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Abstract. We consider the problem on the least possible type of entire functions of order
𝜌 ∈ (0, 1), whose zeroes lie on a ray and have prescribed densities and step. We prove the
sharpness of the estimate obtained previously by the author for the type of these functions.
We provide a detailed justification for the construction of the extremal entire function in
this problem.
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1. Introduction

In work [1] of the author the following problem was formulated. Consider all entire functions
whose zeroes are located on a ray and have a prescribed upper and lower density and step
with an exponent 𝜌 ∈ (0, 1). We need to find the least possible type for such functions of
order 𝜌. In paper [1] the proof of a sharp lower bound for type is provided and an idea of
constructing an extremal function was briefly discussed. The present work is a continuation of
paper [1] and provides a detailed description of constructing the zero set of an entire function
possessing the least possible type. The checking that the constructed example is extremal
required cumbersome calculations, many serious efforts and much time. This is the reason why
we discuss the construction separately. As a result, the study of the problem formulated in [1]
becomes completed.
We introduce needed definition. Given an entire function 𝑓(𝑧), its type with order 𝜌 > 0 is

defined by the formula

𝜎𝜌(𝑓) = lim
𝑟→+∞

𝑟−𝜌 lnmax
|𝑧|=𝑟

|𝑓(𝑧)|

and it is often called 𝜌-type. We assume that function 𝑓(𝑧) has infinitely many zeroes. They
are taken counting multiplicity in the ascending order of the absolute values and they form the
sequence Λ𝑓 = Λ = (𝜆𝑛)

∞
𝑛=1. By 𝑛Λ(𝑟) =

∑︀
|𝜆𝑛|6𝑟

1 we denote the counting function of sequence

Λ. The upper 𝜌-density of Λ is the quantity

Δ𝜌(Λ) = lim
𝑟→+∞

𝑛Λ(𝑟)

𝑟𝜌
= lim

𝑛→∞

𝑛

|𝜆𝑛|𝜌
.
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The corresponding lower limit is called lower 𝜌-density of Λ and is denoted by Δ 𝜌(Λ). We
introduce one more characteristics

ℎ𝜌(Λ) = lim
𝑛→∞

(|𝜆𝑛+1|𝜌 − |𝜆𝑛|𝜌)

called 𝜌-step of sequence Λ. For each sequence Λ of a finite 𝜌-density the relation Δ𝜌(Λ)ℎ𝜌(Λ) 6
1 holds true.

In what follows we study only entire functions 𝑓(𝑧) with the zeros in a ray assuming for the
definiteness that all zeroes are positive. We fix both densities and the step of the sequence of
zeroes Λ𝑓 = Λ for some exponent 𝜌 ∈ (0, 1). More precisely, we fix numbers 𝜌, 𝛽, 𝛼, ℎ satisfying
the conditions

𝜌 ∈ (0, 1), 𝛽 > 0, 𝛼 ∈ [0, 𝛽], ℎ ∈ [0, 1/𝛽],

and we consider the extremal value

𝑠(𝛼, 𝛽, ℎ; 𝜌) ≡ inf
{︀
𝜎 𝜌(𝑓) : Λ𝑓 ⊂ R+,Δ 𝜌(Λ𝑓 ) = 𝛽,Δ 𝜌(Λ𝑓 ) > 𝛼, ℎ𝜌(Λ𝑓 ) > ℎ

}︀
. (1)

For the 𝜌-types of entire functions in Definition (1) the estimate

𝜎𝜌(𝑓) >
𝜋𝛼

sin 𝜋𝜌
+ sup

𝑎>0
𝜙(𝑎) (2)

was proved (see [1]), where

𝜙(𝑎) = 𝜙𝛼, 𝛽, ℎ, 𝜌(𝑎) =

𝑎∫︁
𝑎(𝛼/𝛽)1/𝜌

𝛽𝑎−𝜌 − 𝛼𝜏−𝜌

1 + 𝜏
𝑑𝜏 +

𝑠

ℎ

𝑎𝜈1/𝜌∫︁
𝑎

𝜈𝜏−𝜌 − 𝑎−𝜌

1 + 𝜏
𝑑𝜏, (3)

𝑠 = 1− 𝛽ℎ ∈ [0, 1], 𝜈 =
1− 𝛼ℎ

1− 𝛽ℎ
∈ [1, +∞].

As ℎ = 0 and ℎ = 1/𝛽, formula (3) should be treated in a certain limiting sense.
As ℎ = 0, the second term in (3) is equal to

lim
ℎ→0

1

ℎ

𝑎𝜈1/𝜌∫︁
𝑎

𝜈𝜏−𝜌 − 𝑎−𝜌

1 + 𝜏
𝑑𝜏 = (𝛽 − 𝛼) lim

ℎ→0

𝑎𝜈1/𝜌∫︁
𝑎

𝜏−𝜌

1 + 𝜏
𝑑𝜏 = 0.

Here we have applied L’Hôpital rule, Leibnitz formula and the differentiation of an integral
w.r.t. a parameter and we have used that 𝜈1/𝜌 → 1 as ℎ→ 0. Thus, the second term in formula
(3) vanishes and estimate (2) gives the sharp result by V.B. Sherstykov in work [2]:

𝜎𝜌(𝑓) >
𝜋𝛼

sin 𝜋𝜌
+ max

𝑎>0

𝑎∫︁
𝑎(𝛼/𝛽)1/𝜌

𝛽𝑎−𝜌 − 𝛼𝜏−𝜌

1 + 𝜏
𝑑𝜏.

As ℎ = 1/𝛽, due to the convergence 𝜈1/𝜌 → +∞ as ℎ → 1/𝛽, we evaluate an indeterminate
form and obtain that the second term in (3) is equal to

lim
ℎ→1/𝛽

𝑠

ℎ

𝑎𝜈1/𝜌∫︁
𝑎

𝜈𝜏−𝜌 − 𝑎−𝜌

1 + 𝜏
𝑑𝜏 = 𝛽 lim

ℎ→1/𝛽
(1− 𝛽ℎ)

𝑎𝜈1/𝜌∫︁
𝑎

𝜏−𝜌

1 + 𝜏
𝑑𝜏 = (𝛽 − 𝛼)

+∞∫︁
𝑎

𝜏−𝜌

1 + 𝜏
𝑑𝜏.

Then formula (3) becomes

𝜙(𝑎) =

𝑎∫︁
𝑎(𝛼/𝛽)1/𝜌

𝛽𝑎−𝜌 − 𝛼𝜏−𝜌

1 + 𝜏
𝑑𝜏 + (𝛽 − 𝛼)

+∞∫︁
𝑎

𝜏−𝜌

1 + 𝜏
𝑑𝜏
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that implies

sup
𝑎>0

𝜙(𝑎) > lim
𝑎→+0

𝜙(𝑎) =
𝜋(𝛽 − 𝛼)

sin 𝜋𝜌
.

Here estimate (2) yields the inequality

𝜎𝜌(𝑓) >
𝜋𝛽

sin 𝜋𝜌
.

Since the opposite inequality is always true, it leads us to the exact formula

𝜎𝜌(𝑓) =
𝜋𝛽

sin 𝜋𝜌
. (4)

The fact that formula (4) is true for each value 𝛼 ∈ [0, 𝛽] provided ℎ = 1/𝛽 seems to be new.
It was believed before that rule (4) provides the type for order 𝜌 ∈ (0, 1) only for an entire
function with a measurable sequence of positive zeroes, i.e., such that Λ𝑓 ⊂ R+ and the limit
lim

𝑟→+∞
𝑟−𝜌 𝑛Λ(𝑟) = 𝛽 is well-defined.

We note that our interest to problem (1) is motivated by work [3] by A.Yu. Popov, where
the issue on the lowest type was studied without taking into consideration the lower density
and the step of the sequence of zeroes. The detailed discussion of extremal problem (1) and a
survey of previous results can be found in [1].

In the particular case 𝛼 = 0, estimate (2) was obtained by the author in [4], and an ap-
propriate example justifying its sharpness was adduced in [5]. The results of [4], [5] show
that

𝑠(𝛽, ℎ; 𝜌) := 𝑠(0, 𝛽, ℎ; 𝜌) = ℎ−1 sup
𝑎>0

{︃
𝑎−𝜌 ln

1 + 𝑎

(1 + 𝑎𝑠−1/𝜌)
𝑠 +

𝑎𝑠−1/𝜌∫︁
𝑎

𝜏−𝜌

1 + 𝜏
𝑑𝜏

}︃
for 𝑠 = 1− 𝛽ℎ.

Let us show that in the general case 𝛼 ∈ [0, 𝛽] estimate (2) is attained. At that, the values
𝛼 = 0, 𝛼 = 𝛽, ℎ = 0, ℎ = 1/𝛽 can be excluded from the consideration. In this way we shall
justify the identity

𝑠(𝛼, 𝛽, ℎ; 𝜌) =
𝜋𝛼

sin𝜋𝜌
+ sup

𝑎>0
𝜙(𝑎)

for function 𝜙(𝑎) defined in (3) and it will provide the complete solution to problem (1).

2. Proof of sharpness of estimate (2)

We fix numbers

𝜌 ∈ (0, 1), 𝛽 > 0, 𝛼 ∈ (0, 𝛽), ℎ ∈ (0, 1/𝛽).

Let us construct a sequence Λ0 = (𝜆𝑛)
∞
𝑛=1 ⊂ R+ so that

Δ𝜌(Λ0) = 𝛽, Δ 𝜌(Λ0) = 𝛼, ℎ𝜌(Λ0) = ℎ,

and the 𝜌-type of the associated canonical product

𝑓0(𝑧) =
∞∏︁
𝑛=1

(︂
1− 𝑧

𝜆𝑛

)︂
, 𝑧 ∈ C, (5)

is calculated by the formula

𝜎𝜌(𝑓0) =
𝜋𝛼

sin 𝜋𝜌
+ max

𝑎>0
𝜙(𝑎). (6)

Function 𝜙(𝑎) defined by (3) for the parameters

𝑠 = 1− 𝛽ℎ ∈ (0, 1), 𝜈 =
1− 𝛼ℎ

1− 𝛽ℎ
∈ (1, +∞),
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is positive and continuous for 𝑎 > 0 and

lim
𝑎→+0

𝜙(𝑎) = lim
𝑎→+∞

𝜙(𝑎) = 0.

This is why in (6) we have max instead of sup in (2). We denote by 𝑎0 = 𝑎0(𝛼, 𝛽, ℎ, 𝜌) the
point of the maximum of 𝜙(𝑎) on the ray 𝑎 > 0 and we introduce the function

𝜓0(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛼, 𝑡 ∈
[︀
0, 𝜈−1/𝜌/𝑎0

]︀
∪
[︀
𝑘−1/𝜌/𝑎0, +∞

)︀
;

ℎ−1

(︂
1− 𝑠

(𝑎0𝑡)𝜌

)︂
, 𝑡 ∈

(︀
𝜈−1/𝜌/𝑎0, 1/𝑎0

]︀
;

𝛽

(𝑎0𝑡)𝜌
, 𝑡 ∈

(︀
1/𝑎0, 𝑘

−1/𝜌/𝑎0
)︀
.

For the sake of convenience we denote

𝐾(𝑡) =
𝑡𝜌−1

1 + 𝑡
, 𝑡 > 0. (7)

It allows us to rewrite estimate (2) in a more compact form

𝜎𝜌(𝑓) >

+∞∫︁
0

𝜓0(𝑡)𝐾(𝑡) 𝑑𝑡, (8)

and formula (6) can be rewritten as

𝜎𝜌(𝑓0) =

+∞∫︁
0

𝜓0(𝑡)𝐾(𝑡) 𝑑𝑡. (9)

The passage from (2) to (8) and from (6) to (9) is based on the fact after the change of variable
𝜏 = 1/𝑡 in (3) we get

𝜙(𝑎) =

1/𝑎∫︁
𝜈−1/𝜌/𝑎

[︂
ℎ−1

(︂
1− 𝑠

(𝑎𝑡)𝜌

)︂
− 𝛼

]︂
𝐾(𝑡) 𝑑𝑡+

𝑘−1/𝜌/𝑎∫︁
1/𝑎

(︂
𝛽

(𝑎𝑡)𝜌
− 𝛼

)︂
𝐾(𝑡) 𝑑𝑡. (10)

Substituting 𝑎 = 𝑎0 into (10), we find

𝜙(𝑎0) =

+∞∫︁
0

𝜓0(𝑡)𝐾(𝑡) 𝑑𝑡 − 𝛼

+∞∫︁
0

𝐾(𝑡) 𝑑𝑡 =

+∞∫︁
0

𝜓0(𝑡)𝐾(𝑡) 𝑑𝑡 − 𝜋𝛼

sin 𝜋𝜌

that yields the required formula
+∞∫︁
0

𝜓0(𝑡)𝐾(𝑡) 𝑑𝑡 =
𝜋𝛼

sin 𝜋𝜌
+ 𝜙(𝑎0). (11)

Our aim is to find entire function (5) with property (9).
Following [2], [3], we first define a sequence (𝑚𝑛)

∞
𝑛=1 satisfying the condition 𝑚𝑛+1 = 𝑚4

𝑛,
𝑛 ∈ N, and we let 𝑘 = 𝛼/𝛽 ∈ (0, 1). We observe that for each 𝑝 > 0 the relations

𝑗−1∑︁
𝑛=1

𝑚𝑝
𝑛 = 𝑜(𝑚𝑝

𝑗),
∞∑︁

𝑛=𝑗+2

1

𝑚𝑝
𝑛
= 𝑜

(︂
1

𝑚𝑝
𝑗+1

)︂
, 𝑗 → ∞ (12)

hold true. We construct the extremal sequence of positive numbers Λ0 as follows. In the
segments [𝑚𝑛, 𝜈

−1/𝜌𝑚2
𝑛] ∪ [𝑘−1/𝜌𝑚2

𝑛, 𝑚𝑛+1] we choose points 𝜆𝑗 so that 𝜆𝜌𝑗 form the arithmetic

progression with the step 1/𝛼. In semi-intervals (𝜈−1/𝜌𝑚2
𝑛, 𝑚

2
𝑛] we locate points 𝜆𝑗 so that
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𝜆𝜌𝑗 form the arithmetic progression with the step ℎ. Intervals (𝑚2
𝑛, 𝑘

−1/𝜌𝑚2
𝑛) are to be free of

points 𝜆𝑗. Introducing the auxiliary sequence Ω := (𝜆𝜌𝑛)
∞
𝑛=1,for each 𝑛 ∈ N we have

Ω ∩ [𝑚𝜌
𝑛, 𝜈

−1𝑚2𝜌
𝑛 ] =

{︀
𝑚𝜌

𝑛 + 𝑗/𝛼 : 𝑗 ∈ N, 𝑗 6 𝛼 (𝜈−1𝑚2𝜌
𝑛 −𝑚𝜌

𝑛)
}︀
;

Ω ∩ (𝜈−1𝑚2𝜌
𝑛 , 𝑚

2𝜌
𝑛 ] =

{︀
𝜈−1𝑚𝜌

𝑛 + 𝑗ℎ : 𝑗 ∈ N, 𝑗 6 ℎ−1(1− 𝜈−1)𝑚2𝜌
𝑛

}︀
;

Ω ∩ (𝑚2𝜌
𝑛 , 𝑘

−1𝑚2𝜌
𝑛 ) = ∅;

Ω ∩ [𝑘−1𝑚2𝜌
𝑛 , 𝑚

𝜌
𝑛+1] =

{︀
𝑘−1𝑚2𝜌

𝑛 + 𝑗/𝛼 : 𝑗 ∈ N, 𝑗 6 𝛼 (𝑚𝜌
𝑛+1 − 𝑘−1𝑚2𝜌

𝑛 )
}︀
.

By the definition we have

ℎ𝜌(Λ0) = lim
𝑛→∞

(︀
𝜆𝜌𝑛+1 − 𝜆𝜌𝑛

)︀
= ℎ

since ℎ < 1/𝛽 < 1/𝛼.
To calculate 𝜌-densities of sequence Λ0, we shall need the expressions for counting function

𝑛Ω(𝑟) on various segments of the positive half-line. First of all we note that

𝑛Ω(𝑚
𝜌
𝑛) =

𝑛−1∑︁
𝑗=1

(︀
𝛼 (𝜈−1𝑚2𝜌

𝑗 −𝑚𝜌
𝑗 ) + ℎ−1(1− 𝜈−1)𝑚2𝜌

𝑗

)︀
+

𝑛∑︁
𝑗=2

𝛼 (𝑚𝜌
𝑗 − 𝑘−1𝑚2𝜌

𝑗−1) + 𝑂(𝑛)

=𝛼(𝑚𝜌
𝑛 −𝑚𝜌

1) +
𝑛−1∑︁
𝑗=1

[︀
𝛼 (𝜈−1 − 𝑘−1) + ℎ−1(1− 𝜈−1)

]︀
𝑚2𝜌

𝑗 + 𝑂(𝑛).

The expression in square brackets vanishes. Indeed,

𝛼 (𝜈−1 − 𝑘−1) + ℎ−1(1− 𝜈−1) = 𝜈−1 (𝛼− ℎ−1) + ℎ−1 − 𝛽 =
1− 𝛽ℎ

1− 𝛼ℎ

𝛼ℎ− 1

ℎ
+

1− 𝛽ℎ

ℎ
= 0.

This is why the relation

𝑛Ω(𝑚
𝜌
𝑛) = 𝛼𝑚𝜌

𝑛 + 𝑂(𝑛), 𝑛→ ∞,

holds true. If 𝑟 ∈ [𝑚𝜌
𝑛, 𝜈

−1𝑚2𝜌
𝑛 ], then

𝑛Ω(𝑟) = 𝑛Ω(𝑚
𝜌
𝑛) + 𝛼(𝑟 −𝑚𝜌

𝑛) +𝑂(1) = 𝛼𝑟 +𝑂(𝑛).

If 𝑟 ∈ (𝜈−1𝑚2𝜌
𝑛 , 𝑚

2𝜌
𝑛 ], then

𝑛Ω(𝑟) =𝑛Ω(𝜈
−1𝑚2𝜌

𝑛 ) + ℎ−1(𝑟 − 𝜈−1𝑚2𝜌
𝑛 ) +𝑂(1) = 𝛼𝜈−1𝑚2𝜌

𝑛 +𝑂(𝑛) + ℎ−1(𝑟 − 𝜈−1𝑚2𝜌
𝑛 )

=ℎ−1𝑟 + 𝜈−1(𝛼− ℎ−1)𝑚2𝜌
𝑛 +𝑂(𝑛) = ℎ−1𝑟 − ℎ−1𝑠𝑚2𝜌

𝑛 +𝑂(𝑛) = ℎ−1(𝑟 − 𝑠𝑚2𝜌
𝑛 ) +𝑂(𝑛).

If 𝑟 ∈ (𝑚2𝜌
𝑛 , 𝑘

−1𝑚2𝜌
𝑛 ), then

𝑛Ω(𝑟) = 𝑛Ω(𝑚
2𝜌
𝑛 ) = ℎ−1(𝑚2𝜌

𝑛 − 𝑠𝑚2𝜌
𝑛 ) +𝑂(𝑛) = ℎ−1(1− 𝑠)𝑚2𝜌

𝑛 +𝑂(𝑛) = 𝛽𝑚2𝜌
𝑛 +𝑂(𝑛).

If 𝑟 ∈ [𝑘−1𝑚2𝜌
𝑛 , 𝑚

𝜌
𝑛+1], the

𝑛Ω(𝑟) = 𝑛Ω(𝑘
−1𝑚2𝜌

𝑛 ) + 𝛼(𝑟 − 𝑘−1𝑚2𝜌
𝑛 ) +𝑂(1) = 𝛽𝑚2𝜌

𝑛 +𝑂(𝑛) + 𝛼(𝑟 − 𝑘−1𝑚2𝜌
𝑛 ) = 𝛼𝑟 +𝑂(𝑛).

Finally, for each 𝑛 ∈ N we have the representation (with error terms 𝑂(𝑛) as 𝑛→ ∞):

𝑛Ω(𝑟) =

⎧⎪⎨⎪⎩
𝛼𝑟 +𝑂(𝑛), 𝑟 ∈ [𝑚𝜌

𝑛, 𝜈
−1𝑚2𝜌

𝑛 ] ∪ [𝑘−1𝑚2𝜌
𝑛 , 𝑚

𝜌
𝑛+1];

ℎ−1(𝑟 − 𝑠𝑚2𝜌
𝑛 ) +𝑂(𝑛), 𝑟 ∈ (𝜈−1𝑚2𝜌

𝑛 , 𝑚
2𝜌
𝑛 ];

𝛽𝑚2𝜌
𝑛 +𝑂(𝑛), 𝑟 ∈ (𝑚2𝜌

𝑛 , 𝑘
−1𝑚2𝜌

𝑛 ).

Hence, due to the relation 𝑛Λ0(𝑟) = 𝑛Ω(𝑟
𝜌), we find that

Δ𝜌(Λ0) = lim
𝑟→+∞

𝑛Ω(𝑟)

𝑟
= 𝛽, Δ 𝜌(Λ0) = lim

𝑟→+∞

𝑛Ω(𝑟)

𝑟
= 𝛼.
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For a fixed 𝑟 > 0 we consider the function 𝜙𝑟(𝑡) defined by the rule

𝜙𝑟(𝑡) :=
𝑛Λ0(𝑟𝑡)

(𝑟𝑡)𝜌
=
𝑛Ω ((𝑟𝑡)𝜌)

(𝑟𝑡)𝜌
, 𝑡 > 0.

It allows us to write the representation for each 𝑛 ∈ N:

𝜙𝑟(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛼 +𝑂

(︂
𝑛

(𝑟𝑡)𝜌

)︂
, 𝑡 ∈

[︂
𝑚𝑛

𝑟
, 𝜈−1/𝜌𝑚

2
𝑛

𝑟

]︂
∪
[︂
𝑘−1/𝜌𝑚

2
𝑛

𝑟
,
𝑚𝑛+1

𝑟

]︂
;

ℎ−1

(︂
1− 𝑠

(︂
𝑚2

𝑛

𝑟𝑡

)︂𝜌)︂
+𝑂

(︂
𝑛

(𝑟𝑡)𝜌

)︂
, 𝑡 ∈

(︂
𝜈−1/𝜌𝑚

2
𝑛

𝑟
,
𝑚2

𝑛

𝑟

]︂
;

𝛽

(︂
𝑚2

𝑛

𝑟𝑡

)︂𝜌

+𝑂

(︂
𝑛

(𝑟𝑡)𝜌

)︂
, 𝑡 ∈

(︂
𝑚2

𝑛

𝑟
, 𝑘−1/𝜌𝑚

2
𝑛

𝑟

)︂
.

We introduce the function Φ𝑟(𝑡) depending on a parameter 𝑟 > 0) and defined for 𝑡 > 0 such
that

Φ𝑟(𝑡) = 𝛼, 𝑡 ∈ [0, 𝑚1/𝑟],

while its restrictions on the segments [𝑚𝑛/𝑟, 𝑚𝑛+1/𝑟], 𝑛 ∈ N, read as

Φ𝑟(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛼, 𝑡 ∈
[︂
𝑚𝑛

𝑟
, 𝜈−1/𝜌𝑚

2
𝑛

𝑟

]︂
∪
[︂
𝑘−1/𝜌𝑚

2
𝑛

𝑟
,
𝑚𝑛+1

𝑟

]︂
;

ℎ−1

(︂
1− 𝑠

(︂
𝑚2

𝑛

𝑟𝑡

)︂𝜌)︂
, 𝑡 ∈

(︂
𝜈−1/𝜌𝑚

2
𝑛

𝑟
,
𝑚2

𝑛

𝑟

]︂
;

𝛽

(︂
𝑚2

𝑛

𝑟𝑡

)︂𝜌

, 𝑡 ∈
(︂
𝑚2

𝑛

𝑟
, 𝑘−1/𝜌𝑚

2
𝑛

𝑟

)︂
.

In view of (7), 𝜌-type of entire function (5) can be found by the formula

𝜎𝜌(𝑓0) = lim
𝑟→+∞

+∞∫︁
0

𝜙𝑟(𝑡)𝐾(𝑡) 𝑑𝑡 = lim
𝑟→+∞

+∞∫︁
0

Φ𝑟(𝑡)𝐾(𝑡) 𝑑𝑡 (13)

since the error terms in the expression for 𝜙𝑟(𝑡) makes no influence on 𝜎𝜌(𝑓0) (see [2]). Thanks
to general estimate (8), in order to prove identity (9), it is sufficient to establish

𝜎𝜌(𝑓0) 6

+∞∫︁
0

𝜓0(𝑡)𝐾(𝑡) 𝑑𝑡,

which is implied (see (13)) by the relation

lim
𝑟→+∞

+∞∫︁
0

(Φ𝑟(𝑡)− 𝜓0(𝑡)) 𝐾(𝑡) 𝑑𝑡 6 0. (14)

So, we need to check (14). First we observe that the formula

+∞∫︁
0

(Φ𝑟(𝑡)− 𝜓0(𝑡)) 𝐾(𝑡) 𝑑𝑡 =
∞∑︁
𝑛=1

𝜙

(︂
𝑎0𝑟

𝑟𝑛

)︂
− 𝜙(𝑎0), 𝑟 > 0, (15)
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holds true, where 𝑟𝑛 = 𝑎0𝑚
2
𝑛, 𝑛 ∈ N. Indeed, employing the definition of function Φ𝑟(𝑡) and

representation (10) for function 𝜙(𝑎), we write

+∞∫︁
0

Φ𝑟(𝑡)𝐾(𝑡) 𝑑𝑡 = 𝛼

+∞∫︁
0

𝐾(𝑡) 𝑑𝑡

+
∞∑︁
𝑛=1

{︃ 𝑚2
𝑛
𝑟∫︁

𝑚2
𝑛

𝜈1/𝜌𝑟

[︂
ℎ−1

(︂
1− 𝑠

(︂
𝑚2

𝑛

𝑟𝑡

)︂𝜌)︂
− 𝛼

]︂
𝐾(𝑡) 𝑑𝑡+

𝑚2
𝑛

𝑘1/𝜌𝑟∫︁
𝑚2

𝑛
𝑟

[︂
𝛽

(︂
𝑚2

𝑛

𝑟𝑡

)︂𝜌

− 𝛼

]︂
𝐾(𝑡) 𝑑𝑡

}︃

=
𝜋𝛼

sin 𝜋𝜌
+

∞∑︁
𝑛=1

𝜙

(︂
𝑟

𝑚2
𝑛

)︂
.

Thus,
+∞∫︁
0

Φ𝑟(𝑡)𝐾(𝑡) 𝑑𝑡 =
𝜋𝛼

sin 𝜋𝜌
+

∞∑︁
𝑛=1

𝜙

(︂
𝑟

𝑚2
𝑛

)︂
, 𝑟 > 0.

Deducting identity (11), we arrive at formula (15).
We employ (15) to prove (14). We fix an index 𝑗 > 2 and we split the expression in the right

hand side in (15) into three sums:

𝑗−1∑︁
𝑛=1

𝜙

(︂
𝑎0𝑟

𝑟𝑛

)︂
,

∞∑︁
𝑛=𝑗+2

𝜙

(︂
𝑎0𝑟

𝑟𝑛

)︂
, 𝜙

(︂
𝑎0𝑟

𝑟𝑗

)︂
+ 𝜙

(︂
𝑎0𝑟

𝑟𝑗+1

)︂
− 𝜙(𝑎0).

Let us estimate them separately for 𝑟 ∈ [𝑟𝑗, 𝑟𝑗+1].
We begin with the first sum. Letting 𝑎 = 𝑎0𝑟/𝑟𝑛 in representation (10) and applying obvious

inequality 𝐾(𝑡) 6 𝑡𝜌−1, we obtain

𝜙

(︂
𝑎0𝑟

𝑟𝑛

)︂
6

𝑟𝑛
𝑎0𝑟∫︁

𝜈−1/𝜌 𝑟𝑛
𝑎0𝑟

[︂
ℎ−1

(︂
1− 𝑠

(︂
𝑟𝑛
𝑎0𝑟𝑡

)︂𝜌)︂
− 𝛼

]︂
𝑡𝜌−1 𝑑𝑡 +

𝑘−1/𝜌 𝑟𝑛
𝑎0𝑟∫︁

𝑟𝑛
𝑎0𝑟

[︂
𝛽

(︂
𝑟𝑛
𝑎0𝑟𝑡

)︂𝜌

− 𝛼

]︂
𝑡𝜌−1 𝑑𝑡

=
ℎ−1 − 𝛼

𝜌
(1− 𝜈−1)

(︂
𝑟𝑛
𝑎0𝑟

)︂𝜌

− ℎ−1𝑠 ln 𝜈1/𝜌
(︂
𝑟𝑛
𝑎0𝑟

)︂𝜌

+ 𝛽 ln 𝑘−1/𝜌

(︂
𝑟𝑛
𝑎0𝑟

)︂𝜌

− 𝛼

𝜌
(𝑘−1 − 1)

(︂
𝑟𝑛
𝑎0𝑟

)︂𝜌

=
1

𝜌

(︂
𝑟𝑛
𝑎0𝑟

)︂𝜌 [︂
1− 𝛼ℎ

ℎ

(︂
1− 1− 𝛽ℎ

1− 𝛼ℎ

)︂
− 𝑠

ℎ
ln 𝜈 − 𝛽 ln 𝑘 − (𝛽 − 𝛼)

]︂
= 𝐴

(︂
𝑚2

𝑛

𝑟

)︂𝜌

with the constant

𝐴 = − 1

𝜌ℎ
[𝑠 ln 𝜈 + 𝛽ℎ ln 𝑘] > 0.

Hence, for 𝑟 > 𝑟𝑗 = 𝑎0𝑚
2
𝑗 we have

0 <

𝑗−1∑︁
𝑛=1

𝜙

(︂
𝑎0𝑟

𝑟𝑛

)︂
6

𝐴

𝑟𝜌

𝑗−1∑︁
𝑛=1

𝑚2𝜌
𝑛 6

𝐴

𝑎𝜌0

1

𝑚2𝜌
𝑗

𝑗−1∑︁
𝑛=1

𝑚2𝜌
𝑛 .

Applying the former formula in (12) for 𝑝 = 2𝜌, we arrive at the relation

sup
𝑟∈[𝑟𝑗 , 𝑟𝑗+1]

𝑗−1∑︁
𝑛=1

𝜙

(︂
𝑎0𝑟

𝑟𝑛

)︂
→ 0, 𝑗 → ∞. (16)
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We proceed to the second sum. Letting once again 𝑎 = 𝑎0𝑟/𝑟𝑛 in representation (10) and
applying another obvious inequality 𝐾(𝑡) 6 𝑡𝜌−2, we obtain

𝜙

(︂
𝑎0𝑟

𝑟𝑛

)︂
6

𝑟𝑛
𝑎0𝑟∫︁

𝜈−1/𝜌 𝑟𝑛
𝑎0𝑟

[︂
ℎ−1

(︂
1− 𝑠

(︂
𝑟𝑛
𝑎0𝑟𝑡

)︂𝜌)︂
− 𝛼

]︂
𝑡𝜌−2 𝑑𝑡 +

𝑘−1/𝜌 𝑟𝑛
𝑎0𝑟∫︁

𝑟𝑛
𝑎0𝑟

[︂
𝛽

(︂
𝑟𝑛
𝑎0𝑟𝑡

)︂𝜌

− 𝛼

]︂
𝑡𝜌−2 𝑑𝑡

=
ℎ−1 − 𝛼

𝜌− 1
(1− 𝜈1/𝜌−1)

(︂
𝑟𝑛
𝑎0𝑟

)︂𝜌−1

− ℎ−1𝑠 (𝜈1/𝜌 − 1)

(︂
𝑟𝑛
𝑎0𝑟

)︂𝜌−1

+ 𝛽 (1− 𝑘1/𝜌)

(︂
𝑟𝑛
𝑎0𝑟

)︂𝜌−1

+
𝛼

1− 𝜌
(𝑘1/𝜌−1 − 1)

(︂
𝑟𝑛
𝑎0𝑟

)︂𝜌−1

= 𝐵

(︂
𝑚2

𝑛

𝑟

)︂𝜌−1

with the constant

𝐵 =
(ℎ−1 − 𝛼)(𝜈1/𝜌−1 − 1)− 𝛼(1− 𝑘1/𝜌−1)

1− 𝜌
− ℎ−1𝑠 (𝜈1/𝜌 − 1) + 𝛽 (1− 𝑘1/𝜌) > 0.

Hence, for 𝑟 6 𝑟𝑗+1 = 𝑎0𝑚
2
𝑗+1 we have

0 <
∞∑︁

𝑛=𝑗+2

𝜙

(︂
𝑎0𝑟

𝑟𝑛

)︂
6 𝐵 𝑟1−𝜌

∞∑︁
𝑛=𝑗+2

1

𝑚
2(1−𝜌)
𝑛

6 𝐵𝑎1−𝜌
0 𝑚

2(1−𝜌)
𝑗+1

∞∑︁
𝑛=𝑗+2

1

𝑚
2(1−𝜌)
𝑛

.

Applying the latter formula in (12) for 𝑝 = 2(1− 𝜌), we arrive at the relation

sup
𝑟∈[𝑟𝑗 , 𝑟𝑗+1]

∞∑︁
𝑛=𝑗+2

𝜙

(︂
𝑎0𝑟

𝑟𝑛

)︂
→ 0, 𝑗 → ∞. (17)

Let us estimate the third sum. In the estimates we make use of the fact that 𝑎0 is the
maximum point of a positive continuous for 𝑎 > 0 function 𝜙(𝑎), while the function vanishes
at zero and at infinity. We consider two cases: 𝑟 ∈ [𝑟𝑗,

√
𝑟𝑗 𝑟𝑗+1] and 𝑟 ∈ [

√
𝑟𝑗 𝑟𝑗+1, 𝑟𝑗+1].

In the first case we have 𝑟𝑗/𝑟𝑗+1 6 𝑟/𝑟𝑗+1 6
√︀
𝑟𝑗/𝑟𝑗+1. This is why the right hand in the

estimate

𝜙

(︂
𝑎0𝑟

𝑟𝑗

)︂
+ 𝜙

(︂
𝑎0𝑟

𝑟𝑗+1

)︂
− 𝜙(𝑎0) 6 𝜙

(︂
𝑎0𝑟

𝑟𝑗+1

)︂
tends to zero as 𝑗 → ∞ uniformly in 𝑟 ∈ [𝑟𝑗,

√
𝑟𝑗 𝑟𝑗+1].

In the second case we have
√︀
𝑟𝑗+1/𝑟𝑗 6 𝑟/𝑟𝑗 6 𝑟𝑗+1/𝑟𝑗. This is why the right hand side in

the estimate

𝜙

(︂
𝑎0𝑟

𝑟𝑗

)︂
+ 𝜙

(︂
𝑎0𝑟

𝑟𝑗+1

)︂
− 𝜙(𝑎0) 6 𝜙

(︂
𝑎0𝑟

𝑟𝑗

)︂
again tends to zero as 𝑗 → ∞ uniformly in 𝑟 ∈ [

√
𝑟𝑗 𝑟𝑗+1, 𝑟𝑗+1].

Finally,

lim
𝑗→∞

sup
𝑟∈[𝑟𝑗 , 𝑟𝑗+1]

{︂
𝜙

(︂
𝑎0𝑟

𝑟𝑗

)︂
+ 𝜙

(︂
𝑎0𝑟

𝑟𝑗+1

)︂
− 𝜙(𝑎0)

}︂
6 0. (18)

Combining (15)–(18), we obtain (14). Thus, function (5) satisfies (9). The example of an
extremal function is constructed. Together with the result of work [1] it proves the following
statement.

Theorem. For each 𝜌 ∈ (0, 1), 𝛽 > 0, 𝛼 ∈ [0, 𝛽], ℎ ∈ [0, 1/𝛽], extremal value (1) is
calculated by the formula

𝑠(𝛼, 𝛽, ℎ; 𝜌) =
𝜋𝛼

sin 𝜋𝜌
+ sup

𝑎>0
𝜙(𝑎),
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where function 𝜙(𝑎) is defined as

𝜙(𝑎) =

𝑎∫︁
𝑎(𝛼/𝛽)1/𝜌

𝛽𝑎−𝜌 − 𝛼𝜏−𝜌

1 + 𝜏
𝑑𝜏 +

𝑠

ℎ

𝑎𝜈1/𝜌∫︁
𝑎

𝜈𝜏−𝜌 − 𝑎−𝜌

1 + 𝜏
𝑑𝜏, 𝑠 = 1− 𝛽ℎ, 𝜈 =

1− 𝛼ℎ

1− 𝛽ℎ
.

The infimum 𝑠(𝛼, 𝛽, ℎ; 𝜌) is attained at an entire function with a sequence of positive simple
zeroes having 𝜌-densities Δ𝜌(Λ) = 𝛽, Δ 𝜌(Λ) = 𝛼 and 𝜌-step ℎ𝜌(Λ) = ℎ.
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