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ON THE PROBABILITY OF THE EVENT: IN 𝑛

GENERALIZED ALLOCATION SCHEMES

THE VOLUME OF EACH CELL DOES NOT EXCEED 𝑟.

A.I. AFONINA, I.R. KAYUMOV, A.N. CHUPRUNOV

Abstract. We consider 𝑛 identical generalized schemes of allocating particles in cells.
We study the probability of the event: for each generalized allocation scheme, there are at
most 𝑟 particles in each cell, where 𝑟 is a given number. We obtain an asymptotic estimate
for this probability and we consider the application of the obtained results to an antinoise
coding.
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1. Introduction and main results

Let 𝜉, 𝜉𝑗, 1 6 𝑗 6 𝑁 , be independent identically distributed integer-valued random variables.
We recall [1] that random variables 𝜂1, . . . , 𝜂N are called a generalized scheme of allocating 𝑚
particles in 𝑁 cells if their joint distribution is of the form

P{𝜂1 = 𝑘1, . . . , 𝜂N = 𝑘𝑁} = P{𝜉1 = 𝑘1, . . . , 𝜉𝑁 = 𝑘𝑁 | 𝜉1 + · · · + 𝜉𝑁 = 𝑚},
where 𝑘1 + 𝑘2 + · · · + 𝑘𝑁 = 𝑚.

Many allocating schemes of the discrete probability theory such as the scheme of allocating
discernible particles in cells, the scheme of allocating indiscernible particles in cells, random per-
mutations, random forest are generalized allocating schemes (for generalized allocating schemes
see [2]–[6]).

In what follows, as random variables 𝜉, 𝜉𝑗, we shall consider random variables 𝜉 = 𝜉(𝑥), 𝜉𝑗 =
𝜉𝑗(𝑥), 𝑥 > 0, with the distribution

P(𝜉(𝑥) = 𝑘) =
𝑎𝑘𝑥

𝑘

𝑆(𝑥)
, 𝑘 = 0, 1, 2 . . . ,

where 𝑆(𝑥) =
∑︀∞

𝑘=0 𝑎𝑘𝑥
𝑘 is the sum of a series with non-negative coefficients having a positive

convergence radius 𝑅. In this case we shall say that generalized allocating scheme 𝜂1, . . . , 𝜂N is
defined by function 𝑆(𝑥).

Random variables 𝜉 = 𝜉(𝑥), 𝜉𝑗 = 𝜉𝑗(𝑥) were introduced in work [7]. In works [7]–[9], there
were obtained limiting theorems for the sums of random variables 𝜉𝑗(𝑥).

We consider the event 𝐴𝑁(𝑚, 𝑟) that in a generalized scheme of allocating 𝑚 particles in 𝑁
cells each cell contains at most 𝑟 particles:

𝐴𝑁(𝑚, 𝑟) = {𝜔 ∈ Ω : 𝜂1(𝜔) 6 𝑟, . . . , 𝜂N(𝜔) 6 𝑟} = {𝜔 ∈ Ω : max
16𝑖6𝑁

𝜂i(𝜔) 6 𝑟}.

The probability of event 𝐴𝑁(𝑚, 𝑟) has the following representation.
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Lemma A. Let 𝑆𝑟(𝑧) =
∑︀𝑟

𝑘=0 𝑎𝑘𝑧
𝑘 be a partial sum of series 𝑆(𝑧), 𝑎𝑚(𝑆𝑁) be the 𝑚-th

coefficient in the expansion of function (𝑆(𝑧))𝑁 , which is the 𝑁-th power of function 𝑆(𝑧),
𝑎𝑚(𝑆𝑁

𝑟 ) be the 𝑚-th coefficient in the expansion of function (𝑆𝑟(𝑧))𝑁 , which is the 𝑁-th power
of function. Then

P(𝐴𝑁(𝑚, 𝑟)) =
𝑎𝑚(𝑆𝑁

𝑟 )

𝑎𝑚(𝑆𝑁)
=

1
2𝜋i

∮︀
𝐶

𝑆𝑟(𝑧)𝑁

𝑧𝑚+1 𝑑𝑧

1
2𝜋i

∮︀
𝐶

𝑆(𝑧)𝑁

𝑧𝑚+1 𝑑𝑧
, (1)

where 𝐶 is a closed contour passed in the positive direction whose interior contains no zeroes
of functions 𝑆 and 𝑆𝑟.

Let 𝜂i1, . . . , 𝜂iN, 1 6 𝑖 6 𝑛, be the sequence of independent identically distributed generalized
schemes of allocating 𝑚 particles in 𝑁 cells, that is, such that the joint distribution is given by
the formula

P{𝜂i1 = 𝑘1, . . . , 𝜂iN = 𝑘𝑁} = P{𝜉1 = 𝑘1, . . . , 𝜉𝑁 = 𝑘𝑁 | 𝜉1 + · · · + 𝜉𝑁 = 𝑚},

where 𝑘1 + 𝑘2 + · · · + 𝑘𝑁 = 𝑚.
We shall assume that condition (𝐴𝑘) is satisfied: 𝑎0 = · · · = 𝑎𝑘−1 = 0, 𝑎𝑘 = 1, 𝑎𝑘+1 > 0.
Employing representation (1), in [13] we proved the following theorem.

Theorem B. Assume that condition (𝐴0) is satisfied and 𝑚 > 𝑟. Then

P(𝐴𝑛,𝑁(𝑚, 𝑟)) = exp

[︂
−𝑚(𝑚− 1) · · · (𝑚− 𝑟)

𝑁 𝑟−1

𝑎𝑟+1

𝑎𝑟+1
1

𝛼

(︂
1 + 𝑂

(︂
1

𝑁

)︂)︂]︂
, (2)

as 𝑛,𝑁 → ∞ so that 𝛼 = 𝑜(𝑁 𝑟), where 𝛼 the ratio of the amount of independent series of
particles and the amount of cells, i.e.,

𝛼 = 𝛼𝑛𝑁 =
𝑛

𝑁
.

In particular, if 𝑚 > 𝑟, 𝑛,𝑁 → ∞ so that 𝑛
𝑁𝑟 → 𝛽, where 𝛽 < ∞, then

P(𝐴𝑛,𝑁(𝑚, 𝑟)) → exp

[︂
−𝑚(𝑚− 1) · · · (𝑚− 𝑟)

𝑎𝑟+1

𝑎𝑟+1
1

𝛽

]︂
.

The following generalization of Theorem B for arbitrary 𝑘 is true.

Theorem 1. Assume that condition (𝐴𝑘) is satisfied and 𝑘 < 𝑟 < 𝐾 < ∞. We denote
𝑚1 = 𝑚− 𝑘𝑁 . Then

P(𝐴𝑛,𝑁(𝑚, 𝑟)) = exp

[︃
−𝑚1(𝑚1 − 1) · · · (𝑚1 − (𝑟 − 𝑘))

𝑁 𝑟−𝑘−1

𝑎𝑟+1

𝑎𝑟−𝑘+1
𝑘+1

𝛼

(︂
1 + 𝑂

(︂
1

𝑁

)︂)︂]︃
, (3)

uniformly in 𝑚1 ∈ (𝑘,𝐾] as 𝑚, 𝑛, 𝑁 → ∞ so that 𝛼 = 𝑜(𝑁 𝑟−𝑘). In particular, if 𝑚, 𝑛, 𝑁 →
∞ so that 𝑚1 is fixed, 𝑚1 > 𝑟 and 𝑛

𝑁𝑟−𝑘 → 𝛽, where 𝛽 < ∞, then

P(𝐴𝑛,𝑁(𝑚, 𝑟)) → exp

[︃
−𝑚1(𝑚1 − 1) · · · (𝑚1 − (𝑟 − 𝑘))

𝑎𝑟+1

𝑎𝑟−𝑘+1
𝑘+1

𝛽

]︃
. (4)

Let us consider the generalized allocating scheme 𝜂*1, . . . , 𝜂
*
N defined by the function 𝑆*(𝑥) =∑︀∞

𝑖=0 𝑎
*
𝑖𝑥

𝑖 and the event 𝐴*
𝑛,𝑁(𝑚, 𝑟) = ∩𝑛

𝑖=1{𝜂*i1 6 𝑟, . . . , 𝜂*iN 6 𝑟}, where 𝜂i1, . . . , 𝜂iN, 1 6 𝑖 6 𝑛,
are independent copies of scheme 𝜂*1, . . . , 𝜂

*
N.
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Corollary. Assume that condition (𝐴𝑘) is satisfied for schemes 𝜂1, . . . , 𝜂N and 𝜂*1, . . . , 𝜂
*
N,

𝑎𝑘+1 = 𝑎*𝑘+1, 𝑎𝑟−𝑘+1 = 𝑎*𝑟−𝑘+1, 𝑘 < 𝑟 < 𝐾 < ∞. Then

P(𝐴𝑛,𝑁(𝑚, 𝑟)) = P(𝐴*
𝑛,𝑁(𝑚, 𝑟))(1+𝑂( 1

𝑁 ))

uniformly in 𝑚1 ∈ (𝑘,𝐾] as 𝑚,𝑛,𝑁 → ∞ so that 𝛼 = 𝑜(𝑁 𝑟−𝑘).

To prove the corollary, it is sufficient to note that the probabilities P(𝐴𝑛,𝑁(𝑚, 𝑟)) and
P(𝐴*

𝑛,𝑁(𝑚, 𝑟)) satisfy formula (3).

Remark 1. The random variable 𝜂(𝑁) = max16𝑖6𝑁 𝜂𝑖 is called the maximal volume of a cell.
Many works were devoted to studying the limiting behavior of the maximal volume of a cell
[2], [6], [17]. As 𝑛 = 1, Theorem B and Theorem 1 can be regarded as the limiting theorem for
the distribution function of random variable 𝜂(𝑁) in the case, when 𝑚1 is bounded and 𝑁 → ∞.

Let 0 6 𝑟1 < 𝑟2 6 ∞. Consider random variables 𝜂,1, . . . , 𝜂
,
N having the joint distribution

P{𝜂,1 = 𝑘1, . . . , 𝜂
,
N = 𝑘𝑁} = P{𝜂1 = 𝑘1, . . . , 𝜂N = 𝑘𝑁 | 𝑟1 6 min

16𝑖6𝑁
𝜂𝑖, max

16𝑖6𝑁
𝜂𝑖 6 𝑟2},

where 𝑘1 + 𝑘2 + · · · + 𝑘𝑁 = 𝑚, 𝑟1 6 𝑘𝑖 6 𝑟2, 1 6 𝑖 6 𝑁 .

Theorem 2. Random variables 𝜂,1, . . . , 𝜂
,
N are generalized scheme of allocating 𝑚 particles

in 𝑁 cells defined by the function 𝑆𝑟1𝑟2(𝑥) =
𝑟2∑︀

𝑖=𝑟1

𝑎𝑖𝑥
𝑖.

Let 0 < 𝑟2 6 ∞. Consider random variables 𝜂
{2}
1 , . . . , 𝜂

{2}
N with joint distribution

P{𝜂{2}1 = 𝑘1, . . . , 𝜂
{2}
N = 𝑘𝑁} = P{𝜂1 = 𝑘1, . . . , 𝜂N = 𝑘𝑁 | max

16𝑖6𝑁
𝜂𝑖 6 𝑟2},

where 𝑘1 + 𝑘2 + · · · + 𝑘𝑁 = 𝑚, 0 6 𝑘𝑖 6 𝑟2, 1 6 𝑖 6 𝑁 .
As 𝑟1 = 0, Theorem 2 implies

Corollary 1. Random variables 𝜂
{2}
1 , . . . , 𝜂

{2}
N are a generalized scheme of allocating 𝑚 par-

ticles in 𝑁 cells defined by the function 𝑆0𝑟2(𝑥) =
𝑟2∑︀
𝑖=0

𝑎𝑖𝑥
𝑖.

Let 0 6 𝑟1 < ∞. Consider random variables 𝜂
{1}
1 , . . . , 𝜂

{1}
N with the joint distribution

P{𝜂{1}1 = 𝑘1, . . . , 𝜂
{1}
N = 𝑘𝑁} = P{𝜂1 = 𝑘1, . . . , 𝜂N = 𝑘𝑁 | 𝑟1 6 min

16𝑖6𝑁
𝜂𝑖},

where 𝑘1 + 𝑘2 + · · · + 𝑘𝑁 = 𝑚, 𝑟1 6 𝑘𝑖, 1 6 𝑖 6 𝑁 .
As 𝑟2 = ∞, Theorem 2 implies

Corollary 2. Random variables 𝜂
{1}
1 , . . . , 𝜂

{1}
N are a generalized scheme of allocating 𝑚 par-

ticles in 𝑁 cells defined by the function 𝑆𝑟1∞(𝑥) =
∞∑︀

𝑖=𝑟1

𝑎𝑖𝑥
𝑖.

We apply Theorem 1 and Theorem 2 to studying the asymptotic behavior of the probability
of event 𝐴𝑛,𝑁(𝑚, 𝑟, 𝑟1, 𝑟2) that each cell of each scheme contains at most 𝑟 particles if we know
that each cell of each scheme contains at least 𝑟1 and at most 𝑟2 particles, that is, the probability
of event 𝐴𝑛,𝑁(𝑚, 𝑟) under the condition: each cell of each scheme contains at least 𝑟1 and at
most 𝑟2 particles.

Theorem 3. Assume that 𝑟1 < 𝑟 < 𝑟2, 𝑟 < 𝐾 < ∞ and condition (𝐴𝑟1) is satisfied. We
denote 𝑚1 = 𝑚− 𝑟1𝑁 . Then

P(𝐴𝑛,𝑁(𝑚, 𝑟, 𝑟1, 𝑟2)) = exp

[︃
−𝑚1(𝑚1 − 1) · · · (𝑚1 − (𝑟 − 𝑟1))

𝑁 𝑟−𝑟1−1

𝑎𝑟+1

𝑎𝑟−𝑟1+1
𝑟1+1

𝛼

(︂
1 + 𝑂

(︂
1

𝑁

)︂)︂]︃
,
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uniformly in 𝑟 < 𝑚1 < 𝐾 as 𝑚, 𝑛, 𝑁 → ∞ so that 𝛼 = 𝑜(𝑁 𝑟−𝑟1). In particular, if 𝑚,𝑛,𝑁 →
∞ so that 𝑚1 is fixed, 𝑚1 > 𝑟 and 𝑛

𝑁𝑟−𝑟1
→ 𝛽, where 𝛽 < ∞, then

P(𝐴𝑛,𝑁(𝑚, 𝑟, 𝑟1, 𝑟2)) → exp

[︃
−𝑚1(𝑚1 − 1) · · · (𝑚1 − (𝑟 − 𝑟1))

𝑎𝑟+1

𝑎𝑟−𝑟1+1
𝑟1+1

𝛽

]︃
.

Employing Corollary 1 of Theorem 2 instead of Theorem 2 in the proof of Theorem 3, we
obtain

Corollary 1. Assume that 0 < 𝑟 < 𝑟2 and condition (𝐴0) is satisfied. Then

P(𝐴𝑛,𝑁(𝑚, 𝑟, 0, 𝑟2)) = exp

[︂
−(𝑚)(𝑚− 1) · · · (𝑚− 𝑟)

𝑁 𝑟−1

𝑎𝑟+1

𝑎𝑟+1
1

𝛼

(︂
1 + 𝑂

(︂
1

𝑁

)︂)︂]︂
,

as 𝑛,𝑁 → ∞ so that 𝛼 = 𝑜(𝑁 𝑟). In particular, if 𝑛,𝑁 → ∞ so that 𝑛
𝑁𝑟 → 𝛽, where 𝛽 < ∞,

then

P(𝐴𝑛,𝑁(𝑚, 𝑟, 0, 𝑟2)) → exp

[︂
−𝑚(𝑚− 1) · · · (𝑚− 𝑟)

𝑎𝑟+1

𝑎𝑟+1
1

𝛽

]︂
.

Remark 2. It follows from Theorem 3 and Corollary 1 of Theorem 3 that the asymptotic
behavior of the probability of event 𝐴𝑛,𝑁(𝑚, 𝑟, 𝑟1, 𝑟2) is independent of 𝑟2.

Probability P(𝐴𝑛,𝑁(𝑚, 𝑟)) has the following application in the theory of antinoise coding.
Consider a code, which allows to fix at most 𝑟 replacement kind errors in a block. A particular
case of such code is Hamming code (for Hamming code see, for instance, [10]). Suppose that
we have 𝑛 messages. Each message has 𝑁 blocks and contains 𝑚 errors. We assume that the
probability associated with different messages are independent and the errors are distributed in
the blocks of the messages in accordance with some generalized allocating scheme. Interpreting
errors as particles and cells as blocks, we observe that P(𝐴𝑛,𝑁(𝑚, 𝑟)) is the probability of the
even that all the errors in 𝑛 messages are fixed.

In work [11], the convergence of probability P(𝐴𝑛,𝑁(𝑚, 𝑟)) was studied in the case of the
scheme of allocating discernible particles in different cells. In [12], [13] there was studied the
convergence of probability P(𝐴𝑛,𝑁(𝑚, 𝑟)) in the general case. In works [14], [15], the convergence
of probabilities of some analogues of events 𝐴𝑛,𝑁(𝑚, 𝑟) was treated. As 𝑟 = 1 in [16] there was
studied the convergence of event 𝐴𝑛,𝑁(𝑚, 𝑟), in which the amount of particles in the blocks
is random. The probabilities of events 𝐴𝑁(𝑚, 𝑟) in some analogues of generalized allocating
scheme were studied in [17].

Let us consider the application of Theorem 1 to some schemes of probability combinatorics.
Random forests. A random forest having 𝑁 root and 𝑚 non-root vertices is a generalized

scheme of allocating 𝑚 particles in 𝑁 cells with the function

𝑆(𝑧) =
11−1

1!
𝑧 +

22−1

2!
𝑧2 + · · · 𝑟

𝑟−1

𝑟!
𝑧𝑟 + · · · ,

that is, it corresponds to the case 𝑘 = 1 (see [2]). This is the probability of the event that in
𝑛 random forests, each consisting of 𝑁 trees and 𝑚 non-root vertices, each tree has at most 𝑟
branches is equal

P(𝐴𝑛,𝑁(𝑚, 𝑟)) = exp

[︂
−(𝑚−𝑁)(𝑚−𝑁 − 1) · · · (𝑚−𝑁 − (𝑟 − 1))(𝑟 + 1)𝑟−1

𝑁 𝑟−2𝑟!
𝛼

(︂
1 + 𝑂

(︂
1

𝑁

)︂)︂]︂
,

as 𝑛,𝑁 → ∞ so that 𝛼 = 𝑜(𝑁 𝑟−1). In particular, if 𝑚, 𝑛,𝑁 → ∞ so that 𝑚−𝑁 = 𝑚1 is fixed
and 𝑛

𝑁𝑟−1 → 𝛽, where 𝛽 < ∞, then

P(𝐴𝑛,𝑁(𝑚, 𝑟)) → exp

[︂
−𝑚1(𝑚1 − 1) · · · (𝑚1 − (𝑟 − 1))(𝑟 + 1)𝑟−1

𝑟!
𝛽

]︂
.
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Cycles in substitutions. A random substitution of degree 𝑚 containing exactly 𝑁 cycles
is a generalized scheme of allocating 𝑚 particles in 𝑁 cells with the function 𝑆(𝑧) = − ln(1−𝑧)
(see [2]). We note that − ln(1 − 𝑧) =

∑︀∞
𝑘=1

1
𝑘
𝑧𝑘. This is why the probability of the event that

in 𝑛 random substitutions, each being of degree 𝑚 and consisting of 𝑁 cycles, each cycle has
the length at most 𝑟, is equal to

P(𝐴𝑛,𝑁(𝑚, 𝑟)) = exp

[︂
−(𝑚−𝑁)(𝑚−𝑁 − 1) · · · (𝑚−𝑁 − (𝑟 − 1))2𝑟

𝑁 𝑟−2(𝑟 + 1)
𝛼

(︂
1 + 𝑂

(︂
1

𝑁

)︂)︂]︂
,

as 𝑛,𝑁 → ∞ so that 𝛼 = 𝑜(𝑁 𝑟−1). In particular, if 𝑚, 𝑛,𝑁 → ∞ so that 𝑚−𝑁 = 𝑚1 is fixed
and 𝑛

𝑁𝑟−2 → 𝛽, where 𝛽 < ∞, then

P(𝐴𝑛,𝑁(𝑚, 𝑟)) → exp

[︂
−𝑚1(𝑚1 − 1) · · · (𝑚1 − (𝑟 − 1))2𝑟

𝑟 + 1
𝛽

]︂
.

Random partitions. An equiprobable partition of an integer positive number 𝑚 in 𝑁
ordered terms not exceeding 𝑘 is the generalized allocating scheme with the function

𝑆(𝑧) =
𝑧𝑘

1 − 𝑧
=

∞∑︁
𝑖=𝑘

𝑧𝑖

(see [2]), i.e., it satisfies condition (𝐴𝑘). This is why the probability of the event that in 𝑛
independent random partitions of an integer positive number 𝑚 into 𝑁 ordered terms not
exceeding 𝑘, each element of the partition does not exceed 𝑟, is equal to

P(𝐴𝑛,𝑁(𝑚, 𝑟)) = exp

[︂
−(𝑚− 𝑘𝑁)(𝑚− 𝑘𝑁 − 1) · · · (𝑚− 𝑘𝑁 − (𝑟 − 𝑘))

𝑁 𝑟−𝑘−1
𝛼

(︂
1 + 𝑂

(︂
1

𝑁

)︂)︂]︂
,

as 𝑚,𝑛,𝑁 → ∞ so that 𝛼 = 𝑜(𝑁 𝑟−𝑘). In particular, if 𝑚 > 𝑟, 𝑛,𝑁 → ∞ so that 𝑚−𝑘𝑁 = 𝑚1

is fixed, 𝑛
𝑁𝑟−𝑘 → 𝛽, where 𝛽 < ∞, then

P(𝐴𝑛,𝑁(𝑚, 𝑟)) → exp [−𝑚1(𝑚1 − 1) · · · (𝑚1 − (𝑟 − 𝑘))𝛽] .

2. Proofs

Proof of Lemma A. We have

P(𝐴𝑚𝑁(𝑟)) =P{𝜉1 6 𝑟, 𝜉2 6 𝑟, . . . 𝜉𝑁 6 𝑟 | 𝜉1 + 𝜉2 + · · · + 𝜉𝑁 = 𝑚}

=
P{𝜉1 6 𝑟, 𝜉2 6 𝑟, . . . 𝜉𝑁 6 𝑟, 𝜉1 + 𝜉2 + . . . 𝜉𝑁 = 𝑚}

P{𝜉1 + 𝜉2 + . . . 𝜉𝑁 = 𝑚}

=

∑︀
{(𝑘𝑖) : 𝑘1+𝑘2+···+𝑘𝑁=𝑚, 𝑘𝑖6𝑟, 16𝑖6𝑁}

P{𝜉1 = 𝑘1}P{𝜉2 = 𝑘2} . . .P{𝜉𝑁 = 𝑘𝑁}∑︀
{(𝑘𝑖) : 𝑘1+𝑘2+···+𝑘𝑁=𝑚}

P{𝜉1 = 𝑘1}P{𝜉2 = 𝑘2} . . .P{𝜉𝑁 = 𝑘𝑁}

=

∑︀
{(𝑘𝑖) : 𝑘1+𝑘2+···+𝑘𝑁=𝑚, 𝑘𝑖6𝑟, 16𝑖6𝑁}

𝑎𝑘1𝑥
𝑘1

𝑆(𝑥)

𝑎𝑘2𝑥
𝑘2

𝑆(𝑥)
. . .

𝑎𝑘𝑁 𝑥𝑘𝑁

𝑆(𝑥)∑︀
{(𝑘𝑖) : 𝑘1+𝑘2+···+𝑘𝑁=𝑚}

𝑎𝑘1𝑥
𝑘1

𝑆(𝑥)

𝑎𝑘2𝑥
𝑘2

𝑆(𝑥)
. . .

𝑎𝑘𝑁 𝑥𝑘𝑁

𝑆(𝑥)

=
𝑎𝑚(𝑆𝑁

𝑟 )

𝑎𝑚(𝑆𝑁)
.

The first identity in (1) is proven. Since

𝑎𝑚(𝑆𝑁) =
1

2𝜋i

∮︁
𝐶

𝑆(𝑧)𝑁

𝑧𝑚+1
𝑑𝑧, 𝑎𝑚(𝑆𝑁

𝑟 ) =
1

2𝜋i

∮︁
𝐶

𝑆𝑟(𝑧)𝑁

𝑧𝑚+1
𝑑𝑧,

the second identity in (1) holds true. The proof is complete.
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Proof of Theorem 1. By (1) the probability of event 𝐴𝑛,𝑁 has the following representation

P(𝐴𝑛,𝑁) = P (∩𝑛
𝑖=1{𝜂i1 6 𝑟, . . . , 𝜂iN 6 𝑟}) =

⎛⎜⎝
1
2𝜋i

∮︀
𝐶

𝑆𝑟(𝑧)𝑁

𝑧𝑚+1 𝑑𝑧

1
2𝜋i

∮︀
𝐶

𝑆(𝑧)𝑁

𝑧𝑚+1 𝑑𝑧

⎞⎟⎠
𝑛

. (5)

Hence, employing (5) and (2), where 𝑚 and 𝑟 are replaced by 𝑚− 𝑘𝑁 and 𝑟− 𝑘, respectively,
we obtain

P(𝐴𝑛,𝑁(𝑚, 𝑟)) =

⎛⎜⎜⎜⎝
1
2𝜋i

∮︀
𝐶

(
∑︀𝑟

𝑖=𝑘 𝑎𝑖𝑧
𝑖)

𝑁

𝑧𝑚+1 𝑑𝑧

1
2𝜋i

∮︀
𝐶

(
∑︀∞

𝑖=𝑘 𝑎𝑖𝑧𝑖)
𝑁

𝑧𝑚+1 𝑑𝑧

⎞⎟⎟⎟⎠
𝑛

=

⎛⎜⎜⎜⎝
1
2𝜋i

∮︀
𝐶

(
∑︀𝑟−𝑘

𝑖=0 𝑎𝑖+𝑘𝑧
𝑖)

𝑁

𝑧𝑚−𝑘𝑁+1 𝑑𝑧

1
2𝜋i

∮︀
𝐶

(
∑︀∞

𝑖=0 𝑎𝑖+𝑘𝑧𝑖)
𝑁

𝑧𝑚−𝑘𝑁+1 𝑑𝑧

⎞⎟⎟⎟⎠
𝑛

= exp

[︃
−𝑚1(𝑚1 − 1) · · · (𝑚1 − (𝑟 − 𝑘))

𝑁 𝑟−𝑘−1

𝑎𝑟+1

𝑎𝑟−𝑘+1
𝑘+1

𝛼

(︂
1 + 𝑂

(︂
1

𝑁

)︂)︂]︃
.

Estimate (3) is proven. It implies (4). This completes the proof of Theorem 1.

Proof of Theorem 2. We consider independent identically distributed random variables 𝜉′𝑖(𝑥)

with the distribution P(𝜉′𝑖(𝑥) = 𝑗) =
𝑎𝑗𝑥

𝑗

𝑆𝑟1𝑟2 (𝑥)
, 𝑟1 6 𝑗 6 𝑟2, P(𝜉′𝑖(𝑥) = 𝑗) = 0, 𝑗 /∈ [𝑟1, 𝑟2]. Let

𝑘1 + 𝑘2 + · · · + 𝑘𝑁 = 𝑚, 𝑟1 6 𝑘𝑖 6 𝑟2, 1 6 𝑖 6 𝑁 . We have

P{𝜂,1 = 𝑘1, . . . , 𝜂
,
N = 𝑘𝑁}

=
P{𝜉1 = 𝑘1, . . . , 𝜉N = 𝑘𝑁 , 𝜉1 + · · · + 𝜉N = 𝑚, 𝜉𝑖 = 𝑘𝑖, 𝑟1 6 𝑘𝑖 6 𝑟2, 1 6 𝑖 6 𝑁}

P{𝜉1 + · · · + 𝜉N = 𝑚, 𝜉𝑖 = 𝑘𝑖, 𝑟1 6 𝑘𝑖 6 𝑟2, 1 6 𝑖 6 𝑁}

=
P{𝜉1 = 𝑘1, . . . , 𝜉N = 𝑘𝑁}

P{𝜉1 + · · · + 𝜉N = 𝑚, 𝜉𝑖 = 𝑘𝑖, 𝑟1 6 𝑘𝑖 6 𝑟2, 1 6 𝑖 6 𝑁}

=

∏︀𝑁
𝑖=1P{𝜉i = 𝑘𝑖}∑︀

𝑘1+𝑘,2+···+𝑘𝑁=𝑚,𝑟16𝑘𝑖6𝑟2,16𝑖6𝑁

∏︀𝑁
𝑖=1P{𝜉𝑖 = 𝑘𝑖}

=

𝑁∏︀
𝑖=1

𝑎𝑘𝑖𝑥
𝑘𝑖

𝑆(𝑥)∑︀
𝑘1+𝑘,2+···+𝑘𝑁=𝑚,𝑟16𝑘𝑖6𝑟2,16𝑖6𝑁

𝑁∏︀
𝑖=1

𝑎𝑘𝑖𝑥
𝑘𝑖

𝑆(𝑥)

=

𝑁∏︀
𝑖=1

𝑎𝑘𝑖𝑥
𝑘𝑖

∑︀
𝑘1+𝑘,2+···+𝑘𝑁=𝑚,𝑟16𝑘𝑖6𝑟2,16𝑖6𝑁

𝑁∏︀
𝑖=1

𝑎𝑘𝑖𝑥
𝑘𝑖

=

𝑁∏︀
𝑖=1

𝑎𝑘𝑖𝑥
𝑘𝑖

𝑆𝑟1𝑟2 (𝑥)∑︀
𝑘1+𝑘2+···+𝑘𝑁=𝑚,𝑟16𝑘𝑖6𝑟2,16𝑖6𝑁

𝑁∏︀
𝑖=1

𝑎𝑘𝑖𝑥
𝑘𝑖

𝑆𝑟1𝑟2 (𝑥)

=

𝑁∏︀
𝑖=1

P{𝜉′i = 𝑘𝑖}

P{𝜉′1 + · · · + 𝜉′N = 𝑚}

=
P{𝜉′1 = 𝑘1, . . . , 𝜉

′
N = 𝑘𝑁 , 𝜉

′
1 + · · · + 𝜉′N = 𝑚}

P{𝜉,1 + · · · + 𝜉,N = 𝑚}
=P{𝜉′1 = 𝑘1, . . . , 𝜉

,
N = 𝑘𝑁 , | 𝜉′1 + · · · + 𝜉′N = 𝑚}.

The proof is complete.

Proof of Corollary 1 of Theorem 2. Since

{ max
16𝑖6𝑁

𝜂𝑖 6 𝑟2} = {0 6 min
16𝑖6𝑁

𝜂𝑖, max
16𝑖6𝑁

𝜂𝑖 6 𝑟2},
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the distribution of random vector 𝜂
{2}
1 , . . . , 𝜂

{2}
N coincides with the distribution of random vector

𝜂,1, . . . , 𝜂
,
N corresponding to the case 𝑟1 = 0. Hence, we can apply Theorem 2 and this completes

the proof.

Proof of Theorem 3. By Theorem 2 the identity

P(𝐴𝑛,𝑁(𝑚, 𝑟, 𝑟1, 𝑟2)) =

(︂
P{ max

16𝑖6𝑁
𝜂𝑖 6 𝑟 | 𝑟1 6 min

16𝑖6𝑁
𝜂𝑖, max

16𝑖6𝑁
𝜂𝑖 6 𝑟2}

)︂𝑛

=

(︂
P{ max

16𝑖6𝑁
𝜉′𝑖 6 𝑟 | 𝜉′1 + · · · + 𝜉′𝑁 = 𝑚}

)︂𝑛

holds true. Applying Theorem 1 to the last expression in the above identity, we complete the
proof.
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