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Abstract. In this paper we discuss some growth rates of compositions of entire and
meromorphic functions on the base of generalized relative order and generalized relative
lower order of meromorphic functions with respect to entire functions.
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1. Introduction, Definitions and Notations

Let f be an entire function defined in the complex plane C. The maximum modulus function
corresponding to entire function f is defined as Mf (r) = max {|f (z)| : |z| = r}. If f is non-
constant, it has the following property:
Property (A) [2] : A non-constant entire function f is said to have Property (A) if for any
σ > 1 and for all sufficiently large values of r, [Mf (r)]

2
6 Mf (r

σ) holds. For examples of
functions with or without the Property (A), one may see [2].

When f is meromorphic, Mf (r) can not be defined as f is not analytic. In this case one may
define another function Tf (r) known as Nevanlinna’s Characteristic function of f, playing the
same role as maximum modulus function, in the following manner:

Tf (r) = Nf (r) +mf (r) ,

where functions Nf (r) and mf (r) are defined as follows. We first introduce function

Nf (r, a)

(

−

Nf (r, a)

)

known as the counting function of a-points (distinct a-points) of

meromorphic f as

Nf (r, a) =

r
∫

0

nf (t, a)− nf (0, a)

t
dt+

−

nf (0, a) log r,





−

Nf (r, a) =

r
∫

0

−

nf (t, a)−
−

nf (0, a)

t
dt+

−

nf (0, a) log r



 ,

moreover, we denote by nf (r, a)
(

−

nf (r, a)
)

the number of a-points (distinct a-points) of f in

|z| 6 r and an ∞ -point is a pole of f . In many situations, Nf (r,∞) and
−

Nf (r,∞) are denoted

by Nf (r) and
−

Nf (r), respectively.
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Function mf (r,∞) alternatively denoted by mf (r) known as the proximity function of f is
defined as

mf (r) =
1

2π

2π
∫

0

log+
∣

∣f
(

reiθ
)∣

∣ dθ, where

log+ x = max (log x, 0) for all x > 0.

Also we may denote m
(

r, 1
f−a

)

by mf (r, a).

If f is entire function, then the Nevanlinna’s Characteristic function Tf (r) of f is defined as

Tf (r) = mf (r) .

For any two entire functions f and g, the ratio
Mf (r)

Mg(r)
as r → ∞ is called the growth of

f with respect to g in terms of their maximum moduli. Also the ratio
Tf (r)

Tg(r)
as r → ∞ is

called the growth of f with respect to g in terms of the Nevanlinna’s Characteristic functions,
when f and g are both meromorphic functions. Accordingly, the study of comparative growth
properties of entire and meromorphic functions which is one of the prominent branches of
the value distribution theory of entire and meromorphic functions is the prime concern of the
paper. We do not explain the standard definitions and notations in the theory of entire and
meromorphic functions as those are available in [12] and [15]. In the sequel the following two
notations are used:

log[k] x = log
(

log[k−1] x
)

for k = 1, 2, 3, · · · ;

log[0] x = x

and

exp[k] x = exp
(

exp[k−1] x
)

for k = 1, 2, 3, · · · ;

exp[0] x = x.

Taking this into account, the generalized order (respectively, generalized lower order) of an
entire function f as introduced by Sato [14] is given by:

ρ
[l]
f = lim sup

r→∞

log[l]Mf (r)

log logMexp z (r)
= lim sup

r→∞

log[l]Mf (r)

log r
,

(

respectively, λ
[l]
f = lim inf

r→∞

log[l]Mf (r)

log logMexp z (r)
= lim inf

r→∞

log[l]Mf (r)

log r

)

,

where l > 1.
When f is meromorphic function, one can easily verify that

ρ
[l]
f = lim sup

r→∞

log[l−1] Tf (r)

log Texp z (r)
= lim sup

r→∞

log[l−1] Tf (r)

log
(

r
π

) = lim sup
r→∞

log[l−1] Tf (r)

log r +O(1)
,

(

respectively, λ
[l]
f = lim inf

r→∞

log[l−1] Tf (r)

log Texp z (r)
= lim inf

r→∞

log[l−1] Tf (r)

log r +O(1)

)

,

where l > 1.
These definitions extend the definitions of order ρf and lower order λf of an entire and

meromorphic function f since for l = 2, these correspond to the particular case ρ
[2]
f = ρf and

λ
[2]
f = λf .
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Given a non-constant entire function g defined in the complex plane C, its maximum modulus
function Mg(r) and Nevanlinna’s Characteristic function Tg (r) are both strictly increasing and
continuous functions of r. Also their inverses M−1

g (r) : (|g (0)| ,∞) → (0,∞) and T−1
g :

(Tg (0) ,∞) → (0,∞) exist and are such that lim
s→∞

M−1
g (s) = ∞ and lim

s→∞

T−1
g (s) = ∞.

Extending the idea of relative order of entire functions as established by Bernal [1], [2], Lahiri
and Banerjee [13] introduced the definition of relative order of a meromorphic function f with
respect to another entire function g, denoted by ρg (f) to avoid comparing growth just with
exp z as follows:

ρg (f) = inf {µ > 0 : Tf (r) < Tg (r
µ) for all sufficiently large r}

= lim sup
r→∞

log T−1
g Tf (r)

log r
.

The definition coincides with the classical one if g (z) = exp z, cf. [14].
Likewise, one can define the relative lower order of a meromorphic function f with respect

to an entire function g denoted by λg (f) as follows :

λg (f) = lim inf
r→∞

log T−1
g Tf (r)

log r
.

Further, Banerjee and Jana [4] gave a more generalized concept of relative order of a mero-
morphic function with respect to an entire function in the following way:

Definition 1.1. [4] If l > 1 is a positive integer, then the l-th generalized relative order of

a meromorphic function f with respect to an entire function g denoted by ρ
[l]
g (f) is defined by

ρ[l]g (f) = lim sup
r→∞

log[l] T−1
g Tf (r)

log r
.

Likewise one can define the generalized relative lower order of a meromorphic function f

with respect to an entire function g denoted by λ
[l]
g (f) as

λ[l]
g (f) = lim inf

r→∞

log[l] T−1
g Tf (r)

log r
.

For entire and meromrophic functions, the notions of their growth indicators such as order is
classical in complex analysis and during the past decades, several researchers have already been
exploring their studies in the area of comparative growth properties of compositions of entire
and meromorphic functions in different directions using the classical growth indicators. But
at that time, the concepts of relative orders andconsequently, the generalized relative orders

of entire and meromorphic functions with respect to another entire function and as well as
their technical advantages of not comparing with the growths of exp z were not at all known to
the researchers of this area. Therefore the growth of compositions of entire and meromorphic
functions needs to be modified on the basis of their relative order some of which has been
explored in [5], [6], [7], [8], [9], [10] and [11]. In this paper we establish some newly developed
results related to the growth rates of composite entire and meromorphic functions on the basis
of their generalized relative orders (respectively, generalized relative lower orders).

2. Lemma

In this section we present a lemma which will be needed in the sequel.

Lemma 2.1. [3] Let f be meromorphic and g be entire and suppose that 0 < µ < ρg 6 ∞.

Then for a sequence of values of r tending to infinity,

Tf◦g(r) > Tf (exp (r
µ)) .
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3. Theorems

In this section we present the main results of the paper.

Theorem 3.1. Let f be a meromorphic function and g, h be any two entire functions such

that

(i) lim inf
r→∞

log[l] T−1
h (r)

(log r)α
= A, a is a real number > 0

and

(ii) lim inf
r→∞

log[l] T−1
h Tf (exp r

µ)
(

log[l] T−1
h (r)

)β+1
= B, a is a real number > 0

for any α, β, µ satisfying 0 < α < 1, β > 0, α (β + 1) > 1 and 0 < µ < ρg 6 ∞. Then

ρ
[l]
h (f ◦ g) = ∞

where l is any positive integer.

Proof. From (i) we have for all sufficiently large values of r that

log[l] T−1
h (r) > (A− ε) (log r)α (3.1)

and from (ii) we obtain for all sufficiently large values of r that

log[l] T−1
h Tf (exp r

µ) > (B − ε)
(

log[l] T−1
h (r)

)β+1

. (3.2)

Also T−1
h (r) is an increasing function of r and it follows from (3.1) , (3.2) and Lemma 2.1 for

a sequence of values of r tending to infinity that

log[l] T−1
h Tf◦g(r) > log[l] T−1

h Tf (exp (r
µ)) ,

log[l] T−1
h Tf◦g(r) > (B − ε)

(

log[l] T−1
h (r)

)β+1

,

log[l] T−1
h Tf◦g(r) > (B − ε) [(A− ε) (log r)α]

β+1
,

log[l] T−1
h Tf◦g(r) > (B − ε) (A− ε)β+1 (log r)α(β+1)

,

log[l] T−1
h Tf◦g(r)

log r
>

(B − ε) (A− ε)β+1 (log r)α(β+1)

log r
,

lim sup
r→∞

log[l] T−1
h Tf◦g(r)

log r
> lim inf

r→∞

(B − ε) (A− ε)β+1 (log r)α(β+1)

log r
.

Since ε > 0 is arbitrary and α (β + 1) > 1, it follows from above that

ρ
[l]
h (f ◦ g) = ∞.

This proves the theorem.

Theorem 3.2. Let f be a meromorphic function and g, h be any two entire functions such

that

(i) lim inf
r→∞

log[l] T−1
h (exp (rµ))

(

log[2] r
)α = A, a is a real number > 0

and

(ii) lim inf
r→∞

log

[

log[l] T−1
h (Tf (exp rµ))

log[l] T−1
h

(exp rµ)

]

[

log[l] T−1
h (exp rµ)

]β
= B, a is a real number > 0
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for any α, β satisfying α > 1, 0 < β < 1, αβ > 1 and 0 < µ < ρg 6 ∞. Then

ρ
[l]
h (f ◦ g) = ∞,

where l is any integer with l > 1.

Proof. From (i) we have for all sufficiently large values of r that

log[l] T−1
h (exp (rµ)) >

(

(A− ε) log[2] r
)α

(3.3)

and from (ii) we obtain for all sufficiently large values of r that

log

[

log[l] T−1
h (Tf (exp r

µ))

log[l] T−1
h (exp rµ)

]

> (B − ε)
[

log[l] T−1
h (exp rµ)

]β

,

log[l] T−1
h (Tf (exp r

µ))

log[l] T−1
h (exp rµ)

> exp

[

(B − ε)
[

log[l] T−1
h (exp rµ)

]β
]

. (3.4)

Also T−1
h (r) is an increasing function of r and it follows from(3.3) , (3.4) and Lemma 2.1 for a

sequence of values of r tending to infinity that

log[l] T−1
h Tf◦g(r)

log r
>

log[l] T−1
h Tf (exp (r

µ))

log r
,

log[l] T−1
h Tf◦g(r)

log r
>

log[l] T−1
h Tf (exp (r

µ))

log[l] T−1
h (exp (rµ))

·
log[l] T−1

h (exp (rµ))

log r
,

log[l] T−1
h Tf◦g(r)

log r
> exp

[

(B − ε)
[

log[l] T−1
h (exp rµ)

]β
]

·
(A− ε)

(

log[2] r
)α

log r
,

log[l] T−1
h Tf◦g(r)

log r
> exp

[

(B − ε) (A− ε)β
(

log[2] r
)αβ
]

·
(A− ε)

(

log[2] r
)α

log r
,

log[l] T−1
h Tf◦g(r)

log r
> exp

[

(B − ε) (A− ε)β
(

log[2] r
)αβ−1

log[2] r

]

·
(A− ε)

(

log[2] r
)α

log r
,

log[l] T−1
h Tf◦g(r)

log r
> (log r)(B−ε)(A−ε)β(log[2] r)

αβ−1

·
(A− ε)

(

log[2] r
)α

log r
,

lim sup
r→∞

log[l] T−1
h Tf◦g(r)

log r
> lim inf

r→∞

(log r)(B−ε)(A−ε)β(log[2] r)
αβ−1

·
(A− ε)

(

log[2] r
)α

log r
.

Since ε > 0 is arbitrary and α > 1, αβ > 1, it completes the proof.

Theorem 3.3. Let f be a meromorphic function and g, h be any two entire functions such

that 0 < ρg 6 ∞ and λ
[l]
h (f) > 0, where l is any positive integer. Then

ρ
[l]
h (f ◦ g) = ∞.

Proof. Suppose 0 < µ < ρg 6 ∞.

As T−1
h (r) is an increasing function of r, we get from Lemma 2.1 for a sequence of values of

r tending to infinity that

log[l] T−1
h Tf◦g(r) > log[l] T−1

h Tf (exp (r
µ)) ,

log[l] T−1
h Tf◦g(r) >

(

λ
[l]
h (f)− ε

)

rµ
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log[l] T−1
h Tf◦g(r)

log r
>

(

λ
[l]
h (f)− ε

)

rµ

log r
,

lim sup
r→∞

log[l] T−1
h Tf◦g(r)

log r
> lim inf

r→∞

(

λ
[l]
h (f)− ε

)

rµ

log r
,

ρ
[l]
h (f ◦ g) = ∞.

Thus, the theorem follows.

Theorem 3.4. Let f be a meromorphic function and g, h be any two entire functions such

that 0 < ρg 6 ∞ and λ
[l]
h (f) > 0, where l is any positive integer. Then

lim sup
r→∞

log[l] T−1
h Tf◦g(r)

log[l] T−1
h Tf(r)

= ∞.

Proof. In view of Theorem 3.3, we obtain that

lim sup
r→∞

log[l] T−1
h Tf◦g(r)

log[l] T−1
h Tf(r)

> lim sup
r→∞

log[l] T−1
h Tf◦g(r)

log r
lim inf
r→∞

log r

log[l] T−1
h Tf (r)

,

lim sup
r→∞

log[l] T−1
h Tf◦g(r)

log[l] T−1
h Tf(r)

> ρ
[l]
h (f ◦ g) ·

1

ρ
[l]
h (f)

,

lim sup
r→∞

log[l] T−1
h Tf◦g(r)

log[l] T−1
h Tf(r)

= ∞.

Thus, the theorem follows.

Theorem 3.5. Let f be a meromorphic function and h be an entire function such that

0 < λ
[l]
h (f) 6 ρ

[l]
h (f) < ∞. Also let g be an entire function with a nonzero order. Then for

every positive constant A and every real number α

lim sup
r→∞

log[l] T−1
h Tf◦g(r)

{

log[l] T−1
h Tf (rA)

}1+α
= ∞,

where l is any positive integer.

Proof. If α be such that 1 + α 6 0 then the theorem is trivial. So we suppose that 1 + α > 0.
Since T−1

h (r) is an increasing function of r, we get from Lemma 2.1 for a sequence of values of
r tending to infinity that

log[l] T−1
h Tf◦g(r) > log[l] T−1

h Tf (exp (r
µ))

log[l] T−1
h Tf◦g(r) >

(

λ
[l]
h (f)− ε

)

rµ, (3.5)

where we choose 0 < µ < ρg 6 ∞. Again from the definition of ρ
[l]
h (f) , it follows for all

sufficiently large values of r that

log[l] T−1
h Tf(r

A) 6
(

ρ
[l]
h (f) + ε

)

A log r
{

log[l] T−1
h Tf(r

A)
}1+α

6

(

ρ
[l]
h (f) + ε

)1+α

A1+α (log r)1+α
. (3.6)
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Now from (3.5) and (3.6), it follows for a sequence of values of r tending to infinity that

log[l] T−1
h Tf◦g(r)

{

log[l] T−1
h Tf (rA)

}1+α
>

(

λ
[l]
h (f)− ε

)

rµ

(

ρ
[l]
h (f) + ε

)1+α

A1+α (log r)1+α
.

Since rµ

(log r)1+α → ∞ as r → ∞, the theorem follows from above.

Theorem 3.6. Let f be a meromorphic function and g be an entire function with a non-zero

order. Also let h and k be any two entire function such that 0 < λ
[l]
h (f) and ρk (g) < ∞, where

l is any positive integer. Then for every positive constant A and every real number α,

lim sup
r→∞

log[k] T−1
h Tf◦g(r)

{

log T−1
k Tg(rA)

}1+α
= ∞.

We omit the proof of Theorem 3.6 since it follows the same line as for Theorem 3.5.

Theorem 3.7. Let f be a meromorphic function and g, h be any two entire functions such

that ρ
[l]
h (f) < ∞ and λ

[l]
h (f ◦ g) = ∞. Then for every µ (> 0) ,

lim
r→∞

log[l] T−1
h Tf◦g(r)

log[l] T−1
h Tf (rµ)

= ∞,

where l is any positive integer.

Proof. We argue by contradiction and assume that there exist a constant β such that for a
sequence of values of r tending to infinity,

log[l] T−1
h Tf◦g(r) 6 β · log[l] T−1

h Tf(r
µ). (3.7)

Again from the definition of ρ
[l]
h (f) , it follows for all sufficiently large values of r that

log[l] T−1
h Tf(r

µ) 6
(

ρ
[l]
h (f) + ε

)

µ log r . (3.8)

Now combining (3.7) and (3.8), we have for a sequence of values of r tending to infinity that

log[l] T−1
h Tf◦g(r) 6 β ·

(

ρ
[l]
h (f) + ε

)

µ · log r

i.e., λ
[l]
h (f ◦ g) 6 β · µ

(

ρ
[l]
h (f) + ε

)

,

which contradicts the condition λ
[l]
h (f ◦ g) = ∞.

Hence, for all sufficiently large values of r we get that

log[l] T−1
h Tf◦g(r) > β · log[l] T−1

h Tf (r
µ)

that completes the proof.

Remark 3.1. Theorem 3.7 is also valid with “limit superior” instead of “limit” if λ
[l]
h (f ◦ g) =

∞ is replaced by ρ
[l]
h (f ◦ g) = ∞ and the other conditions remain the same.

Corollary 1. Under the assumptions of Theorem 3.7 and Remark 3.1,

lim
r→∞

T−1
h Tf◦g(r)

T−1
h Tf(rµ)

= ∞ and lim sup
r→∞

T−1
h Tf◦g(r)

T−1
h Tf (rµ)

= ∞

respectively.
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Proof. By Theorem 3.7, we obtain for all sufficiently large values of r and for K > 1 that

log[l] T−1
h Tf◦g(r) > K log[l] T−1

h Tf (r
µ)

i.e., log[l−1] T−1
h Tf◦g(r) >

{

log[l−1] T−1
h Tf(r

µ)
}K

,

from which the first part of the corollary follows. Similarly, using Remark 3.1, we obtain the
second part of the corollary.

In the same way one may state the following theorem and corollaries; their proofs follows the
same line as for Remark 3.1, Theorem 3.7 and Corollary 1, respectively.

Theorem 3.8. If f be a meromorphic function and g, h be any two entire functions such

that ρ
[l]
h (g) < ∞ and ρ

[l]
h (f ◦ g) = ∞, then for every µ (> 0) ,

lim sup
r→∞

log[l] T−1
h Tf◦g(r)

log[l] T−1
h Tg(rµ),

= ∞

where l is any positive integer.

Corollary 2. Theorem 3.7 is also valid with “limit ” instead of “limit superior” if ρ
[l]
h (f ◦ g) =

∞ is replaced by λ
[l]
h (f ◦ g) = ∞ and the other conditions remain the same.

Corollary 3. Under the assumptions of Theorem 3.7 and Corollary 2,

lim sup
r→∞

T−1
h Tf◦g(r)

T−1
h Tg(rµ)

= ∞ and lim
r→∞

T−1
h Tf◦g(r)

T−1
h Tg(rµ)

= ∞

respectively.
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