problem was con-
sidered, while for constructing an iteration process, the general theory of self-adjoint operator
equations was employed. We use a test calculation from this work to verify our calculations by
formula (6). The method of complete and incomplete separation of boundary conditions [5],
where the theory of boundary Poincaré-Steklov operators is employed, leads one to differential
iteration processes close by structure to those in the present work.

Hereafter by v̊(u) we denote the solution to problem (4) as f = 0, while by v̊(𝑢) we denote
the solution to problem (5) as f = 0.

2. Differentiability of functional 𝐽0 (u)

We denote by 𝐿 the operator 𝐿(z) = −𝜈∆z on the set H 2
0(Ω) =

{︀
z ∈ H 2(Ω) : z|𝑆 = 0

}︀
.

We note that the range of operator 𝐿 coincides with space L2(Ω). Indeed, let f be an arbitrary
element in L2(Ω); then in accordance with [8, Ch. II, Sect. 7, Thm. 7.1] the problem

𝐿(z) = f (11)

has the unique solution in H 2
0(Ω).

Employing the second energy inequality [8, Ch. II, Sect. 6, Formula (6.29)]2

‖z‖H2(Ω) 6 𝑐1‖∆z‖L2(Ω), (12)

1For the sake of the generalized notation, we do not use bold fond for vector 𝑢 in Problem I.
2If domain Ω is convex, then constant 𝑐1 is equal to one.
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In view of the obvious for problem (11) identity ‖∆z‖L2(Ω) = 𝜈−1‖f‖L2(Ω), we obtain the estimate

‖z‖H 2(Ω) 6 𝑐1𝜈
−1‖f‖L2(Ω), (13)

which will be employed in what follows.
Let u and h be arbitrary elements in 𝑈0. Taking into consideration the definition of operator

𝐿, it is easy to see that v(u + h) − v(u) = v̊(h), where v̊(h) = 𝐿−1(−h). Hence,

𝐽0(u + h) − 𝐽0(u) =
1

2
‖div v(u + h)‖2𝐿2(Ω) −

1

2
‖div v(u)‖2𝐿2(Ω)

=(div v(u), div v̊(h))𝐿2(Ω) +
1

2
‖div v̊(h)‖2𝐿2(Ω).

(14)

We transform the first term in the right hand of the last identity by integrating by parts and
employing the condition v̊(h)|𝑆 = 0 and the self-adjointness of operator 𝐿:

(div v(u), div v̊(h))𝐿2(Ω) = −(∇div v(u), 𝐿−1(−h))L2(Ω) = (𝐿−1∇div v(u),h)L2(Ω).

Thus, in view of the notation w(u) = 𝐿−1∇div v(u), identity (14) becomes

𝐽0(u + h) − 𝐽0(u) = (w(u),h)L2(Ω) +
1

2
‖div v̊(h)‖2𝐿2(Ω). (15)

Multiplying both sides of (11) by z and integrating by parts, we obtain the relation

𝜈‖∇z‖2L2(Ω) 6 ‖f‖L2(Ω)‖z‖L2(Ω),

which together with Fridrichs inequality

‖z‖L2(Ω) 6 𝑐0‖∇z‖L2(Ω), (16)

yield:
‖∇z‖L2(Ω) 6 𝑐0𝜈

−1‖f‖L2(Ω). (17)

By (17) and the easily checked inequality

‖div z‖𝐿2(Ω) 6
√
𝑛‖∇z‖L2(Ω) (18)

we get that
‖div v̊(h)‖𝐿2(Ω) 6

√
𝑛 𝑐0 𝜈

−1‖h‖L2(Ω), (19)

Hence, the principal linear part of the increment of functional 𝐽0(u) is determined by the
expression (w(u),h)L2(Ω).

Let us show that the gradient 𝐽 ′
0(u) satisfies Lipschitz condition. Let u(1),u(2) ∈ 𝑈0, and

w(1), w(2) are the corresponding solutions to problem (10). We observe that

𝐿(w(1) −w(2)) = ∇div v(u(1)) −∇div v(u(2)) = ∇div v̊(u(1) − u(2)),

that by inequalities (16), (17) imply

‖w(1) −w(2)‖L2(Ω) 6 𝑐20 𝜈
−1‖∇div v̊(u(1) − u(2))‖L2(Ω). (20)

Taking into consideration that v̊(u(1) − u(2)) is a solution to equation (11) with the right hand
side f = −(u(1) − u(2)) and this solution satisfies estimate (13), by (20) we obtain:

‖𝐽 ′
0(u

(1)) − 𝐽 ′
0(u

(2))‖L2(Ω) =‖w(1) −w(2)‖L2(Ω) 6
√
𝑛 𝑐20 𝜈

−1‖v̊(u(1) − u(2))‖H 2(Ω)

6
√
𝑛 𝑐20 𝑐1 𝜈

−2‖u(1) − u(2)‖L2(Ω).
(21)

Thus, we have proved the following theorem.

Theorem 1. Let f ∈ L2(Ω), where Ω is a bounded domain with a boundary 𝑆 ∈ 𝐶2. Then
functional 𝐽0(u) is Fréchet differentiable on 𝑈0, and its gradient is determined by formula (7)
and satisfies Lipschitz condition with constant 𝐿0 =

√
𝑛 𝑐20 𝑐1 𝜈

−2, where 𝑐0 and 𝑐1 are constants
in inequalities (16), (12).
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3. Differentiability of functional 𝐽1(𝑢)

On set 𝑈1 we introduce a metric equivalent to the metric in space 𝐻1(Ω) via the scalar
product (𝑎, 𝑏)𝐻1

0 (Ω) = (∇𝑎,∇𝑏)L2(Ω).

Let 𝑢 and ℎ be arbitrary elements in 𝑈1. Similar to (15) it is easy to see that

𝐽1(𝑢 + ℎ) − 𝐽1(𝑢) = (w(𝑢),∇ℎ)L2(Ω) +
1

2
‖div v̊(ℎ)‖2𝐿2(Ω), v̊(ℎ) = 𝐿−1(−∇ℎ), (22)

and in view of the expansion of the vector w(𝑢) = 𝑃𝐺(Ω)w(𝑢)+�⃗� into the gradient and solenoidal
components (div �⃗� = 0),

(w(𝑢),∇ℎ)L2(Ω) = (𝑃𝐺(Ω)w(𝑢),∇ℎ)L2(Ω). (23)

It is known [9] that for all d ∈ L2(Ω) we have 𝑃𝐺(Ω)d = ∇𝜌, where 𝜌 is the solution to the
Neumann problem

∆𝜌 = divd,
𝜕𝜌

𝜕�⃗�

⃒⃒⃒⃒
𝑆

= (d · �⃗�)|𝑆. (24)

It follows from (22), (23), (24):

𝐽1(𝑢 + ℎ) − 𝐽1(𝑢) = (𝜌(w), ℎ)𝐻1
0 (Ω) +

1

2
‖div v̊(ℎ)‖2𝐿2(Ω),

where 𝜌(w) is the solution to the problem

∆𝜌(w) = divw(𝑢),
𝜕𝜌(w)

𝜕�⃗�

⃒⃒⃒⃒
𝑆

= (w(𝑢) · �⃗�)|𝑆. (25)

By analogy with (19) we have the estimate

‖div v̊(ℎ)‖𝐿2(Ω) 6
√
𝑛 𝑐0 𝜈

−1‖∇ℎ‖L2(Ω) =
√
𝑛 𝑐0 𝜈

−1‖ℎ‖𝐻1
0 (Ω).

This implies that the principal linear part of the functional 𝐽1(𝑢) is determined by the expression
(𝜌(w), ℎ)𝐻1

0 (Ω).

Let us show that the gradient 𝐽 ′
1(𝑢) satisfies the Lipschitz condition. Let 𝑢(1) and 𝑢(2) belong

to 𝑈1, and w(1) and w(2) are the associated solutions to problem (10). Then

‖𝐽 ′
1(𝑢

(1)) − 𝐽 ′
1(𝑢

(2))‖𝐻1
0 (Ω) =‖𝜌(𝑢(1)) − 𝜌(𝑢(2))‖𝐻1

0 (Ω) = ‖∇𝜌(𝑢(1)) −∇𝜌(𝑢(2))‖L2(Ω)

=‖𝑃𝐺(Ω)w
(1) − 𝑃𝐺(Ω)w

(1)‖L2(Ω) 6 ‖w(1) −w(2)‖L2(Ω).

Taking into considered the first inequality in (21) and the fact that v̊(𝑢(1)−𝑢(2)) is the solution
to equation (11) with the right hand side f = −∇(𝑢(1) − 𝑢(2)) and taking into consideration
estimate (13), we obtain

‖𝐽 ′
1(𝑢

(1)) − 𝐽 ′
1(𝑢

(2))‖𝐻1
0 (Ω) 6‖w(1) −w(2)‖L2(Ω) 6

√
𝑛 𝑐20 𝑐1 𝜈

−2‖∇𝑢(1) −∇𝑢(2)‖𝐿2(Ω)

=
√
𝑛 𝑐20 𝑐1 𝜈

−2‖𝑢(1) − 𝑢(2)‖𝐻1
0 (Ω).

Theorem 2. Suppose that the assumptions of Theorem 1 hold true. Then functional 𝐽1(𝑢)
is Fréchet differentiable on 𝑈1, its gradient is determined by the formula (8) and it satisfies the
Lipschitz condition with constant 𝐿0.

If in Problems I and II the initial approximations in iteration processes (6) as 𝑙 = 0 and 𝑙 = 1
are related by the identity u0 = ∇𝑢0, then u𝑘 = ∇𝑢𝑘 for all 𝑘 = 1, 2, . . . Indeed, if u𝑘 = ∇𝑢𝑘,
then it is obvious that v(u𝑘) = v(𝑢𝑘) and w(u𝑘) = w(𝑢𝑘), and hence

u𝑘+1 =𝑃𝐺(Ω) (u𝑘 − 𝛼𝑘𝐽
′
0(u𝑘)) = u𝑘 − 𝛼𝑘𝑃𝐺(Ω)w(u𝑘)

=u𝑘 − 𝛼𝑘∇𝜌𝑘(𝑢𝑘) = ∇(𝑢𝑘 − 𝛼𝑘𝜌𝑘(𝑢𝑘)) = ∇𝑢𝑘+1.

Hence, Problem I and II can be regarded as equivalent.
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4. Differentiability of functional 𝐽2(𝑢)

Let 𝑢 and ℎ be arbitrary elements in 𝑈2. In proving formula (9), we can not use directly
integration by parts as in the previous sections since here we do not guarantee the belonging
of functions v(𝑢) and w(𝑢) to space H2(Ω). We make use the passage to the limit. We choose
sequences {𝑢𝑛}, {ℎ𝑛} in 𝑈1 so that 𝑢𝑛 → 𝑢, ℎ𝑛 → ℎ in 𝐿2(Ω) as 𝑛 → ∞.

Identity (22) holds true on sequences {𝑢𝑛}, {ℎ𝑛}:

𝐽2(𝑢𝑛 + ℎ𝑛) − 𝐽2(𝑢𝑛) = (w(𝑢𝑛),∇ℎ𝑛)L2(Ω) +
1

2
‖div v̊(ℎ𝑛)‖2𝐿2(Ω). (26)

Let us show that divw(𝑢𝑛) → divw(𝑢), div v̊(ℎ𝑛) → div v̊(ℎ) as 𝑛 → ∞ in 𝐿2(Ω).
Multiplying equation (5) by v and integrating by parts, we obtain the identity

𝜈‖∇v‖2L2(Ω) = (f,v)L2(Ω) + (𝑢, div v)𝐿2(Ω).

Applying then inequalities (18) and (16), we arrive at the inequality

‖∇v‖L2(Ω) 6 𝜈−1(𝑐0‖f‖L2(Ω) +
√
𝑛‖𝑢‖𝐿2(Ω)). (27)

The difference v(𝑢(1))−v(𝑢(2)) = v̊(𝑢(1)−𝑢(2)) solves problem (5) as f = 0 and 𝑢 = 𝑢(1)−𝑢(2).
Then by inequality (27)

‖∇v̊(𝑢(1) − 𝑢(2))‖L2(Ω) 6 𝜈−1
√
𝑛‖𝑢(1) − 𝑢(2)‖𝐿2(Ω). (28)

In the same way, using estimates (18), (28), we obtain the inequality

‖∇w(𝑢(1)) −∇w(𝑢(2))‖L2(Ω) 6𝜈−1
√
𝑛‖div v(𝑢(1)) − div v(𝑢(2))‖𝐿2(Ω)

6𝜈−1 𝑛 ‖∇v̊(𝑢(1) − 𝑢(2))‖L2(Ω) 6 𝜈−2 𝑛3/2‖𝑢(1) − 𝑢(2)‖𝐿2(Ω).
(29)

It follows from two last estimates and inequality (17) that we can pass to the limit as 𝑛 → ∞
in relations (26). As the result, we obtain

𝐽2(𝑢 + ℎ) − 𝐽2(𝑢) =(w(𝑢),∇ℎ)L2(Ω) +
1

2
‖div v̊(ℎ)‖2𝐿2(Ω)

=(− divw(𝑢), ℎ)𝐿2(Ω) +
1

2
‖div v̊(ℎ)‖2𝐿2(Ω),

and in view of estimates (18), (28)

‖div v̊(ℎ)‖𝐿2(Ω) 6 𝜈−1 𝑛‖ℎ‖𝐿2(Ω).

The Lipschitz condition for 𝐽 ′
2(𝑢) can be established by applying inequality (29):

‖𝐽 ′
2(𝑢

(1)) − 𝐽 ′
2(𝑢

(1))‖𝐿2(Ω) =‖divw(𝑢(1) − 𝑢(2))‖𝐿2(Ω)

6
√
𝑛‖∇w(𝑢(1) − 𝑢(2))‖L2(Ω) 6 𝜈−2 𝑛2‖𝑢(1) − 𝑢(2)‖𝐿2(Ω).

Thus, we arrive at the following theorem

Theorem 3. Suppose that the assumptions of Theorem 2 hold true. Then functional 𝐽2(𝑢) is
Fréchet differentiable on 𝑈2, its gradient is determined by formula (9) and satisfies the Lipschitz
condition with constant 𝐿2 = 𝜈−2 𝑛2.

5. Modified steepest descent gradient method

There exist various ways of choosing 𝛼𝑘 (see [6], [7]). The fastest convergence is given by the
steepest descent method, in which 𝛼𝑘 is determined by the condition

𝑓𝑘 (𝛼𝑘) = min
𝛼>0

𝑓𝑘(𝛼), 𝑓𝑘(𝛼) = 𝐽𝑙 (𝑃𝑈𝑙
(𝑢𝑘 − 𝛼𝐽 ′

𝑙 (𝑢𝑘))) , 𝑙 = 0, 1, 2. (30)

In the general case, at each step of descent we need to solve one-parametrical optimization
problem (30). However, in the considered problem we can find explicit formulae for parameters
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𝛼𝑘 employing that sets 𝑈𝑙 are subspaces of the corresponding Hilbert spaces and therefore,
projection operators 𝑃𝑙 are linear.

If 𝑢𝑘 ∈ 𝑈𝑙, then 𝑃𝑈𝑙
(𝑢𝑘) = 𝑢𝑘 and hence, in view of the notation 𝑑𝑘 = 𝑃𝑈𝑙

(𝐽 ′
𝑙 (𝑢𝑘)), we have

𝑓𝑘(𝛼) =𝐽𝑙(𝑢𝑘 − 𝛼 𝑑𝑘) = ‖div v(𝑢𝑘) − 𝛼 div v̊(𝑑𝑘)‖2𝐿2(Ω)/2

=‖div v(𝑢𝑘)‖2𝐿2(Ω)/2 − 𝛼 (div v(𝑢𝑘), div v̊(𝑑𝑘))𝐿2(Ω) + 𝛼2‖div v̊(𝑑𝑘)‖2𝐿2(Ω)/2.

Hence, the point of the minimum is

𝛼′
𝑘 =

(div v(𝑢𝑘), div v̊(𝑑𝑘))𝐿2(Ω)

‖div v̊(𝑑𝑘)‖2𝐿2(Ω)

, (31)

and (6) becomes
𝑢𝑘+1 = 𝑢𝑘 − 𝛼′

𝑘 𝑑𝑘. (32)

Application of the steepest descent method for the considered problems faces the trouble
related to the fact that functionals 𝐽𝑙(𝑢) do not satisfy the boundedness condition for Lebesgue
set 𝑀𝑙,𝑐 = {𝑢 ∈ 𝑈𝑙 : 𝐽(𝑢) 6 𝑐}, which used in the proof of the convergence of the steepest
descent method. This problem turns out to be possible to be overcomed if we choose 𝛼𝑘 by the
formula

𝛼𝑘 = min[𝛼′
𝑘, 𝛾], (33)

where 𝛾 is the parameter of the method, and 𝛼′
𝑘 is determined by formula (31) as in the steepest

descent method.
Since the proposed method can be used in other optimization problems, we formulate the

statement as a theorem in an abstract Hilbert space 𝐻. We introduce the notations: 𝐽* =
inf𝑈 𝐽(𝑢), 𝑈 ⊂ 𝐻, 𝑈* = {𝑢 ∈ 𝑈 : 𝐽(𝑢) = 𝐽*}, 𝐶1,1(𝑈) is the set of differentiable functionals,
whose gradients satisfy the Lipschitz condition.

Theorem 4. 1 Let 𝑈 be a convex closed set in a Hilbert space 𝐻 with norm ‖ · ‖, 𝐽(𝑢) ∈
𝐶1,1(𝑢) be a convex functional (𝐽* > −∞), set 𝑈* be non-empty and bounded, sequence {𝑢𝑘}∞𝑘=0

be introduced by formulae (33), (6)2 and the condition
∞∑︁
𝑘=0

‖𝐽 ′(𝑢𝑘)‖2 6 𝑏1, (34)

0 < 𝛼𝑘 < 𝑏2.

hold true. Then sequence {𝑢𝑘}∞𝑘=0 minimizes function 𝐽(𝑢) on 𝑈 and converges weakly to set
𝑈* in 𝐻.

Proof. We denote 𝜌 (𝑢, 𝑈*) = min𝑣∈𝑈* ‖𝑢− 𝑣‖. Then by the definition of the projection operator

𝜌2 (𝑢𝑘+1, 𝑈*) = ‖𝑢𝑘+1 − 𝑃𝑈* (𝑢𝑘+1)‖2 6 ‖𝑢𝑘+1 − 𝑃𝑈*(𝑢𝑘)‖2

= ‖𝑃𝑈 (𝑢𝑘 − 𝛼𝑘𝐽
′(𝑢𝑘)) − 𝑃𝑈 (𝑃𝑈*(𝑢𝑘))‖2 6 ‖𝑢𝑘 − 𝛼𝑘𝐽

′(𝑢𝑘) − 𝑃𝑈*(𝑢𝑘)‖2

=𝜌2 (𝑢𝑘, 𝑈*) + 𝛼2
𝑘 ‖𝐽 ′(𝑢𝑘)‖2 − 2𝛼𝑘 (𝐽 ′(𝑢𝑘), 𝑢𝑘 − 𝑃𝑈*(𝑢𝑘)) .

(35)

Employing the convexity criteria of a differentiable functional on convex set 𝑈 [6]: 𝐽(𝑢)−𝐽 (𝑣) >
(𝐽 ′ (𝑣) , 𝑢− 𝑣), ∀𝑢, 𝑣 ∈ 𝑈 , and letting 𝑣 = 𝑢𝑘, 𝑢 = 𝑃𝑈*(𝑢𝑘), we obtain

(𝐽 ′(𝑢𝑘), 𝑢𝑘 − 𝑃𝑈*(𝑢𝑘)) > 𝐽(𝑢𝑘) − 𝐽 (𝑃𝑈*(𝑢𝑘)) = 𝐽(𝑢𝑘) − 𝐽* > 0. (36)

Hence, inequality (35) becomes

𝜌2 (𝑢𝑘+1, 𝑈*) − 𝜌2 (𝑢𝑘, 𝑈*) 6 𝛼2
𝑘 ‖𝐽 ′(𝑢𝑘)‖2 .

1This theorem and its prooof is provided in work [10]. However, the statement that if domain 𝑈 is a subspace
or a space then condition (34) can be omitted, was proven for a particular functional. In the present work this
is proved for each convex functional 𝐽(𝑢) ∈ 𝐶1,1(𝑈).

2If functional 𝐽(𝑢) has no subscript, the same is assumed in formula (6).
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Summing up the last inequality from 0 to 𝑚 − 1, (𝑚 > 0), and taking into consideration
condition (34), we obtain

𝜌2 (𝑢𝑚, 𝑈*) 6
𝑚−1∑︁
𝑘=0

𝛼2
𝑘 ‖𝐽 ′(𝑢𝑘)‖2 + 𝜌2 (𝑢0, 𝑈*) 6 𝑏22 𝑏1 + 𝜌2 (𝑢0, 𝑈*) .

Hence, sequence {𝑢𝑘}∞𝑘=0 is bounded in 𝐻, while it follows from condition (34) that
lim
𝑘→∞

‖𝐽 ′(𝑢𝑘)‖ = 0. Then inequality (36) implies that sequence {𝑢𝑘}∞𝑘=0 minimize functional

𝐽(𝑢). Thus, sequence {𝑢𝑘}∞𝑘=0 is bounded and minimizes 𝐽(𝑢) on 𝑈 .
We denote by 𝑊 the set of convex combinations of sequence {𝑢𝑘}∞𝑘=0, that is, the set of

points 𝑢 represented as:

𝑢 =
∞∑︁
𝑘=0

𝛼𝑘𝑢𝑘, 𝛼𝑘 > 0,
∞∑︁
𝑘=0

𝛼𝑘 = 1. (37)

Employing [7, Ch. 4, Sect. 1, Thm. 5], it is easy to show that 𝑊 ⊂ 𝑈 and since 𝑈 is a
closed set, closure 𝑊 of set 𝑊 also belongs to 𝑈 .

Sequence {𝑢𝑘}∞𝑘=0 minimizes function 𝐽(𝑢) on 𝑈 and therefore, it minimizes 𝐽(𝑢) on 𝑊 . This
implies that 𝐽*

(︀
𝑊
)︀

= inf𝑢∈𝑊 𝐽(𝑢) = 𝐽* = inf𝑢∈𝑈 𝐽(𝑢), 𝑊 * =
{︀
𝑢 ∈ 𝑊 : 𝐽(𝑢) = 𝐽*

}︀
∈ 𝑈*. The

boundedness of sequence {𝑢𝑘}∞𝑘=0 implies the boundedness of set 𝑊 . In accordance with [6, Ch.
1, Sect. 3, Thm. 6], a convex lower semibounded functional 𝐽(𝑢) on a bounded convex closed
set 𝑈 in a reflexive Banach space has a non-empty set of minimums 𝑈* and each minimizing
sequence {𝑢𝑘}∞𝑘=0 converges weakly to 𝑈*. The weak convergence of sequence {𝑢𝑘}∞𝑘=0 to 𝑊 *
implies its weak convergence to 𝑈*. The proof is complete.

Remark 1. If set 𝑊 is compact, then a strong convergence hold true. Here we can employ
[6, Ch. 1, Sect. 3, Thm. 1].

Remark 2. If 𝑈 is a subspace of Hilbert space 𝐻, 𝑃𝑈 is an operator orthogonal projection
on this subspace, then 𝑢𝑘+1 = 𝑢𝑘 − 𝑃𝑈𝐽

′(𝑢𝑘). In this case relation (35) can be written as

𝜌2 (𝑢𝑘+1, 𝑈*) = 𝜌2 (𝑢𝑘, 𝑈*) + 𝛼2
𝑘 ‖𝑃𝑈𝐽

′(𝑢𝑘)‖2 − 2𝛼𝑘 (𝑃𝑈𝐽
′(𝑢𝑘), 𝑢𝑘 − 𝑃𝑈*(𝑢𝑘)) . (38)

Taking into consideration that (𝑃𝑈𝐽
′(𝑢𝑘), 𝑢𝑘 − 𝑃𝑈*(𝑢𝑘)) = (𝐽 ′(𝑢𝑘), 𝑢𝑘 − 𝑃𝑈*(𝑢𝑘)), it is easy

to see that the statements of the theorem holds true if instead of condition (34), the condition
∞∑︁
𝑘=0

‖𝑃𝑈𝐽
′(𝑢𝑘)‖2 < 𝑏1 (39)

holds true.

Theorem 5. Let 𝑈 be a subspace or a Hilbert space 𝐻, 𝐽(𝑢) ∈ 𝐶1,1(𝑈) be a convex func-
tional, set 𝑈* is non-empty and bounded, sequence {𝑢𝑘}∞𝑘=0 is defined by formulae (33), (6).
Then sequence {𝑢𝑘} minimizes functional 𝐽(𝑢) on 𝑈 and converges to set 𝑈* weakly in 𝐻.

Proof. Let us show that if 𝐽(𝑢) ∈ 𝐶1,1(𝑈), where 𝑈 is either a subspace or space 𝐻 and
parameter 𝛼𝑘 is determined by formulae (33), (30), then condition (39) holds true and therefore,
the statements of the theorem hold without condition (34). In order to do it, we make use of
a known inequality valid for functions 𝐶1,1(𝑢) (see [7, Ch. 2, Sect. 3, Lm. 1]):

|𝐽(𝑢) − 𝐽 (𝑣) − (𝐽 ′ (𝑣) , 𝑢− 𝑣)| 6 𝐿 ‖𝑢− 𝑣‖2 /2 ∀𝑢, 𝑣 ∈ 𝑈, (40)

where 𝐿 is the Lipschitz constant for the gradient 𝐽 ′(𝑢) of functional 𝐽(𝑢).
Letting 𝑣 = 𝑢𝑘, 𝑢 = 𝑢𝛼

𝑘+1 = 𝑢𝑘 − 𝛼𝑃𝑈𝐽
′(𝑢𝑘), we obtain

𝐽(𝑢𝑘) − 𝐽
(︀
𝑢𝛼
𝑘+1

)︀
= 𝐽(𝑢𝑘) − 𝐽 (𝑢𝑘 − 𝛼𝑃𝑈𝐽

′(𝑢𝑘))

> 𝛼 (𝐽 ′(𝑢𝑘), 𝑃𝑈𝐽
′(𝑢𝑘)) − 𝛼2𝐿 ‖𝑃𝑈𝐽

′(𝑢𝑘)‖2 /2.
(41)
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Taking into consideration that 𝑃𝑈 is the operator of orthogonal projection on the subspace,
we obtain that (𝐽 ′(𝑢𝑘), 𝑃𝑈𝐽

′(𝑢𝑘)) = ‖𝑃𝑈𝐽
′(𝑢𝑘)‖, while inequality (41) implies

𝐽(𝑢𝑘) − 𝐽
(︀
𝑢𝛼
𝑘+1

)︀
> 𝛼 (1 − 𝛼𝐿/2) ‖𝑃𝑈𝐽

′(𝑢𝑘)‖2 . (42)

Letting 𝛼 = 1/𝐿, we obtain

𝐽(𝑢𝑘) − 𝐽
(︀
𝑢𝛼
𝑘+1

)︀
> ‖𝑃𝑈𝐽

′(𝑢𝑘)‖2 /(2𝐿). (43)

Assume that 𝛼′
𝑘 6 𝛾, then 𝛼𝑘 = 𝛼′

𝑘 and thus, as 𝛼 = 1/𝐿, the inequalities

𝐽(𝑢𝑘) − 𝐽 (𝑢𝑘+1) > 𝐽(𝑢𝑘) − 𝐽
(︀
𝑢𝛼
𝑘+1

)︀
> ‖𝑃𝑈𝐽

′(𝑢𝑘)‖2 /(2𝐿) (44)

hold true.
Assume that 𝛼′

𝑘 > 𝛾, then 𝛼𝑘 = 𝛾. We consider two cases: 𝛾 > 1/𝐿 and 𝛾 < 1/𝐿. Since
function 𝑓𝑘(𝛼) decreases on the interval (0, 𝛼′

𝑘), in the first case we again obtain inequalities
(44). In the second case (𝛾 < 1/𝐿)

𝛾 (1 − 𝛾𝐿/2) > 𝛾/2. (45)

Thus, taking into consideration inequalities (42), (44), in each case we obtain the estimate

𝐽(𝑢𝑘) − 𝐽 (𝑢𝑘+1) > 𝑐 ‖𝑃𝑈𝐽
′(𝑢𝑘)‖2 ,

where 𝑐 = min [𝛾/2, 1/(2𝐿)]. It follows from the last estimate that sequence {𝐽(𝑢𝑘)}∞𝑘=0 de-

creases monotonically, the series
∞∑︀
𝑘=0

‖𝑃𝑈𝐽
′(𝑢𝑘)‖2 converges and the sought estimate

∞∑︁
𝑗=𝑘

‖𝑃𝑈𝐽
′(𝑢𝑘)‖2 6 𝑐−1 (𝐽(𝑢𝑘) − 𝐽*)

holds true. Hence, condition (39) holds true and the proof is complete.

6. Iteration processes. Convergence theorem

In view of Theorem 2, in what follows we shall discuss only Problems 𝑙 = 1, 2. Let us show
that functionals 𝐽𝑙(𝑢) satisfy all the assumptions of Theorem 5.

It is easy to make sure that functionals 𝐽𝑙 are convex. Indeed, for all 𝛼 ∈ [0, 1] and 𝑢, 𝑣 ∈ 𝑈𝑙,

𝐽𝑙(𝛼𝑢 + (1 − 𝛼)𝑣) = ‖𝛼 div v(𝑢) + (1 − 𝛼) div v(𝑣)‖2𝐿2(Ω)

=𝛼2‖div v(𝑢)‖2𝐿2(Ω) + (1 − 𝛼)2‖div v(𝑣)‖2𝐿2(Ω) + 2𝛼(1 − 𝛼) (div v(𝑢), div v(𝑣))𝐿2(Ω)

=𝛼‖div v(𝑢)‖2𝐿2(Ω) + (1 − 𝛼)‖div v(𝑣)‖2𝐿2(Ω) − 𝛼(1 − 𝛼)‖div v(𝑢) − div v(𝑣)‖2𝐿2(Ω)

6𝛼𝐽𝑙(𝑢) + (1 − 𝛼)𝐽𝑙(𝑣).

The belonging of functionals 𝐽𝑙 to class 𝐶1,1(𝑈) is implied by the results of Sections 2, 3,
𝐽𝑙,* = inf

𝑈
𝐽𝑙(𝑢) = 0 > −∞, sets 𝑈𝑙,* = {𝑢 ∈ 𝑈𝑙 : 𝐽𝑙(𝑢) = 𝐽𝑙,*} consist of one point 𝑢* = 𝑝, where

𝑝 is the sought pressure.
Thus, it follows from Theorem 5 that sequence {𝑢𝑘}∞𝑘=0 defined by relations (6), (31), (33)

converges weakly in corresponding spaces 𝐻1(Ω) and 𝐿2(Ω) for each initial approximations as
𝑙 = 1, 2.

Theorem 6. Let f ∈ L2(Ω), 𝑆 ∈ 𝐶2. Then sequence {𝑢𝑘}∞𝑘=0 defined by formulae (6), (33)
as 𝑙 = 1, 2 converge to 𝑢* = 𝑝 weakly in 𝐻1(Ω) and strongly in 𝐿2(Ω) as 𝑙 = 1 for each initial
approximation. As 𝑙 = 1, 2, sequences {v(𝑢𝑘)}∞𝑘=0 converge to v strongly in H1

0(Ω), where 𝑝 and
v is the solution to problem (1)–(3).
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Proof. As it was shown, the first statement is implied immediately by Theorem 5. The validity
of the second statement is implied by the following arguments. It is known (see, for instance,
[1, Ch. 1, Sect. 1, Lm. 8]) that if domain Ω is bounded and its boundary is piece-wise smooth,
then 𝐻1(Ω) is compactly embedded into 𝐿2(Ω) (i.e., a bounded in 𝐻1(Ω) set is compact in
𝐿2(Ω)). The compactness and weak convergence in H 1(Ω) of sequence {v(𝑢𝑘)}∞𝑘=0 implies its
strong convergence in L2(Ω).

We then observe that the difference v𝑘 − v, where v𝑘 = v(𝑢𝑘), and v is the solution to
problem (1)–(3), solves the problem

−𝜈∆ (v𝑘 − v) = −∇ (𝑢𝑘 − 𝑝) , (v𝑘 − v) |𝑆 = 0.

Multiplying the last equation by v𝑘 − v and integrating by parts, we obtain

‖∇(v𝑘 − v)‖L2(Ω) = −𝜈−1(∇(𝑢𝑘 − 𝑝),v𝑘 − v)L2(Ω) = 𝜈−1(𝑢𝑘 − 𝑝, div v𝑘)𝐿2(Ω). (46)

Sequence {𝑢𝑘}∞𝑘=0 is bounded in 𝐿2(Ω) and it minimizes functional 𝐽𝑙(𝑢). Hence, div v𝑘 → 0
as 𝑘 → ∞. It follows that (𝑢𝑘 − 𝑝, div v𝑘)𝐿2(Ω) → 0 as 𝑘 → ∞. Therefore, by relations (46) we
arrive at the last statement of the theorem.

The proven theorem allows us to formulate the iteration processes in differential form for
solving problem (1)-(3).

The algorithm for 𝐽1(𝑢)

1. Choose initial 𝑢0 ∈ 𝑈1, for instance, 𝑢0 = 0.
2. Find velocity v𝑘(𝑢𝑘) as the solution to vector Dirichlet problem (5).
3. Find the dual state w𝑘(𝑢𝑘) by the solution to vector Dirichlet problem (10).
4. Determine 𝑑𝑘 = 𝑃𝑈1(𝜌(w𝑘)), where 𝜌(w𝑘) is the solution to scalar Neumann problem (25).
5. Determine v̊𝑘(𝑑𝑘) by the solution to vector Dirichlet problem (5) as f = 0.
6. Calculate 𝛼𝑘 by formulae (31), (33) for found v𝑘(𝑢𝑘), v̊𝑘(𝑑𝑘).
7. Recalculate control 𝑢𝑘+1 by formula (32) for found 𝛼𝑘, 𝑑𝑘 and pass to step 2.

The algorithm for 𝐽2(𝑢) is identical to the algorithm for 𝐽1(𝑢) except step 4:

𝑑𝑘 = 𝑃𝑈2(− divw𝑘(𝑢𝑘)).

The projection operators for both algorithms are calculated by the formula

𝑃𝑈𝑙
(𝑢) = 𝑢−

(𝑢, 1)𝐿2(Ω)

(1, 1)𝐿2(Ω)

∀𝑢 ∈ 𝑈𝑙, 𝑙 = 1, 2. (47)

7. Combined gradient method

The matter is that we make in turn several steps of the first gradient method (i.e., 𝐽 ′(𝑢) =
𝐽 ′
1(𝑢)), and then several steps of the second method (i.e., 𝐽 ′(𝑢) = 𝐽 ′

2(𝑢)). The following
calculations show that combination of the methods ensures an acceleration of the convergence.
This fact has a simple explanation. Functionals 𝐽1(𝑢), 𝐽2(𝑢) attain the minimum via vanishing
at point 𝑢* = 𝑝 if and only if the dual state satisfies w(𝑢*) = 0. Indeed, if w(𝑢𝑘) ̸= 0, then
in the expansion of w(𝑢𝑘) into the gradient and solenoidal parts at least one of the parts is
non-zero. For example, let gradient part w(𝑢𝑘) is non-zero, then the descent by gradient 𝐽 ′

1(𝑢𝑘)
ensures the lessening of the functional. The combined method consists in consecutive passing
from using one gradient to using the other as soon as the quantity ‖𝐽 ′

𝑙 (𝑢𝑘)‖, (𝑙 = 1, 2), becomes
less than a prescribed quantity.

We note that the domains of functionals 𝑈𝑙, (𝑙 = 1, 2), are different and this is why one should
make sure that finishing using one method of gradient descent we obtain a control 𝑢𝑘 belonging
to the domain of the other functional. This condition is satisfied if the initial approximation
satisfies 𝑢0 ∈ 𝑈1. In order to make sure, it is sufficient to show that if 𝑢0 ∈ 𝐻1(Ω), then
𝐽 ′
2(𝑢0) ∈ H 1(Ω). Indeed, if 𝑢0 ∈ 𝐻1(Ω), then under the smoothness condition 𝑆 ∈ 𝐶2,
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the right hand in equation (5) satisfies f − ∇𝑢0 ∈ L2(Ω) and hence for its solution we have
v(𝑢0) ∈ H 2(Ω). It follows that the right hand side of equation (10) belongs to L2(Ω) and
hence, w(𝑢0) ∈ H 2(Ω). Therefore, 𝐽 ′

2(𝑢0) = − divw(𝑢0) ∈ H 1(Ω). Thus, all the terms of
sequence 𝑢𝑘 obtained by the combined method belong to 𝑈2.

If the application of gradient 𝐽 ′
2(𝑢) ends up starting from some step of the iteration process,

then in accordance with Theorem 6, the iteration process converges weakly in H 1(Ω) and
strongly in L2(Ω). Otherwise one can prove the weak convergence of the iteration process
in L2(Ω). The sequences of velocity vectors {v(𝑢𝑘)}∞𝑘=0 converge strongly in space 𝐻1

0 (Ω) by
Theorem 6.

8. On the problem with inhomogeneous boundary condition

We provide some remarks on possible weakening of the conditions for the boundary and on
application of the developed methods to solving Stokes problem with inhomogeneous boundary
conditions.

The smoothness condition for the boundary of the domain 𝑆 ∈ 𝐶2 is employed only in
using second energy inequality (12). However, as it was mentioned in [8], the condition of the
boundary can be essentially weakened and for instance, any polyhedron or an arbitrary convex
domain satisfy these weakened conditions.

To the solve Stokes problem with inhomogeneous boundary conditions

−𝜈∆v = f−∇𝑝, v|𝑆 = �⃗�, (48)

div v = 0, (49)

(𝑝, 1)𝐿2(Ω) = 0, (50)

we can apply the proposed method. At that, the difference to the case of homogeneous boundary
conditions is that at each step of the descent by the gradient, one has to solve an inhomogeneous
boundary condition (48) in order to determined velocity vector v(𝑢) associated with control
𝑢. If control 𝑢 is increased by an increment ℎ, then the increment of the velocity vector
v(∇ℎ) = v(∇(𝑢 + ℎ)) − v(∇𝑢) is determined by the solution to the homogeneous boundary
value problem as in the above considered cases. Now it is easy to see that the arguments used
in the proof of Theorems 1, 2, 3 remain unchanged.

Thus, functionals 𝐽𝑙, (𝑙 = 1, 2), considered in spaces 𝐻1(Ω) and 𝐿2(Ω) are differentiable and
satisfy Lipschitz condition in the case of inhomogeneous boundary conditions, too. Moreover,
formula (31) determining parameters 𝛼𝑘 remain true.

To justify the convergence of sequence {𝑢𝑘}∞𝑘=0 constructed by the above proposed methods,
we need to show that the sets of the minimum points for functionals 𝐽𝑙 is non-empty and
bounded. Here it is sufficient to make sure that problem (48)–(50) is solvable.

The solvability of problem (48)–(50) in class v ∈ H 2(Ω), ∇𝑝 ∈ L2(Ω) is guaranteed by [1,
Ch. III, Sect. 5, Thm. 3] under the condition that domain Ω is bounded f ∈ L2(Ω), 𝑆 ∈ 𝐶2,

�⃗�|𝑆 ∈ 𝐻1+ 1
2 , (�⃗�, �⃗�)𝐿2(𝑆) = 0. Therefore, under these conditions Theorem 6 holds true.

9. Finite-difference approximation

To construct grid analogues of differential iteration processes in Section 5, it is insufficient
to employ arbitrary approximations for operators div and ∇ and to guarantee the convergence.
The authors faced this fact in numerical modelling. However, if we first approximate original
problem (1)–(3) in finite-dimensional Sobolev spaces and construct the gradient method for this
problem similarly to the above considered differential case, we succeed to obtain a converging
iteration process, for which Theorem 6 holds true.

As in work [11], we consider a two-dimensional rectangular domain Ωℎ = (0, 𝑙1)×(0, 𝑙2) and a
node uniformly non-staggered grid 𝜔ℎ = {𝑥𝑖,𝑗 = (𝑖ℎ1, 𝑗ℎ2), 𝑖 = 1, . . . , 𝑁1, 𝑗 = 1, . . . , 𝑁2} with a
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boundary 𝑆ℎ consisting of the boundary nodes except the corner points. Here ℎ𝛼 = 𝑙𝛼/(𝑁𝛼 +1)
is the uniform step, and 𝑁𝛼 is the amount of internal nodes of the set in the direction 𝛼 = 1, 2.
In what follows we restrict ourselves by the case of the uniform grid 𝑁1 = 𝑁2 = 𝑁 in the square
𝑙1 = 𝑙2 = 𝑙, (ℎ1 = ℎ2 = ℎ).

We introduce a scalar product in a finite-dimensional space 𝐿2(Ωℎ):

(𝑦, 𝑧)𝐿2(Ωℎ) =ℎ2
∑︁

𝑥𝑖,𝑗∈Ωℎ

𝑦𝑖,𝑗𝑧𝑖,𝑗 +
ℎ2

2

∑︁
𝑥𝑖,𝑗∈𝑆ℎ

𝑦𝑖,𝑗𝑧𝑖,𝑗 = ℎ2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑦𝑖,𝑗𝑧𝑖,𝑗

+
ℎ2

2

(︃
𝑁∑︁
𝑖=1

𝑦𝑖,0𝑧𝑖,0 +
𝑁∑︁
𝑖=1

𝑦𝑖,𝑁+1𝑧𝑖,𝑁+1 +
𝑁∑︁
𝑗=1

𝑦0,𝑗𝑧0,𝑗 +
𝑁∑︁
𝑗=1

𝑦𝑁+1,𝑗𝑧𝑁+1,𝑗

)︃
,

where 𝑦𝑖,𝑗 = 𝑦(𝑥𝑖,𝑗), 𝑧𝑖,𝑗 = 𝑧(𝑥𝑖,𝑗).
By a consistent approximation of operators divℎ and ∇ℎ we mean the preserving of the

differential property of integration by parts:

(∇ℎ𝑝,v)L2(Ωℎ) = −(𝑝, divℎv)𝐿2(Ωℎ) ∀v ∈ 𝐻1
0 (Ωℎ). (51)

Relation (51) is satisfied by first order oriented differences [11]:

divℎv𝑖,𝑗 =
𝑣
(1)
𝑖,𝑗 − 𝑣

(1)
𝑖−1,𝑗

ℎ
+

𝑣
(2)
𝑖,𝑗 − 𝑣

(2)
𝑖,𝑗−1

ℎ
, 𝑖 = 1 . . . 𝑁 + 1, 𝑗 = 1 . . . 𝑁 + 1,

∇ℎ𝑝𝑖,𝑗 =

(︂
𝑝𝑖+1,𝑗 − 𝑝𝑖,𝑗

ℎ
,
𝑝𝑖,𝑗+1 − 𝑝𝑖,𝑗

ℎ

)︂
, 𝑖 = 0 . . . 𝑁, 𝑗 = 0 . . . 𝑁.

It is obvious that in this case operator −∆ℎ = − divℎ∇ℎ is the standard five-points difference
pattern for the Dirichlet problem [12].

Hence, the grid analogue of problem (1)–(3) is the problem

−𝜈∆ℎv = fℎ −∇ℎ𝑝, v|𝑆ℎ
= 0, (52)

divℎv = 0, (53)

(𝑝, 1)𝐿2(Ωℎ) = 0, (54)

for which we write the iteration processes from Section 5 in a form convenient for a computer
realization. We shall consider 𝐽0(�⃗�) instead of 𝐽1(𝑢).

The algorithm for 𝐽0(�⃗�)

−𝜈∆ℎv𝑘 = fℎ − �⃗�𝑘, v𝑘|𝑆ℎ
= 0;

−𝜈∆ℎw𝑘 = ∇ℎdivℎv𝑘, w𝑘|𝑆ℎ
= 0;

−∆𝜌𝑘 = − divℎw𝑘,
𝜕𝜌𝑘
𝜕�⃗�

⃒⃒⃒⃒
𝑆ℎ

= (w𝑘 · �⃗�)|𝑆ℎ
; (55)

𝑑𝑘 = 𝑃𝑈1(𝜌𝑘);

−𝜈∆ℎv̊𝑘 = −∇ℎ𝑑𝑘, v̊𝑘|𝑆ℎ
= 0;

𝛼𝑘 = min[𝛼′
𝑘, 𝛾], 𝛼′

𝑘 =
(divℎv𝑘, divℎv̊𝑘)𝐿2(Ωℎ)

‖divℎv̊𝑘‖2𝐿2(Ωℎ)

;

�⃗�𝑘+1 = �⃗�𝑘 − 𝛼𝑘∇ℎ𝑑𝑘.
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The algorithm for 𝐽2(𝑢)

−𝜈∆ℎv𝑘 = fℎ −∇𝑢𝑘, v𝑘|𝑆ℎ
= 0;

− 𝜈∆ℎw𝑘 = ∇ℎdivℎv𝑘, w𝑘|𝑆ℎ
= 0;

𝜌𝑘 = − divℎw𝑘;

𝑑𝑘 = 𝑃𝑈1(𝜌𝑘);

−𝜈∆ℎv̊𝑘 = −∇ℎ𝑑𝑘, v̊𝑘|𝑆ℎ
= 0;

𝛼𝑘 = min[𝛼′
𝑘, 𝛾],

𝛼′
𝑘 =

(divℎv𝑘, divℎv̊𝑘)𝐿2(Ωℎ)

‖divℎv̊𝑘‖2𝐿2(Ωℎ)

;

𝑢𝑘+1 = 𝑢𝑘 − 𝛼𝑘 𝑑𝑘.

For both algorithms

𝑃𝑈𝑙
(𝜌𝑘) = 𝜌𝑘 −

(𝜌𝑘, 1)𝐿2(Ωℎ)

(1, 1)𝐿2(Ωℎ)

,

where, as it is easy to make sure, (1, 1)𝐿2(Ωℎ) = 𝑙1𝑙2.

10. Solution to degenerate Neumann problem

It is well known that the solvability condition of Neumann differential problem

−∆𝜌 = 𝑓,
𝜕𝜌

𝜕�⃗�

⃒⃒⃒⃒
𝑆

= 𝑔

is the identity
(𝑓, 1)𝐿2(Ω) + (𝑔, 1)𝐿2(𝑆) = 0, (56)

which for problem (24) becomes Gauss-Ostrogradsky formula

(divw𝑘, 1)𝐿2(Ω) = ((w𝑘 · �⃗�), 1)𝐿2(𝑆).

The validity of the last formula for the grid case can be checked straightforwardly if scalar
product in 𝐿2(𝑆ℎ) is introduced as

(𝑔, 1)𝐿2(𝑆ℎ) =ℎ
𝑁∑︁
𝑖=1

(𝑔0,𝑖 + 𝑔2,𝑖) + ℎ
𝑁∑︁
𝑗=1

(𝑔1,𝑗 + 𝑔3,𝑗)

+
ℎ

2
(𝑔0,0 + 𝑔1,0 + 𝑔2,𝑁+1 + 𝑔3,𝑁+1 + 𝑔2,0 + 𝑔1,𝑁+1 + 𝑔0,𝑁+1 + 𝑔3,0) ∀𝑔 ∈ 𝐿2(Ωℎ).

We introduce the notation for the components of vector w𝑘 = (𝑤
(1)
𝑘 , 𝑤

(2)
𝑘 ). By the defini-

tion, 𝜕𝜌𝑘/𝜕�⃗�|𝑆ℎ
= (∇ℎ𝜌𝑘 · �⃗�)|𝑆ℎ

and this is why the boundary condition for problem (55) is
determined by the identity (∇ℎ𝜌𝑘 −w𝑘)|𝑆ℎ

= 0:

(𝜌𝑘)1,𝑗 − (𝜌𝑘)0,𝑗
ℎ

= (𝑤
(1)
𝑘 )0,𝑗,

(𝜌𝑘)𝑁+2,𝑗 − (𝜌𝑘)𝑁+1,𝑗

ℎ
= (𝑤

(1)
𝑘 )𝑁+1,𝑗, 𝑗 ∈ 1, 𝑁 ;

(𝜌𝑘)𝑖,1 − (𝜌𝑘)𝑖,0
ℎ

= (𝑤
(2)
𝑘 )𝑖,0,

(𝜌𝑘)𝑖,𝑁+2 − (𝜌𝑘)𝑖,𝑁+1

ℎ
= (𝑤

(2)
𝑘 )𝑖,𝑁+1, 𝑖 ∈ 1, 𝑁.

By these formulae we see that we need to introduce fictitious layers of point in each of the
directions with indices 𝑁 + 2 beyond grid domain 𝜔ℎ ∪ 𝑆ℎ. Then we write a (𝑁 + 2)× (𝑁 + 2)
system of linear algebraic equations for solution of problem (55):

𝐴𝑧 = 𝑏, (57)

where 𝑧𝐶𝐸𝐿𝐿(𝑖, 𝑗) = (𝜌𝑘)𝑖,𝑗, while operator 𝐶𝐸𝐿𝐿(𝑖, 𝑗) = 𝑖(𝑁 + 2) + 𝑗 (𝑖, 𝑗 ∈ 0, 𝑁 + 1) defines
line-by-line format for storage of a two-dimensional vector in one-dimensional array.
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All the elements of the row 𝑟𝑜𝑤 = 𝐶𝐸𝐿𝐿(𝑖, 𝑗) (𝑖, 𝑗 ∈ 0, 𝑁 + 1) of matrix 𝐴 vanish except

𝐴𝑟𝑜𝑤,𝐶𝐸𝐿𝐿(𝑖, 𝑗) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

4, 𝑖, 𝑗 ∈ 1, 𝑁 ;

3, 𝑖 = 0 and 𝑗 ∈ 1, 𝑁 or 𝑖 = 𝑁 + 1 and 𝑗 ∈ 1, 𝑁 ;

3, 𝑗 = 0 and 𝑖 ∈ 1, 𝑁 or 𝑗 = 𝑁 + 1 and 𝑖 ∈ 1, 𝑁 ;

2, 𝑖 = 0 and 𝑗 = 0 or 𝑖 = 0 and 𝑗 = 𝑁 + 1;

2, 𝑖 = 𝑁 + 1 and 𝑗 = 0 or 𝑖 = 𝑁 + 1 and 𝑗 = 𝑁 + 1.

𝐴𝑟𝑜𝑤,𝐶𝐸𝐿𝐿(𝑖−1, 𝑗) = −1, 𝑖 > 1;

𝐴𝑟𝑜𝑤,𝐶𝐸𝐿𝐿(𝑖+1, 𝑗) = −1, 𝑖 6 𝑁 ;

𝐴𝑟𝑜𝑤,𝐶𝐸𝐿𝐿(𝑖, 𝑗−1) = −1, 𝑗 > 1;

𝐴𝑟𝑜𝑤,𝐶𝐸𝐿𝐿(𝑖, 𝑗+1) = −1, 𝑗 6 𝑁.

The vector in the right hand side can be calculated by the formulae

𝑏𝑟𝑜𝑤 = −ℎ2divℎ(w𝑘)𝑖,𝑗 + ℎ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 𝑖 ∈ 1, 𝑁, 𝑗 ∈ 1, 𝑁 ;

(𝑤
(1)
𝑘 )0,𝑗, 𝑖 = 1, 𝑗 ∈ 0, 𝑁 + 1;

(𝑤
(2)
𝑘 )𝑖,𝑁+1, 𝑗 = 𝑁 + 1, 𝑖 ∈ 0, 𝑁 + 1;

(𝑤
(1)
𝑘 )𝑁+1,𝑗, 𝑖 = 𝑁 + 1, 𝑗 ∈ 0, 𝑁 + 1;

(𝑤
(2)
𝑘 )𝑖,0, 𝑗 = 1, 𝑖 ∈ 0, 𝑁 + 1.

System (57) has a dispersive structure and it can be effectively solved by an appropriate
iteration method with a preconditioning.

11. Numerical experiments

Traditionally, the primary verification of numerical methods is made for the problems with
a known analytic solution. For problem (1)-(3) it means that defining solenoidal v* and 𝑝* in
the condition (𝑝*, 1)𝐿2(Ω), we can calculate the grid right hand side fℎ = (−𝜈∆v* + ∇𝑝*)ℎ and
to find vectors v𝑘, 𝑢𝑘 as the convergence results of the algorithms in Section 9.

We consider a test example in work [4]. In domain Ω = [−𝜋/2, 3𝜋/2] × [−𝜋, 𝜋] we solve
Stokes problem (1)–(3), where for 𝜈 = 1 we define a solenoidal analytic solution v*(𝑥, 𝑦) =
{(1 + sin 𝑥) sin 𝑦, cos 𝑥(1 + cos 𝑦)}, 𝑝*(𝑥, 𝑦) = sin 𝑥 cos(2𝑦), for which v*|𝑆 = 0.

Problem (52)–(54) was solved on the sequence of grids 31×31, 63×63, 127×127, 255×255 by
means of algorithms 𝐽2(𝑢), 𝐽0(�⃗�), as well as by their combination. Dirichlet problems for Poisson
equation were solved by the fast Fourier transformation method [12] that explains the choice of
the amount of the internal nodes in the grids by the rule 𝑁1 = 𝑁2 = 𝑁 = 2𝑚−1, (𝑚 = 5, 6, 7, 8).
Neumann problem (57) was solved iteratively by the conjugate gradient method with a diagonal
preconditioning. In all the algorithms all the iterations were made until ‖𝑝𝑘−𝑝𝑘−1‖𝐶(Ωℎ) > 10−6

or ‖divℎv𝑘‖𝐶(Ωℎ) > 10−6, where ‖·‖𝐶(Ωℎ) is the uniform grid norm, that is, the maximum among
all the absolute values of a function on grid 𝜔ℎ. As the initial approximation vector we used
𝑢0 = 0.

The results of the calculations by means of the program developed by the authors in language
C++ are given in Tables 1, 2. In Figures 1, 2 we present the decay dynamics of the norm of
the divergence of velocity vector.

The calculations by algorithm 𝐽0(�⃗�) are not presented because of the found numerical insta-
bility of the calculations.

The influence of parameter 𝛾 on the convergence of the modified gradient descent method
with finding parameter 𝛼𝑘 by formulae (33), (31) is demonstrated in Figure 2. As the basis, we
choose a combined method, where after one step 𝐽0(�⃗�), the following iterations were made y
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Grid Iterations ‖v𝑘 − v*‖𝐶(Ωℎ) ‖𝑝𝑘 − 𝑝*‖𝐶(Ωℎ) Error ‖fℎ −∇ℎ𝑝𝑘 + ∆ℎv𝑘‖𝐶(Ωℎ)

31 × 31 200 1.92952e-11 3.05475e-5 1.54609e-9
63 × 63 242 7.96903e-12 3.81565e-6 2.72057e-9
127 × 127 262 3.3259e-12 4.76882e-7 5.99933e-9
255 × 255 265 1.41589e-12 5.96158e-8 1.26728e-8

Table 1. The results of the calculations by algorithm 𝐽2(𝑢)

Grid Iterations ‖v𝑘 − v*‖𝐶(Ωℎ) ‖𝑝𝑘 − 𝑝*‖𝐶(Ωℎ) Error ‖fℎ −∇ℎ𝑝𝑘 + ∆ℎv𝑘‖𝐶(Ωℎ)

31 × 31 167 1.80279e-11 1.7414e-6 1.15983e-9
63 × 63 143 7.09932e-12 1.56985e-5 2.04383e-9
127 × 127 163 4.07434e-12 1.0086e-5 5.90967e-9
255 × 255 219 2.13486e-12 5.4197e-6 1.1914e-8

Table 2. The results of calculations by a combined algorithm, where after one
step 𝐽0(�⃗�), the iterations follow algorithm 𝐽2(𝑢)
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Figure 1. The graph of log10 (divℎ v𝑘) for algorithm 𝐽2(𝑢) depending on the
iteration step

algorithm 𝐽2(𝑢). The optimal value 𝛾 for the considered grids is a number ranging between 9
and 11. This number is most likely to be in other ranges under other conditions of the problem.
Comparing Table 3 and Table 2, we observe the reduction of the amount of iterations.

Grid Iterations ‖ṽ𝑘 − v*‖𝐶(Ωℎ) ‖𝑢𝑘 − 𝑝*‖𝐶(Ωℎ) Error ‖f−∇ℎ𝑢𝑘 + ∆ℎṽ𝑘‖𝐶(Ωℎ)

31 × 31 113 2.53668e-12 2.00158e-6 1.56719e-9
63 × 63 121 0.999382e-11 1.00493e-5 2.94942e-9
127 × 127 133 0.497812e-11 0.502867e-5 4.47148e-9
255 × 255 189 0.248806e-11 0.251476e-6 9.65243e-8

Table 3. Results of the calculation by the combined algorithm as 𝛾 = 10
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Figure 2. The graph log10 (divℎ v𝑘) for the combined algorithm depending on
the iteration step

80

100

120

140

160

180

200

220

240

260

280

300

0 10 20 30 40 50 60 70 80 90 100

gamma

Ч
ис

ло
 и

те
ра

ци
й

31x31 63x63 127x127 255x255

Figure 3. Dependence of the amount of iterations on 𝛾 for the combined method

12. Conclusion

In conclusion we note that first, two constructed iteration process in Section 6 are written
in differential form and invariant in the dimension of the considered Stokes problem (𝑛 = 2, 3).
Second, the reduction of the original problem to a series of much simpler Dirichlet and Neumann
problem allows us to solve these problems by known effective grid methods.

In the present work we restrict ourselves by constructing only two-dimensional finite-
difference schemes, for which we studied the efficiency of the proposed modified steepest descent
method with parameter 𝛾.
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Algorithm 𝐽2(𝑢) is simple for computer realization but it converges slower than the combined
method.

Comparison with numerical results in work [4] shows that even while applying the basic steep-
est descent method, the algorithms proposed in the present work require approximately twice
less iterations for achieving the precision in velocity at the second position for the comparable
grids.
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