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MINIMAL VALUE FOR THE TYPE OF AN ENTIRE

FUNCTION OF ORDER 𝜌 ∈ (0, 1), WHOSE ZEROS LIE IN AN

ANGLE AND HAVE A PRESCRIBED DENSITY

V.B. SHERSTYUKOV

Abstract. In the work we find the minimal value that can be taken by the type of an entire
function of order 𝜌 ∈ (0, 1) with zeroes of prescribed upper and lower densities and located
in an angle of a fixed opening less than 𝜋. The main theorem generalizes the previous result
by the author (the zeroes lie on one ray) and by A.Yu. Popov (only the upper density of
zeros was taken into consideration). We distinguish and study in detail the case when the
an entire function has a measurable sequence of zeroes. We provide applications of the
obtained results to the uniqueness theorems for entire functions and to the completeness of
exponential systems in the space of analytic in a circle functions with the standard topology
of uniform convergence on compact sets.
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1. Introduce

Let 𝜌 ∈ (0, 1), 𝛽 > 0, 𝛼 ∈ [0, 𝛽]. Let 𝑓(𝑧) be an entire function, whose zeroes are located in
an angle of a fixed opening 6 𝜋 and they form a sequence Λ = Λ𝑓 = (𝜆𝑛)

∞
𝑛=1 with an upper

and lower 𝜌-densities

Δ 𝜌(Λ) ≡ lim
𝑛→∞

𝑛

|𝜆𝑛|𝜌
= 𝛽, Δ 𝜌(Λ) ≡ lim

𝑛→∞

𝑛

|𝜆𝑛|𝜌
> 𝛼, (1)

respectively. As usually, the zeroes are taken counting multiplicity and in ascending order of
the absolute values.

We need to find the smallest possible value for the type of function 𝑓(𝑧) at order 𝜌 determined
by the formula

𝜎𝜌(𝑓) ≡ lim
𝑟→+∞

𝑟−𝜌 lnmax
|𝑧|=𝑟

|𝑓(𝑧)| . (2)

Without loss of generality we assume that

Λ ⊂ Γ𝜃 ≡ {𝑧 ∈ C : | arg 𝑧| 6 𝜃} , (3)

where 𝜃 ∈ [0, 𝜋/2], by reducing the problem of finding the extremum

𝑠𝜃(𝛼, 𝛽; 𝜌) ≡ inf
{︀
𝜎 𝜌(𝑓) : Λ = Λ𝑓 ⊂ Γ𝜃, Δ 𝜌(Λ) = 𝛽, Δ 𝜌(Λ) > 𝛼

}︀
. (4)

We mention that as 𝜃 = 0, we obtain the problem for entire functions with zeroes at a ray
solved earlier by A.Yu. Popov [1] (for 𝛼 = 0) and by the author [2] (for each 𝛼 ∈ [0, 𝛽]).
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In the present paper, quantity 𝑠𝜃(𝛼, 𝛽; 𝜌) is calculated for all 𝜃 ∈ [0, 𝜋/2]. Apart from the
introduction, the work consists of three parts. In the first part we obtain the lower bound for
the type of a function defined in (2). The second part is devoted to the proof of the sharpness
for this estimate. The result is formulated as the following theorem.

Theorem 1. Suppose that we are given numbers 𝜌 ∈ (0, 1), 𝛽 > 0, 𝛼 ∈ [0, 𝛽], 𝜃 ∈ [0, 𝜋/2].
Then the formula

𝑠𝜃(𝛼, 𝛽; 𝜌) =
𝜋𝛼

sin 𝜋𝜌
cos 𝜌 𝜃 + max

𝑎>0

𝑎∫︁
𝑎(𝛼/𝛽)1/𝜌

(︀
𝛽 𝑎−𝜌 − 𝛼𝑥−𝜌

)︀ 𝑥+ cos 𝜃

𝑥2 + 2𝑥 cos 𝜃 + 1
𝑑𝑥

holds true. The infimum in (4) is attained at some function with a sequence of zeroes Λ0 located
at two rays arg 𝑧 = ± 𝜃 such that Δ 𝜌(Λ0) = 𝛽, Δ 𝜌(Λ0) = 𝛼.

In the third part of the work Theorem 1 is employed to specify one uniqueness theorem by
B.N. Khabibullin. We provide some applications to entire functions of exponential type and
issues on the completeness of exponentials systems.

The extremal problem on finding 𝑠𝜃(𝛼, 𝛽; 𝜌) as 𝛼 = 0 (i.e., without taking into consideration
the lower 𝜌-density of zeroes) was posed and solved by A.Yu. Popov [3]. He found the quantity

𝑠𝜃(0, 𝛽; 𝜌) =
𝛽

2
max
𝑎>0

𝑎−𝜌 ln(1 + 2𝑎 cos 𝜃 + 𝑎2).

For the functions with a measurable sequence of zeroes Λ = Λ𝑓 = (𝜆𝑛)
∞
𝑛=1, that is, which has

a 𝜌-density

Δ 𝜌(Λ) ≡ lim
𝑛→∞

𝑛

|𝜆𝑛|𝜌
= 𝛽,

by Theorem 1 we obtain the relation

𝑠𝜃(𝛽, 𝛽; 𝜌) =
𝜋𝛽

sin 𝜋𝜌
cos 𝜌 𝜃.

We note that extremal value 𝑠𝜃(𝛽, 𝛽; 𝜌) is attained if all the zeroes of a function are located
at the rays arg 𝑧 = ± 𝜃, and at each of them they form measurable sequences with the same
𝜌-densities (= 𝛽/2), and 𝑠𝜃(𝛽, 𝛽; 𝜌) is surely not attained if these 𝜌-densities are different.
The state-of-art of the theory of extremal problems for the type of entire functions with

zeroes at a ray or in an angle is exposed in surveys [3], [4].
We proceed to the proof of Theorem 1.

2. Estimate for the type of an entire function

Let 𝑓(𝑧) be an entire function of order 𝜌 ∈ (0, 1). We assume that the sequence of all its
zeroes Λ = Λ𝑓 = (𝜆𝑛)

∞
𝑛=1 lies in an angle Γ𝜃 with a fixed 𝜃 ∈ [0, 𝜋/2] and has 𝜌-densities

Δ𝜌(Λ) = 𝛽, Δ𝜌(Λ) > 𝛼. Hereafter 𝛼 ∈ (0, 𝛽], since the case 𝛼 = 0 was considered in [3]. Let
us prove the estimate

𝜎𝜌(𝑓) >
𝜋𝛼

sin 𝜋𝜌
cos 𝜌 𝜃 + max

𝑎>0

𝑎∫︁
𝑎(𝛼/𝛽)1/𝜌

(︀
𝛽 𝑎−𝜌 − 𝛼𝑥−𝜌

)︀ 𝑥+ cos 𝜃

𝑥2 + 2𝑥 cos 𝜃 + 1
𝑑𝑥. (5)

We can assume that 𝑓(0) = 1. Then by Hadamard theorem (see [5, Ch. I, Sect. 10]) function
𝑓(𝑧) can be represented as the canonical product

𝑓(𝑧) =
∞∏︁
𝑛=1

(︂
1− 𝑧

𝜆𝑛

)︂
. (6)
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Due to (3) we write 𝜆𝑛 = 𝑟𝑛𝑒
𝑖𝜙𝑛 , |𝜙𝑛| 6 𝜃, 𝑛 ∈ N. Then by (6) we obtain

𝑀𝑓 (𝑟) ≡max
|𝑧|=𝑟

|𝑓(𝑧)| > |𝑓(−𝑟)| =
∞∏︁
𝑛=1

⃒⃒⃒⃒
1 +

𝑟

𝜆𝑛

⃒⃒⃒⃒
=

∞∏︁
𝑛=1

⃒⃒⃒⃒
1 +

𝑟

𝑟𝑛
𝑒−𝑖𝜙𝑛

⃒⃒⃒⃒

=
∞∏︁
𝑛=1

√︃
1 +

2𝑟

𝑟𝑛
cos𝜙𝑛 +

(︂
𝑟

𝑟𝑛

)︂2

>
∞∏︁
𝑛=1

√︃
1 +

2𝑟

𝑟𝑛
cos 𝜃 +

(︂
𝑟

𝑟𝑛

)︂2

.

We denote by 𝑛Λ(𝜏) =
∑︀

|𝜆𝑛|6 𝜏

1 the counting function of sequence Λ, or, equivalently, of the

sequence |Λ| ≡ (|𝜆𝑛|)∞𝑛=1 = (𝑟𝑛)
∞
𝑛=1. We also observe that formulae (1) can be written as

Δ 𝜌(Λ) = lim
𝑡→+∞

𝑛Λ(𝑡)

𝑡𝜌
= 𝛽, Δ 𝜌(Λ) = lim

𝑡→+∞

𝑛Λ(𝑡)

𝑡𝜌
> 𝛼. (7)

Standard employing of Stiltjes integral gives

ln𝑀𝑓 (𝑟) >
∞∑︁
𝑛=1

ln

√︃
1 +

2𝑟

𝑟𝑛
cos 𝜃 +

(︂
𝑟

𝑟𝑛

)︂2

=
1

2

+∞∫︁
0

ln

(︂
1 +

2𝑟

𝜏
cos 𝜃 +

(︁ 𝑟
𝜏

)︁2)︂
𝑑 𝑛Λ(𝜏).

Integrating by parts and using the conditions

𝑓(0) = 1, 𝑛Λ(𝜏) = 𝑂(𝜏 𝜌), 𝜏 → +∞,

eliminating the non-integral terms, we arrive at the relation

1

2

∞∫︁
0

ln

(︂
1 +

2𝑟

𝜏
cos 𝜃 +

(︁ 𝑟
𝜏

)︁2)︂
𝑑 𝑛Λ(𝜏) =

+∞∫︁
0

𝑛Λ(𝜏)
𝑟 (𝜏 cos 𝜃 + 𝑟)

𝜏 (𝜏 2 + 2𝑟𝜏 cos 𝜃 + 𝑟2)
𝑑𝜏.

By the change of variable 𝜏 = 𝑟𝑡 and the notations

𝜙𝑟(𝑡) ≡
𝑛Λ(𝑟𝑡)

(𝑟𝑡)𝜌
, 𝐾(𝑡) ≡ 𝑡𝜌−1(𝑡 cos 𝜃 + 1)

𝑡2 + 2𝑡 cos 𝜃 + 1
, 𝑡 > 0, (8)

we get the estimate

𝑟−𝜌 ln𝑀𝑓 (𝑟) >

+∞∫︁
0

𝜙𝑟(𝑡)𝐾(𝑡) 𝑑𝑡, 𝑟 > 0. (9)

In the above integral, function 𝜙𝑟(𝑡) satisfies the conditions

lim
𝑡→+∞

𝜙𝑟(𝑡) = 𝛽, lim
𝑡→+∞

𝜙𝑟(𝑡) > 𝛼,

for fixed 𝑟, while kernel 𝐾(𝑡) is positive as 𝑡 > 0 for arbitrary value of parameter 𝜃 ∈ [0, 𝜋/2]
(see (7), (8)). This is why in further estimates we can employ the method developed in [2] for
the case, when zeroes Λ are located at a single ray (𝜃 = 0). We fix an arbitrary number 𝑎 > 0
and let 𝜂 = 𝜂(𝑟) ≡ 𝜙𝑟(1/𝑎). We have

lim
𝑟→+∞

𝜂(𝑟) = 𝛽, lim
𝑟→+∞

𝜂(𝑟) > 𝛼.

Let 𝛼′ ∈ (0, 𝛼). As it was shown in [2], there exists a number 𝑐 > 0 such that for all 𝑟 > 𝑎𝑐
and 𝑡 > 𝑐/𝑟 the inequality 𝜙𝑟(𝑡) > 𝜓𝑟(𝑡) holds true, where function 𝜓𝑟(𝑡) is defined for positive
𝑡 by the formula

𝜓𝑟(𝑡) ≡

⎧⎪⎪⎨⎪⎪⎩
𝛼′, 𝑡 /∈

[︂
1

𝑎
,
(︁ 𝜂
𝛼′

)︁1/𝜌 1
𝑎

]︂
,

𝜂

(𝑎𝑡)𝜌
, 𝑡 ∈

[︂
1

𝑎
,
(︁ 𝜂
𝛼′

)︁1/𝜌 1
𝑎

]︂
.

(10)
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By (9) it follows that

𝑟−𝜌 ln𝑀𝑓 (𝑟) >

+∞∫︁
𝑐/𝑟

𝜓𝑟(𝑡)𝐾(𝑡) 𝑑𝑡, 𝑟 > 𝑎𝑐. (11)

Substituting expressions for 𝐾(𝑡) in (8) and for 𝜓𝑟(𝑡) in (10) into (11) and extracting the known
integral (see, for instance, [6, Prob. 4.174])

+∞∫︁
0

𝐾(𝑡) 𝑑𝑡 =
𝜋

sin 𝜋𝜌
cos 𝜌 𝜃, (12)

we obtain the estimate

𝑟−𝜌 ln𝑀𝑓 (𝑟) >
𝜋𝛼′

sin 𝜋𝜌
cos 𝜌 𝜃 +

(1/𝑎)(𝜂/𝛼′)1/𝜌∫︁
1/𝑎

(𝜂𝑎−𝜌 − 𝛼′𝑡𝜌) (𝑡 cos 𝜃 + 1)

𝑡 (𝑡2 + 2𝑡 cos 𝜃 + 1)
𝑑𝑡 − 𝛼′

𝑐/𝑟∫︁
0

𝐾(𝑡) 𝑑𝑡.

We pass to the limit over the sequence of 𝑟, on which 𝜂 = 𝜂(𝑟) tends to 𝛽. In view of (2) we
have

𝜎𝜌(𝑓) >
𝜋𝛼′

sin 𝜋𝜌
cos 𝜌 𝜃 +

(1/𝑎)(𝛽/𝛼′)1/𝜌∫︁
1/𝑎

(𝛽𝑎−𝜌 − 𝛼′𝑡𝜌) (𝑡 cos 𝜃 + 1)

𝑡 (𝑡2 + 2𝑡 cos 𝜃 + 1)
𝑑𝑡.

In order to obtain estimate (5), it remains to make the change of variable 𝑡 = 1/𝑥 in the integral
and employ the freedom in the choice of numbers 𝛼′ ∈ (0, 𝛼) and 𝑎 > 0.

3. Proof of the sharpness of the estimate

Let us show that estimate (5) can be attained. In order to do it, we choose sequence Λ0 on
the rays arg 𝑧 = ±𝜃 so that

Δ 𝜌(Λ0) = 𝛽, Δ 𝜌(Λ0) = 𝛼, (13)

and the canonical product

𝑓0(𝑧) =
∞∏︁
𝑛=1

(︂
1− 𝑧

𝜆𝑛

)︂
, 𝜆𝑛 ∈ Λ0, (14)

has the type

𝜎𝜌(𝑓0) =
𝜋𝛼

sin 𝜋𝜌
cos 𝜌 𝜃 + max

𝑎>0

𝑎∫︁
𝑎(𝛼/𝛽)1/𝜌

(︀
𝛽 𝑎−𝜌 − 𝛼𝑥−𝜌

)︀ 𝑥+ cos 𝜃

𝑥2 + 2𝑥 cos 𝜃 + 1
𝑑𝑥. (15)

For the parameters of the problem we assume that

𝜌 ∈ (0, 1), 𝛽 > 0, 𝛼 ∈ (0, 𝛽], 𝜃 ∈ (0, 𝜋/2],

and it corresponds to the situation not studied before. The cases 𝛼 ∈ (0, 𝛽) and 𝛼 = 𝛽 will be
treated separately.

Suppose first that 𝛼 ∈ (0, 𝛽). We first employ the construction of an extremal sequence
proposed by the author in [2] for 𝜃 = 0. We choose an auxiliary positive sequence (𝑚𝑘)

∞
𝑘=1 with

the property
𝑚1 > 1, 𝑚𝑘+1 = 𝑚4

𝑘, 𝑘 ∈ N,
and construct the sequence (𝑟𝑗)

∞
𝑗=1 ⊂ R+ following the rule: in the segments [𝑚𝑘, 𝑚

2
𝑘 − 1]

and
[︁
(𝛽/𝛼)1/𝜌𝑚2

𝑘, 𝑚𝑘+1

)︁
points 𝑟𝜌𝑗 form an arithmetical progression with the step 2/𝛼 ; in the
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segments (𝑚2
𝑘 − 1, 𝑚2

𝑘] points 𝑟
𝜌
𝑗 form an arithmetical progression with the step 2𝜌

(𝛽−𝛼)𝑚2
𝑘
; the

segments
(︁
𝑚2

𝑘, (𝛽/𝛼)
1/𝜌𝑚2

𝑘

)︁
contain no points 𝑟𝜌𝑗 . In accordance with [2], the upper and lower

𝜌-densities of the sequence (𝑟𝑗)
∞
𝑗=1 are equal to 𝛽/2 and 𝛼/2, respectively. Letting

Λ0 ≡
(︀
𝑟𝑗 𝑒

−𝑖𝜃
)︀∞
𝑗=1

⋃︁(︀
𝑟𝑗 𝑒

𝑖𝜃
)︀∞
𝑗=1

,

we arrive immediately at (13). By sequence Λ0 we defined canonical product (14). We observe
that

𝑓0(𝑧) =
∞∏︁
𝑗=1

(︂
1− 𝑧

𝑟𝑗
𝑒𝑖𝜃
)︂ (︂

1− 𝑧

𝑟𝑗
𝑒−𝑖𝜃

)︂
=

∞∏︁
𝑗=1

(︃
1− 2𝑧

𝑟𝑗
cos 𝜃 +

(︂
𝑧

𝑟𝑗

)︂2
)︃

that implies

𝑀𝑓0(𝑟) = max
|𝑧|=𝑟

|𝑓0(𝑧)| = 𝑓0(−𝑟) =
∞∏︁
𝑗=1

(︃
1 +

2𝑟

𝑟𝑗
cos 𝜃 +

(︂
𝑟

𝑟𝑗

)︂2
)︃
.

Since counting function 𝑛Λ0(𝜏) of sequence Λ0 is a doubled counting function of the sequence
(𝑟𝑗)

∞
𝑗=1, reproducing the appropriate arguments from Section 2, we arrive at the representation

𝑟−𝜌 ln𝑀𝑓0(𝑟) =

+∞∫︁
0

𝜙0,𝑟(𝑡)𝐾(𝑡) 𝑑𝑡, 𝑟 > 0, (16)

where 𝜙0,𝑟(𝑡) ≡
𝑛Λ0

(𝑟𝑡)

(𝑟𝑡)𝜌
and 𝐾(𝑡) is defined in (8). Thus, function (14) provides the identity in

(9).
Up to residual terms making no influence on type (2), function 𝜙0,𝑟(𝑡) with a parameter 𝑟 > 0

coincides with function Φ𝑟(𝑡), which is defined for 𝑡 > 0 by the formulae

Φ𝑟(𝑡) ≡ 𝛼, 𝑡 ∈
(︁
0,
𝑚1

𝑟

]︁
, Φ𝑟(𝑡) | [𝑚𝑘

𝑟
,
𝑚𝑘+1

𝑟 ] ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛼, 𝑡 /∈

[︃
𝑚2

𝑘

𝑟
,

(︂
𝛽

𝛼

)︂1/𝜌
𝑚2

𝑘

𝑟

]︃
,

𝛽

(︂
𝑚2

𝑘

𝑟𝑡

)︂𝜌

, 𝑡 ∈

[︃
𝑚2

𝑘

𝑟
,

(︂
𝛽

𝛼

)︂1/𝜌
𝑚2

𝑘

𝑟

]︃
,

where 𝑘 ∈ N (for details see [2]). Hence, it follows from (16) that

𝜎𝜌(𝑓0) = lim
𝑟→+∞

+∞∫︁
0

Φ𝑟(𝑡)𝐾(𝑡) 𝑑𝑡. (17)

For the sake of brevity, we introduce some notations. Let

𝑔(𝑎) ≡
𝑎∫︁

𝑎(𝛼/𝛽)1/𝜌

(𝛽 𝑎−𝜌 − 𝛼𝑥−𝜌) (𝑥+ cos 𝜃)

𝑥2 + 2𝑥 cos 𝜃 + 1
𝑑𝑥 =

(𝛽/𝛼)1/𝜌(1/𝑎)∫︁
1/𝑎

(︂
𝛽

(𝑎𝑡)𝜌
− 𝛼

)︂
𝐾(𝑡) 𝑑𝑡. (18)

Since function 𝑔(𝑎) is continuous and positive as 𝑎 > 0 and

lim
𝑎→+0

𝑔(𝑎) = lim
𝑎→+∞

𝑔(𝑎) = 0, (19)
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there exists a point 𝑎0 > 0 such that 𝑔(𝑎0) = max
𝑎>0

𝑔(𝑎). For 𝑡 > 0 we let

𝜓0(𝑡) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛼, 𝑡 /∈

[︃
1

𝑎0
,

(︂
𝛽

𝛼

)︂1/𝜌
1

𝑎0

]︃
,

𝛽

(𝑎0𝑡)𝜌
, 𝑡 ∈

[︃
1

𝑎0
,

(︂
𝛽

𝛼

)︂1/𝜌
1

𝑎0

]︃
.

(20)

In view of definitions (18), (20), estimate (5) can be rewritten as

𝜎𝜌(𝑓) >
𝜋𝛼

sin 𝜋𝜌
cos 𝜌 𝜃 + 𝑔(𝑎0) =

+∞∫︁
0

𝜓0(𝑡)𝐾(𝑡) 𝑑𝑡.

In particular,

𝜎𝜌(𝑓0) >

+∞∫︁
0

𝜓0(𝑡)𝐾(𝑡) 𝑑𝑡. (21)

Relation (15) to be justified is equivalent to the formula

𝜎𝜌(𝑓0) =

+∞∫︁
0

𝜓0(𝑡)𝐾(𝑡) 𝑑𝑡. (22)

Let us prove that

lim
𝑟→+∞

+∞∫︁
0

(Φ𝑟(𝑡)− 𝜓0(𝑡)) 𝐾(𝑡) 𝑑𝑡 6 0; (23)

this will imply identity (22). Indeed, by (21), (17), (23) we have

+∞∫︁
0

𝜓0(𝑡)𝐾(𝑡) 𝑑𝑡 6𝜎𝜌(𝑓0) = lim
𝑟→+∞

+∞∫︁
0

(Φ𝑟(𝑡)− 𝜓0(𝑡)) 𝐾(𝑡) 𝑑𝑡+

+∞∫︁
0

𝜓0(𝑡)𝐾(𝑡) 𝑑𝑡

6

+∞∫︁
0

𝜓0(𝑡)𝐾(𝑡) 𝑑𝑡,

which implies (22).
Thus, it remains to check inequality (23) expressing a “closedness” of weighted counting

function 𝜙0,𝑟(𝑡) of sequence Λ0 to “extremal” function 𝜓0(𝑡) in (20). Let us first obtain the
representation

+∞∫︁
0

(Φ𝑟(𝑡)− 𝜓0(𝑡)) 𝐾(𝑡) 𝑑𝑡 =
∞∑︁
𝑘=1

𝑔

(︂
𝑟

𝑚2
𝑘

)︂
− 𝑔(𝑎0) (24)

basing on (18), (20). In order to do it, we write

𝜓0(𝑡)− 𝛼 ≡ 0, 𝑡 /∈

[︃
1

𝑎0
,

(︂
𝛽

𝛼

)︂1/𝜌
1

𝑎0

]︃
,

(𝛽/𝛼)1/𝜌 (1/𝑎0)∫︁
1/𝑎0

(𝜓0(𝑡)− 𝛼) 𝐾(𝑡) 𝑑𝑡 = 𝑔(𝑎0).
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Moreover,

Φ𝑟(𝑡)− 𝛼 ≡ 0, 𝑡 /∈
∞⋃︁
𝑘=1

[︃
𝑚2

𝑘

𝑟
,

(︂
𝛽

𝛼

)︂1/𝜌
𝑚2

𝑘

𝑟

]︃
≡ 𝑇𝑟,

∫︁
𝑇𝑟

(Φ𝑟(𝑡)− 𝛼) 𝐾(𝑡) 𝑑𝑡 =
∞∑︁
𝑘=1

(𝛽/𝛼)1/𝜌 (𝑚2
𝑘/𝑟)∫︁

𝑚2
𝑘/𝑟

(︂
𝛽

(︂
𝑚2

𝑘

𝑟𝑡

)︂𝜌

− 𝛼

)︂
𝐾(𝑡) 𝑑𝑡 =

∞∑︁
𝑘=1

𝑔

(︂
𝑟

𝑚2
𝑘

)︂
.

Hence,

+∞∫︁
0

(Φ𝑟(𝑡)− 𝜓0(𝑡)) 𝐾(𝑡) 𝑑𝑡 =

+∞∫︁
0

(Φ𝑟(𝑡)− 𝛼) 𝐾(𝑡) 𝑑𝑡−
+∞∫︁
0

(𝜓0(𝑡)− 𝛼) 𝐾(𝑡) 𝑑𝑡

=

∫︁
𝑇𝑟

(Φ𝑟(𝑡)− 𝛼) 𝐾(𝑡) 𝑑𝑡 −
(𝛽/𝛼)1/𝜌 (1/𝑎0)∫︁

1/𝑎0

(𝜓0(𝑡)− 𝛼) 𝐾(𝑡) 𝑑𝑡

=
∞∑︁
𝑘=1

𝑔

(︂
𝑟

𝑚2
𝑘

)︂
− 𝑔(𝑎0),

and we obtain (24).
Let us estimate the sum in (24) for 𝑟 ∈

[︀
𝑚2

𝑠, 𝑚
2
𝑠+1

]︀
and for a fixed 𝑠 ∈ N by splitting it into

three parts:

∞∑︁
𝑘=1

𝑔

(︂
𝑟

𝑚2
𝑘

)︂
− 𝑔(𝑎0) =

𝑠−1∑︁
𝑘=1

𝑔

(︂
𝑟

𝑚2
𝑘

)︂
+

∞∑︁
𝑘=𝑠+2

𝑔

(︂
𝑟

𝑚2
𝑘

)︂
+

(︂
𝑔

(︂
𝑟

𝑚2
𝑠

)︂
+ 𝑔

(︂
𝑟

𝑚2
𝑠+1

)︂
− 𝑔(𝑎0)

)︂
.

Employing the inequality 𝐾(𝑡) 6 𝑡𝜌−1, 𝑡 > 0, while estimating the first sum and neglecting the
negative term under the integral, we have

0 <
𝑠−1∑︁
𝑘=1

𝑔

(︂
𝑟

𝑚2
𝑘

)︂
=

𝑠−1∑︁
𝑘=1

(𝛽/𝛼)1/𝜌 (𝑚2
𝑘/𝑟)∫︁

𝑚2
𝑘/𝑟

(︂
𝛽

(︂
𝑚2

𝑘

𝑟𝑡

)︂𝜌

− 𝛼

)︂
𝐾(𝑡) 𝑑𝑡

6
𝑠−1∑︁
𝑘=1

(𝛽/𝛼)1/𝜌 (𝑚2
𝑘/𝑟)∫︁

𝑚2
𝑘/𝑟

(︂
𝛽

(︂
𝑚2

𝑘

𝑟𝑡

)︂𝜌

− 𝛼

)︂
𝑡𝜌−1 𝑑𝑡 6 𝛽

𝑠−1∑︁
𝑘=1

(︂
𝑚2

𝑘

𝑟

)︂𝜌
(𝛽/𝛼)1/𝜌 (𝑚2

𝑘/𝑟)∫︁
𝑚2

𝑘/𝑟

𝑑𝑡

𝑡

=
𝛽

𝜌
ln
𝛽

𝛼

𝑠−1∑︁
𝑘=1

(︂
𝑚2

𝑘

𝑟

)︂𝜌

6
𝛽

𝜌
ln
𝛽

𝛼

𝑠−1∑︁
𝑘=1

(︂
𝑚𝑘

𝑚𝑠

)︂2𝜌

.

By the choice of sequence (𝑚𝑘)
∞
𝑘=1 we have lim

𝑠→∞

𝑠−1∑︀
𝑘=1

(︁
𝑚𝑘

𝑚𝑠

)︁2𝜌
= 0, since

𝑠−1∑︁
𝑘=1

(︂
𝑚𝑘

𝑚𝑠

)︂2𝜌

< 𝑠

(︂
𝑚𝑠−1

𝑚𝑠

)︂2𝜌

=
𝑠

𝑚
3𝜌/2
𝑠

.

It yields

lim
𝑠→∞

sup
𝑟∈[𝑚2

𝑠,𝑚
2
𝑠+1]

𝑠−1∑︁
𝑘=1

𝑔

(︂
𝑟

𝑚2
𝑘

)︂
= 0. (25)
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Employing another inequality 𝐾(𝑡) 6 𝑡𝜌−2, 𝑡 > 0, while estimating the second sum and again
neglecting the negative term under the integral, we have

0 <
∞∑︁

𝑘=𝑠+2

𝑔

(︂
𝑟

𝑚2
𝑘

)︂
=

∞∑︁
𝑘=𝑠+2

(𝛽/𝛼)1/𝜌 (𝑚2
𝑘/𝑟)∫︁

𝑚2
𝑘/𝑟

(︂
𝛽

(︂
𝑚2

𝑘

𝑟𝑡

)︂𝜌

− 𝛼

)︂
𝐾(𝑡) 𝑑𝑡

6
∞∑︁

𝑘=𝑠+2

(𝛽/𝛼)1/𝜌 (𝑚2
𝑘/𝑟)∫︁

𝑚2
𝑘/𝑟

(︂
𝛽

(︂
𝑚2

𝑘

𝑟𝑡

)︂𝜌

− 𝛼

)︂
𝑡𝜌−2 𝑑𝑡 6 𝛽

∞∑︁
𝑘=𝑠+2

(︂
𝑚2

𝑘

𝑟

)︂𝜌
(𝛽/𝛼)1/𝜌 (𝑚2

𝑘/𝑟)∫︁
𝑚2

𝑘/𝑟

𝑑𝑡

𝑡2

=𝛽

(︃
1−

(︂
𝛼

𝛽

)︂1/𝜌
)︃

∞∑︁
𝑘=𝑠+2

(︂
𝑚2

𝑘

𝑟

)︂𝜌−1

6 𝛽

(︃
1−

(︂
𝛼

𝛽

)︂1/𝜌
)︃

∞∑︁
𝑘=𝑠+2

(︂
𝑚𝑠+1

𝑚𝑘

)︂2(1−𝜌)

.

The choice of sequence (𝑚𝑘)
∞
𝑘=1 ensures the condition

lim
𝑠→∞

∞∑︁
𝑘=𝑠+2

(︂
𝑚𝑠+1

𝑚𝑘

)︂2(1−𝜌)

= 0,

since
∞∑︁

𝑘=𝑠+2

(︂
𝑚𝑠+1

𝑚𝑘

)︂2(1−𝜌)

6
∞∑︁

𝑘=𝑠+2

(︂
𝑚𝑘−1

𝑚𝑘

)︂2(1−𝜌)

=
∞∑︁

𝑘=𝑠+2

1

𝑚
3(1−𝜌)/2
𝑘

.

Hence,

lim
𝑠→∞

sup
𝑟∈[𝑚2

𝑠,𝑚
2
𝑠+1]

∞∑︁
𝑘=𝑠+2

𝑔

(︂
𝑟

𝑚2
𝑘

)︂
= 0. (26)

Let us estimate the expression

𝑔

(︂
𝑟

𝑚2
𝑠

)︂
+ 𝑔

(︂
𝑟

𝑚2
𝑠+1

)︂
− 𝑔(𝑎0), 𝑟 ∈

[︀
𝑚2

𝑠, 𝑚
2
𝑠+1

]︀
,

basing on the definition of point 𝑎0 and property (19) of function 𝑔(𝑎). We consider two possible
cases: 𝑟 ∈ [𝑚2

𝑠, 𝑚𝑠𝑚𝑠+1] and 𝑟 ∈
[︀
𝑚𝑠𝑚𝑠+1, 𝑚

2
𝑠+1

]︀
. In the first case we have 𝑟

𝑚2
𝑠+1

6 𝑚𝑠

𝑚𝑠+1
and

𝑔

(︂
𝑟

𝑚2
𝑠

)︂
− 𝑔(𝑎0) + 𝑔

(︂
𝑟

𝑚2
𝑠+1

)︂
6 𝑔

(︂
𝑟

𝑚2
𝑠+1

)︂
→ 0, 𝑠→ ∞.

In the second case we get
𝑟

𝑚2
𝑠

>
𝑚𝑠+1

𝑚𝑠

and

𝑔

(︂
𝑟

𝑚2
𝑠+1

)︂
− 𝑔(𝑎0) + 𝑔

(︂
𝑟

𝑚2
𝑠

)︂
6 𝑔

(︂
𝑟

𝑚2
𝑠

)︂
→ 0, 𝑠→ ∞.

Therefore, we can state that

lim
𝑠→∞

sup
𝑟∈[𝑚2

𝑠,𝑚
2
𝑠+1]

(︂
𝑔

(︂
𝑟

𝑚2
𝑠

)︂
+ 𝑔

(︂
𝑟

𝑚2
𝑠+1

)︂
− 𝑔(𝑎0)

)︂
6 0. (27)

Combining (24)–(27), we obtain (23).
Thus, in the case 𝛼 ∈ (0, 𝛽), entire function 𝑓0(𝑧) constructed by rule (14) satisfies (15) and

is an extremal one in problem (4) as 𝜃 ∈ (0, 𝜋/2].
The case 𝛼 = 𝛽 is technically much simpler than the previous one, but it has certain features.

In accordance with (5), the type of an entire function of order 𝜌 ∈ (0, 1) satisfies the inequality

𝜎𝜌(𝑓) >
𝜋𝛽

sin 𝜋𝜌
cos 𝜌 𝜃, (28)
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if the sequence of its zeroes Λ = Λ𝑓 lies in the angle

Γ𝜃 = {𝑧 ∈ C : | arg 𝑧| 6 𝜃}

with 𝜃 ∈ (0, 𝜋/2] and has 𝜌-density

Δ 𝜌(Λ) = Δ 𝜌(Λ) = Δ 𝜌(Λ) = lim
𝑛→∞

𝑛

|𝜆𝑛|𝜌
= 𝛽. (29)

The excluded value 𝜃 = 0 is not interesting in view of extremal problem (4) as 𝛼 = 𝛽, since, as
it is known, the type of entire function of order 𝜌 ∈ (0, 1), whose zeroes are located at a single
ray and are measurable with 𝜌-density 𝛽, can be always found by the simple formula

𝜎𝜌(𝑓) =
𝜋𝛽

sin 𝜋𝜌
.

However, the situation becomes more complicated, when in restriction (3) for the location of
zeroes the opening of the angle is positive.

Let us show that estimate (28) is sharp. In order to do it, we choose a measurable sequence
(𝑟𝑗)

∞
𝑗=1 ⊂ R+ with 𝜌-density 𝛽/2 and we let

Λ0 =
(︀
𝑟𝑗 𝑒

−𝑖𝜃
)︀∞
𝑗=1

⋃︁(︀
𝑟𝑗 𝑒

𝑖𝜃
)︀∞
𝑗=1

, 𝑓0(𝑧) =
∞∏︁
𝑛=1

(︂
1− 𝑧

𝜆𝑛

)︂
, 𝜆𝑛 ∈ Λ0.

Sequence Λ0 is located symmetrically on the sides of angle Γ𝜃 and has 𝜌-density Δ 𝜌(Λ0) = 𝛽
obeying (29), while 𝑓0(𝑧) satisfies representation (16). Arguing in the standard way, we fix
𝜀 > 0 and choose 𝑡0 = 𝑡0(𝜀) > 0 such that as 𝑟𝑡 > 𝑡0, the relation

𝜙0,𝑟(𝑡) =
𝑛Λ0(𝑟𝑡)

(𝑟𝑡)𝜌
6 𝛽 + 𝜀

holds true. Then

𝑟−𝜌 ln𝑀𝑓0(𝑟) =

+∞∫︁
0

𝜙0,𝑟(𝑡)𝐾(𝑡) 𝑑𝑡 =

=

+∞∫︁
𝑡0/𝑟

𝜙0,𝑟(𝑡)𝐾(𝑡) 𝑑𝑡 +

𝑡0/𝑟∫︁
0

𝜙0,𝑟(𝑡)𝐾(𝑡) 𝑑𝑡 6 (𝛽 + 𝜀)

+∞∫︁
𝑡0/𝑟

𝐾(𝑡) 𝑑𝑡 + 𝑜(1), 𝑟 → +∞.

Since 𝜀 > 0 is arbitrary, in view of formulae (2), (12) we obtain

𝜎𝜌(𝑓0) 6
𝜋𝛽

sin 𝜋𝜌
cos 𝜌 𝜃.

Thus, constructed function 𝑓0(𝑧) makes (28) the identity. The proof of Theorem 1 is complete.
Let us discuss some nuances useful for understanding the matter. We first observe that

function 𝑓0(𝑧) provided in the concluding part of the proof of Theorem 1 has a rather regular
growth. Let us describe a natural generalization of this example.

At the ray arg 𝑧 = − 𝜃 we choose an arbitrary measurable sequence Λ1 with 𝜌-density 𝛽/2,
while on ray arg 𝑧 = 𝜃 we choose an arbitrary measurable sequece Λ2 with 𝜌-density 𝛽/2. Then
sequence Λ0 ≡ Λ1

⋃︀
Λ2 possesses property (29). Let us check that function (14) constructed by

such sequence Λ0 has the type

𝜎𝜌(𝑓0) =
𝜋𝛽

sin 𝜋𝜌
cos 𝜌 𝜃. (30)
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Function 𝑓0(𝑧) is that of completely regular growth but now, generally speaking, its zeroes are
not located symmetrically w.r.t. the real axis. In accordance with [5, Ch. II, Sect. 2], the
indicator of 𝑓0(𝑧) is calculated by the formula

ℎ𝜌(𝑓0, 𝜙) ≡ lim
𝑟→+∞

𝑟−𝜌 ln |𝑓0(𝑟𝑒𝑖𝜙)| =
𝜋𝛽

2 sin𝜋𝜌
(ℎ𝜌(𝜙+ 𝜃) + ℎ𝜌(𝜙− 𝜃)) , 0 6 𝜙 6 2𝜋,

where ℎ𝜌(𝜙) stands for a 2𝜋-periodic continuation of function cos 𝜌(𝜙 − 𝜋) from [0, 2𝜋] on R.
By straightforward calculations we get

ℎ𝜌(𝑓0, 𝜙) =
𝜋𝛽

sin𝜋𝜌
·

⎧⎪⎨⎪⎩
cos 𝜌(𝜋 − 𝜃) · cos 𝜌𝜙, 0 6 𝜙 6 𝜃,

cos 𝜌𝜃 · cos 𝜌(𝜙− 𝜋), 𝜃 6 𝜙 6 2𝜋 − 𝜃,

cos 𝜌(𝜋 − 𝜃) · cos 𝜌(2𝜋 − 𝜙), 2𝜋 − 𝜃 6 𝜙 6 2𝜋.

Then by the inequality cos 𝜌 𝜃 > cos 𝜌(𝜋 − 𝜃) we obtain

𝜎𝜌(𝑓0) = max
06𝜙<2𝜋

ℎ𝜌(𝑓0, 𝜙) = ℎ𝜌(𝑓0, 𝜋) =
𝜋𝛽

sin 𝜋𝜌
cos 𝜌 𝜃,

that justifies (30).
On the other hand, even for functions of completely regular growth, the inequality in (28)

can be strict. Indeed, let Λ consist of two measurable sequence, one of which has 𝜌-density
𝛽1 > 0 and is located at the ray arg 𝑧 = − 𝜃, while the other has 𝜌-density 𝛽2 > 0, 𝛽2 ̸= 𝛽1
and is located at the ray arg 𝑧 = 𝜃, and 𝛽1 + 𝛽2 = 𝛽. Identities (29) again hold true. By such
sequence Λ we define canonical product (6). Excluding by the restriction 𝛽2 ̸= 𝛽1 the case of a
“well” function 𝑓0(𝑧), we still deal with function 𝑓(𝑧) of completely regular growth. In terms
of notations in the formula for ℎ𝜌(𝑓0, 𝜙), indicatorℎ𝜌(𝑓, 𝜙) is of the form [5, Ch. II, Sect. 2]

ℎ𝜌(𝑓, 𝜙) =
𝜋

sin𝜋𝜌
(𝛽1 ℎ𝜌(𝜙+ 𝜃) + 𝛽2 ℎ𝜌(𝜙− 𝜃)) , 0 6 𝜙 6 2𝜋.

By simple transformations we arrive at the extended writing:

ℎ𝜌(𝑓, 𝜙) =
𝜋

sin 𝜋𝜌
·

⎧⎪⎨⎪⎩
𝐴

𝜋−𝜃
cos
(︀
𝜌𝜙− 𝜙

𝜋−𝜃

)︀
, 0 6 𝜙 6 𝜃,

𝐴
𝜃
cos (𝜌(𝜙− 𝜋)− 𝜙

𝜃
) , 𝜃 6 𝜙 6 2𝜋 − 𝜃,

𝐴
𝜋−𝜃

cos
(︀
𝜌(2𝜋 − 𝜙)− 𝜙

𝜋−𝜃

)︀
, 2𝜋 − 𝜃 6 𝜙 6 2𝜋,

where for simplicity we denote

𝐴
𝜃
≡
√︁
𝛽2 cos2 𝜌 𝜃 + (𝛽2 − 𝛽1)2 sin

2 𝜌 𝜃, 𝜙
𝜃
≡ arctan

(︂
𝛽2 − 𝛽1
𝛽

tan 𝜌 𝜃

)︂
.

Due to the restrictions for the parameters, the inequalities

𝐴
𝜃
> 𝛽 cos 𝜌 𝜃, |𝜙

𝜃
| 6 𝜌 𝜃

hold true. We take 𝜙* ≡ 𝜋 + 𝜙
𝜃
/𝜌. Then 𝜃 6 𝜋 − 𝜃 6 𝜙* 6 𝜋 + 𝜃 6 2𝜋 − 𝜃. Substituting 𝜙*

into the expression of the indicator, we obtain

𝜎𝜌(𝑓) > ℎ𝜌(𝑓, 𝜙
*) =

𝜋

sin𝜋𝜌
𝐴

𝜃
>

𝜋𝛽

sin 𝜋𝜌
cos 𝜌 𝜃 = 𝜎𝜌(𝑓0).

Thus, in contrast to 𝑓0(𝑧), function 𝑓(𝑧) is not extremal.



118 V.B. SHERSTYUKOV

4. Uniqueness theorems and the completeness of exponentials systems

The main result of the paper allows us to obtain new uniqueness theorems for entire functions
and theorems on completeness of exponentials systems. Such applications of Theorem 1 in the
case 𝜃 = 0 are given in work [2]; a detailed study of the general situation 𝜃 ∈ [0, 𝜋/2] requires a
separate publication. We briefly dwell on some applications. For instance, a natural extension
of the result by B.N. Khabibullin [7, Thm. 4] is the following statement.

Theorem 2. Let 𝜌 ∈ (0, 1) and let Λ = (𝜆𝑛)
∞
𝑛=1 be a sequence of complex numbers with a

finite upper 𝜌-density 𝛽 > 0 and with a lower 𝜌-density > 𝛼 ∈ [0, 𝛽] located in some angle of
opening 2𝜃 6 𝜋. If the type at order 𝜌 of an entire function 𝑓 vanishing at Λ is less than

2 𝜌
√
𝜋 Γ(1− 𝜌/2)

Γ((1− 𝜌)/2)
𝑠𝜃(𝛼, 𝛽; 𝜌) =

sin 𝜋𝜌

𝜋
Γ(𝜌) Γ2(1− 𝜌/2) 𝑠𝜃(𝛼, 𝛽; 𝜌),

where 𝑠𝜃(𝛼, 𝛽; 𝜌) is introduced in Theorem 1, then 𝑓 ≡ 0 on C.

The formulation of Theorem 2 involves Euler’s Γ-function. The proof can be obtained by
direct combination of Theorem 4 in [7] and by our Theorem 1.

Now we provide a corollary of Theorem 1 concerning even entire functions of exponential
type, which play an important role in various branches of complex analysis, for instance, in the
theory of Dirichlet series (see [8]).

Theorem 3. Let 𝛽 > 0, 𝛼 ∈ [0, 𝛽], 𝜃 ∈ [0, 𝜋/4], and let

𝐹 (𝑧) =
∞∏︁
𝑛=1

(︂
1− 𝑧2

𝜆2𝑛

)︂
, | arg 𝜆𝑛| 6 𝜃,

and

lim
𝑛→∞

𝑛

|𝜆𝑛|
= 𝛽, lim

𝑛→∞

𝑛

|𝜆𝑛|
> 𝛼.

Then the exponential type
𝜎(𝐹 ) ≡ lim

𝑟→+∞
𝑟−1 lnmax

|𝑧|=𝑟
|𝐹 (𝑧)|

of function 𝐹 (𝑧) satisfies the exact inequality

𝜎(𝐹 ) > 𝑠2𝜃(𝛼, 𝛽; 1/2), (31)

where the quantity in the right hand side

𝑠2𝜃(𝛼, 𝛽; 1/2) = 𝜋𝛼 cos 𝜃 + max
𝑎>0

𝑎∫︁
𝑎(𝛼/𝛽)2

(︂
𝛽√
𝑎
− 𝛼√

𝑥

)︂
𝑥+ cos 2𝜃

𝑥2 + 2𝑥 cos 2𝜃 + 1
𝑑𝑥 (32)

comes from Theorem 1.

In order to prove, it is sufficient to consider the entire function

𝑓(𝑧) =
∞∏︁
𝑛=1

(︂
1− 𝑧

𝜇𝑛

)︂
, 𝜇𝑛 = 𝜆2𝑛,

of order 𝜌 = 1/2 with zeroes

(𝜇𝑛)
∞
𝑛=1 ⊂ Γ2𝜃 = {𝑧 ∈ C : | arg 𝑧| 6 2𝜃} , 2𝜃 ∈ [0, 𝜋/2],

to take into consideration that

lim
𝑛→∞

𝑛

|𝜇𝑛|1/2
= 𝛽, lim

𝑛→∞

𝑛

|𝜇𝑛|1/2
> 𝛼, 𝜎1/2(𝑓) = 𝜎(𝐹 ),

and to apply Theorem 1.
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Without using the lower density of zeroes (𝛼 = 0), estimate (31) becomes

𝜎(𝐹 ) >
𝛽

2
max
𝑎>0

1√
𝑎
ln
(︀
𝑎2 + 2𝑎 cos 2𝜃 + 1

)︀
.

If the sequence of zeroes of 𝐹 (𝑧) has the density (𝛼 = 𝛽), then (31) becomes the estimate

𝜎(𝐹 ) > 𝜋𝛽 cos 𝜃.

All the estimates are sharp. The integral (32) can be calculated in terms of elementary functions
also in the case 𝛼 ∈ (0, 𝛽), but the final expression is so bulky that it is not reasonable to provide
it here.

Theorems 2, 3 imply immediately the following statement.

Theorem 4. Let Λ = (𝜆𝑛)
∞
𝑛=1 be a sequence of complex numbers with a finite upper density

𝛽 > 0 and with lower density > 𝛼 ∈ [0, 𝛽] such that | arg 𝜆𝑛| 6 𝜃, where 𝜃 ∈ [0, 𝜋/4]. Let entire
function 𝐹 vanishes at set ±Λ and its exponential type less than

Γ2(3/4)√
𝜋

𝑠2𝜃(𝛼, 𝛽; 1/2),

where 𝑠2𝜃(𝛼, 𝛽; 1/2) is given by formula (32), and the scalar coefficient Γ2(3/4)/
√
𝜋 is equal to

0.8472 . . .. Then 𝐹 ≡ 0 on C.

In order to show the possibility of application of Theorem 4 to the exponential approximation
in a complex domain, we recall some definitions. Let Λ = (𝜆𝑛)

∞
𝑛=1 be a sequence in C and Λ(𝜆)

denotes the number of appearance of point 𝜆 in sequence Λ. We say that the system of (multiple)
exponentials

𝐸Λ ≡
{︀
𝑧𝑛−1𝑒𝜆𝑧 : 𝜆 ∈ Λ, 𝑛 = 1, 2, . . . ,Λ(𝜆)

}︀
, 𝑧 ∈ C,

is complete in a circle

𝐾𝑅 ≡ {𝑧 ∈ C : |𝑧| < 𝑅} , 𝑅 > 0,

if it is complete in space 𝐴(𝐾𝑅) of functions analytic in this circle equipped with the topology
of uniform convergence on compact sets in 𝐾𝑅. The symbol 𝑅(Λ) denotes the completeness
circle radius of sequence Λ, i.e., the supremum of all radii of circles 𝐾𝑅, in which system 𝐸Λ

is dense. We denote by 𝜎𝑖𝑛𝑓 (Λ) the infimum of values 𝜎 > 0, for which there exists an entire
function 𝐹 ̸≡ 0 of exponential type 6 𝜎 such that 𝐹 vanishes at Λ (counting multiplicities):
𝐹 (Λ) = 0. In accordance with the well-known criteria of the completeness of system 𝐸Λ in
space 𝐴(𝐾𝑅) (see, for instance, [9, Sect. 3.3.1]) the identity

𝜎𝑖𝑛𝑓 (Λ) = 𝑅(Λ)

holds true.
For fixed 𝛽 > 0, 0 6 𝛼 6 𝛽, 0 6 𝜃 6 𝜋/4 we introduce the class 𝑃𝜃(𝛼, 𝛽), consisting of all

possible sequences Λ = (𝜆𝑛)
∞
𝑛=1 of complex numbers of upper density 𝛽 > 0 and lower density

> 𝛼 ∈ [0, 𝛽] such that | arg 𝜆𝑛| 6 𝜃. We let

𝑅𝜃(𝛼, 𝛽) ≡ inf
Λ∈𝑃𝜃(𝛼, 𝛽)

𝑅(±Λ). (33)

Our aim is to estimate characteristics 𝑅𝜃(𝛼, 𝛽) as exact as possible. Simply saying, we need to
find with a good sharpness the radius of the maximal circle in which each system of exponentials
with exponents generated by a sequence ±Λ in class 𝑃𝜃(𝛼, 𝛽) is complete.

At present, the best known estimates for 𝑅𝜃(𝛼, 𝛽) can be obtained by combining Theorem 4
with classical inequality (see. [10, Sect. 2.5])

𝜎(𝐹 ) > 𝛽 exp

{︂
𝛼

𝛽
− 1

}︂
.
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This inequality is valid for the exponential type of each entire function 𝐹 with the sequence of
zeroes having upper density 𝛽 and lower density > 𝛼.

Theorem 5. Suppose that we are given numbers 𝛽 > 0, 0 6 𝛼 6 𝛽, 0 6 𝜃 6 𝜋/4, and
quantity 𝑠2𝜃(𝛼, 𝛽; 1/2) is calculated by rule (32). Then for the extremal completeness radius
𝑅𝜃(𝛼, 𝛽) defined by formula (33) the two-sided estimate

max

{︂
Γ2(3/4)√

𝜋
𝑠2𝜃(𝛼, 𝛽; 1/2); 2𝛽 𝑒𝛼/𝛽−1

}︂
6 𝑅𝜃(𝛼, 𝛽) 6 𝑠2𝜃(𝛼, 𝛽; 1/2)

holds true. For instance, for the system of exponentials with measurable exponents we have

𝛽 max
{︀
Γ2(3/4)

√
𝜋 cos 𝜃; 2

}︀
6 𝑅𝜃(𝛽, 𝛽) 6 𝜋𝛽 cos 𝜃,

where scalar coefficient Γ2(3/4)
√
𝜋 = 2.6614 . . . . In particular,

2.6614 . . . 𝛽 6 𝑅0(𝛽, 𝛽) 6 𝜋𝛽.

In conclusion we observe that Theorem 3 can be extended for the functions invariant w.r.t.
the rotation by the angle 2𝜋/𝑠, where 𝑠 = 3, 4, . . . , following work [7]. The same remark is true
for other results of Section 4 of the present paper.
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