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ON CONVERGENCE OF POLYNOMIAL SOLUTIONS OF

MINIMAL SURFACE

A.A. KLYACHIN, I.V.TRUHLYAEVA

Abstract. In this paper we consider the polynomial approximate solutions of the Dirichlet
problem for minimal surface equation. It is shown that under certain conditions on the
geometric structure of the domain the absolute values of the gradients of the solutions are
bounded as the degree of these polynomials increases. The obtained properties imply the
uniform convergence of approximate solutions to the exact solution of the minimal surface
equation.
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1. Introduction

In numerical solving of boundary value problems for equations and systems of partial differ-
ential equations, a very important issue is the convergence of approximate solutions. The study
of this issue is especially important for nonlinear equations since in this case there is a series
of difficulties related with the impossibility of employing traditional methods and approaches
used for linear equations. At present, a quite topical problem is to determine the conditions
ensuring the uniform convergence of approximate solutions obtained by various methods for
nonlinear equations and system of equations of variational kind. In this case, it is natural
to employ variational methods of solving boundary value problems. And this is an issue on
the justification of these methods arises, which is reduced to studying general properties of
approximate solutions (see, for instance, [1], [2]).

2. Formulation of the problem

We consider the issue on convergence of approximate solutions for the minimal surface equa-
tion

𝑛∑︁
𝑖=1

𝜕

𝜕𝑥𝑖

(︃
𝑓𝑥𝑖√︀

1 + |∇𝑓 |2

)︃
= 0 (1)

in domain Ω subject to the boundary condition

𝑓 |𝜕Ω = 𝜙|𝜕Ω, (2)

where 𝜙 ∈ 𝐶(Ω). It should be noted that this Dirichlet problem is not solvable for an arbitrary
domain (even with a smooth boundary). For planar domains the necessary and sufficient
condition for the solvability of the Dirichlet problem for an arbitrary continuous boundary
function 𝜙(𝑥) is the convexity of this domain. In the space of dimension greater than two,
such condition is the non-negativity of the mean curvature of the boundary w.r.t. the outward
normal. Precise formulation and the proof of these results can be found in works [3]–[10]. In the
present work we impose no conditions for domain Ω, but we assume that for a given boundary
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function 𝜙(𝑥) problem (1)-(2) is solvable. It is clear that for an arbitrary domain Ω, such
functions 𝜙(𝑥) exist.

We study the issue on uniform convergence of polynomial approximate solutions to the
minimal surface equation constructed by means of algebraic polynomials. In work [11] a similar
convergence problem for piece-wise linear approximate solution to boundary value problem (1)-
(2) was solved, while in work [12] there was given a description of numerical realization of finite
elements methods based on piece-wise linear functions. Let us provide required definitions.

Suppose that Ω ⊂ R2 is a bounded domain such that some polynomial 𝜓(𝑥, 𝑦) of degree at
most 𝑁0 in each variable satisfies 𝜓(𝑥, 𝑦) = 0 as (𝑥, 𝑦) ∈ 𝜕Ω and 𝜓(𝑥, 𝑦) > 0 as (𝑥, 𝑦) ∈ Ω. For
a natural 𝑁 we denote by 𝐿𝑁 the set of all polynomials of the form

𝑣𝑁(𝑥, 𝑦) = 𝜓(𝑥, 𝑦)
𝑁∑︁

𝑛,𝑚=1

𝑐𝑛𝑚𝑥
𝑛𝑦𝑚.

It is clear that 𝑣𝑁(𝑥, 𝑦) = 0 for (𝑥, 𝑦) ∈ 𝜕Ω. Assume that 𝜙 ∈ 𝐶1(Ω). Consider the problem on
finding a polynomial 𝑣*𝑁 on which the area integral

𝜎(𝜙+ 𝑣𝑁) =

∫︁∫︁
Ω

√︀
1 + |∇𝜙+ ∇𝑣𝑁 |2 𝑑𝑥𝑑𝑦 → min, 𝑣𝑁 ∈ 𝐿𝑁 . (3)

attains its minimum. It is easy to show that solution 𝑣*𝑁 to problem (3) satisfies the identity∫︁∫︁
Ω

⟨∇𝜙+ ∇𝑣*𝑁 ,∇𝑣𝑁⟩√︀
1 + |∇𝜙+ ∇𝑣*𝑁 |2

𝑑𝑥𝑑𝑦 = 0 ∀ 𝑣𝑁 ∈ 𝐿𝑁 . (4)

Theorem 1. Problem (3) is uniquely solvable.

Proof. It is clear the area 𝜎(𝜙+ 𝑣𝑁) is a function 𝜎(𝑐11, 𝑐12, . . . , 𝑐𝑁𝑁) of finitely many variables
𝑐𝑛𝑚, 𝑛,𝑚 = 1, . . . , 𝑁 . This function is obviously continuous. At that,

lim
|𝑐|→∞

𝜎(𝑐𝑛𝑚) = +∞,

where |𝑐| = max
16𝑛,𝑚6𝑁

|𝑐𝑛𝑚|. Therefore, there exists a set of numbers 𝑐*𝑛𝑚, at which function

𝜎(𝑐11, 𝑐12, . . . , 𝑐𝑁𝑁) attains its minimal value. We denote by 𝑣*𝑁 the polynomial associated with
this set of coefficients. It satisfies condition (4).

Let us show the uniqueness. Assume that there exists one more function 𝑣1𝑁 ∈ 𝐿𝑁 being a
solution to problem (3). It also satisfies identity (4). Deducting one identity from the other for
𝑣𝑁 = 𝑣*𝑁 − 𝑣1𝑁 , we obtain∫︁∫︁

Ω

(︃
⟨∇𝑓 *,∇𝑓 * −∇𝑓 1⟩√︀

1 + |∇𝑓 *|2
− ⟨∇𝑓 1,∇𝑓 * −∇𝑓 1⟩√︀

1 + |∇𝑓 1|2

)︃
𝑑𝑥𝑑𝑦 = 0, (5)

where 𝑓 * = 𝜙+ 𝑣*𝑁 , 𝑓 1 = 𝜙+ 𝑣1𝑁 .
We shall make use of the identity⟨

𝜉√︀
1 + |𝜉|2

− 𝜂√︀
1 + |𝜂|2

, 𝜉 − 𝜂

⟩
>

|𝜉 − 𝜂|2√︀
1 + |𝜉|2(

√︀
1 + |𝜉|2

√︀
1 + |𝜂|2 + |𝜉||𝜂| + 1)

, (6)

which holds for all vectors 𝜉, 𝜂 ∈ R2 and it can be obtained as follows. We first observe that√︀
1 + |𝜉|2 >

√︀
1 + |𝜂|2 +

⟨𝜂, 𝜉 − 𝜂⟩√︀
1 + |𝜂|2

.
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Then ⟨
𝜉√︀

1 + |𝜉|2
− 𝜂√︀

1 + |𝜂|2
, 𝜉 − 𝜂

⟩
= − ⟨𝜉, 𝜂 − 𝜉⟩√︀

1 + |𝜉|2
− ⟨𝜂, 𝜉 − 𝜂⟩√︀

1 + |𝜂|2

>
√︀

1 + |𝜂|2 −
√︀

1 + |𝜉|2 − ⟨𝜉, 𝜂 − 𝜉⟩√︀
1 + |𝜉|2

=

√︀
1 + |𝜉|2

√︀
1 + |𝜂|2 − ⟨𝜉, 𝜂⟩ − 1√︀
1 + |𝜉|2

>
|𝜉 − 𝜂|2√︀

1 + |𝜉|2(
√︀

1 + |𝜉|2
√︀

1 + |𝜂|2 + |𝜉||𝜂| + 1)
.

Thus, it follows from inequalities (6) and identity (5) that∫︁∫︁
Ω

|∇𝑓 * −∇𝑓 1|2√︀
1 + |∇𝑓 *|2(

√︀
1 + |∇𝑓 *|2

√︀
1 + |∇𝑓 1|2 + |∇𝑓 *||∇𝑓 1| + 1)

𝑑𝑥𝑑𝑦 6 0.

Hence, ∇𝑓 * ≡ ∇𝑓 1. This yields that ∇𝑣*𝑁 ≡ ∇𝑣1𝑁 . Since polynomials 𝑣*𝑁 and 𝑣1𝑁 vanish on
boundary 𝜕Ω, we have 𝑣*𝑁(𝑥, 𝑦) = 𝑣1𝑁(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ Ω. The uniqueness is proven.

Definition. Function 𝑓 * = 𝜙 + 𝑣*𝑁 , 𝑣
*
𝑁 ∈ 𝐿𝑁 is called a polynomial solution to boundary

value problem (1)–(2) if identity (4) holds true for each polynomial.

In what follows we shall be interested in the issue on uniform convergence of a sequence of
polynomial solutions 𝜙+𝑣*𝑁 as 𝑁 → ∞. First of all we shall show that under certain conditions,
the gradients of these functions are bounded by a constant independent of 𝑁 . This property
will allow us to obtain an estimate for the rate of uniform convergence to the exact solution.

3. Estimate for the gradient of a polynomial solution

Let 𝑓 ∈ 𝐶2(Ω) ∩ 𝐶(Ω) be a solution to problem (1)-(2). We introduce quantity 𝛿(𝜉, 𝜂) for
arbitrary vectors 𝜉, 𝜂 ∈ R2

𝛿(𝜉, 𝜂) =
√︀

1 + |𝜂|2 −
√︀

1 + |𝜉|2 − ⟨𝜉, 𝜂 − 𝜉⟩√︀
1 + |𝜉|2

.

It is easy to see that 𝛿(𝜉, 𝜂) > 0 for all 𝜉 ̸= 𝜂. We shall also make use of the following polynomial
characteristics of a domain:

𝜆𝑁 = inf
𝑣∈𝐿𝑁

(︂∫︀∫︀
Ω

|∇𝑣|2 𝑑𝑥𝑑𝑦
)︂1/2

√︀
|Ω| sup

Ω
|∇𝑣|

> 0,

where |Ω| is the area of domain Ω. It is clear that 0 < 𝜆𝑁 6 1. We shall estimate the rate of
convergence of 𝜆𝑁 to zero as 𝑁 → ∞ in the fifth section of the present paper.

Letting 𝜉 = ∇𝑓 , 𝜂 = ∇𝜙+ ∇𝑣*𝑁 and employing equation (1), we obtain∫︁∫︁
Ω

𝛿(∇𝑓,∇𝜙+ ∇𝑣*𝑁) 𝑑𝑥𝑑𝑦 = 𝜎(𝜙+ 𝑣*𝑁) − 𝜎(𝑓).

Employing the inequality (see (6))√︀
1 + |𝜂|2 −

√︀
1 + |𝜉|2 − ⟨𝜉, 𝜂 − 𝜉⟩√︀

1 + |𝜉|2
>

|𝜉 − 𝜂|2√︀
1 + |𝜉|2(

√︀
1 + |𝜉|2

√︀
1 + |𝜂|2 + |𝜉||𝜂| + 1)

,
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we conclude that∫︁∫︁
Ω

|∇𝑓 −∇𝜙−∇𝑣*𝑁 |2 𝑑𝑥𝑑𝑦√︀
1 + |∇𝑓 |2(

√︀
1 + |∇𝑓 |2

√︀
1 + |∇𝜙+ ∇𝑣*𝑁 |2 + |∇𝑓 ||∇𝜙+ ∇𝑣*𝑁 | + 1)

6 𝜎(𝜙+ 𝑣*𝑁) − 𝜎(𝑓).

By the previous inequality we obtain∫︁∫︁
Ω

|∇𝑓 −∇𝜙−∇𝑣*𝑁 |2 𝑑𝑥𝑑𝑦√︀
1 + |∇𝜙+ ∇𝑣*𝑁 |2

6 3(1 + 𝑃 2
0 )(𝜎(𝜙+ 𝑣*𝑁) − 𝜎(𝑓)).

We let 𝐾 = max{sup
Ω

|∇𝜙|, 1} and 𝐴𝑁 = sup
Ω

|∇𝑣*𝑁 |. Then

∫︁∫︁
Ω

|∇𝑓 −∇𝜙−∇𝑣*𝑁 |2 𝑑𝑥𝑑𝑦 6 3
√︁

1 + 2𝐾2 + 2𝐴2
𝑁(1 + 𝑃 2

0 )(𝜎(𝜙+ 𝑣*𝑁) − 𝜎(𝑓)).

We introduce the notation 𝑔 = 𝑓 − 𝜙. It is clear that 𝑔(𝑥, 𝑦) = 0 as (𝑥, 𝑦) ∈ 𝜕Ω. Given
an arbitrary function ℎ ∈ 𝐶(Ω), by ℎ𝑁 we denote some approximation of function ℎ by the
functions in space 𝐿𝑁 . The way how to do this approximation is not important and it will be
specified in the next section. Employing the above notation, we have⎛⎝∫︁∫︁

Ω

|∇𝑓 −∇𝜙−∇𝑣*𝑁 |2 𝑑𝑥𝑑𝑦

⎞⎠1/2

>

⎛⎝∫︁∫︁
Ω

|∇𝑔𝑁 −∇𝑣*𝑁 |2 𝑑𝑥𝑑𝑦

⎞⎠1/2

−

⎛⎝∫︁∫︁
Ω

|∇𝑔 −∇𝑔𝑁 |2 𝑑𝑥𝑑𝑦

⎞⎠1/2

.

Hence, since 𝑔𝑁 − 𝑣*𝑁 ∈ 𝐿𝑁 , we get

sup
Ω

|∇𝑔𝑁 −∇𝑣*𝑁 | 6
1√︀

|Ω|𝜆𝑁

⎛⎝∫︁∫︁
Ω

|∇𝑔 −∇𝑔𝑁 |2 𝑑𝑥𝑑𝑦

⎞⎠1/2

+
1√︀

|Ω|𝜆𝑁

⎛⎝∫︁∫︁
Ω

|∇𝑔 −∇𝑣*𝑁 |2 𝑑𝑥𝑑𝑦

⎞⎠1/2

6
1√︀

|Ω|𝜆𝑁

⎛⎝∫︁∫︁
Ω

|∇𝑔 −∇𝑔𝑁 |2 𝑑𝑥𝑑𝑦

⎞⎠1/2

+

+

(︁
3(1 + 𝑃 2

0 )
√︀

1 + 2𝐾2 + 2𝐴2
𝑁

)︁1/2
√︀

|Ω|𝜆𝑁

√︁
𝜎(𝜙+ 𝑣*𝑁) − 𝜎(𝑓).

We employ the following inequality

𝑥
4
√
𝑎+ 𝑥2

> 4
√
𝑎+ 𝑥2 −

√
𝑎

4
√
𝑎+ 𝑥2

,
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which holds for 𝑥 > 0 and 𝑎 > 0. Letting 𝑥 =
√

2𝐴𝑁 , 𝑎 = 1+2𝐾2, by this inequality we obtain

𝐴𝑁 6 sup
Ω

|∇𝑔𝑁 | +
1√︀

|Ω|𝜆𝑁

⎛⎝∫︁∫︁
Ω

|∇𝑔 −∇𝑔𝑁 |2 𝑑𝑥𝑑𝑦

⎞⎠1/2

+

(︂
3(1 + 𝑃 2

0 )

|Ω|𝜆2𝑁
(𝜎(𝜙+ 𝑣*𝑁) − 𝜎(𝑓))

)︂1/2

+ 1.

(7)

Since function 𝑣*𝑁 is a solution to problem (3), we arrive at the estimate

sup
Ω

|∇𝑣*𝑁 | 6 sup
Ω

|∇𝑔𝑁 | +
1√︀

|Ω|𝜆𝑁

⎛⎝∫︁∫︁
Ω

|∇𝑔 −∇𝑔𝑁 |2 𝑑𝑥𝑑𝑦

⎞⎠1/2

+

(︂
3(1 + 𝑃 2

0 )

|Ω|𝜆2𝑁
(𝜎(𝜙+ 𝑔𝑁) − 𝜎(𝑓))

)︂1/2

+ 1.

(8)

In order to obtain the final inequality, we note that function 𝜙+ 𝑔 = 𝑓 solves equation (1) and
hence, 𝑎′(0) = 0, where 𝑎(𝑡) = 𝜎(𝑓 + 𝑡(𝜙+ 𝑔𝑁 − 𝑓)). Letting 𝑓 𝑡 = 𝑓 + 𝑡(𝜙+ 𝑔𝑁 − 𝑓), we have

𝜎(𝜙+ 𝑔𝑁) − 𝜎(𝑓) =

1∫︁
0

𝑑𝑠

𝑠∫︁
0

𝑎′′(𝑡)𝑑𝑡

=

1∫︁
0

𝑑𝑠

𝑠∫︁
0

𝑑𝑡

∫︁∫︁
Ω

(1 + |∇𝑓 𝑡|2)|∇𝑓 −∇(𝜙+ 𝑔𝑁)|2 − ⟨∇𝑓 𝑡,∇𝑓 −∇(𝜙+ 𝑔𝑁)⟩2

(1 + |∇𝑓 𝑡|2)3/2
𝑑𝑥𝑑𝑦

6
∫︁∫︁
Ω

|∇𝑓 −∇(𝜙+ 𝑔𝑁)|2𝑑𝑥𝑑𝑦 =

∫︁∫︁
Ω

|∇𝑔 −∇𝑔𝑁 |2𝑑𝑥𝑑𝑦.

Then by inequality (8) we arrive at the estimate

sup
Ω

|∇𝑣*𝑁 | 6 1 + sup
Ω

|∇𝑔𝑁 | +
1 +

√︀
3(1 + 𝑃 2

0 )√︀
|Ω|𝜆𝑁

⎛⎝∫︁∫︁
Ω

|∇𝑔 −∇𝑔𝑁 |2 𝑑𝑥𝑑𝑦

⎞⎠1/2

. (9)

Thus, we have proved the following theorem.

Theorem 2. Let 𝑓 be a solution to equation (1) satisfying boundary condition (2). If
𝑣*𝑁(𝑥, 𝑦) ∈ 𝐿𝑁 is a solution to problem (3), its gradient satisfies estimate (9).

Remark. It follows from Theorem 2 that as 𝑁 → ∞, the gradients of approximated solutions
𝜙+ 𝑣*𝑁 are uniformly bounded if the same is true for

1

𝜆𝑁

⎛⎝∫︁∫︁
Ω

|∇𝑔 −∇𝑔𝑁 |2 𝑑𝑥𝑑𝑦

⎞⎠1/2

.

In this case the gradients of functions 𝑔𝑁(𝑥, 𝑦) are also bounded. To clarify these issues we
need to estimate the rate of approximation of function 𝑔 by polynomials 𝑔𝑁 and to find out the
behavior of sequence 𝜆𝑁 as 𝑁 → ∞.

4. Approximation of smooth functions by polynomials

Let Ω be a bounded domain with a boundary Γ, 𝑘 be a natural number and function 𝜓(𝑥, 𝑦)
satisfy the conditions:
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1) function 𝜓 is 𝑘 times differentiable and its derivatives of 𝑘th order satisfy the Lipschitz
condition;

2) 𝜓(𝑥, 𝑦) = 0 as (𝑥, 𝑦) ∈ Γ and 𝜓(𝑥, 𝑦) ̸= 0 as (𝑥, 𝑦) ∈ R2 ∖ Γ;
3) |∇𝜓(𝑥, 𝑦)| > 0 as (𝑥, 𝑦) ∈ Γ.
Then, as it was shown in paper [13], given a function 𝑢(𝑥, 𝑦), which is 𝑘 times continuously

differentiable in Ω and vanishes at Γ, we can find a sequence of polynomials 𝑃𝑁(𝑥, 𝑦) of degree
6 𝑁 in each variable 𝑥, 𝑦 such that

||𝑢− 𝜓𝑃𝑁 ||𝐶𝑟(Ω) 6
𝛿𝑁(𝑢)

𝑁𝑘−𝑟
, 𝑟 = 0, 1, . . . , 𝑘, (10)

where 𝛿𝑁(𝑢) → 0 as 𝑁 → ∞.
Hereafter we assume that 𝑔 = 𝑓 − 𝜙 ∈ 𝐶𝑘(Ω). We specify the way of choosing function 𝑔𝑁 :

we let 𝑔𝑁 = 𝜓𝑃𝑁 , where approximating polynomial is chosen for function 𝑔 = 𝑓 −𝜙. Applying
for 𝑟 = 1 estimates (10) for 𝑢 = 𝑓 − 𝜙 in inequality (9), we obtain

sup
Ω

|∇𝑣*𝑁 | 6 1 +𝐾 + 𝑃0 +
2 +

√︀
3(1 + 𝑃 2

0 )

𝜆𝑁

𝛿𝑁(𝑓 − 𝜙)

𝑁𝑘−1
. (11)

By this inequality we see that the gradients of approximate solutions are bounded by a
constant independent of 𝑁 as 𝑁 → ∞ if 𝜆𝑁 tends to zero not faster than 𝑂(1/𝑁𝑘−1). In the
next section we shall study this issue.

5. Estimate for 𝜆𝑁

Let us provide an example of a lower bound for 𝜆𝑁 . It is clear that

𝜆𝑁 = inf
𝑣∈𝐿𝑁

(︂∫︀∫︀
Ω

|∇𝑣|2 𝑑𝑥𝑑𝑦
)︂1/2

√︀
|Ω| sup

Ω
|∇𝑣|

> inf
𝑃

(︂∫︀∫︀
Ω

|∇𝑃 |2 𝑑𝑥𝑑𝑦
)︂1/2

√︀
|Ω| sup

Ω
|∇𝑃 |

,

where the infimum is taken over all polynomials of degree at most 𝑁 ′ = 𝑁+𝑁0 in each variable.
We shall make use of the following inequality by A.A. Markov (see, for instance [14, Sect.

6]) for a polynomial 𝑃 (𝑥) of one variable of degree 𝑁 on a segment [𝑎, 𝑏]

|𝑃 ′(𝑥)| 6 2𝑁2

𝑏− 𝑎
max
[𝑎,𝑏]

|𝑃 (𝑥)|.

It implies easily a similar inequality for a rectangle in the case of polynomial of two variables.
Let 𝑃 (𝑥, 𝑦) be a polynomial, whose degree in each variable is at most 𝑁 . We let

𝑀 = max
[𝑎,𝑏]×[𝑐,𝑑]

|𝑃 (𝑥, 𝑦)|.

Then by A.A. Markov inequality in each variable we have⃒⃒⃒⃒
𝜕𝑃

𝜕𝑥

⃒⃒⃒⃒
6

2𝑁2

𝑏− 𝑎
max
[𝑎,𝑏]

|𝑃 (𝑥, 𝑦)| 6𝑀
2𝑁2

𝑏− 𝑎
,

⃒⃒⃒⃒
𝜕𝑃

𝜕𝑦

⃒⃒⃒⃒
6𝑀

2𝑁2

𝑑− 𝑐
.

Therefore,

|∇𝑃 |2 6 4𝑁4𝑀2 (𝑑− 𝑐)2 + (𝑏− 𝑎)2

(𝑏− 𝑎)2(𝑑− 𝑐)2

or

|∇𝑃 | 6 2𝑁2𝑀

√︀
(𝑑− 𝑐)2 + (𝑏− 𝑎)2

(𝑏− 𝑎)(𝑑− 𝑐)
= 2𝑁2𝑀

𝑑

𝑆
,

where 𝑑 is the diagonal of the rectangle, and 𝑆 is its area. We consider this inequality for a
square with side 𝑎 > 0. Then 𝑑 = 𝑎

√
2, 𝑆 = 𝑎2. This is why

|∇𝑃𝑁 | 6 𝑁2𝑀
2
√

2

𝑎
.
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It is clear that this inequality is true for each square not necessarily having sides parallel to the
axes. We let

inf
𝑃

(︂∫︀∫︀
Ω

|𝑃 |2 𝑑𝑥𝑑𝑦
)︂1/2

√
Ω sup

Ω
|𝑃 |

= ̃︀𝜆𝑁 ,
where the infimum is taken over all polynomials of degree at most 𝑁 in each variable. We first

find the estimate of ̃︀𝜆𝑁 for a square 𝐾 with side 𝑎 > 0. Let 𝑧 = (𝑥, 𝑦) ∈ 𝐾 and 𝑧0 ∈ 𝐾 is such
that 𝑃 (𝑧0) = max

𝐾
|𝑃 | = 𝑀 . Then

𝑃 (𝑧0) − 𝑃 (𝑧) 6 |𝑧 − 𝑧0|max
𝐾

|∇𝑃 | 6 𝑁22
√

2

𝑎
𝑀 |𝑧 − 𝑧0|.

If |𝑧− 𝑧0| < 𝑎/(4
√

2𝑁2), then 𝑀 −𝑃 (𝑧) 6 𝑀
2

. Thus, 𝑃 (𝑥, 𝑦) > 𝑀
2

for (𝑥, 𝑦) ∈ 𝐾 ∩𝐵 𝑎
4
√
2𝑁2

(𝑧0).

Then ∫︁∫︁
𝐾

𝑃 2(𝑥, 𝑦)𝑑𝑥𝑑𝑦 >
∫︁∫︁

𝐾∩𝐵 𝑎
4
√
2𝑁2 (𝑧0)

𝑃 2(𝑧)𝑑𝑥𝑑𝑦 >
𝑀2

4

∫︁∫︁
𝐾∩𝐵 𝑎

4
√
2𝑁2 (𝑧0)

𝑑𝑥𝑑𝑦 >
𝑀2

16
𝜋

𝑎2

32𝑁4
.

This is why ⎛⎝∫︁∫︁
𝐾

𝑃 2(𝑥, 𝑦)𝑑𝑥𝑑𝑦

⎞⎠ 1
2

>
𝑀𝑎

16
√

2𝑁2

√
𝜋.

Since 𝑃 is an arbitrary admissible polynomial, then

̃︀𝜆𝑁 >
1

16

√︂
𝜋

2

1

𝑁2
.

We apply the proven inequality for partial derivative of polynomial 𝑃 , which are also polyno-
mials. Therefore,⎛⎝∫︁∫︁

𝐾

𝑃 2
𝑥 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

⎞⎠ 1
2

> ̃︀𝜆𝑁 max
𝐾

|𝑃𝑥|
√︀
|𝐾|,

⎛⎝∫︁∫︁
𝐾

𝑃 2
𝑦 (𝑥, 𝑦)𝑑𝑥𝑑𝑦

⎞⎠ 1
2

> ̃︀𝜆𝑁 max
𝐾

|𝑃𝑦|
√︀
|𝐾|.

It yields

|∇𝑃 |2 >̃︀𝜆2𝑁 |𝐾|((max
𝐾

|𝑃𝑥|)2 + (max
𝐾

|𝑃𝑦|)2) > ̃︀𝜆2𝑁 |𝐾|(max
𝐾

|𝑃𝑥|2 + |𝑃𝑦|2) = |𝐾|((max
𝐾

|∇𝑃 |)2.

Hence, (︂∫︀∫︀
𝐾

|∇𝑃 |2𝑑𝑥𝑑𝑦
)︂ 1

2

|𝐾|max
𝐾

|∇𝑃 |
> ̃︀𝜆𝑁 >

1

16𝑁2

√︂
𝜋

2
.

Therefore,

𝜆𝑁 >
1

16𝑁2

√︂
𝜋

2
. (12)

Thus, we have obtained the lower bound for 𝜆𝑁 in the case when Ω is a square with side 𝑎 > 0.
We observe that this estimate is independent of the size of square. Employing inequality (12),
we obtain the estimate for an arbitrary planar domain Ω.

For each 𝑧0 ∈ Ω there exists a maximal square 𝐾 ⊂ Ω with sides not necessarily parallel to
the axes such that 𝑧0 ∈ 𝐾. Let the side of the square be 𝑎(𝑧0) > 0. We denote

∆(Ω) = inf
𝑧0∈Ω

𝑎(𝑧0).
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We shall assume that ∆(Ω) > 0. For instance, if Ω is a ball of radius 𝑅 > 0, it is easy to
see that for each point 𝑧0 in this ball we have 𝑎(𝑧0) = 𝑅

√
2. This is why for the ball we have

∆(Ω) = 𝑅
√

2. As another example, we provide a domain inside the ellipse

Ω =

{︂
(𝑥, 𝑦) :

𝑥2

𝑎2
+
𝑦2

𝑏2
< 1

}︂
, 𝑎 > 𝑏.

At the point with the coordinates (𝑎, 0), the ellipse has the minimal curvature radius, which is
equal to 𝑏2/𝑎. It is easy to obtain that each point 𝑧0 ∈ Ω lies inside some ball of radius 𝑏2/𝑎
lying inside the ellipse. This is why for the ellipse we have ∆(Ω) >

√
2𝑏2/𝑎.

It is easy to estimate 𝜆𝑁 via ∆(Ω). Indeed, let 𝑧0 ∈ Ω be such that max
Ω

|∇𝑃 | = |∇𝑃 (𝑧0)|
and square 𝐾 ⊂ Ω contain this point. Then⎯⎸⎸⎷∫︁∫︁

Ω

|∇𝑃 (𝑥, 𝑦)|2𝑑𝑥𝑑𝑦 >

⎯⎸⎸⎷∫︁∫︁
𝐾

|∇𝑃 (𝑥, 𝑦)|2𝑑𝑥𝑑𝑦 >

√︂
𝜋

2

1

16𝑁2

√︀
|𝐾|max

𝐾
|∇𝑃 |.

It implies easily the inequality

𝜆𝑁 >
∆(Ω)

16𝑁2
√︀

|Ω|

√︂
𝜋

2
. (13)

Hence, if domain Ω is such that each its point can be put inside a square 𝐾 ⊂ Ω with side
∆(Ω) > 0, then estimate (13) holds true. It is clear that if the domain has a smooth boundary,
then ∆(Ω) > 0. For more general domains we first obtain the estimate of 𝜆𝑁 for a rhombus.

Assume that in plane with Cartesian coordinates (𝑥, 𝑦) we are given a rhombus 𝑅 with
vertices at the points

(0, 0), (𝑎, 0), (𝑎 cos𝛼, 𝑎 sin𝛼), (𝑎(1 + cos𝛼), 𝑎 sin𝛼),

where 𝛼 ∈ (0, 𝜋/2], 𝑎 > 0. By means of the linear transform

𝑢 = 𝑥 sin𝛼− 𝑦 cos𝛼, 𝑣 = 𝑦

on the plane with coordinates (𝑢, 𝑣) we obtain square 𝐾 with the vertices

(0, 0), (𝑎 sin𝛼, 0), (0, 𝑎 sin𝛼), (𝑎 sin𝛼, 𝑎 sin𝛼),

Now let 𝑃 = 𝑃 (𝑥, 𝑦) be an arbitrary polynomial, whose degree in each variable does not exceed
𝑁 . It is easy to see that

𝑃 2
𝑥 + 𝑃 2

𝑦 = (𝑃𝑢 sin𝛼)2 + (−𝑃𝑢 cos𝛼 + 𝑃𝑣)
2 > (1 − cos𝛼)(𝑃 2

𝑢 + 𝑃 2
𝑣 ).

Then it follows from (12) that(︂∫︀∫︀
𝑅

(𝑃 2
𝑥 + 𝑃 2

𝑦 )𝑑𝑥𝑑𝑦

)︂1/2

√︀
|𝑅|max

𝑅
|∇𝑃 |

>

√
1 − cos𝛼

sin𝛼
·

(︂∫︀∫︀
𝐾

(𝑃 2
𝑢 + 𝑃 2

𝑣 )𝑑𝑢𝑑𝑣

)︂1/2

√︀
|𝑅|max

𝐾
|∇𝑃 |

=

√
1 − cos𝛼

sin𝛼
·

(︂∫︀∫︀
𝑅

(𝑃 2
𝑢 + 𝑃 2

𝑣 )𝑑𝑢𝑑𝑣

)︂1/2

√︀
|𝐾|max

𝐾
|∇𝑃 |

√︃
|𝐾|
|𝑅|

=

√︂
1 − cos𝛼

sin𝛼
·

(︂∫︀∫︀
𝑅

(𝑃 2
𝑢 + 𝑃 2

𝑣 )𝑑𝑢𝑑𝑣

)︂1/2

√︀
|𝐾|max

𝐾
|∇𝑃 |

>

√︂
𝜋(1 − cos𝛼)

2 sin𝛼

1

16𝑁2
.
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Hence, for the rhombus with a side 𝑎 > 0 and an acute angle 𝛼 ∈ (0, 𝜋/2] the inequality

𝜆𝑁 >

√︂
𝜋(1 − cos𝛼)

2 sin𝛼

1

16𝑁2
(14)

holds true.
Suppose that we are given a planar domain Ω. We denote by 𝛼(Ω) ∈ (0, 𝜋/2] an angle such

that each point of the domain is contained in the rhombus 𝑅 ⊂ Ω with an acute angle 𝛼(Ω).
For each 𝑧0 ∈ Ω we find a rhombus 𝑅 ⊂ Ω with maximal side such that 𝑧0 ∈ 𝑅. Let the side
of this rhombus is 𝑎(𝑧0) > 0. We let

∆1(Ω) = inf
𝑧0∈Ω

𝑎(𝑧0) > 0.

Arguing as above, we obtain the inequality

𝜆𝑁 >
√︂

𝜋

|Ω|
· ∆1(Ω) sin(𝛼(Ω)/2)

16𝑁2
. (15)

Taking into consideration that the polynomials in 𝐿𝑁 are of degree at most 𝑁0 +𝑁 , we arrive
at the following statement.

Theorem 3. Let a bounded domain Ω ⊂ R2 be such that ∆1(Ω) > 0 and 𝛼(Ω) > 0. Then
the following estimate

𝜆𝑁 >
√︂

𝜋

|Ω|
· ∆1(Ω) sin(𝛼(Ω)/2)

16(𝑁 +𝑁0)2
(16)

holds true.

6. Estimate for the rate of uniform convergence

We borrow the method of estimating the solutions from work [15]. Let 𝑓 be a solution to
the minimal equation surface in domain Ω ⊂ R2, 𝑓 ∈ 𝐶𝑘(Ω). Let 𝑣*𝑁 be a solution to problem
(3) satisfying (4). We let 𝑓 *

𝑁 = 𝜙+ 𝑣*𝑁 .
We shall assume that

sup
Ω

|∇𝑓 | = 𝑃0 < +∞.

We shall argue as in work [15]. We let 𝑓 𝑡(𝑥, 𝑦) = 𝑓 *
𝑁(𝑥, 𝑦) + 𝑡(𝑓(𝑥, 𝑦) − 𝑓 *

𝑁(𝑥, 𝑦)) and
𝑃 *
𝑁 = sup

Ω
|∇𝑓 *

𝑁 |, 𝑃𝑁 = max{1, 𝑃0, 𝑃
*
𝑁}. It is clear that 𝑓 *|𝜕Ω = 𝑓 |𝜕Ω. We observe that,

generally speaking, 𝑃𝑁 depend on 𝑁 . However, if we assume that 𝑘 > 2 and constants ∆1(Ω)
and 𝛼(Ω) for the domain, then it follows from inequalities (15) and (9) that as 𝑁 → ∞, quantity
𝑃𝑁 is bounded by some constant 𝑃 .

Since as 𝑡 = 0 the function 𝜎(𝑡) = 𝜎(𝑓 𝑡) takes the minimal value, then 𝜎′(0) = 0. Employing
this identity, we obtain

𝜎(𝑓 *
𝑁) − 𝜎(𝑓) =

1∫︁
0

𝑑𝑠

𝑠∫︁
0

𝜎′′(𝑡)𝑑𝑡

=

1∫︁
0

𝑑𝑠

𝑠∫︁
0

𝑑𝑡

∫︁∫︁
Ω

(1 + |∇𝑓 𝑡|2)|∇𝑓 *
𝑁 −∇𝑓 |2 − ⟨∇𝑓 𝑡,∇𝑓 *

𝑁 −∇𝑓⟩2

(1 + |∇𝑓 𝑡|2)3/2
𝑑𝑥𝑑𝑦

>

1∫︁
0

𝑑𝑠

𝑠∫︁
0

𝑑𝑡

∫︁∫︁
Ω

|∇𝑓 −∇𝑓 *
𝑁 |2

(1 + |∇𝑓 𝑡|2)3/2
𝑑𝑥𝑑𝑦 >

1√︀
(1 + 𝑃 2)3

∫︁∫︁
Ω

|∇𝑓 −∇𝑓 *
𝑁 |2𝑑𝑥𝑑𝑦.

(17)
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We employ Poincaré inequality (see, for instance, [16, Subsect. 7.8]) for the function ℎ(𝑥, 𝑦) =
𝑓(𝑥, 𝑦) − 𝑓 *

𝑁(𝑥, 𝑦), ℎ|𝜕Ω = 0. By (17) we obtain

𝜎(𝑓 *
𝑁) − 𝜎(𝑓) >

𝜆(Ω)√︀
(1 + 𝑃 2)3

∫︁∫︁
Ω

|ℎ(𝑥, 𝑦)|2𝑑𝑥𝑑𝑦,

where constant 𝜆(Ω) = 𝜋/|Ω| and |Ω| is the area of domain Ω. We let 𝑀 = sup
Ω

|ℎ| and without

loss of generality we can assume that there exists a point 𝑧0 = (𝑥0, 𝑦0) ∈ Ω, in which ℎ(𝑥0, 𝑦0) =
𝑀 . Let us show that 𝐵𝑀/2𝑃 (𝑧0) ⊂ Ω. Indeed, let 𝑧′ ∈ 𝜕Ω be such that |𝑧0 − 𝑧′| = dist(𝑧0, 𝜕Ω).
Then

2𝑃 |𝑧0 − 𝑧′| > ℎ(𝑧0) − ℎ(𝑧′) = 𝑀 − ℎ(𝑧′) = 𝑀.

Thus, the distance from point 𝑧0 to boundary 𝜕Ω is greater than𝑀/2𝑃 . Therefore, 𝐵𝑀/4𝑃 (𝑧0) ⊂
Ω. Suppose now that 𝑧 = (𝑥, 𝑦) ∈ 𝐵𝑀/4𝑃 (𝑧0). Then

ℎ(𝑧) > ℎ(𝑧0) − 2𝑃 |𝑧 − 𝑧0| > 𝑀 − 2𝑃
𝑀

4𝑃
= 𝑀/2.

We obtain that 𝐵𝑀/4𝑃 (𝑧0) ⊂ 𝐷𝑀 , where

𝐷𝑀 = {(𝑥, 𝑦) ∈ Ω : |ℎ(𝑥, 𝑦)| > 𝑀/2} ⊂⊂ Ω.

This is why ∫︁∫︁
Ω

|ℎ(𝑥, 𝑦)|2𝑑𝑥𝑑𝑦 >
∫︁∫︁
𝐷𝑀

|ℎ(𝑥, 𝑦)|2𝑑𝑥𝑑𝑦

>
∫︁∫︁

𝐵𝑀/4𝑃 (𝑧0)

(︂
𝑀

2

)︂2

𝑑𝑥𝑑𝑦 = 𝜋
𝑀2

4

(︂
𝑀

4𝑃

)︂2

= 𝜋
𝑀4

64𝑃 2
.

Thus,

max
Ω

|𝑓 − 𝑓 *
𝑁 | 6

4√
𝜋

(︀
𝑃 5|Ω|(𝜎(𝑓 *

𝑁) − 𝜎(𝑓))
)︀1/4

.

Then we observe that function 𝑣*𝑁 solves problem (3). Hence, 𝜎(𝑓 *
𝑁)− 𝜎(𝑓) 6 𝜎(𝑓 −𝜙− 𝑔𝑁)−

𝜎(𝑓). Employing the above proven inequality

𝜎(𝑓 − 𝜙− 𝑔𝑁) − 𝜎(𝑓) 6
∫︁∫︁
Ω

|∇𝑔 −∇𝑔𝑁 |2𝑑𝑥𝑑𝑦

and estimate (10) for 𝑢 = 𝑓 − 𝜙, we arrive at the inequality

max
Ω

|𝑓 − 𝑓 *
𝑁 | 6

4√
𝜋

(︂
𝑃 5|Ω|𝛿

2
𝑁(𝑓 − 𝜙)

𝑁2𝑘−2

)︂1/4

.

We have proven the main result of the work.

Theorem 4. Assume that 𝑓 ∈ 𝐶𝑘(Ω), 𝑘 > 3, be a solution to the minimal surface equation
(1) in domain Ω, for which ∆1(Ω) > 0 and 𝛼(Ω) > 0. Assume that this solution satisfies
boundary condition (2) with a function 𝜙 ∈ 𝐶𝑘(Ω). Consider functions 𝑣*𝑁 ∈ 𝐿𝑁 being solutions
to problem (3). Suppose that 𝑃0 = sup

Ω
|∇𝑓 | < +∞ and 𝐾 = sup

Ω
|∇𝜙| <∞. Then the sequence

of approximate solutions 𝑓 *
𝑁 = 𝜙+ 𝑣*𝑁 converge uniformly to 𝑓 and the estimate

max
Ω

|𝑓 − 𝑓 *
𝑁 | 6

4√
𝜋

(︂
𝑃 5|Ω|𝛿

2
𝑁(𝑓 − 𝜙)

𝑁2𝑘−2

)︂1/4
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holds true, where

𝑃 = 1 + 2𝐾 + 𝑃0 +
16
√︀

|Ω|(2 +
√︀

3(1 + 𝑃 2
0 ))√

𝜋∆1(Ω) sin (𝛼(Ω)/2)

𝛿𝑁(𝑓 − 𝜙)

𝑁𝑘−1
(𝑁 +𝑁0)

2.
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