
ISSN 2304-0122 Ufa Mathematical Journal. Vol. 8. No 1 (2015). P. 13-19.

doi:10.13108/2016-8-1-13 UDC 517.957

ONE-PARAMETRIC FAMILY OF POSITIVE SOLUTIONS FOR

A CLASS OF NONLINEAR DISCRETE

HAMMERSTEIN-VOLTERRA EQUATIONS

H.H. AZIZYAN, KH.A. KHACHATRYAN

Abstract. In the present work we study a class of of nonlinear discrete Hammerstein-
Volterra equations in a post-critical case. We prove the existence of a one-parametric
family of positive solutions in space 𝑙1. We describe the set of parameters and establish the
monotonic dependence of each solution both in a parameter and a corresponding index.
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1. Introduction

The work is devoted to the study of the following class of nonlinear discrete Hammerstein-
Volterra equations:

𝑥𝑛 =
∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛ℎ𝑗(𝑥𝑗), 𝑛 = 0, 1, 2, . . . (1.1)

for an unknown infinite vector

𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑛, . . .)
𝑇 , (1.2)

where 𝑇 denotes the transposition.
In system (1.1) the sequence of elements {𝑎𝑘}∞𝑘=0 satisfies the following conditions:

∙ 𝑎𝑘 > 0, 𝑘 = 0, 1, 2, . . . , 𝑎0 = 0, (1.3)

∙ 𝜇 ≡
∞∑︁
𝑘=0

𝑎𝑘 < +∞, (1.4)

∙ (over-criticity condition) 𝜇 > 1. (1.5)

For sequence of measurable real functions {ℎ𝑗(𝑢)}∞𝑗=0 we assume the following “criticity”
condition:

ℎ𝑗(0) = 0, 𝑗 = 0, 1, 2, . . . . (1.6)

Apart from an independent mathematical interest, system (1.1) arises in discrete problems of
transport theory of nonlinear radiation in spectral lines (see [1]).
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Moreover, system (1.1) is a discrete analogue of the nonlinear Hammerstein-Volterra convo-
lution equation:

𝑓(𝑥) =

∞∫︁
𝑥

𝑣(𝑡− 𝑥)𝐻(𝑡, 𝑓(𝑡))𝑑𝑡, 𝑥 > 0, (1.7)

which arises in various fields of natural sciences, in particular, in physical kinetics (kinetic gas
theory), in econometrics (theory of income distribution in one-product economy), in biology
(in deterministic models of spatial epidemic distribution or of the distribution of auspicious
gene in a population along the line with various nonlinearities in genetic models) (see [2]–[5]).
Many interesting works were devoted to the studying of Hammerstein-Volterra equations (see
[6]-[9] and the references therein). For instance, in [6]-[7], the following nonlinear discrete
Hammerstein system was studied:

𝑦𝑛 =
∞∑︁
𝑗=1

𝑎𝑛𝑗𝑓𝑗(𝑦𝑗) + 𝑔𝑛, 𝑛 ∈ N, (1.8)

where
𝑓𝑗(0) = 0, 𝑗 ∈ N,

and
(𝑓𝑗(𝑢) − 𝑓𝑗(𝑣))(𝑢− 𝑣) 6 𝑐𝑓 (𝑢− 𝑣)2, 𝑗 ∈ N,

for some 𝑐𝑓 > 0 under the assumption

𝑐𝑓 · 𝜇0 < 1

and 𝜇0 is the smallest positive number satisfying the inequality

‖𝐴𝑦‖𝑙2,𝜏 6 𝜇0(𝐴𝑦, 𝑦), 𝑦 ∈ 𝑙2,𝜏 .

Here 𝑙2,𝜏 is some weighted space of infinite vectors and 𝐴 = (𝑎𝑛𝑗)
∞
𝑛,𝑗=1.

In work [8], the following discrete Hammerstein-Volterra system was studied:

𝑥𝑛 =
𝑛∑︁

𝑗=𝑛−𝑁0

𝑎𝑛𝑗ℎ𝑗(𝑥𝑗), 𝑛 ∈ N, (1.9)

for an infinite vector 𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑛, . . .)
𝑇 . Under certain restrictions for {𝑎𝑛𝑗}∞𝑛,𝑗=1 and

{ℎ𝑗(𝑢)}∞𝑗=1, the existence of periodic solutions was proved in this work.
The issues of linearization for general nonlinear discrete Volterra equations were discussed in

work [9].
It should be noted that condition (1.6) in some sense complicates the situation since it follows

immediately from (1.6) that the zero vector satisfies system (1.1).
Here the following issues arise:
1) Under which conditions for {ℎ𝑗(𝑢)}∞𝑗=0, apart from the trivial solution, system (1.1) has a

component-wise positive solution?
2) In which space is this solution?
3) Whether the constructed solution possesses the uniqueness property in certain class of

infinite vectors with positive coordinates?
4) Whether there exists a one-parametric family of positive solutions?
5) If there exists a one-parametric family of solutions, which is the structure of the corre-

sponding set of parameters?
In the present paper, under certain conditions for the sequence of functions {ℎ𝑗(𝑢)}∞𝑗=0 we

prove the existence of one-parametric family of component-wise positive solutions. We establish
that each such solution in this family belongs to space 𝑙1. We describe the set of parameters.
We prove the monotonous dependence of each solution w.r.t. both the parameter and the
corresponding index. In the end of the work we provide particular examples of sequence of
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functions {ℎ𝑗(𝑢)}∞𝑗=0 satisfying the assumptions of formulated theorem. It should be mentioned
that the formulated theorem is constructive since apart from appropriate apriori estimates, its
proof involves the method of successive approximations.

We also mention that the approaches developed in the work allows us to continue success-
fully the studies for constructing one-parametric family of positive solutions in 𝐿1(0,∞) of the
corresponding nonlinear integral equation (1.7).

2. Formulation of theorem

Before we formulate the main result of the present work, we introduce some notations.
We consider the following function defined on segment [0, 1] :

𝜒(𝑝) =
∞∑︁
𝑘=0

𝑎𝑘𝑝
𝑘, 𝑝 ∈ [0, 1], (2.1)

where {𝑎𝑘}∞𝑘=0 satisfy conditions (1.3)–(1.5). It follows from (1.3)–(1.5) that

∙ 𝜒(0) = 𝑎0 = 0, 𝜒(1) = 𝜇 > 1, 𝜒 ∈ 𝐶[0, 1], (2.2)

∙ 𝜒(𝑝) ↑ in 𝑝 on [0, 1]. (2.3)

Therefore, there exists a unique number 𝑝0 > 0 such that 𝜒(𝑝0) = 1. We fix this number and
make the following assumptions for

𝜔𝑗(𝑢) ≡ ℎ𝑗(𝑢) − 𝑢, 𝑗 = 0, 1, 2, . . . : (2.4)

𝐼) there exists a number 𝛼 > 0 such that for each fixed 𝑗 ∈ N ∪ {0} functions 𝜔𝑗(𝑢) ↑ in 𝑢

on [𝛼𝑝𝑗0,+∞),
𝐼𝐼) 𝜔𝑗 ∈ 𝐶(Ω𝑗), where Ω𝑗 ≡ [𝛼𝑝𝑗0,+∞), 𝑗 = 0, 1, 2, . . . ,
𝐼𝐼𝐼) there exists sup

𝑢>𝛼
𝜔𝑗(𝑢) ≡ 𝜏𝑗, 𝑗 = 0, 1, 2, . . . , where {𝜏𝑗}∞𝑗=0 is a sequence of positive

numbers satisfying the condition
∞∑︁
𝑗=0

𝑗𝜏𝑗𝑝
−𝑗
0 < +∞, (2.5)

𝐼𝑉 ) 𝜔𝑗(𝑢) > 0, 𝑢 ∈ Ω𝑗, 𝑗 = 0, 1, 2, . . .
The following theorem holds true.

Theorem 1. Suppose that sequence {𝑎𝑘}∞𝑘=0 satisfies conditions (1.3)–(1.5), while {𝜔𝑗(𝑢)}∞𝑗=0

possesses the properties (2.4) and 𝐼) − 𝐼𝑉 ). Then system (1.1) has a one-parametric family of
component-wise positive solutions {𝑥𝛾}𝛾∈Π, 𝑥𝛾 = (𝑥0,𝛾, 𝑥1,𝛾, . . . , 𝑥𝑛,𝛾, . . .)

𝑇 , and
1) 𝑥𝛾 ∈ 𝑙1, ∀𝛾 ∈ Π ≡ [𝛼,+∞),
2) if 𝛾1, 𝛾2 ∈ Π and 𝛾1 > 𝛾2, then the lower estimates

𝑥𝑛,𝛾1 − 𝑥𝑛,𝛾2 > (𝛾1 − 𝛾2)𝑝
𝑛
0 , ∀𝑛 ∈ N ∪ {0}, (2.6)

hold true.
3) if there exists a natural number 𝑁0 such that for each fixed 𝑢 > 0

𝜔𝑗+1(𝑢) 6 𝜔𝑗(𝑢), 𝑗 = 𝑁0, 𝑁0 + 1, 𝑁0 + 2, . . . , (2.7)

then

𝑥𝑛+1,𝛾 6 𝑥𝑛,𝛾, 𝑛 = 𝑁0, 𝑁0 + 1, 𝑁0 + 2, . . . , (2.8)

∀𝛾 ∈ Π.
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3. Proof of theorem

We begin with an auxiliary Volterra type discrete system

𝑦𝑛 = 𝑧𝑛 +
∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛𝑦𝑗, 𝑛 = 0, 1, 2, . . . , (3.1)

for an unknown infinite vector
𝑦 = (𝑦0, 𝑦1, . . . , 𝑦𝑛 . . .)

𝑇 , (3.2)

where

𝑧𝑛 ≡
∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛𝜏𝑗, 𝑛 = 0, 1, 2, . . . . (3.3)

We multiply both sides of the system (3.1) by 𝑝−𝑛
0 (𝑛 ∈ N ∪ {0}), and denoting

𝑦*𝑛 ≡ 𝑝−𝑛
0 𝑦𝑛, 𝑧*𝑛 ≡ 𝑝−𝑛

0 𝑧𝑛, 𝑏𝑛 ≡ 𝑝𝑛0𝑎𝑛, 𝑛 = 0, 1, 2, . . . , (3.4)

we arrive at the following system for 𝑦* = (𝑦*0, 𝑦
*
1, . . . , 𝑦

*
𝑛 . . .)

𝑇 :

𝑦*𝑛 = 𝑧*𝑛 +
∞∑︁
𝑗=𝑛

𝑏𝑗−𝑛𝑦
*
𝑗 , 𝑛 = 0, 1, 2, . . . . (3.5)

Since 𝜒(𝑝0) = 1, it follows immediately from (3.4) that
∞∑︁
𝑛=0

𝑏𝑛 = 1. (3.6)

In what follows we shall make sure that

∙ 𝑧* ∈ 𝑙1, 𝑧* = (𝑧*0 , 𝑧
*
1 , . . . , 𝑧

*
𝑛 . . .)

𝑇 , (3.7)

∙
∞∑︁
𝑛=0

𝑛𝑧*𝑛 < +∞. (3.8)

We observe that (3.7) is obviously implied by (3.8). This is why it is sufficient to prove (3.8).
Taking into consideration (3.4) and (2.5), for each 𝑁 ∈ N we estimate a partial sum of series
(3.8):

𝑁∑︁
𝑗=0

𝑗𝑧*𝑗 =
𝑁∑︁
𝑗=0

𝑗𝑝−𝑗
0

∞∑︁
𝑖=𝑗

𝑎𝑖−𝑗𝜏𝑖 6
𝑁∑︁
𝑗=0

∞∑︁
𝑖=𝑗

𝑎𝑖−𝑗𝑖𝑝
−𝑖
0 𝜏𝑖 =

𝑁∑︁
𝑗=0

𝑁∑︁
𝑖=𝑗

𝑎𝑖−𝑗𝑖𝑝
−𝑖
0 𝜏𝑖 +

𝑁∑︁
𝑗=0

∞∑︁
𝑖=𝑁+1

𝑎𝑖−𝑗𝑖𝑝
−𝑖
0 𝜏𝑖

=
𝑁∑︁
𝑖=0

𝑖𝑝−𝑖
0 𝜏𝑖

𝑖∑︁
𝑗=0

𝑎𝑖−𝑗 +
∞∑︁

𝑖=𝑁+1

𝑖𝑝−𝑖
0 𝜏𝑖

𝑁∑︁
𝑗=0

𝑎𝑖−𝑗 6
𝑁∑︁
𝑖=0

𝑖𝑝−𝑖
0 𝜏𝑖

𝑖∑︁
𝑗=0

𝑎𝑖−𝑗 +
∞∑︁

𝑖=𝑁+1

𝑖𝑝−𝑖
0 𝜏𝑖

𝑖∑︁
𝑗=0

𝑎𝑖−𝑗

=
𝑁∑︁
𝑖=0

𝑖𝑝−𝑖
0 𝜏𝑖

𝑖∑︁
𝑚=0

𝑎𝑚 +
∞∑︁

𝑖=𝑁+1

𝑖𝑝−𝑖
0 𝜏𝑖

𝑖∑︁
𝑚=0

𝑎𝑚 6 𝜇

(︃
𝑁∑︁
𝑖=0

𝑖𝑝−𝑖
0 𝜏𝑖 +

∞∑︁
𝑖=𝑁+1

𝑖𝑝−𝑖
0 𝜏𝑖

)︃

=𝜇

∞∑︁
𝑖=0

𝑖𝑝−𝑖
0 𝜏𝑖 < +∞.

Since 𝑁 ∈ N is arbitrary, and 𝑧*𝑛 > 0, 𝑛 ∈ N ∪ {0}, the obtained estimate implies (3.8).
Thus, we have obtained that free term 𝑧* of system (3.5) and sequence {𝑏𝑛}∞𝑛=0 satisfy

respectively conditions (3.8), (3.7) and (3.6). Therefore, the results of work [10, Lm. 4.8] yield
that system (3.5) has a component-wise solution in space 𝑙1.

It follows from (3.4) that
𝑦𝑛 = 𝑝𝑛0 · 𝑦*𝑛, 𝑛 = 0, 1, 2, . . . , (3.9)
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is a solution to system (3.1). Since 𝑦* ∈ 𝑙1 and 𝑝0 ∈ (0, 1), by (3.9) we obtain

𝑦 = (𝑦0, 𝑦1, . . . , 𝑦𝑛, . . .)
𝑇 ∈ 𝑙1. (3.10)

Now for main system (1.1) we introduce the following iterations:

𝑥(𝑚+1)
𝑛,𝛾 =

∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛ℎ𝑗(𝑥
(𝑚)
𝑗,𝛾 ), 𝑥(0)

𝑛,𝛾 = 𝛾𝑝𝑛0 , 𝑛 = 0, 1, 2, . . . , 𝑚 = 0, 1, 2, . . . , 𝛾 ∈ Π. (3.11)

Let us prove by induction by 𝑚 that

𝐴) 𝑥(𝑚)
𝑛,𝛾 ↑ in 𝑚, ∀𝛾 ∈ Π, ∀𝑛 ∈ N ∪ {0},

𝐵) 𝑥(𝑚)
𝑛,𝛾 6 𝛾𝑝𝑛0 + 𝑦𝑛, ∀𝑚 ∈ N ∪ {0}, ∀𝛾 ∈ Π, ∀𝑛 ∈ N ∪ {0}.

We first prove the monotonicity of sequence {𝑥(𝑚)
𝑛,𝛾 }∞𝑚=0 in 𝑚. Indeed, by the monotonicity of

{𝜔𝑗(𝑢)}∞𝑗=0 in 𝑢 on [𝛼𝑝𝑗0,+∞), 𝑗 = 0, 1, 2, . . . , in view of Condition IV) of the theorem, thanks
to (3.11) we have

𝑥(1)
𝑛,𝛾 =

∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛(𝑥
(0)
𝑗,𝛾 + 𝜔𝑗(𝑥

(0)
𝑗,𝛾)) > 𝛾

∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛𝑝
𝑗
0

=𝛾
∞∑︁
𝑖=0

𝑎𝑖𝑝
𝑛+𝑖
0 = 𝛾𝑝𝑛0𝜒(𝑝0) = 𝛾𝑝𝑛0 = 𝑥(0)

𝑛,𝛾.

Assuming that
𝑥(𝑚)
𝑛,𝛾 > 𝑥(𝑚−1)

𝑛,𝛾

for some 𝑚 ∈ N, 𝑛 ∈ N ∪ {0}, 𝛾 ∈ Π and taking into account the monotonicity of 𝜔𝑗(𝑢) in 𝑢,
by (3.11) we obtain

𝑥(𝑚+1)
𝑛,𝛾 >

∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛(𝑥
(𝑚−1)
𝑗,𝛾 + 𝜔𝑗(𝑥

(𝑚−1)
𝑗,𝛾 )) = 𝑥(𝑚)

𝑛,𝛾 .

Let us prove inequalities B). As 𝑚 = 0, it is obvious since 𝑦𝑛 > 0, 𝑛 = 0, 1, 2, . . . We assume
that B) is satisfied for some 𝑚 ∈ N. Then, taking into consideration I), III) and IV), by (3.11)
we get

𝑥(𝑚+1)
𝑛,𝛾 6

∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛(𝛾𝑝𝑗0 + 𝑦𝑗 + 𝜔𝑗(𝛾𝑝
𝑗
0 + 𝑦𝑗)) 6

∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛(𝛾𝑝𝑗0 + 𝑦𝑗 + 𝜔𝑗(𝛾 + 𝑦𝑗))

6
∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛(𝛾𝑝𝑗0 + 𝑦𝑗 + 𝜏𝑗) = 𝛾
∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛𝑝
𝑗
0 +

∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛𝑦𝑗 + 𝑧𝑛 = 𝛾𝑝𝑛0 + 𝑦𝑛.

It follows from A) and B) that for each fixed 𝛾 ∈ Π the sequence of infinite vectors {𝑥(𝑚)
𝛾 }∞𝑚=0,

𝑥
(𝑚)
𝛾 = (𝑥

(𝑚)
0,𝛾 , 𝑥

(𝑚)
1,𝛾 , . . . , 𝑥

(𝑚)
𝑛,𝛾 , . . .)𝑇 , has a limit if and only if 𝑚 → ∞ : lim

𝑚→∞
𝑥
(𝑚)
𝛾 = 𝑥𝛾, and in

view of Condition II) and the fact

sup
𝑛∈N∪{0}

∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛(𝑥𝑗,𝛾 + 𝜔𝑗(𝑥𝑗,𝛾)) 6 𝛾 + sup
𝑛∈N∪{0}

𝑦𝑛 < +∞,

the limiting vector satisfies system (1.1). It also follows from A) and B) that

𝛾𝑝𝑛0 6 𝑥𝑛,𝛾 6 𝛾𝑝𝑛0 + 𝑦𝑛, 𝛾 ∈ Π, 𝑛 ∈ N ∪ {0}.
Let us prove inequality (2.6). In order to do it, by induction in 𝑚 we first make sure that if
𝛾1, 𝛾2 ∈ Π, 𝛾1 > 𝛾2, then

𝑥(𝑚)
𝑛,𝛾1

− 𝑥(𝑚)
𝑛,𝛾2

> (𝛾1 − 𝛾2)𝑝
𝑛
0 , 𝑛 = 0, 1, 2, . . . , 𝑚 = 0, 1, 2, . . . . (3.12)
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In the case 𝑚 = 0, inequality (3.12) is obviously true since it becomes the identity. Suppose
that (3.12) holds true for some 𝑚 ∈ N. Then by the monotonicity of 𝜔𝑗(𝑢) in 𝑢 on [𝛼𝑝𝑗0,+∞),
𝑗 = 0, 1, 2, . . . and 𝛾𝑖 > 𝛼, 𝑖 = 1, 2,, we get

𝑥(𝑚+1)
𝑛,𝛾1

− 𝑥(𝑚+1)
𝑛,𝛾2

=
∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛(𝑥
(𝑚)
𝑗,𝛾1

− 𝑥
(𝑚)
𝑗,𝛾2

+ 𝜔𝑗(𝑥
(𝑚)
𝑗,𝛾1

) − 𝜔𝑗(𝑥
(𝑚)
𝑗,𝛾2

)) >
∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛(𝑥
(𝑚)
𝑗,𝛾1

− 𝑥
(𝑚)
𝑗,𝛾2

)

>(𝛾1 − 𝛾2)
∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛𝑝
𝑗
0 = (𝛾1 − 𝛾2)𝑝

𝑛
0 · 𝜒(𝑝0) = (𝛾1 − 𝛾2)𝑝

𝑛
0 .

Passing to limit as 𝑚 → ∞ in (3.12), we arrive at (2.6).
To complete the proof of the theorem, it remains to make sure that condition (2.7) implies

inequality (2.8).
We first prove that under condition (2.7) we have

𝑥
(𝑚)
𝑛+1,𝛾 6 𝑥(𝑚)

𝑛,𝛾 , 𝑛 = 0, 1, 2, . . . , 𝑚 = 0, 1, 2, . . . , 𝛾 ∈ Π. (3.13)

As 𝑚 = 0, it is implied by the following simple inequality:

𝑥
(0)
𝑛+1,𝛾 = 𝛾𝑝𝑛+1

0 6 𝛾𝑝𝑛0 = 𝑥(0)
𝑛,𝛾.

Suppose that (3.13) is satisfied for some 𝑚 ∈ N. Then in view of (2.7), the monotonicity of
𝜔𝑗(𝑢) in 𝑢 on [𝛼𝑝𝑗0,+∞), 𝑗 = 0, 1, 2, . . . , by (3.11) we obtain

𝑥
(𝑚+1)
𝑛+1,𝛾 − 𝑥(𝑚+1)

𝑛,𝛾 =
∞∑︁

𝑗=𝑛+1

𝑎𝑗−(𝑛+1)(𝑥
(𝑚)
𝑗,𝛾 + 𝜔𝑗(𝑥

(𝑚)
𝑗,𝛾 )) −

∞∑︁
𝑗=𝑛

𝑎𝑗−𝑛(𝑥
(𝑚)
𝑗,𝛾 + 𝜔𝑗(𝑥

(𝑚)
𝑗,𝛾 ))

=
∞∑︁
𝑘=0

𝑎𝑘(𝑥
(𝑚)
𝑘+𝑛+1,𝛾 + 𝜔𝑘+𝑛+1(𝑥

(𝑚)
𝑘+𝑛+1,𝛾)) −

∞∑︁
𝑘=0

𝑎𝑘(𝑥
(𝑚)
𝑘+𝑛,𝛾 + 𝜔𝑘+𝑛(𝑥

(𝑚)
𝑘+𝑛,𝛾))

=
∞∑︁
𝑘=0

𝑎𝑘(𝑥
(𝑚)
𝑘+𝑛+1,𝛾 − 𝑥

(𝑚)
𝑘+𝑛,𝛾 + 𝜔𝑘+𝑛+1(𝑥

(𝑚)
𝑘+𝑛+1,𝛾) − 𝜔𝑘+𝑛(𝑥

(𝑚)
𝑘+𝑛,𝛾)) = 𝐼1 + 𝐼2 + 𝐼3,

where

𝐼1 ≡
∞∑︁
𝑘=0

𝑎𝑘(𝑥
(𝑚)
𝑘+𝑛+1,𝛾 − 𝑥

(𝑚)
𝑘+𝑛,𝛾) 6 0

by the induction assumption,

𝐼2 ≡
∞∑︁
𝑘=0

𝑎𝑘(𝜔𝑘+𝑛+1(𝑥
(𝑚)
𝑘+𝑛+1,𝛾) − 𝜔𝑘+𝑛+1(𝑥

(𝑚)
𝑘+𝑛,𝛾)) 6 0,

since 𝜔𝑗(𝑢) ↑ w.r.t. 𝑢 on [𝛼𝑝𝑗0,+∞), 𝑗 = 0, 1, 2, . . . , and by the induction assumption, while

𝐼3 ≡
∞∑︁
𝑘=0

𝑎𝑘(𝜔𝑘+𝑛+1(𝑥
(𝑚)
𝑘+𝑛,𝛾) − 𝜔𝑘+𝑛(𝑥

(𝑚)
𝑘+𝑛,𝛾)) 6 0

by condition (2.7).
Therefore,

𝑥
(𝑚+1)
𝑛+1,𝛾 6 𝑥(𝑚+1)

𝑛,𝛾 , 𝑛 = 0, 1, 2, . . . , 𝛾 ∈ Π.

Passing to the limit as 𝑚 goes to infinity in (3.13), we arrive at (2.8). It completes the proof
of the theorem.
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In conclusion we provide some examples of sequence {𝜔𝑗(𝑢)}∞𝑗=0 satisfying all the assumptions
of the formulated theorem:

𝑎) 𝜔𝑗(𝑢) = 𝑝2𝑗0 (1 − 𝑒−𝑢), 𝑗 = 0, 1, 2, . . . , 𝑢 > 0,

𝑏) 𝜔𝑗(𝑢) = 𝑝2𝑗0
𝑢

𝑢 + 𝑐
, ∀𝑐 > 0, 𝑗 = 0, 1, 2, . . . , 𝑢 > 0,

𝑐) 𝜔𝑗(𝑢) = 𝑝2𝑗0
𝑢𝑞

𝑢𝑞 + 𝑐
, ∀𝑐 > 0, ∀𝑞 > 2, 𝑗 = 0, 1, 2, . . . , 𝑢 > 0,

𝑑) 𝜔𝑗(𝑢) = 𝑝2𝑗0
𝑢 + 𝑠𝑖𝑛2𝑢

𝑢 + 𝑠𝑖𝑛2𝑢 + 1
, 𝑗 = 0, 1, 2, . . . , 𝑢 > 0.

The authors thank the referee for useful remarks.
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