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ON SOME PROPERTIES OF SINC-APPROXIMATIONS OF

CONTINUOUS FUNCTIONS ON INTERVAL

A.YU. TRYNIN

Abstract. We study approximation properties of various operators being the modifica-
tions of sinc approximations of continuous functions on an interval.

Keywords: sinc approximation, interpolation functions, uniform approximation.

1. Introduction

E. Borel and E.T. Whittaker introduced independently the notion of a cardinal and a trun-
cated cardinal function, whose restriction on the segment [0, 𝜋] reads as follows:

𝐿𝑛(𝑓, 𝑥) =
𝑛∑︁

𝑘=0

sin (𝑛𝑥− 𝑘𝜋)

𝑛𝑥− 𝑘𝜋
𝑓
(︁𝑘𝜋
𝑛

)︁
=

𝑛∑︁
𝑘=0

(−1)𝑘 sin𝑛𝑥

𝑛𝑥− 𝑘𝜋
𝑓
(︁𝑘𝜋
𝑛

)︁
=

𝑛∑︁
𝑘=0

𝑙𝑘,𝑛(𝑥)𝑓
(︁𝑘𝜋
𝑛

)︁
. (1)

At present, the problem on sinc-approximation of a function decaying exponentially at infinity
and analytic in a strip containing the real axis is studied in great details. The most complete
survey of the results obtained in this direction by 1993 as well as many important applications
of sinc-approximations can be found in [1]. Interesting historical surveys of studieds in this
field were also provided in [2], [3].

Sinc-approximations have wide applications in constructing various numerical methods in
mathematical physics and the approximation theory for the functions of both one and several
variables [1], [4], in the theory of quadrature formulae [1], in the theory of wavelet-transforms
or wavelets [5, Ch. 7, Sect. 4, Subsect. 2], [6, Ch. 2], [7], [8].

Interesting tests for the uniform convergence on the axis for Whittaker cardinal functions
were provided in [9], [10].

Another important sufficient condition for convergence of sinc-approximations was obtained
in paper [11]. It was established that for some subclasses of functions absolutely continuous
together with their derivatives on the interval (0, 𝜋) and having a bounded variation on the
whole axis R, Kotel’nikov series (or cardinal Whittaker functions) converge uniformly inside
the interval (0, 𝜋). In [12] an upper bound for the best possible approximation of continuous
functions vanishing at the end-points of [0, 𝜋] by linear combinations of sincs was obtained by
an original approach. In works [13], [14], [15] there were obtained estimates for the error of
uniform approximations of uniformly continuous and bounded on R functions by the values of
various operators being combinations of sincs. We note that the structure of some operators
considered in [13], [14] are similar with the operators studied in the present work.

Unfortunately, while approximating continuous functions on a segment by means of (1) and
many other operators, Gibbs phenomenon arises in the vicinity of the segment end-points, see,
for instance, [16] and [17].
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In [18], [19], [20] and [17] various estimates for the error of approximation of analytic in a circle
functions by sinc-approximations (1) were obtained. To the best of the author’s knowledge,
before works [18], [19], [20] and [17], approximation by cardinal Whittaker functions on a
segment or a bounded interval was made just for particular classes of analytic functions by
reducing to the axis via a conformal mapping.

In paper [20] sharp estimates were established for the functions and Lebesgue constants of
operator (1) and an analogue of G.P. Névai formula was obtained, which was appropriate for
studying approximative properties of operator (1). Works [21], [22] were devoted to obtaining
necessary and sufficient conditions of pointwise and uniform in the interval (0, 𝜋) convergence of
sinc-approximations (1) for continuous on [0, 𝜋] functions. The authors of an interesting paper
[23] employed the results of work [21] to study the convergence of the algorithms of multi-level
sinc-approximations of functions with a minimal smoothness.

In [24] there was constructed an example of a continuous function vanishing at the end-points
of the segment [0, 𝜋] for which the sequence of the values of operators (1) diverges unboundedly
everywhere on the interval (0, 𝜋). The results of [24] show that while attempting to approximate
non-smooth continuous functions by the values of operators (1) a “resonance” can appear that
produces an unbounded growth of approximation error everywhere on the interval (0, 𝜋). In
the same work there was proven the absence of the equiconvergence of the values of operators
(1) and Fourier series or integral on the class of continuous functions.

Work [25] was denoted to studying approximative properties of interpolation operators con-
structed by means of solutions to the Cauchy problems with second order differential expres-
sions. In [26] the results of work [25] were applied for studying approximative properties of
classical Lagrange interpolation processes with the matrix of interpolation nodes, whose each
row consists of zeroes of Jacobi polynomials 𝑃𝛼𝑛,𝛽𝑛

𝑛 with the parameters depending on 𝑛. Pa-
pers [27] and [28] were devoted to applications of the considered in [25] operators to studying
Lagrange-Sturm-Liouville interpolation processes.

This short historical background does not, of course, pretend for a complete survey of all
works devoted to sampling theorem and its generalization. Moreover, we do not cite the papers
in a huge series of works devoted to numerous applications of this direction in the mathematical
analysis to the related fields of natural sciences.

In the present work we follow the lines of publications [29]–[36] and study the issues on
approximations of continuous on the segment [0, 𝜋] functions by means of linear combinations
of sincs {𝑙𝑘,𝑛}𝑛, ∞

𝑘=0,𝑛=1 and linear functions. At that, as an information on the approximated

function, we employ only its values at the nodes 𝑥𝑘,𝑛 = 𝜋𝑘
𝑛

0 6 𝑘 6 𝑛, 𝑛 = 1, 2, 3, . . .. The
main attention in the present study is paid to the following issues. The first one is how to
compensate the appearance of the undesirable “resonance” while approximating non-smooth
functions of fractal kind. The second issue is whether one can suggest operators having no
Gibbs phenomenon (Wilbraham-Gibbs phenomenon) in the vicinity of the end-points of the
segment [0, 𝜋] and whether there is a chance to keep at that the interpolation property for the
new operators.

To each function 𝑓 taking finite values on the set 𝑥𝑘,𝑛 = 𝜋𝑘
𝑛

, 𝑛 ∈ N, 0 6 𝑘 6 𝑛, we associate
an entire function 𝐿𝑇𝑛 by the rule:

𝐿𝑇𝑛(𝑓, 𝑥) =
𝑛−1∑︁
𝑘=1

{︂
𝑓(𝑥𝑘,𝑛) −

(︀
𝑓(𝜋) − 𝑓(0)

)︀
𝑘

𝑛
− 𝑓(0)

}︂
cos𝑛𝑥 sin𝑛𝑥

𝑛𝑥− 𝑘𝜋

−
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥𝑘+1,𝑛) + 𝑓(𝑥𝑘,𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
(2𝑘 + 1)

2𝑛
− 𝑓(0)

}︂
sin𝑛𝑥 cos𝑛𝑥

𝑛𝑥− (𝑘 + 1
2
)𝜋

+
𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0).

(2)
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It should be stressed that as an information on function 𝑓 , operator (2) employs only its
values at the nodes 𝑥𝑘,𝑛 = 𝜋𝑘

𝑛
, 𝑛 ∈ N, 𝑘 ∈ Z. Moreover, cos𝑛𝑥𝑘,𝑛 = (−1)𝑘 as 𝑛 ∈ N,

0 6 𝑘 6 𝑛, and this is why the first term in the definition of operator (2) is in fact a slightly
“corrected” operator of sinc-approximation (1). Second term in (2) compensates the undesirable
resonance if it appears in approximating non-smooth functions. Hence, operator (2) has the
same approximative properties as operators (13) despite the values of this operator are smooth
enough and interpolate an approximated function, i.e., 𝑓(𝑥𝑘,𝑛) = 𝐿𝑇𝑛(𝑓, 𝑥𝑘,𝑛) for each 𝑛 ∈ N,
0 6 𝑘 6 𝑛. The trick used in constructing operator 𝑇𝜆(𝑓, ·) [25, Formula (1.9)] allows us to get
rid of the Gibbs effect in the vicinity of the end-points of the segment [0, 𝜋] while approximating
functions be means of operator (2).

For the numerical mathematics, an equivalent more compact representation of operator (2)
can be useful:

𝐿𝑇𝑛(𝑓, 𝑥) ≡
𝑛−1∑︁
𝑘=1

(︂
𝑓(𝑥𝑘,𝑛) −

(︀
𝑓(𝜋) − 𝑓(0)

)︀
𝑘

𝑛
− 𝑓(0)

)︂{︂
𝜋2 sin 2𝑛𝑥

2(𝑛𝑥− 𝑘𝜋)
(︀
𝜋2 − 4(𝑛𝑥− 𝑘𝜋)2

)︀}︂
+

𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0).

Theorem 1. For each function 𝑓 continuous on the segment [0, 𝜋] the relation

lim
𝑛→∞

‖𝑓 − 𝐿𝑇𝑛(𝑓, ·)‖𝐶[0,𝜋] = 0.

holds true.

We denote by 𝐶0[0, 𝜋] the space of continuous function vanishing at the end-points of the
segment with the Chebyshev norm, i.e., 𝐶0[0, 𝜋] = {𝑓 : 𝑓 ∈ 𝐶[0, 𝜋], 𝑓(0) = 𝑓(𝜋) = 0}.

The results of the present work allow us to state the completeness of the elements {𝑙𝑘,𝑛}𝑛, ∞
𝑘=0,𝑛=1

in normed spaces 𝐶[0, 𝜋] and 𝐶0[0, 𝜋].

Corollary 1. The system{𝑙𝑘,𝑛}𝑛, ∞
𝑘=0,𝑛=1 is complete in 𝐶0[0, 𝜋] that is in agreement with the

results of work [12]. A system of functions {1, 𝑥} ∪ {𝑙𝑘,𝑛}𝑛, ∞
𝑘=0,𝑛=1 is complete in 𝐶[0, 𝜋].

Moreover, by none of linear combinations of the functions in the system {𝑙𝑘,𝑛}𝑛, ∞
𝑘=0,𝑛=1 one can

approximate an arbitrary element in space 𝐶[0, 𝜋].

Theorem 2. Linear spans of the systems of functions

{𝑙𝑘,𝑛}𝑛𝑘=0, 𝑛 ∈ N (3)

are not dense in 𝐶[0, 𝜋].

2. Auxiliary statements

We begin with some auxiliary statements, which we shall employ in what follows.

Proposition 1. [20, Thm. 2] If a function 𝑓 is continuous on the segment [0, 𝜋], then for
each 𝑥 ∈ [0, 𝜋] the identities

lim
𝑛→∞

(︁
𝑓(𝑥) − 𝐿𝑛(𝑓, 𝑥) − 1

2

𝑛−1∑︁
𝑘=0

(︀
𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

)︀
𝑙𝑘,𝑛(𝑥)

)︁
= 0 (4)

hold true, where

𝑙𝑘,𝑛(𝑥) =
(−1)𝑘 sin𝑛𝑥

𝑛𝑥− 𝑘𝜋
.

The convergence in (4) is pointwise on the segment [0, 𝜋] and is uniform inside the interval
(0, 𝜋), i.e., it is uniform on each compact set contained in this interval.
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Under the assumption 𝜌𝜆 > 0, for each nonnegative 𝜆 we assume that function 𝑞𝜆 is such
that

𝑉 𝜋
0 [𝑞𝜆] 6 𝜌𝜆, 𝜌𝜆 = 𝑜

(︂√
𝜆

ln𝜆

)︂
, as 𝜆 → ∞, 𝑞𝜆(0) = 0. (5)

Then for each potential 𝑞𝜆 ∈ 𝑉𝜌𝜆 [0, 𝜋] the zeroes of the solution to the Cauchy problem⎧⎨⎩ 𝑦′′ +
(︀
𝜆− 𝑞𝜆(𝑥)

)︀
𝑦 = 0,

𝑦(0, 𝜆) = 1,
𝑦′(0, 𝜆) = ℎ(𝜆),

(6)

as 𝜆 → +∞, or under the additional condition ℎ(𝜆) ̸= 0, the zeroes of the solution to the
Cauchy problem ⎧⎨⎩ 𝑦′′ +

(︀
𝜆− 𝑞𝜆(𝑥)

)︀
𝑦 = 0,

𝑦(0, 𝜆) = 0,
𝑦′(0, 𝜆) = ℎ(𝜆),

(7)

locating in [0, 𝜋] and taken in the ascending order are denoted by

0 6 𝑥0,𝜆 < 𝑥1,𝜆 < . . . < 𝑥𝑛(𝜆),𝜆 6 𝜋 (𝑥−1,𝜆 < 0, 𝑥𝑛(𝜆)+1,𝜆 > 𝜋). (8)

Here 𝑥−1,𝜆 < 0, 𝑥𝑛(𝜆)+1,𝜆 > 𝜋 stand for the zeroes of the continuation of the solution to Cauchy
problem (6) or (7) with some continuation of function 𝑞𝜆 outside the segment [0, 𝜋] keeping a
bounded variation. For Cauchy problem (7) we also assume that function ℎ(𝜆) is non-zero, i.e.,

𝑉 𝜋
0 [𝑞𝜆] 6 𝜌𝜆, 𝜌𝜆 = 𝑜

(︂√
𝜆

ln𝜆

)︂
, as 𝜆 → ∞, 𝑞𝜆(0) = 0, ℎ(𝜆) ̸= 0. (9)

In [25] the approximative properties were studided for Lagrange type operators constructed
by the solutions to Cauchy problems (6) or (7) and mapping each function 𝑓 on [0, 𝜋] into a
continuous function interpolating it at the nodes {𝑥𝑘,𝜆}𝑛𝑘=0 so that

𝑆𝜆(𝑓, 𝑥) =
𝑛∑︁

𝑘=0

𝑦(𝑥, 𝜆)

𝑦′(𝑥𝑘,𝜆, 𝜆)(𝑥− 𝑥𝑘,𝜆)
𝑓(𝑥𝑘,𝜆) =

𝑛∑︁
𝑘=0

𝑠𝑘,𝜆(𝑥)𝑓(𝑥𝑘,𝜆). (10)

In particular, the following proposition was proved.

Proposition 2. [25, Prop. 9] Let 𝑦(𝑥, 𝜆) be solutions to Cauchy problem (6) or (7). Cauchy
problem (6) satisfies relations (5), while Cauchy problem (7) satisfies (9).
If 𝑓 ∈ 𝐶0[0, 𝜋], then the relation

lim
𝜆→∞

(︁
𝑓(𝑥) − 𝑆𝜆(𝑓, 𝑥) − 1

2

𝑛−1∑︁
𝑘=0

{𝑓(𝑥𝑘+1,𝜆) − 𝑓(𝑥𝑘,𝜆)}𝑠𝑘,𝜆(𝑥)
)︁

= 0

holds true uniformly on 𝑥 ∈ [0, 𝜋] and in all 𝑞𝜆 ∈ 𝑉𝐶𝜆
[0, 𝜋], where 𝑠𝑘,𝜆(𝑥) = 𝑦(𝑥,𝜆)

𝑦′(𝑥𝑘,𝜆,𝜆)(𝑥−𝑥𝑘,𝜆)
.

Remark 1. [25, Prop. 9] In the same one can that the following proposition holds true under
assumption 2. If 𝑓 ∈ 𝐶0[0, 𝜋], then the relations

lim
𝜆→∞

(︁
𝑓(𝑥) − 𝑆𝜆(𝑓, 𝑥) − 1

2

𝑛∑︁
𝑘=1

{𝑓(𝑥𝑘−1,𝜆) − 𝑓(𝑥𝑘,𝜆)}𝑠𝑘,𝜆(𝑥)
)︁

= 0,

lim
𝜆→∞

(︁
𝑓(𝑥) − 𝑆𝜆(𝑓, 𝑥) − 1

4

𝑛−1∑︁
𝑘=1

{𝑓(𝑥𝑘+1,𝜆) − 2𝑓(𝑥𝑘,𝜆) + 𝑓(𝑥𝑘−1,𝜆)}𝑠𝑘,𝜆(𝑥)
)︁

= 0

hold true uniformly in 𝑥 ∈ [0, 𝜋] and all 𝑞𝜆 ∈ 𝑉𝐶𝜆
[0, 𝜋].

Corollary 2. If 𝑓 ∈ 𝐶0[0, 𝜋], then Proposition 2 holds true uniformly in 𝑥 ∈ [0, 𝜋] as 𝜆𝑛 =
𝑛2, ℎ(𝜆) ̸= 0, 𝑞𝜆 ≡ 0, 𝑆𝜆𝑛(𝑓, 𝑥) ≡ 𝐿𝑛(𝑓, 𝑥), and 𝑠𝑘,𝜆𝑛(𝑥) ≡ 𝑙𝑘,𝑛(𝑥).



ON SOME PROPERTIES OF SINC-APPROXIMATIONS . . . 115

Proof. In the case of Cauchy problem (7), as 𝜆𝑛 = 𝑛2, ℎ(𝜆) ̸= 0, 𝑞𝜆 ≡ 0, operator (10) turns
into (1), 𝑙𝑘,𝑛(𝑥) ≡ 𝑠𝑘,𝜆𝑛(𝑥).

For approximating non-smooth continuous functions, for instance, functions 𝑓 having a frac-

tal character, we introduce new operators. For instance, operators 𝐴𝑛(𝑓, 𝑥) and ̃︀𝐴𝑛(𝑓, 𝑥) maps
each continuous on segment [0, 𝜋] function 𝑓 into a linear combination of sincs by the rules

𝐴𝑛(𝑓, 𝑥) =
𝑛∑︁

𝑘=1

𝑙𝑘,𝑛(𝑥) + 𝑙𝑘−1,𝑛(𝑥)

2
𝑓(𝑥𝑘,𝑛), (11)

̃︀𝐴𝑛(𝑓, 𝑥) =
𝑛−1∑︁
𝑘=0

𝑓(𝑥𝑘,𝑛) + 𝑓(𝑥𝑘+1,𝑛)

2
𝑙𝑘,𝑛(𝑥). (12)

We observe that the values of 𝐴𝑛(𝑓, 𝑥) and ̃︀𝐴𝑛(𝑓, 𝑥) in space 𝐶0[0, 𝜋] coincide and they behave
similarly in 𝐶[0, 𝜋] at the internal points in (0, 𝜋). Here we provide the results in terms of both
operators in order not to recheck these facts while using (11) and (12) in applications.

The modification of these operators by the trick, which allows to get rid of the Gibbs phe-
nomenon in the vicinity of the end-points of the segment [0, 𝜋], are denoted by

𝐴𝑇 𝑛(𝑓, 𝑥) =
𝑛∑︁

𝑘=1

𝑙𝑘,𝑛(𝑥) + 𝑙𝑘−1,𝑛(𝑥)

2

{︂
𝑓(𝑥𝑘,𝑛) −

(︀
𝑓(𝜋) − 𝑓(0)

)︀
𝑘

𝑛
− 𝑓(0)

}︂
+

𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0)

=
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥𝑘+1,𝑛) + 𝑓(𝑥𝑘,𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
(2𝑘 + 1)

2𝑛
− 𝑓(0)

}︂
𝑙𝑘,𝑛(𝑥)

+
𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0).

(13)

Proposition 3. Let 𝑓 ∈ 𝐶[0, 𝜋]. Then

lim
𝑛→∞

𝐴𝑇𝑛(𝑓, 𝑥) = 𝑓(𝑥) (14)

uniformly on [0, 𝜋].

Proof. We first note that in accordance with Corollary 2 of Proposition 2 for 𝑓 ∈ 𝐶0[0, 𝜋], the
identity

lim
𝑛→∞

(︁
𝑓(𝑥) − 𝐿𝑛(𝑓, 𝑥) − 1

2

𝑛−1∑︁
𝑘=0

(︁
𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

)︁
𝑙𝑘,𝑛(𝑥)

)︁
= lim

𝑛→∞
𝑓(𝑥) − 𝐴𝑛(𝑓, 𝑥) = lim

𝑛→∞
𝑓(𝑥) − ̃︀𝐴𝑛(𝑓, 𝑥) = 0

holds true uniformly on [0, 𝜋].

In order to prove (14), we note that function 𝑓(𝑥)− 𝑓(𝜋)−𝑓(0)
𝜋

𝑥−𝑓(0) belongs to space 𝐶0[0, 𝜋].
And therefore,

lim
𝑛→∞

𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥𝑘+1,𝑛) + 𝑓(𝑥𝑘,𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
(2𝑘 + 1)

2𝑛
− 𝑓(0)

}︂
𝑙𝑘,𝑛(𝑥)

= 𝑓(𝑥) − 𝑓(𝜋) − 𝑓(0)

𝜋
𝑥− 𝑓(0),

uniformly on segment [0, 𝜋], i.e., (14) holds true.
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It is also possible to consider operators similar to (11), (12), (13):

𝐵𝑛(𝑓, 𝑥) =
𝑛−1∑︁
𝑘=0

𝑙𝑘,𝑛(𝑥) + 𝑙𝑘+1,𝑛(𝑥)

2
𝑓(𝑥𝑘,𝑛),

̃︀𝐵𝑛(𝑓, 𝑥) =
𝑛∑︁

𝑘=1

𝑓(𝑥𝑘−1,𝑛) + 𝑓(𝑥𝑘,𝑛)

2
𝑙𝑘,𝑛(𝑥),

𝐵𝑇 𝑛(𝑓, 𝑥) =
𝑛−1∑︁
𝑘=0

𝑙𝑘,𝑛(𝑥) + 𝑙𝑘+1,𝑛(𝑥)

2

{︂
𝑓(𝑥𝑘,𝑛) −

(︀
𝑓(𝜋) − 𝑓(0)

)︀
𝑘

𝑛
− 𝑓(0)

}︂
+

𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0)

=
𝑛∑︁

𝑘=1

{︂
𝑓(𝑥𝑘−1,𝑛) + 𝑓(𝑥𝑘,𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
(2𝑘 − 1)

2𝑛
− 𝑓(0)

}︂
𝑙𝑘,𝑛(𝑥)

+
𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0).

Finally, to get rid of the asymmetry in the introduced operators, we let

𝐶𝑛(𝑓, 𝑥) =
𝑛−1∑︁
𝑘=1

𝑙𝑘+1,𝑛(𝑥) + 2𝑙𝑘,𝑛(𝑥) + 𝑙𝑘−1,𝑛(𝑥)

4
𝑓(𝑥𝑘,𝑛), (15)

̃︀𝐶𝑛(𝑓, 𝑥) =
𝑛−1∑︁
𝑘=1

𝑓(𝑥𝑘+1,𝑛) + 2𝑓(𝑥𝑘,𝑛) + 𝑓(𝑥𝑘−1,𝑛)

4
𝑙𝑘,𝑛(𝑥). (16)

We denote the modification of these operators obtained by applying the trick allowing to get
rid of the Gibbs phenomenon in the vicinity of the end-points of the segment by

𝐶𝑇 𝑛(𝑓, 𝑥) =
𝑛−1∑︁
𝑘=1

𝑙𝑘+1,𝑛(𝑥) + 2𝑙𝑘,𝑛(𝑥) + 𝑙𝑘−1,𝑛(𝑥)

4

{︂
𝑓(𝑥𝑘,𝑛) −

(︀
𝑓(𝜋) − 𝑓(0)

)︀
𝑘

𝑛
− 𝑓(0)

}︂
𝑙𝑘,𝑛(𝑥)

+
𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0),

̃︂𝐶𝑇 𝑛(𝑓, 𝑥) =
𝑛−1∑︁
𝑘=1

{︂
𝑓(𝑥𝑘+1,𝑛) + 2𝑓(𝑥𝑘,𝑛) + 𝑓(𝑥𝑘−1,𝑛)

4
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
𝑘

𝑛
− 𝑓(0)

}︂
𝑙𝑘,𝑛(𝑥)

+
𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0).

Remark 2. Following the lines the proof of Proposition 3 we can also prove the following
statement. Let 𝑓 ∈ 𝐶[0, 𝜋]. Then

lim
𝑛→∞

𝐵𝑇𝑛(𝑓, 𝑥) = 𝑓(𝑥), lim
𝑛→∞

𝐶𝑇𝑛(𝑓, 𝑥) = lim
𝑛→∞

̃︂𝐶𝑇 𝑛(𝑓, 𝑥) = 𝑓(𝑥)

uniformly on [0, 𝜋].

Unfortunately, the proposed operators do not possess such interpolation properties like 𝐿𝑛,

i.e., generally speaking, the value of operators 𝐴𝑛, 𝐴𝑇 𝑛, 𝐵𝑛, 𝐵𝑇 𝑛, 𝐶𝑛, 𝐶𝑇 𝑛, ̃︀𝐴𝑛, ̃︀𝐵𝑛, ̃︀𝐶𝑛 and̃︂𝐶𝑇 𝑛

not necessarily coincide with the approximated function at points 𝑥𝑘,𝑛 = 𝑘𝜋
𝑛
, 0 6 𝑘 6 𝑛, 𝑛 ∈ N.

On the other hand, their approximative properties are much less sensitive to the smoothness
properties of the approximated function. By their means we can approximate arbitrary element
in space 𝐶[0, 𝜋].

Remark 3. In the theory of approximating functions by algebraic polynomials, Bernstein
processes by Chebyshev nodes matrix are well known [37, see formula (11) and the previous

one], which are in some sense identical to construction ̃︀𝐴𝑛 (12) and ̃︀𝐶𝑛 (16). We also note
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that an operator similar to 𝐶𝑛 (15) was employed by V.P. Sklyarov in the proof of Theorem 1
in [12]. Being continued to the whole axis it becomes the Blackman-Harris operator as 𝑚 = 1,
𝑎0 = 𝑎1 = 0, 5 [13, Formula (9)]. The methods for studying approximative properties of the
operators considered by S.N. Bernstein, V.P. Sklyarov, by the authors of [13] and the approach
proposed in the present work differ essentially.

Remark 4. If together with operators (11), (12), (15), (16) we consider, for instance, the
operators

𝑛−1∑︁
𝑘=1

𝑓(𝑥𝑘+1,𝑛) + 𝑓(𝑥𝑘−1,𝑛)

2
𝑙𝑘,𝑛(𝑥)

or
𝑛−1∑︁
𝑘=1

𝑙𝑘+1,𝑛(𝑥) + 𝑙𝑘−1,𝑛(𝑥)

2
𝑓(𝑥𝑘,𝑛),

then to guarantee the convergence of their value to the approximated function 𝑓 , one needs
adequate necessary and sufficient conditions (for instance, the conditions proposed in [21, Thms.
1, 2]).

3. Study of the completeness of the sincs system in 𝐶0[0, 𝜋] and 𝐶[0, 𝜋]

The results of the previous section allows to conclude on the completeness of the system of
elements {𝑙𝑘,𝑛}𝑛, ∞

𝑘=0,𝑛=1 in normed spaces 𝐶[0, 𝜋] and 𝐶0[0, 𝜋].

Proof of Corollary 1. Corollary 2 and Proposition 3 imply Corollary 1.

Proof of Theorem 2. Let us show that the linear spans of the systems of functions (3) are not
dense in 𝐶[0, 𝜋]. System (3) is Chebyshev system [38], [39], i.e., the linear spans of functions
(3) are Chebyshev spaces [38, Ch. 1, Sect. 2]. Indeed, first, these are continuous functions.
Second, each generalized polynomial

𝑛∑︁
𝑘=0

𝑎𝑘,𝑛𝑙𝑘,𝑛(𝑥) =
sin𝑛𝑥

𝜔𝑛(𝑥)

𝑛∑︁
𝑘=0

𝑎𝑘,𝑛𝜔
′
𝑛(𝑥𝑘,𝑛)

(−1)𝑘𝑛

𝜔𝑛(𝑥)

𝜔′
𝑛(𝑥𝑘,𝑛)(𝑥− 𝑥𝑘,𝑛)

,

where 𝜔𝑛(𝑥) =
∏︀𝑛

𝑘=0(𝑥 − 𝑥𝑘,𝑛), can have at most 𝑛 zeroes as the product of a polynomial of
degree 𝑛 by the entire function sin𝑛𝑥

𝜔𝑛(𝑥)
, non-vanishing on the segment [0, 𝜋]. By Haar theorem

[38, Ch. 1, Sect. 2] or by Bernstein theorem [39, Ch. IX, Sect. 1], for each element 𝑓 ∈ 𝐶[0, 𝜋]
there exists the unique best approximation element⃦⃦⃦

𝑓 −
𝑛∑︁

𝑘=0

𝑝𝑘,𝑛𝑙𝑘,𝑛

⃦⃦⃦
𝐶[0,𝜋]

= inf
𝑎𝑘,𝑛∈R

⃦⃦⃦
𝑓 −

𝑛∑︁
𝑘=0

𝑎𝑘,𝑛𝑙𝑘,𝑛

⃦⃦⃦
𝐶[0,𝜋]

= 𝐸𝑛(𝑓).

Let us consider function 𝑓 ≡ 1. Then as 𝑛 > 2,⃒⃒⃒⃒ 𝑛∑︁
𝑘=0

𝑝𝑘,𝑛𝑙𝑘,𝑛

(︁ 𝜋

2𝑛

)︁
−

𝑛∑︁
𝑘=0

𝑝𝑘,𝑛𝑙𝑘,𝑛

(︁ 𝜋

2𝑛
+

2𝜋

𝑛

)︁⃒⃒⃒⃒
6 2𝐸𝑛(1).

By the biorthogonality of systems (3) and {𝑥𝑘,𝑛}𝑛,𝑘=0 𝑛 ∈ N, the relations 1 − 𝐸𝑛(1) 6 𝑝𝑘,𝑛 6
1 +𝐸𝑛(1) hold true for all 0 6 𝑘 6 𝑛, 𝑛 ∈ N. If there exists a sequence 𝑛𝑖 ↗ ∞ as 𝑖 → ∞ such
that 𝐸𝑛𝑖

(1) > 1, then it proves the theorem. Otherwise we estimate the difference

2𝐸𝑛(1) >
𝑛∑︁

𝑘=0

𝑝𝑘,𝑛𝑙𝑘,𝑛

(︁ 𝜋

2𝑛

)︁
−

𝑛∑︁
𝑘=0

𝑝𝑘,𝑛𝑙𝑘,𝑛

(︁ 𝜋

2𝑛
+

2𝜋

𝑛

)︁
=

8

𝜋

{︂
𝑝0,𝑛

1

5
+ 𝑝1,𝑛

1

3
− 𝑝2,𝑛

1

3
−

𝑛−3∑︁
𝑗=0

(−1)𝑗𝑝𝑗+3,𝑛

(2𝑗 + 5)(2𝑗 + 1)

}︂
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>
8

𝜋

{︂(︀
1 − 𝐸𝑛(1)

)︀1

5
+
(︀
1 − 𝐸𝑛(1)

)︀1

3
−
(︀
1 + 𝐸𝑛(1)

)︀1

3

+
(︀
1 − 𝐸𝑛(1)

)︀ [𝑛−3
2

]∑︁
𝑚=0

1

(4𝑚 + 7)(4𝑚 + 3)
−
(︀
1 + 𝐸𝑛(1)

)︀ [𝑛−3
2

]+1∑︁
𝑚=0

1

(4𝑚 + 1)(4𝑚 + 5)

}︂
.

Suppose that
𝐸𝑛(1) → 0, as 𝑛 → ∞. (17)

Taking into consideration that
∞∑︁

𝑚=0

1

(4𝑚 + 1)(4𝑚 + 5)
=

1

4
,

∞∑︁
𝑚=0

1

(4𝑚 + 3)(4𝑚 + 7)
=

1

12
,

see [40, Sect. 5.1.11, Subsects. 4, 14]) and passing to the limit as 𝑛 → ∞ we obtain a
contradiction to Proposition (17). Therefore, it is impossible to approximate uniformly on
[0, 𝜋] even function 𝑓 ≡ 1 by any no linear combination of functions in system (3). The proof
is complete.

Lemma 1. [21, Lm. 1] For all 𝑥 ∈ [0, 𝜋] and 𝑛 ∈ N the inequality
𝑛∑︁

𝑘=1

⃒⃒
𝑙𝑘,𝑛(𝑥) + 𝑙𝑘−1,𝑛(𝑥)

⃒⃒
6 4

(︂
1 +

1

𝜋

)︂
holds true, where

𝑙𝑘,𝑛(𝑥) =
(−1)𝑘 sin𝑛𝑥

𝑛𝑥− 𝑘𝜋
.

Lemma 1 implies the boundedness of the sequence of the Lebesgue constants for operators
𝐴𝑛 defined by (11):

‖𝐴𝑛‖𝐶[0,𝜋]→𝐶[0,𝜋] 6 2

(︂
1 +

1

𝜋

)︂
for each 𝑛 ∈ N.

Unfortunately, this fact does not imply, for instance, relation (18). The reason is that due to
Banach-Steinhaus theorem [41, Ch. 4, Thm. 2], we also need to prove the existence of a subset
𝑀0 in the set of continuous functions vanishing at the end-points of the segment [0, 𝜋], whose
linear combinations are dense in 𝐶0[0, 𝜋] and such that for each 𝑓 ∈ 𝑀0

lim
𝑛→∞

𝐴𝑛(𝑓, 𝑥) = 𝑓(𝑥) uniformly on [0, 𝜋].

However, the following proposition is true.

Proposition 4. Let 𝑓 ∈ 𝐶[0, 𝜋]. Then the relations

lim
𝑛→∞

𝐴𝑛(𝑓, 𝑥) = lim
𝑛→∞

̃︀𝐴𝑛(𝑓, 𝑥) = 𝑓(𝑥) (18)

hold true uniformly on (0, 𝜋), i.e., uniformly on any compact subset of the interval (0, 𝜋). The
convergence in (18) is uniform in [0, 𝜋] if and only if 𝑓 ∈ 𝐶0[0, 𝜋].

Proof. Let us prove (18) for an arbitrary function 𝑓 continuous on [0, 𝜋]. We rewrite the left
hand side of (4) in accordance with definitions (11) and (12) as follows,

lim
𝑛→∞

(︁
𝑓(𝑥) − 𝐿𝑛(𝑓, 𝑥) − 1

2

𝑛−1∑︁
𝑘=0

(︁
𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

)︁
𝑙𝑘,𝑛(𝑥)

)︁
= lim

𝑛→∞

(︀
𝑓(𝑥) − ̃︀𝐴𝑛(𝑓, 𝑥) − 𝑓(𝜋)𝑙𝑛,𝑛(𝑥)

)︀
= lim

𝑛→∞

(︂
𝑓(𝑥) − 𝐴𝑛(𝑓, 𝑥) − 𝑓(𝜋)

2
𝑙𝑛,𝑛(𝑥) − 𝑓(0)

2
𝑙0,𝑛(𝑥)

)︂
.

(19)
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We take an arbitrary segment [𝑎, 𝑏] ⊂ (0, 𝜋). In accordance with Proposition 1, relation (4)
holds true uniformly on [𝑎, 𝑏], i.e., in the sense of the uniform convergence in [𝑎, 𝑏] the limits
(19) are zero. But for each 𝑥 ∈ [𝑎, 𝑏]⃒⃒

𝑓(𝜋)𝑙𝑛,𝑛(𝑥)
⃒⃒
6 ‖𝑓‖𝐶[0,𝜋]

1

𝑛(𝜋 − 𝑏)
→ 0 as 𝑛 → ∞,⃒⃒

𝑓(0)𝑙0,𝑛(𝑥)
⃒⃒
6 ‖𝑓‖𝐶[0,𝜋]

1

𝑛𝑎
→ 0 as 𝑛 → ∞.

Let 𝑓 ∈ 𝐶0[0, 𝜋]. Then in view of Proposition 2, the identities

lim
𝑛→∞

(︁
𝑓(𝑥) − 𝐿𝑛(𝑓, 𝑥) − 1

2

𝑛−1∑︁
𝑘=0

(︁
𝑓(𝑥𝑘+1,𝑛) − 𝑓(𝑥𝑘,𝑛)

)︁
𝑙𝑘,𝑛(𝑥)

)︁
= lim

𝑛→∞
𝑓(𝑥) − 𝐴𝑛(𝑓, 𝑥) = lim

𝑛→∞
𝑓(𝑥) − ̃︀𝐴𝑛(𝑓, 𝑥) = 0

hold true uniformly on [0, 𝜋]. Hence, the belonging of function 𝑓 to space 𝐶0[0, 𝜋] is sufficient
for the uniform convergence in (18).

Theorem 2 implies that the belonging of function 𝑓 to space 𝐶0[0, 𝜋] is necessary for the
convergence in (18) to be uniform on [0, 𝜋].

Remark 5. In the same way we establish that given 𝑓 ∈ 𝐶[0, 𝜋], the relations

lim
𝑛→∞

𝐵𝑛(𝑓, 𝑥) = lim
𝑛→∞

̃︀𝐵𝑛(𝑓, 𝑥) = 𝑓(𝑥) (20)

lim
𝑛→∞

𝐶𝑛(𝑓, 𝑥) = lim
𝑛→∞

̃︀𝐶𝑛(𝑓, 𝑥) = 𝑓(𝑥) (21)

hold true uniformly on (0, 𝜋). The convergence in (20) and (21) is uniform on [0, 𝜋] if and only
if 𝑓 ∈ 𝐶0[0, 𝜋].

Remark 6. We note that while constructing operators 𝐴𝑇 𝑛, 𝐵𝑇 𝑛, 𝐶𝑇 𝑛, ̃︂𝐶𝑇 𝑛, instead of
functions {1, 𝑥}, system {𝑙𝑘,𝑛}𝑛, ∞

𝑘=0,𝑛=1 can be completed by another convenient pair of linearly
independent functions, for instance, {𝑙0,1, 𝑙1,1}.

Before proving Theorem 1, let us prove one auxiliary statement.

Lemma 2. For each continuous on the segment [0, 𝜋] function 𝑓 we have the following rep-
resentation for the approximation error by means of operators 𝐿𝑇𝑛

|𝑓(𝑥) − 𝐿𝑇𝑛(𝑓, 𝑥)| =

⃒⃒⃒⃒
⃒𝑓(𝑥) −

[︃
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘,2𝑛) −

(︀
𝑓(𝜋) − 𝑓(0)

)︀
𝑘

𝑛
− 𝑓(0)

}︂
sin 2𝑛𝑥

2(𝑛𝑥− 𝑘𝜋)

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) − 𝑓(𝑥2𝑘,2𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
4𝑛

}︂(︃
sin 2𝑛𝑥

2(𝑛𝑥− 𝑘𝜋)
− sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃

−
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+2,2𝑛) + 𝑓(𝑥2𝑘,2𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
(2𝑘 + 1)

2𝑛
− 𝑓(0)

}︂
sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

+
𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0)

]︃

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) − 𝑓(𝑥2𝑘,2𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
4𝑛

}︂(︃
sin 2𝑛𝑥

2(𝑛𝑥− 𝑘𝜋)
− sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃⃒⃒⃒⃒
⃒.



120 A.YU. TRYNIN

Proof. We choose arbitrary function continuous on the segment [0, 𝜋]. Since as 𝑘 = 0, 𝑓(𝑥𝑘,𝑛)−(︀
𝑓(𝜋)−𝑓(0)

)︀
𝑘

𝑛
− 𝑓(0) = 0, we obtain the identity

|𝑓(𝑥) − 𝐿𝑇𝑛(𝑓, 𝑥)| =

⃒⃒⃒⃒
⃒𝑓(𝑥) −

[︃
cos𝑛𝑥

𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥𝑘,𝑛) −

(︀
𝑓(𝜋) − 𝑓(0)

)︀
𝑘

𝑛
− 𝑓(0)

}︂
(−1)2𝑘 sin𝑛𝑥

𝑛𝑥− 𝑘𝜋

+ sin𝑛𝑥

𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥𝑘+1,𝑛) + 𝑓(𝑥𝑘,𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
(2𝑘 + 1)

2𝑛
− 𝑓(0)

}︂
(−1)2𝑘+1 cos𝑛𝑥

𝑛𝑥− (𝑘 + 1
2
)𝜋

+
𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0)

]︃⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒𝑓(𝑥) −

[︃
cos𝑛𝑥

𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘,2𝑛) −

(︀
𝑓(𝜋) − 𝑓(0)

)︀
2𝑘

2𝑛
− 𝑓(0)

}︂
(−1)2𝑘 sin𝑛𝑥

𝑛𝑥− 𝑘𝜋

+ sin𝑛𝑥
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+2,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+2)

2𝑛
− 𝑓(0) + 𝑓(𝑥2𝑘,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
2𝑘

2𝑛
− 𝑓(0)

2

}︂

· (−1)2𝑘+1 cos𝑛𝑥

𝑛𝑥− (𝑘 + 1
2
)𝜋

+
𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0)

]︃⃒⃒⃒⃒
⃒.

To the obtained representation we add the term

𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+1)

2𝑛
− 𝑓(0) − 𝑓(𝑥2𝑘,2𝑛) +

(︀
𝑓(𝜋)−𝑓(0)

)︀
2𝑘

2𝑛
+ 𝑓(0)

2

}︂

·

(︃
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
+

(−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃
and deduct it. Then we have the relation

|𝑓(𝑥)−𝐿𝑇𝑛(𝑓, 𝑥)|

=

⃒⃒⃒⃒
⃒𝑓(𝑥) −

[︃
cos𝑛𝑥

𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘,2𝑛) −

(︀
𝑓(𝜋) − 𝑓(0)

)︀
2𝑘

2𝑛
− 𝑓(0)

}︂
(−1)2𝑘 sin𝑛𝑥

𝑛𝑥− 𝑘𝜋

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+1)

2𝑛
− 𝑓(0) − 𝑓(𝑥2𝑘,2𝑛) +

(︀
𝑓(𝜋)−𝑓(0)

)︀
2𝑘

2𝑛
+ 𝑓(0)

2

}︂

·

(︃
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
+

(−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃

+ sin𝑛𝑥
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+2,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+2)

2𝑛
− 𝑓(0) + 𝑓(𝑥2𝑘,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
2𝑘

2𝑛
− 𝑓(0)

2

}︂

· (−1)2𝑘+1 cos𝑛𝑥

𝑛𝑥− (𝑘 + 1
2
)𝜋

+
𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0)

]︃

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+1)

2𝑛
− 𝑓(0) − 𝑓(𝑥2𝑘,2𝑛) +

(︀
𝑓(𝜋)−𝑓(0)

)︀
2𝑘

2𝑛
+ 𝑓(0)

2

}︂
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·

(︃
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
+

(−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃⃒⃒⃒⃒
⃒.

By further calculations we obtain the representation

|𝑓(𝑥)−𝐿𝑇𝑛(𝑓, 𝑥)| =

⃒⃒⃒⃒
⃒𝑓(𝑥) −

[︃
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘,2𝑛) −

(︀
𝑓(𝜋) − 𝑓(0)

)︀
2𝑘

2𝑛
− 𝑓(0)

}︂
sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+1)

2𝑛
− 𝑓(𝑥2𝑘,2𝑛) +

(︀
𝑓(𝜋)−𝑓(0)

)︀
2𝑘

2𝑛

2

}︂

·

(︃
sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
− sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃

−
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+2,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+2)

2𝑛
+ 𝑓(𝑥2𝑘,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
2𝑘

2𝑛
− 2𝑓(0)

2

}︂

· sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋
+

𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0)

]︃

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) − 𝑓(𝑥2𝑘,2𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
4𝑛

}︂(︃
sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
− sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃⃒⃒⃒⃒
⃒.

It completes the proof.

Proof of Theorem 1. Given an arbitrary continuous on the segment [0, 𝜋] function 𝑓 , let us
estimate the absolute value of its deviation from the value of operator (2) for each natural 𝑛.
By Lemma 2, the deviation of operator 𝐿𝑇𝑛 from function 𝑓 can be represented as

|𝑓(𝑥) − 𝐿𝑇𝑛(𝑓, 𝑥)| =

⃒⃒⃒⃒
⃒𝑓(𝑥) −

[︃
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘,2𝑛) −

(︀
𝑓(𝜋) − 𝑓(0)

)︀
2𝑘

2𝑛
− 𝑓(0)

}︂
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+1)

2𝑛
− 𝑓(0) − 𝑓(𝑥2𝑘,2𝑛) +

(︀
𝑓(𝜋)−𝑓(0)

)︀
2𝑘

2𝑛
+ 𝑓(0)

2

}︂

·

(︃
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
+

(−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+2,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+2)

2𝑛
− 𝑓(0) + 𝑓(𝑥2𝑘,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
2𝑘

2𝑛
− 𝑓(0)

2

}︂

· (−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋
+

𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0)

]︃

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) − 𝑓(𝑥2𝑘,2𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
4𝑛

}︂(︃
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
+

(−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃⃒⃒⃒⃒
⃒.

We open brackets in the second term of the sum enclosed in square brackets and to the numer-

ator of the first factor in the third term of this sum we add 𝑓(𝑥2𝑘+1,2𝑛)−
(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+1)

2𝑛
−𝑓(0)
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and deduct it. After reordering of the terms we obtain the representation

|𝑓(𝑥) − 𝐿𝑇𝑛(𝑓, 𝑥)| =

⃒⃒⃒⃒
⃒𝑓(𝑥) −

[︃
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘,2𝑛) −

(︀
𝑓(𝜋) − 𝑓(0)

)︀
2𝑘

2𝑛
− 𝑓(0)

}︂
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+1)

2𝑛
− 𝑓(0) − 𝑓(𝑥2𝑘,2𝑛) +

(︀
𝑓(𝜋)−𝑓(0)

)︀
2𝑘

2𝑛
+ 𝑓(0)

2

}︂
· (−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+1)

2𝑛
− 𝑓(0) − 𝑓(𝑥2𝑘,2𝑛) +

(︀
𝑓(𝜋)−𝑓(0)

)︀
2𝑘

2𝑛
+ 𝑓(0)

2

}︂
· (−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

−
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+1)

2𝑛
− 𝑓(0) − 𝑓(𝑥2𝑘,2𝑛) +

(︀
𝑓(𝜋)−𝑓(0)

)︀
2𝑘

2𝑛
+ 𝑓(0)

2

}︂
· (−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+2,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+2)

2𝑛
− 𝑓(0) + 𝑓(𝑥2𝑘+1,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+1)

2𝑛
− 𝑓(0)

2

}︂

· (−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋
+

𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0)

]︃

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) − 𝑓(𝑥2𝑘,2𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
4𝑛

}︂(︃
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
+

(−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃⃒⃒⃒⃒
⃒.

Then we obtain the equivalent representation

|𝑓(𝑥) − 𝐿𝑇𝑛(𝑓, 𝑥)| =

⃒⃒⃒⃒
⃒𝑓(𝑥) −

[︃
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘,2𝑛) −

(︀
𝑓(𝜋) − 𝑓(0)

)︀
2𝑘

2𝑛
− 𝑓(0)

}︂
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+1)

2𝑛
− 𝑓(0) − 𝑓(𝑥2𝑘,2𝑛) +

(︀
𝑓(𝜋)−𝑓(0)

)︀
2𝑘

2𝑛
+ 𝑓(0)

2

}︂
· (−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+2,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+2)

2𝑛
− 𝑓(0) + 𝑓(𝑥2𝑘+1,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+1)

2𝑛
− 𝑓(0)

2

}︂

· (−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋
+

𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0)

]︃

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) − 𝑓(𝑥2𝑘,2𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
4𝑛

}︂(︃
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
+

(−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃⃒⃒⃒⃒
⃒
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=

⃒⃒⃒⃒
⃒𝑓(𝑥) −

[︃
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+1)

2𝑛
− 𝑓(0) + 𝑓(𝑥2𝑘,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
2𝑘

2𝑛
− 𝑓(0)

2

}︂
· (−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+2,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+2)

2𝑛
− 𝑓(0) + 𝑓(𝑥2𝑘+1,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(2𝑘+1)

2𝑛
− 𝑓(0)

2

}︂

· (−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋
+

𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0)

]︃

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) − 𝑓(𝑥2𝑘,2𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
4𝑛

}︂(︃
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
+

(−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃⃒⃒⃒⃒
⃒.

Combining the first and second sum in the square brackets, we obtain

|𝑓(𝑥)−𝐿𝑇𝑛(𝑓, 𝑥)|

=

⃒⃒⃒⃒
⃒𝑓(𝑥) −

[︃
2𝑛−1∑︁
𝑗=0

{︂
𝑓(𝑥𝑗+1,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
(𝑗+1)

2𝑛
− 𝑓(0) + 𝑓(𝑥𝑗,2𝑛) −

(︀
𝑓(𝜋)−𝑓(0)

)︀
𝑗

2𝑛
− 𝑓(0)

2

}︂

· (−1)𝑗 sin 2𝑛𝑥

2𝑛𝑥− 𝑗𝜋
+

𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0)

]︃

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) − 𝑓(𝑥2𝑘,2𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
4𝑛

}︂(︃
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
+

(−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒𝑓(𝑥) −

[︃
2𝑛−1∑︁
𝑗=0

{︂
𝑓(𝑥𝑗+1,2𝑛) + 𝑓(𝑥𝑗,2𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
(2𝑗 + 1)

4𝑛
− 𝑓(0)

}︂
(−1)𝑗 sin 2𝑛𝑥

2𝑛𝑥− 𝑗𝜋

+
𝑓(𝜋) − 𝑓(0)

𝜋
𝑥 + 𝑓(0)

]︃

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) − 𝑓(𝑥2𝑘,2𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
4𝑛

}︂(︃
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
+

(−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃⃒⃒⃒⃒
⃒.

The definition of operator (13) implies the representation

|𝑓(𝑥) − 𝐿𝑇𝑛(𝑓, 𝑥)| =

⃒⃒⃒⃒
⃒𝑓(𝑥) − 𝐴𝑇 2𝑛(𝑓, 𝑥)

+
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) − 𝑓(𝑥2𝑘,2𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
4𝑛

}︂(︃
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
+

(−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃⃒⃒⃒⃒
⃒.

To obtain an uniform on the segment [0, 𝜋] estimate for the error of approximation of an
arbitrary continuous function 𝑓 by the values of operator (2), we employ the triangle inequality

|𝑓(𝑥)−𝐿𝑇𝑛(𝑓, 𝑥)| 6 |𝑓(𝑥) − 𝐴𝑇 2𝑛(𝑓, 𝑥)|

+

⃒⃒⃒⃒
⃒
𝑛−1∑︁
𝑘=0

{︂
𝑓(𝑥2𝑘+1,2𝑛) − 𝑓(𝑥2𝑘,2𝑛)

2
−
(︀
𝑓(𝜋) − 𝑓(0)

)︀
4𝑛

}︂(︃
(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
+

(−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

)︃⃒⃒⃒⃒
⃒

6|𝑓(𝑥) − 𝐴𝑇 2𝑛(𝑓, 𝑥)|
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+

{︂
1

2
𝜔
(︁
𝑓,

𝜋

2𝑛

)︁
+

⃒⃒⃒⃒ (︀
𝑓(𝜋) − 𝑓(0)

)︀
4𝑛

⃒⃒⃒⃒}︂ 𝑛−1∑︁
𝑘=0

⃒⃒⃒⃒
⃒(−1)2𝑘 sin 2𝑛𝑥

2𝑛𝑥− 2𝑘𝜋
+

(−1)2𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑘 + 1)𝜋

⃒⃒⃒⃒
⃒

6|𝑓(𝑥) − 𝐴𝑇 2𝑛(𝑓, 𝑥)|

+

{︂
1

2
𝜔
(︁
𝑓,

𝜋

2𝑛

)︁
+

⃒⃒⃒⃒ (︀
𝑓(𝜋) − 𝑓(0)

)︀
4𝑛

⃒⃒⃒⃒}︂ 2𝑛−1∑︁
𝑘=0

⃒⃒⃒⃒
⃒(−1)𝑘+1 sin 2𝑛𝑥

2𝑛𝑥− (𝑘 + 1)𝜋
+

(−1)𝑘 sin 2𝑛𝑥

2𝑛𝑥− 𝑘𝜋

⃒⃒⃒⃒
⃒.

By Lemma 1 and Proposition 3 we get the relation

|𝑓(𝑥) − 𝐿𝑇𝑛(𝑓, 𝑥)| 6 |𝑓(𝑥) −𝐴𝑇 2𝑛(𝑓, 𝑥)| +

{︂
1

2
𝜔
(︁
𝑓,

𝜋

2𝑛

)︁
+

⃒⃒⃒⃒ (︀
𝑓(𝜋) − 𝑓(0)

)︀
4𝑛

⃒⃒⃒⃒}︂
4

(︂
1 +

1

𝜋

)︂
= 𝑜(1).

The proof is complete.

Let us consider the operator mapping each function 𝑓 with finite values on the set 𝑥𝑘,2𝑛 = 𝜋𝑘
2𝑛

,
𝑛 ∈ N, 0 6 𝑘 6 2𝑛, into an entire function 𝑄𝑛 by the rule

𝑄𝑛(𝑓, 𝑥) =
𝑛∑︁

𝑖=0

cos𝑛𝑥 sin𝑛𝑥

𝑛𝑥− 𝑖𝜋
𝑓
(︁𝑖𝜋
𝑛

)︁
−

𝑛−1∑︁
𝑖=0

sin𝑛𝑥 cos𝑛𝑥

𝑛𝑥− (𝑖 + 1
2
)𝜋

𝑓
(︁(2𝑖 + 1)𝜋

2𝑛

)︁
. (22)

As opposed to (2), this operator possesses the following interpolation property 𝑓(𝑥𝑘,2𝑛) =
𝑄𝑛(𝑓, 𝑥𝑘,2𝑛) for all 𝑛 ∈ N, 0 6 𝑘 6 2𝑛. On the face of it, operator (22) should possesses better
approximative properties than (2). However, its values, as the values of sinc approximations (1),
approximate only sufficiently smooth functions. For instance, as 𝜆𝑛 = 𝑛2, 𝑞𝜆𝑛 ≡ 0, ℎ(𝜆𝑛) ̸= 0
Theorem 2 in [21] implies

Corollary 3. Let 𝑓 ∈ 𝐶0[0, 𝜋]. For each natural 𝑛 the identity

lim
𝑛→∞

⃒⃒⃒⃒
⃒𝑓(𝑥) −𝑄𝑛(𝑓, 𝑥) − sin 2𝑛𝑥

2𝜋

[ 2𝑛−1
2

]∑︁
𝑚=1

′𝑓
(︀𝜋(2𝑚+1)

2𝑛

)︀
− 2𝑓

(︀
2𝜋𝑚
2𝑛

)︀
+ 𝑓
(︀𝜋(2𝑚−1)

2𝑛

)︀
[2𝑛𝑥

𝜋
] − 2𝑚

⃒⃒⃒⃒
⃒ = 0

holds true uniformly [0, 𝜋].
The identity

lim
𝑛→∞

‖𝑓 −𝑄𝑛(𝑓, ·)‖𝐶0[0,𝜋] = 0

holds true if and only if

lim
𝑛→∞

max
06𝑝62𝑛

⃒⃒⃒⃒
⃒
[ 2𝑛−1

2
]∑︁

𝑚=1

′𝑓
(︀𝜋(2𝑚+1)

2𝑛

)︀
− 2𝑓

(︀
2𝜋𝑚
2𝑛

)︀
+ 𝑓
(︀𝜋(2𝑚−1)

2𝑛

)︀
𝑝− 2𝑚

⃒⃒⃒⃒
⃒ = 0,

where the prime at the sums indicates the absence of the terms with vanishing denominator.

Proof. We make the following equivalent transformations

𝑄𝑛(𝑓, 𝑥) =
𝑛∑︁

𝑖=0

cos𝑛𝑥 sin𝑛𝑥

𝑛𝑥− 𝑖𝜋
𝑓
(︁𝑖𝜋
𝑛

)︁
−

𝑛−1∑︁
𝑖=0

sin𝑛𝑥 cos𝑛𝑥

𝑛𝑥− (𝑖 + 1
2
)𝜋

𝑓
(︁(2𝑖 + 1)𝜋

2𝑛

)︁
=

𝑛∑︁
𝑖=0

sin 2𝑛𝑥

2𝑛𝑥− 2𝑖𝜋
𝑓
(︁2𝑖𝜋

2𝑛

)︁
−

𝑛−1∑︁
𝑖=0

sin 2𝑛𝑥

2𝑛𝑥− (2𝑖 + 1)𝜋
𝑓
(︁(2𝑖 + 1)𝜋

2𝑛

)︁
=

𝑛∑︁
𝑖=0

(−1)2𝑖 sin 2𝑛𝑥

2𝑛𝑥− 2𝑖𝜋
𝑓
(︁2𝑖𝜋

2𝑛

)︁
+

𝑛−1∑︁
𝑖=0

(−1)2𝑖+1 sin 2𝑛𝑥

2𝑛𝑥− (2𝑖 + 1)𝜋
𝑓
(︁(2𝑖 + 1)𝜋

2𝑛

)︁
=

2𝑛∑︁
𝑘=0

(−1)𝑘 sin 2𝑛𝑥

2𝑛𝑥− 𝑘𝜋
𝑓
(︁𝑘𝜋

2𝑛

)︁
= 𝐿2𝑛(𝑓, 𝑥).
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Then as 𝜆𝑛 = 4𝑛2, 𝑞𝜆𝑛 ≡ 0, ℎ(𝜆𝑛) ̸= 0, Theorem 2 in [21], Theorem 2 and Corollary 1 imply
the desired corollary.
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