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Abstract. In the work we consider nonlinear optimal control problems for semi-linear
elliptic equations with discontinuous data and solutions (states) with controls in the
boundary conditions of conjugation of heterogeneous media and in the right hand side
of the state equation. We prove the differentiability and Lipshitz continuity for the grid
analogue of the cost functional for extremum problems.
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1. INTRODUCTION

In the present work we consider the problem on optimal control of processes described
by elliptic equations in heterogeneous anisotropic media with discontinuous coefficients and
solutions (states) subject to the boundary interface conditions of non-ideal contact type. The
problems for equations of mathematical physics (EMP) with non-ideal contact conditions often
arise in modeling various processes in the mechanics of continua, the theory of elasticity, heat-
conducting, diffusion. The discontinuity of the coefficients and solution occurs when the media
is heterogeneous and consists in several parts with different properties or when the domain
contains thin layers S with physical properties sharply different from the main media (see [1]-
[3]). Assuming such layers S very thin and weakly penetrable, their influence on the studied
physical process, i.e., the contact conditions, can be described by the relations (see, for instance,

[1):
p(z) = (68—1\2) = (08_135>+ =0(z)[u], z€S,

<8NS) (Zk 8xacos(n xa)>i,

where [u] = ut(z) — u ™ (x) is the jump of function u(z) on S, p(z) is an unknown flow of the

matter (heat) through an elementary area, f(x) > 6y > 0 is a given function, S = Q N Q"
is interface between the media, 2~ N QT = @, Q= and QF are some domains such that Q =
Q- UQtUS is a bounded domain.

In the most cases, mathematical optimizations of the processes can not be solved analytically
and they require application of numerical methods and their computer realizations. The
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numerical solving of optimal control problems (NSOCP) is in a wide sense related with studying
the following issues:

1. The formulation of optimization problem ensuring the existence of solution on the set of
admissible controls being a set of some infinite-dimensional vector space;

2. The reduction of optimal control problem to a sequence of finite-dimensional problem
guaranteeing the convergence in some sense of solutions to the finite-dimensional problems
to the solutions of original optimal control problems;

3. Numerical solving of the finite-dimensional problems.

The problems for EMF with discontinuous coefficients and solution are not well studied
(see the survey in [4]). Important results for optimal control problems described by nonlinear
EMP with discontinuous coefficients and solutions were obtained in works [4]-[6], where there
were developed new methods for studying optimal control problems described by nonlinear
EMP with discontinuous coefficients and solutions; the methods were based on constructing
and studying difference approximations of extremal problems, establishing the estimates for
the approximation accuracy w.r.t. the state and functional, and on the regularization of
approximations.

The present work is a natural continuation of [4]-[6]. Here we study nonlinear optimal
control problems described by semi-linear elliptic coefficients with discontinuous coefficients
and solutions (states) with interface boundary condition of non-ideal contact type. As the
control, the coefficients in the boundary condition of the interface between heterogeneous
media and the right hand side of the state equation serve. The work is aimed on solving
the third step of NSOCP, namely, on developing effective numerical methods of solving
constructed finite-dimensional of grip optimal control problems. We note that such issues were
not considered before. For the numerical realization of finite dimensional optimal control we
prove the differentiability and Lipschitz continuity for the grid functional of the approximating
grid problems. We obtain effective procedures of calculating the gradient of minimized grid
functionals employing solutions of direct problems and associated auxiliary adjoint problems.

In thermal terms, the formulated problems can be interpreted as optimal control problems of
controlling the coefficient in the boundary condition of the interface between two different heat-
conducting media 0(x) and coefficients f;(z) and fo(z) characterizing the presence in media 4
and )y of internal heat sources, respectively, by which the heat can be released or absorbed
inside the media. At that, the coefficient in the interface boundary condition characterizes the
thermal resistance of the non-ideal contact of heterogeneous media [I], [3].

2. FORMULATION OF PROBLEM

Let
Q={r=(r,m) €eR*:0< 14 < lo,a=1,2}

be a rectangle in R? with boundary 99 = I'. Suppose that domain € is splitted by an “internal
contact boundary” S = {7’1 =& 0<ry < lg}, where 0 < £ < [y, into subdomains 2y = Q™ =
{O <r <& 0<ry<l}and Q =QF = {5 <ry <liy, 0<ry<ly} with boundaries
00y = 00~ and 99, = 00T, Thus, Q = Q; UQLUS and 09 is the internal boundary of domain
Q. By T'x we denote the boundaries of domains Qj without S, k = 1,2. Thus, 09 =, U S,
where parts ', k = 1,2 are open non-empty sets in 0Q, k = 1,2; T1 UTy, = 0Q = I'. By n,,
a = 1,2 we denote the outward normal to boundary 0€, of domain ., a« = 1,2. Let n = n(z)
be the unit normal to S at some point x € S oriented, for instance, so that normal n is the
outward one for S w.r.t. domain €2y, i.e., normal n is directed inside domain §25. In what follows,
while formulating boundary value problems for the states of control processes, S is a straight
line along which the coefficients and solutions of boundary value problems are discontinuous,
while in domains €2; and €25 they possess certain smoothness.

We consider the following Dirichlet problem for the semi-linear elliptic equation with
discontinuous coefficients and solutions:
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Find function u(x) defined on Q of the form u(z) = ui(x), * € O, u(x) = us(x), x € Qy,
where components ug, k = 1,2, satisfy the conditions:
1) functions ug(x), k = 1,2, defined on Q = Qx U 0Qy, k = 1,2, satisfy the equations

_Zaxa( au)‘l'd()():f(if)a r €U, (1a)

Ol

in Q, k = 1,2, while on boundaries 9, \ S = 'y, the conditions
u(z) =0, z€dQ=T;UTly, (1b)

are imposed;

2) Functions u(z), k = 1, 2, satisfy additional coefficients on the discontinuity line S for the
coefficients and solution so that these conditions allow us to “glue” solutions w;(z) and wug(x)
along interface boundary S of domains §2; and §25:

6u1 aUQ
k(@ ) om = k(@ ) gg, = V@) (wa(w) (@), w €85, (1c)

where
() = {Ul(ﬂf)> r e, () = {Ch(fl)» & €R,
|l we(z), x€Q, | e&), &eR,

kD (z),di(2), filz), =€,
2 (2),dy(2), foz), 2€Q, a=1,2

Here [u] = us(x) — ui(x) is the jump of function u(z) at S, ka(x), @ = 1,2, d(z) are given
functions defined independently in ; and €2, and having a first kind jump at S, ¢, (&), @ = 1,2,
are given functions defined for &, € R, a = 1,2, g(z) = (f1(x), f2(x),(z)) is a control. For the
given functions we assume that k. (z) € WL (Q) x WL (D), a=1,2,d(x) € Loo(1) X Loo(Q2),
0<v<kyr) <7, a=1,20<dy <d(z) <dy, x €Q UQy, 1v,7,dy,dy are given constants,
functions ¢, (&,) defined on R with values on R satisfy the conditions:

7(0) =0, 0< gy < (Qa(§a> - Qa(ga))/(ga - Ea) < Ly < o0,

for all &, €, €R, &4 #E,, a=1,2, L, = Const.
We introduce the set of admissible controls:

k() d(x), f(x) = {

3
U=]]UsCH=La() x La(Q2) x La(5),
=1
° (2)
U, = {ga = fa(x) € LQ(Q )i 00 < folz) < B, ae. on Qa},
a=1,2; = {g3(z) GLQ(S> : 0 < 03 <0(z) <o;ae onS},

where 94, 0, @ = 1,3, are given numbers.
We introduce the cost functional J : U — R! as

g Iy / u(ri,729) = a0 ()| den = Iu(rig)), g

where Uo € W3 (€y) is a given function.

The problem of optimal control is to find a control g, € U that minimizes the functional
g — J(g) on set U C H, more precisely, we need to minimize functional on solutions
u(r) = u(r; g) to problem associated with all admissible controls g = ( f1, fo, 9) el.

In what follows we shall need some spaces introduced in work [6]. We provide their definitions
for the completeness of the exposition. In particular, we consider the space V (Q(12), Q(1:2) =
Q1 U Q,, of pairs of functions u = (uy,up): V(QH?) = {u=(u1,uz) € Wi (Q1) x W3 ()},
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where W3 (Q), k = 1,2, are Sobolev spaces of functions defined in subdomains ), with
boundaries 09, k = 1,2, respectively, and with the norms [7]-[9]:

2 2
auk
||Uk||?/v21(9k) = /{Z (3_%) —i-Ui} ., k=1,2.
Qe a=1
2
Space V = V(Q1?) equipped with scalar product and norm Z Uk, Uk ) wh ()
k=1

2
|ull} = Z ||uk||12/v21(9k), is a Hilbert space.

In Hilbert space V(Q21?) we can introduce an equivalent norm
2 2/ ou\ 2 2
2 _ k 2 2
oz =Y [ 3 (52) aon+ Y- [utaris [fpas
h=1g, o=l k=17, S

where [u] = us(z)—u;(z) = ut(z)—u~(z) is a jump of function u(x) on S. Here us(z) = u*(z),
z €S, and uy(z) =u(x), x € S, are the traces of function u(z) on S while approaching S in
Qy = QF and Q; = Q, respectively. We note that the condition u(z) € V/(21?)) implies that
[u(x)] € Lo(S), since in this case the theorem on traces [7]-[9] is valid for each side ST, S~ of the
boundary of contact S (the restriction operator is continuous as that from W3 (Q%) into Ly(9)).

Theorems on traces to Q; and €2, allow us to define two traces for each function u(x) € V(Q1:2)
by the operators of restriction on S¥, i.e., from opposite sides (while approaching in ©; and in
)3), which in general case are different.

Let T') be a part of 9. By Wy (Qk; Fk) we denote a closed subspace of space W3 (), in
which a dense set is that of functions in C'*(€2;) vanishing in the vicinity of Ty COQ, k=1,2,
which is a part 'y of boundary 0, k =1, 2.

We introduce the space Vi, r,(Q21:?) of pairs of functions u = (uy, ug):

‘O/rl,FQ(Q(LZ)) = {u = (u1,up) € Wy (Q;T1) x Wy (Q;T) }

with the norm (see [4]):
2 2/ O\ 2
k
ol =30 [0 (52) @+ [laras
k=1¢ a=1 @ S

For each fixed control g = ( f1, fg,@) € U, a solution to direct problem is a function
u(g) € ‘>F1,F2(Q(1’2)) satisfying the identity

2

Qu, ) = / [Z () g;: g;i + d(z) g(u) 19] i + / 0(2)[u][9]dS

a=1
Q1UQ S (4)
- / f(x)0dQy = 1(9), for all ¥ € Vrl,r2(Q(1’2)).
Q1UQ

Remark 1. In what follows we make the following assumption on the smoothness of the
direct problem (which is similar to the assumption made in |5 in studying difference scheme
for the problems with the same interface conditions): a solution to boundary value problem
belongs to W3(Q1) x WE(Q), more precisely, it belongs to space

Ve (Q02) = Ve, r, (Q02) 0 {u = (ug, uz) € W) x WE(Q2) ],
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and for each fixed control g € U the estimate

Z Jur (2, g)lwz) < MZ | fe(@) o), Vg €U,  where M = Const > 0.

hold true.

Remark 2. Hereinafter, by M, ]\7, My, C, Cy, 50, Cr, k = 1,3 we denote various positive
constants independent of solution u(r; g) and control g € U (grid solution y(x; ), grid control
P, € Uh)

3. DIFFERENCE APPROXIMATION OF OPTIMIZATION PROBLEMS

For numerical solving of optimal control problems we consider the problem on approximations
of infinite-dimensional optimization problems (/1] . by a sequence of finite-dimensional optimal
control problems. In what follows we shall construct the approximations of the problems by the
grid method (see [1]). In order to approximate problems (I])-(B), we shall need some grids on
[0,14], = 1,2, and in Q2. We note we can always construct a grid on [0,/;] so that the point
= ¢ is its node. While solving practical problems, it is reasonable to find uniform steps hgl)
and h@) in domains €, and s, respectively, and subject to the location of the point z; = £,
the number of nodes should be found by the assumption h( ) ~ h(2) We let x(“) — mgil_l) = hq,
iy =1, N; and x2 - mgz - hs, iy = 1, Ny. The value of z; at the point z; = ¢ is denoted by
x¢ and the corresponding index of the node is denoted by Ni¢, 1 < Nje < Ny — 1. We introduce
the grids:

w) = {»’171Zl =ithy €[0,€] i1 =0, Nyg, Nighy =€},
—<2 = {2V =i1hy € [6,1] : i = Nig, N, Nighy =11},
wP =\ {o =021 =&}, o’ =@\ {o1 =& a1 = 1i);
= {2V = ishy € ]0,1] + iy =0, No, Noho = b}, wy =W \ {22 = 0,25 = b};
o= ue?; w =0V U B0 =2l xwy; 8® =2 x w,;

wd) = wgl) X wy; w? = w(2)

X Wa;
= =W ua® = (@" ue?) x

{xgil) =i1hy, i =0,N1, Nighy =& (N1 — Nig)hy =13 — &, 1 < Nig < Ny — 1} X o,

B T I N T T S I
wf)f = wgz) N L), w®ED = w§ X @y
Vs = {1 =& 22 =ho,2hy,...,(No— 1)ha} = {z1 = g s 02 = ishy, iy =T, Ny — 1};

Ow® = z® \ WK is the set of boundary nodes of grid @*), k = 1,2.
Let us introduce scalar products, norms and semi-norms of grid functions, which will be
used in what follows (for a more detailed description see [4]). The set of grid functions y; ()

defined on the grid @V = @ x @, € O, =0 is denoted by H\"”(@D), while the set of grid
functions y(z) defined on the grid @® = o\? x @, c O, = Q" is denoted by H ,(f) (@®). The
set H ,Sk) (@®), k = 1,2, equipped with the scalar product and the norm

2
W k) Loy = > wk(@) vi(@) haha, [yl py o) = (yk,yk)L/Q(m),

o)
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is denoted by Lo(@™®), k = 1,2. Here hy = Ay (1) is the mean step of grlds w ) and @ ©?, while
hy = hy(z2) is the mean step of the grid @y, [1]. By Wi (@) and W} (@®) we denote the spaces
of grid functions defined on grids @™ and @®), respectively, with the scalar products and the
norm:

Yk Vi) wj @ Z Ykz, Viz, Mo + Z Yz Vi P + (Yks Vi) 1,00y
WP+ )
Wi

XWa

il a0y = I8l + el gy, &= L2

where

Hvka2 = Z y]zjlhlib + Z ylz@hlh% k=1,2.

w§k>+><52 ng)xaﬁ

We have introduced space V(1)) of the pairs of grid functions y = (y1,y2) determined by
the relation V(@) = {y = (y1,42) € Wi @) x W3 (w®)}. Being equipped with the scalar
product and the norm

2 2

(v, V)V(DU’Q)) = Z(yka)WQl(ww))a Hy”%/(w(m)) = Z H?/kH%@(mk))a
k=1 k=1

space V(@ ) 1s a Hilbert one. Assume that v*) = 9w®) \ 4 is the subset of boundary nodes
0w of grid w® c O, k =1,2. By Ly(@®; 7(’“)) we denote the normed subspace of spaceo of
grid functions Ly(@®)) vanishing at v*), k = 1,2, with the norms

||yk||i2(w(k)w(k)) = Z x)hihy + — Z yk x)hihs

z€wk) CCG’YS
1
= Z ylz(x)hlh2 + 5 Z yl%(éu x2)h1h27 k= 17 27
xew(k) ToEw

induced by the scalar products
(ykavk)LQ(w(k)w(k)) = Z ( ) hlhg + = Z yk hlh% k= 1’2.
xEwk) xEvs
By W3 (@®;~4®) we denote the subspace of space of grid functions W3 (@®) vanishing at
7*®) k = 1,2. We introduce the spaces HWW(Q)( 12)) and V ) (@ 512 of the pairs of grid

functions y = (y1, y2):

Hay,00 (_(1’2) ={y = (y1,12) € Lo@M;7W) x Ly@®;4?)}

‘D/W)w(?)( {y = (y1,v2) € Wy (@ o (1)) x Wy ( ). 7(2))},

with the norms

2
(D 1 AN 1\ e [
k=1
where
2
19kllZ, () = (ymyk)h(w); 7y La(vs) Zhwk k=12
TEYS

By H,(Ll)(w(l) U~s) = Ly(w™ U~g) we denote the space of grid functions vy, (z), z € w® Uy
defined on grid w™ U ~g with the scalar product and the norm

(V1 T18) ) () = > (@)t (x)hhy + 5 Zvlh z)01h(2) b1 ha,

rewk) :vec/s
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Hvlh('%‘)HZ(l)(w(UU,}, ) = (vlha Ulh)H(l)(w(l JUvg)

In the same we introduce the space of grid functions H (W@ Uyg) = Lo(w® Ung) (see []).
We associate the following difference approximations Wlth the optimal control problems —
: minimize grid functional

Tn(@n) = Y |yla, @) — —uly) (@) " hahy = y(@p) —“&)H%Q(wuw (5)

zem®

under the conditions that the grid function y(®,) = (y1(®4), y2(®1)) € V- ) (2)( (1.2)) called a
solution to difference boundary value problem (difference scheme) for problem satisfies the
summatory identity

v) = { Z Zaﬁ)ymvmhlhz

(1)+ wo
(Z Z a2h y1$2vl$2h1h2 +35 Z agiz) (57 x2)y1f2 (57 xQ)UIEQ (57 I'Q)hlh/?) }
(1) w+
+ { Z Za?h)y251v2fl hihs
(2)+ w2
(Zza2hy2xzv2xzh h2 + = ZGQh g T2 y2x2(€,$2)l}2x2(§ z?)hlhz)}
(2) wy
+ Z Dap,(x2) |y(&, x2)} |:/U<§,.ZU2)j|h2 ©)

+ { <Z din(z)q1(y1 (z))vr () iy + % > din(€ )i (y1 (€, w2))un &, I2)h1h2)

w(®)

+ (S dawloete >2<m>h1h2+%Zd2h<s,x2>q2<y2<s,x2>>v2<f,x2>h1hg)}

w2

{(Z (blh Ul hlh? + = Zq)lh 57£2)“1(€,$2)h1h2)

w®
(Z q)2h 02 h1h2 + = Z @211 53 952)@2(57 $2)h1h2>} = lh(’U),
w®

for each grid function v(®g,) = (v1(Py), v2(Py)) € V,y(l),Y(Z) (@12), while grid controls ®;, =
(<I>1h, Doy, (I>3h) are such that

O, (z) € Uy, _HUM C Hy = Lo(w™® Urg) x La(w® Unrs) x La(ws),
k=1 (7)
Uah = {Pan € Ly Uqs) : 0 < 0 < Pon(z) <7, ae in w® U7s},
a=1,2; Us= {fbgh(ztg) € Lo(wy) : 0 < p3 < Pyp(z) < 05, ace. in w2},
where g, 0, k = 1,3 are given numbers.
Here a(alfz (x), a(aQ}z (@), don (), v = 1,2, u&) (x) are the grid approximations of functions k&l)(r),
kS (r), do(r), a = 1,2, uél)(r) defined via Steklov averages (see [6]).
Remark 3. The proof of the well-posedness for optimal control problems -, the well-
posedness of their difference approximations by grid optimal control problems (9 —(@, the
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convergence of the approzimations by state, functional, control, the corresponding approximation
estimate and regularizations of the approximations can be made by the methods in [4]-6].

Let us write explicitly difference scheme @ at the nodes of the grid @ = w; Uwy = w»?: Find
function y = (y1,2) defined on @ = w; Uw, = w2, y(z) = yi(z) for v € @Y, y(z) = ya()
for z € @, where components y;(x) and y,(z) satisfy the following conditions:

1) Grid function y; satisfies the equation

B (a&)(x)ym)m - (agz) (x)y11'2>1-2 + dlh(l’)%(yl) = (I)m(l’)a YIS W(l)y

in w™® and the condition 3, (z) = 0, 2 € vV, on the boundary vV = 9w® \ 7s.
2) Grid function y, satisfies the equation

- (aﬁ) (@y%l)m - (agl) (:E)y%Q)

+ don (7)o (1) = Pon(), @ € W,
2

T

in w® and the condition ys(z) =0, z € ¥, on the boundary v? = 9w® \ 7s.
3) Functions y; and y, are related by additional conditions on yg = {1 = £, x5 € ws}:

h% [a&) (&, 22) 1z, (&, 22) + Pan(x2)y1 (€, Iz)] + din(&, 22)q1 (Y1 (€, 72))

— (W w6 ma)) = Bu6oma) + 3 an(o)n(€s ), 7 € 9

_ h% [aﬁ) (& + 1, m2) Y20, (€, 72) — <I>3h(:v2)y2(5,332)} + don (&, x2)q2(y2 (&, x2))

- (agh) (3 xz)ym(fa@))m = Dy (&, 2) + h%q)sh(xz)%(f,%z)a T € 7s.

4. DIFFERENTIABILITY OF GRID FUNCTIONAL J,(®y)

For numerical realization [I0] of finite-dimensional optimal control we first need to prove
the differentiability and Lipschitz continuity of grid functional for approximating grid problems

B-@.

Let us show that functional J,(®;) is differentiable w.r.t. &, = ((I>1h,(I>2h,<I>3h) on Uy,

a = 1,2,3, in space B, = Ly(w™ U~vg) x Lo(w® Uvg) X Lo(ws). In order to do it, we take
arbitrary controls @y, @, + Ad;, € Uy,. Let y(Py,) and y(Py, + Ad,) be the solutions to problem
@ associated with controls ®;, and &+ A®,,, while J,(P,,) and J, (P, +APy,) be the associated
values of functional J;,. We denote

Ay(l‘) = y(I; (I)h + Aq)h) - y(m; (I)h), AJh((I)h) = Jh(q)h + A(I)h) — Jh<(1)h)

Let us obtain the problem for increment Ay = Ay(z). In order to do it, we rewrite summatory
identity for the solution @ associated with the control ®;, + Ady:

Z Z aﬁ)ylgl ((I)h + A@h)vlgl hth -+ Z Z agl)ylfz ((I)h + A(I)h)vnglth

ot 2 oD of

1
*3 Z agy) (€, 02)Y1z, (€, 225 By + ALy ) vz, (€, l’z)h1h2)
+

Wy
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+ Z Z aﬁ)ym (P, + APy )voz, hiho + Z Z a;i)yZEg(q)h + ADy) voz, hihy

WP+ @2 W@ wi

+3 Zazh &, T9) Yo, (€, 23 P, + AD) vag, (&, x2)h1h2)

‘*’2

+ Z Cbgh (x2) + A(I)gh(l'g)) [y({, x9; Py, + Ad)h)] [U(S, 1'2)] ho

(Z din(2)q1 (y1 (3 @, + ADp)) v1 () hihy
(D)

+ = Zdlh &, x2)q1(y1 (€, xa; Op + ADy)) v1(&, 22) g hz)

(Z don(2)q2(ya(x; @, + ADp))ve(z)hihy

w()

+ % Z don (&, 22)q2(y2(&, 22)) V2 (&, a5 p, + A@h)h1h2>

— (X (@) + A r(olaha + 5 3 (@ + A0 (6 23) 16 2k

w(l) w2

+ (Z (Pon(x) + ADop) vo(x)hihg + % Z (Pop, + ADyy) (&, 2) v2(€, fl?z)hth)-

w(2) w2
Deducting identity @ from , we obtain

Z Z a&) (ylil (z; P, + ADPp) — 117, (; @h))vlfl hihs

w(1)+ w2

(ZZa% Uiz, (15 B + ADy) — Yuz, (; 1)) V1, by hg

o wf

+5 ZCLQh £, 952)(91@(5 T3 Op + AD) — ym(&@;¢>h))v1x2(£,xz)h1h2)
+ Z Z @ﬁ) (yoz, (23 @4 + ADy) — Yoz, (73 Pp) ) voz, ha o

w52)+ w2

+ <Z Z aéi) (yozs (3 @4 + AD) — Yoz, (7 Pp) ) vaz, ha o

+ = Z a’2h 57 '172) (?Jsz (57 Z2; q)h + A@h) Yoz, (ga X2, ®h)>v2§2 (57 l‘g)hlhg)

"Jz

T Z{ (B (2) + Ao (2)) [y(r + ADp)] — Dan () [y(Pn)] } [o(€,22)] s

w2

(Z din(x) (g1 (Y1 (5 @p + APy)) — g1y (25 D)) )1 (2) by iy

w®)

87
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+ = de §, $2)(Q1(y1(f T2, Pp +A<I>h)) - QI(y1(£ $2,q’h)))v1(5 $2)h1h2)

<Z don () (925 @+ AB1)) — (o5 B1))) ()

w2

+ 2 Zd% &, 22) (q2(y2(&, w25 Bp, + AD)) — ga(ya(€, xz,@h)))v2(§7$2)h1h2)

(Z A(I)lh hlhg + = Z Aq)lh f LL’Q) U1 (5 JIQ)hth)

w@®

<Z ADyp(x) vo(x)hihe + = ZA@% €, x9) va(€, $2)h1h2)

w(?)

for all U(af}) S ‘O/;,u),y(z) (5(1’2)).
Taking into consideration that y(z; ®, + A®y) = y(z; Py) + Ay(x), we obtain the following
problem for increment Ay:

Z Z alh (Ay1)z, viz, hiho + (Z Z agh (Ay1)z, vz, hihs

WD+ w2 o wf

+ = Zagh §, xz)(Ayl)xz(ﬁ Ig) Ulmg(f x2)h1h2>

(.d

2
+ Z Zalh Aya)z, Voz, hiha + <ZZa2h AYs2)z, Voz, hiho

WDt w W® wf

+35 Z%h (&5 22)(AY2)z, (&, 72) U2mz(fa$2)hlh2> +Z{Aq)3h 552)[ (57332,‘1)11)}

w
w2 2

+ By (22) [AY(E, 2, Pn)| 4+ Ay (22) [Ay(E, 22, )] } [0(&, x2)]

+ Z din(x (I1 Y1 (2; @ 4+ APy)) — q1 (31 (5 q)h)))vl(x)hth

w(@®)

+ ! Z din (&, 2) (1 (Y1 (€, 225 @p + ADL)) — g1 (y1(&, 223 Pr)) ) v1(€, 22) ha s (9)

+ Z don(x Q2 yo(z; Dp + ADy)) — qo(yo(z; q)h)))w(x)hllh

w(2)

+ = Zd2h ¢, 1’2)((]2(3/2(5 To; Pp + APy)) — qa(ya(§, w2 (I)h)))v2(§ w2)h1hy

= Z A®yy(x) vi(z)hihe + - Z ADy, (&, 22) v1(&, w2)hihe
w(l) w2

+) Ay (2) va(x)hihy + 5 Z ADyy, (€, 9) v9(€, ) hy D,
w(2)

for each grid function v = (vl(CIDh), vz(fbh)) eV ()2 (W w(1:2),
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The increment of functional J,(®;,) can be represented as
AJp(®r) = Jn(Pp + ADy) — Jn (D)
Z |y z; Pp) +Ay—u0h | by — Z ‘y x; Pp,) —uOh | hq ko

onJ(l) wa(l) (10)
= 22 X, (I)h —uOh( )) Ay h1h2+z Ay hlhg
w® o

For further transformations of formula for the increment of the functional, we introduce
function ¢ = ¢ (z; ®;) as a solution to an auxiliary boundary value problem (adjoint problem):

(@)~ (@@ )+ din) a(e) = =2 (y@) —u @) @ ew,
i) =0, AW =0\ s

~ (@) - (a2h< W)+ dane) daptin(a) = 0, @€,

() =0, 59 = P\ 1

o [o006 ) (€ m2) + @) (€ )] + 6 m2) @ (6, )
— (a6 w2em e m) = =2 (y(E22) — ufl)(€ 7))

Z2

+ fi Dy (22)Y2(8, 72), T € s = {711 =&, T2 € wa},

_ h% [aﬁh (€4 hy, @) oz, (€, 22) — Pgp(x2) 1o (€, xg)] + don (&, 22) Gy, (€, 22))

- (ai)(&@)w%z(f,mz)) = %@%(:cz)wl(s,@), r € s = {11 =& 12 € W}

€2

(11)
A solution to adjoint problem is a function ¥(Pp) € V(%(z( w(1?)) satisfying the
summatory identity

alh @Dmlel hihy + azh)zﬁmvlmh ha
> D 2.2

WDt w2 WO i
+5 Zagh &, 2)Unz, (&, x2) V1z, (€, 2 h1h2> Z Zalh Yoz, Vg, N1y
w2 (2>+ w2
(Zz%h Yoz, Vaz, e + 5 Zagh £, o wzm(fﬂﬁz)U2x2(f,x2)h1h2)
W® i
+Z(I)3h 22) [Y(&, 2)] [v(€, 22) h2+Zd1h @1y, 1 () vi(z)hahg (12)
W)

+5 de (€,22) 1y (€ )1 (€, 22) 01 (€, ) B

+Zd2h T)Qay, Vo (x) Vo) hihy + §Zd2h(f,$2)Qng¢2(f>$2) V2(&, x2)h Py

w(?)

=23 (ule) — ufy () val@)huhs — 3 (4(€,22) — u})(E 22)) 0a(& w2,

w(l) w2
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for all v € ‘ofvmv(z) (@1:2).
Let us show that the increment of the functional satisfies the representation:

AJh((I)h) :Jh(q)h + A(I)h) — Jh(q) )
Z Aq)lh(l’) hlhg Z ACI)Q}L )hlhg

wMUys w@Uys (13)

+ Z Ay, (1) [3/(5, x2, q)h)} [Q/J(f, 352)} ha + Rp,

w2

where

Rh—Zth, Rpy = Z (Ay1)2ﬁ1h2,

()+

Ry = Z dip(z)yn (x ( y1+Ay) —qi(yr) — QIylAyl)hlh2>
T (14)
Ry3 = Z dop (z) o (2 (IQ(Z/2 + Ays) — q2(y2) — Q2y2Ay2)h1h2,
Rpy = % Z din (&, x2)Y1(§, 22) <Q1(yl + Ay) — q1(y1) — Gy A (&, 1152)) hihs,
% D don (&, 22)1ha (€, 22) <Q2(y2 + Aya) — ¢2(y2) — G2y Ay (&, 332)) hihs,
Rye = Z Ay (1) [Ay(£7 xz)] [w(é, $2)]h2
Indeed, letting v = 1 in @D we obtain
Z Zalh A?Jl 1 U1z, hiho
1)+ w2
+ (Zza;} (Ay)z iz hahe + 5 Z%h (& 2) (Ay1 )z, (&5 T2) U1z, (€, $2)h1h2)
W wi w
+ Z Za (Aya)z, Yoz, hiho
(2)+ w2
(Z ZG(Q) Ay2 z2Vom, Niha + = Z agh 57332)(Ay2)m(f>$2)¢2x2 (57 $2)h1h2>
W® i wi
+ Z{A%h(wz) [y(&, 22, ®p)] + Pan(2) [Ay(E, 22, )]
+ Aq)3h(x2) [Ay(gv X2, q)h)} } [¢(§7 172)} h2 (15)

(Z din () (qu (1 (2 P + A®)) — g1 (ya (25 Pr))) b1 () haho

w@®

+ % Zdlh(f,iﬁz)(%(yl(ﬁ, To; @p + APL)) — q1(y1 (€, z2; <I>h)))w1(£, $2)h1h2>

w2
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(Z don () (q2(y2(; @ + A®L)) — @2 (y2(2; Pn))) tha(2) haho

w()

+ = Zd% (& m2) (@2(y2(& 25 Ph + AD)) — qa(y2(&, 223 Pr))) o (&, $2)h1h2>

= Z Adyy(z x)hihs + 5 Z ADy(E, w2) Y1 (&, z2)haho
+ Z APy () P2(2)hihe + 5 Z A®op (&, 72) V2(&, w2) hiho.
w®

Letting v = Ay in (12)), we obtain

Z Z a%z)@z)lfl Ayiz, hiho + Z Z agz)@bliz Az, hahy

WDt w2 WV wf

+5 Za% &, 22) 1z, (€, T2) Ayiz, (€, T2) hihe + Z Zalh Yoz, Ayaz, hihy

w2 (2)+ w2
+ Z Z agh wZIQAyQIQ hihg + = Z %h (&, x2)Waz, (€, 12) Ayoz, (&, x2) hiho
W® wf wi
+ Z Dy (2) [U0(&, 22) ] [Ay(€, z2) | by + Z din(2)qry, V1 (2) Ay (2) by by (16)
w(®

- % ; dlh(f’ xQ)qul (57 .172)77[)1 (57 $2)Ay1 (é, l‘g)hlhg

+ Z don () oy, V2 () Aya (x) hihy + % Z don (&, 72) 2y, V2 (&, 12) Aya (&, 22) R Dy

w(?)

= -2 Z ( — UOh ) Ay1( )hth - Z (y(ﬁ, xz) - ué}')(&’ I2)) Am(f, xZ)hlh?

w(l) w2

We deduct identity from ([L5)):

2{2@(%’) —uly)) Ayi hihy + ; > (y(& ) — ull (€, 12)) Ay (€, 22) hth}

w(l) w2

= Z{Aq)3h x2 5 L2, (I)h)} + A(I)3h<x2) [Ay(ﬁ, T2, th)] } [w<€7 $2)} ho

— Z ADyy(z)1)1 () hihy — = Z AD®y, (&, 22) V1 (€, w2)hiho
(D)
— Z ADop (x)tha(x)hihe — = Z ADoy (&, 2) Va(&, 22)hahy
(@
+ 3 du(a) ( (3 B A) = 4005 9) = g, B ) (1)
(D)

+ ) don()¢ha(2) (Q2(y2(9€; Oy + Ady)) — q2(ya2(x; Pp)) — Q2y2Ay2> hihy

w2
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1
t3 Z din(&; w2) ¥1(€, 22) (QI(yl((I)h + A®)) — qi(y1(Pr)) — QIylAyl) hihy

+ % Z d2h(f, xz) 1/12(57 2172) (Q2(y2(‘bh + Aq)h)) - Q2(’y2(q)h)) - qugAy2) hihs.

Substituting into (|10)), we arrive at representation — for the increment of functional
Jp(Py,).

Let us estimate increment Ay. Letting v = Ay in identity @ for the increment and taking
into consideration that ®; = (‘I)lh, <I>2hq)3h) e U, &, + APy, € U, we find

CHA g ZA(DUL Ayl hlhg

w®

+ Z Adyp Ays hiho

w(2)

ZACD% 22) [y(&, w2, ®1)] [Ay(E, 22, @y) | hal.

1
+ 5 Z A®yy, Ay hihy

2
Yllv —(1,2)
HV’Y(I)’Y(2) (UJ )

1
+ B WZ ADyy, Ays hihy

Let us estimate the right hand side of . We have

Z A®yy, Ay hihy

1
wg ) Xwa

||Ay1

<A@,

xws) HLg(wg”xw)

S CHACI)MHLQ(Q”XW)”Ayl||\°/W(1)7(2>(w(1,2>),

1
X 5HA(I)MHLQ(VS)HA?Jle/W(UV(Z) @12))

1

3 D AD(E, w2) Ay (&, w2) haha| < C
w2

In the same way:

Z Adyy, Ay2 hihs

2
w§ ) Xwa

1 1
3 D APy (&, w2) Aya(€, w2) haha| < C

< CH Aq)2h { ’ Lo (wf) Xw2) ” Ay? H ‘D/A/(l),y(Q) (U(l‘2>) ’ (19)

N 5HA(I)%HM(VS)HAWH{Q(UW@)(5(1’2))'

Employing the identity from [4], we obtain

ZA% (2) [Y(€, 2, ®1)] [AY(E, 22, Py)] ho

20
|ADa (20

oo (w2) ] HLms) [1Ay] HLz(vs)

CHACDShHLoo w2)||y||\°/(1) 2 wu,z))”Any/(l) (2 @12)-
Taking into consideration estimates . ), by inequality (18 . we find the desired estimate

180l co{zumahuh s I8l b

We proceed to estimating the solution of adjoint problem ([12] . ). Letting v = v in identity
and estimate the left hand side in ((12)), we obtain

3 (y(a; ) — ul(x)) vn(x) hahal.

w£1>+ Xw

<
<

<2

2
CWHOW(%@) @12y S (22)
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It is easy to estimate the right hand side of ([22)):

ST (0l @) — uh(@) U ) < Molly = w191 ) o 0

W

This yields

2

X w2

7 h
||¢H‘°/ﬂ/<1)ﬂ{(2)(w(l'2>) < M()Hy — Uy ||L2(w£1>+><w2)- (23)
To proceed in estimate the right hand side of inequality , we employ the statement from

[6]:

9@l 0 < MZI||<1>ah||L2<w<aMS v, € U, (24)
Then by ,
sup || HV(U o @02 S < M = Const,

&€l

and by we obtain

Hw”{/(l) (2)(w(1 2)) X M COHSt V(I)h € Uh-

We proceed to estimating quantity Ry, in f. We have

| Rpa| < Z ‘dm(fﬁ)l/)l(x) [Q1(y1 + Ay1) — q1(y1) — Gy Aya [ haho.
w%l)xwg
We impose an additional restriction for function ¢(y):
|q;(31) — qé(sz)‘ < Ly|s1 — 8| for all 51,85 € R, L, = Const > 0.

It implies easily the following inequality

L 2
@ (yi + Ays) — ¢i(vi) — ¢;(yi) Ayi| < f’Ayi’ , 1=12

Then

o > (Al [l < ClAY [y oo 19l
(1)

wq Xwg

Rus] < €180 g o 13800yt

|Rh4} = ‘ Zdlh 3 302) wl(ﬁ xz) <q1(y1 + Ay1) - Q1(y1) - Q1y1Ay1)h1h2

< C||A¢1HW21(LU(1)){HAyIH?/I/Zl(w(I)) + HAy1||W21(w(1))}v
] < Yl { 180y, + 18020y}

Bl < X |t < €8,

wl Xwa

<A (22) [Ay(E, 22)] [(E, 22)] | o

w2

< HA(I)%HLOO(W) Z

w2

| R

[Ay(fv xQ)} [w(€7 'TQ)} hs
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< clatull, o loll, o llel ooy

Thus, for the increment of functional J,(®;) we have obtained the representation:

AJp(®n) == Y A®y by by — > Ady, by hyhy

wMUys w@Uys

(25)
3 A0 [y(6,52)] [916, 23] s+ oA ).
w2
where B, = Ly(w® Uryg) x Ly(w® Uryg) X Log(ws).
It is easy to see that the increment of functional J,(®p) can be written as
0J, 0J,
AJp(Pp) Z(—h, A(Dlh) + (—h, A@Qh)
aq)lh Lo (wMuUys) 8<I)2h La(w®uyg) (26)
0Jh,
— AP Ady|l 5
" (aq)?»h’ 3h)L2(w2) +O(|| h”Bh)’
where
oJ, _ (0Jp 0Jy OJy
00, \ 01" 0o’ 0Ps),)’
0J aJ,
a@fh = —y(z), z€whUnrg, 8<I>2hh = —y(z), z€w®Unsg, (27)
0J
i = [y<£7$2):| W(f»@)}, T2 € Wa.
OPsy,

Now we can rewrite the formula for the increment of functional Jy,(®,) as
AJu(®) =< T3 (®r), APy > +o([|AP4[ 5, ), (28)
where

< J;L(q)h),Aq)h >:( )
La(wMUryg)

aJ 9J
+ (—h, ACDQh) + <—h, A(I)ah) :
0Dy, La(w®Uys) 0P3y, Lo(w2)

Thus, in formula for the increment of the functional, the first term is a linear bounded
functional on B, = Lo(wM Uys) x Lo(w® Uys) X Loo(wa) w.r.t. @5 = (@14, Pop, sy, ), while the
second term is of order 0(HA<I>hH §h>’ It means that functional Jj,(®},) is Frechet differentiable on
set Uy, in space By, At that, the gradient of functional Jy,(®;,) at point ®, € U, is given by
and the first component in is an analogue of the partial derivative of functional J,(®,) =
Jn(P1p, Pop, P3p,) w.r.t. variable ®yy, the second and the third components are analogues of the

derivatives w.r.t. variables @5, and ®3;,, respectively.
Thus, we have proved the following theorem.

0Dy,
1A (20)

Theorem 4.1. Suppose that function q(s) is defined on R with values in R and satisfies
the conditions: q(0) = 0, q(s) is differentiable w.r.t. s, the first derivative ¢.(s) satisfies the
restrictions

0 < qo<qu(s) < Ly, < o0,
|d.(s51) — d.(s2)| < Lyls1 — s2| for all 51,55 €R,  Lg, Ly = Const > 0.
Let ko (z) € WL(Q)XWL(Q), a=1,2,d(x) € Loo () X Loo(Q2). Then grid functional J,(®y,)

is Frechét differentiable w.r.t. ®;, on Uy in space By = Ly(wM Unvg) x Lo(w® Uyg) X Leo(ws),
and gradient J; (®p,) at point (®p,) = (P1p, Pop, Psr) is given by (@),



ON DIFFERENTIABILITY OF COST FUNCTIONAL ... 95

It can be shown that grid functional J,(®),) belongs to class C1(B,,), where B, = Ly(w® U
7s) X La(w® Urs) X Loo(ws), that is,

[ T(®n + A®y) — T3 (@4)|| < Cf|ADs[5, - (30)

Indeed, employing Lemmata 2.1-2.3 in [4], for each n = (771, 72, 773) € B, we have

&]h(cbh —|—A(I)h,£13) 0Jh<q)h;$)
; ADy) — J (P = - hih
< J(@n + ARy) = Sy (@4), 1 > (2))( o 95, ) m@)hhs
OJp (P, + ADp; ) OJp(Pp; x))
> - 12()Fiy o
w(2>U’Ys< OPop 0Py,
aJh((I)h—l-A(I)h;SC) 8Jh(®h;$)
+ Z( s, T 0d, n3(2)he

<Ol @) gy I iy + oA g 1l
+CsHmHLw(wz){HyHmWHAwH%W

avlly ) o120y, o 1290, o 1820, }

Let us estimate increment At). In order to do it, by the approach used in obtaining problem

(©). let us find a problem for increment Ay = ¢(®), + A®y,) — (Py):

Z Z a(l) (AY1)z,v13, hihs + Z Z agh (AY1)z,v13,h1ho

w§1)+ wo (1) wi

+ ! Z CLSL) (&, 22) (AY1)z, (&, 22) V17, (€, T2) 1 ho

+ Z Za A% x1v2x1h1h2 + ZZGQh A¢2)IQU2x2h1h2

WP+ w2 W@ wi

T3 Z th 6’ xZ)(AwQ)l“Q (57 1'2) Voz,y (f ~T2)h1h2

“-’2

+ > Can(w) [A] [0] Ao + Y dun(2)auy, A (x) vr (@) ha sy (31)

w@®

+ 1 Z din (&, 72)quy, A1 (&, 22) v1 (&, w2) hihy

+ Zd% (2)q1y, A1 (2) va(2) hihe +%;d%(f,%)%ygA?ﬁﬂf,%) vo(&, w2)hihy

w2

= -2 Z A?Jl Ul 57 x2)h1h2, VU = (Ula ’[)2) c ‘o/ty(l),y(Q) (w(l,z))‘

( )+><w2

Letting v = A in identity , we get

> Ayi(x) Ay (a)hahy

()+

clla "PHV(U oy @12y S2

Xw

gCO HAyl HW21 (w§1>+ XUJQ) HAva’y(l)’y(m (5(1’2))7
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that is,

It

2
||A¢H\°/W(1)W(2) @1:2) S CO(Z HA(I)Q’LHLz(W“‘)UVS) + HA(I)3hHLoo(w2)) = CO||Aq)h||§h'

a=1

yields
|< J;L((I)h —+ A(I)h> — Jé(q)h),n >|

< @, (18 sy + 1l sy + [0y ) = €l a5,

Thus,

HJ/(‘I)h + Ad,) — Jl((I)h)H = sup ‘< Ji(®n + ALy) = T, (®n). 1 >‘
' " 10 ]l 5,

Theorem 4.2. Let the assumptions of Theorem hold true. Then grid functional J,(®p)

< e,

belongs to class C*(By), where B, = Ly(w® U vg) X La(w® U vg) X Log(ws), i.c., estimate

(@/ holds true.

8.

9.
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