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1. Introduction

Let C𝑛 be an 𝑛-dimensional complex space, 𝐺 be a domain in C𝑛, 𝐻(𝐺) be the set of analytic
in 𝐺 functions, 𝐻∞(𝐺) be the set of all bounded analytic in 𝐺 functions. We suppose that
𝑋 is a some topological subspace of space 𝐻 (𝐺), in which 𝐻∞ (𝐺) is a dense set, operators
𝑆𝑧 (𝑓) = 𝑓 (𝑧), 𝑧 ∈ 𝐺, and 𝑀𝜓 (𝑓) = 𝜓𝑓 , 𝜓 ∈ 𝐻∞, 𝑓 ∈ 𝑋, are bounded operators in 𝑋.

Definition 1. Let 𝑓 ∈ 𝑋 and there exists a sequence 𝑓𝑚 ∈ 𝐻∞(𝐺) such that lim
𝑚→+∞

𝑓𝑚𝑓 = 1

in the sense of the topology in space 𝑋. Then function 𝑓 is called weakly invertible in space 𝑋.

Thus, 𝑓 is weakly invertible 𝑋 if set 𝐻∞(𝐺)𝑓 is everywhere dense in space 𝑋.
We note that the issue on weak invertibility in particular functional space are related with

a wide class of problems in several fields, from the theory of differential operators and their
generalization till abstract harmonic analysis [1].

In the one-dimensional case the weak invertibility was studied in the classical work by
M.V. Keldysh [2], where it was established that there exists a function 𝑓 ∈ 𝐻∞(𝐷), 𝑓(𝑧) ̸= 0,
𝑧 ∈ 𝐷 = {𝑧 ∈ C1 : |𝑧| < 1} not weakly invertible in the Bergman space

𝐴𝑝 (𝐷) =

{︃
𝑓 ∈ 𝐻 (𝐷) : ‖𝑓‖𝐴𝑝(𝐷) =

(︂∫︁
𝐷

|𝑓 (𝑧)|𝑝 𝑑𝑚2 (𝑧)

)︂ 1
𝑝

< +∞

}︃
,

where 𝑚2 is the planar Lebesgue measure. In these constructions an important role was played

by the inner function 𝑆 (𝑧) = exp

(︂
−1 + 𝑧

1 − 𝑧

)︂
, 𝑧 ∈ 𝐷.
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In works by A. Berling [3] and N. Nikolskii [4] the weak invertibility of function 𝑆 in the
weighted space

𝐴𝑝𝜙 =

{︃
𝑓 ∈ 𝐻 (𝐷) : ‖𝑓‖𝐴𝑝

𝜙
=

(︂∫︁
𝐷

|𝑓 (𝑧)|𝑝 exp

(︂
−𝜙

(︂
1

1 − |𝑧|

)︂)︂
𝑑𝑚2 (𝑧)

)︂ 1
𝑝

< +∞

}︃

was studied.
Under certain restrictions for regularity of the growth of 𝜙, it was established in these works

that the weak invertibility of function 𝑆 in space 𝐴𝑝𝜙, 1 6 𝑝 < +∞, is equivalent to

+∞∫︁
1

(︂
𝜙 (𝑥)

𝑥3

)︂ 1
2

𝑑𝑥 = +∞. (1)

Taking into consideration that function 𝑆 is analytic everywhere except the point 𝑧 = 1, the
author and his PhD student I. Gevorkyan in [5] studied the weak invertibility of function 𝑆 in
the space

𝐴𝑝𝜙 =

{︃
𝑓 ∈ 𝐻 (𝐷) :

‖𝑓‖𝐴𝑝
𝜙

=

(︂∫︁
𝐷

|𝑓 (𝑧)|𝑝 exp

(︂
−𝜙

(︂
1

|1 − 𝑧|

)︂)︂
𝑑𝑚2 (𝑧)

)︂ 1
𝑝

< +∞, 1 6 𝑝 < +∞

}︃
.

It was established in [5] that as opposed to (1), the criterion of the weak invertibility of
function 𝑆 in 𝐴𝑝𝜙, 0 < 𝑝 6 +∞, reads as

+∞∫︁
1

𝜙 (𝑥)

𝑥2
𝑑𝑥 = +∞. (2)

It is obvious that condition (2) implies (1), but the converse is false.
In a recent work [6], a new proof of the above results by A. Berling, N.Nikolskii and

I. Gevorkyan–F. Shamoyan was proposed for the case 𝑝 = 2; the proof was based on the
well known corona theorem.

In the present work we study the issues of this type in multi-dimensional (tubular) domains.

2. Main results and proof of auxiliary statements

To present the main results of the work we introduce the following notations.
Let 𝑃 (𝑥) = (𝑝1(𝑥1), . . . , 𝑝𝑛(𝑥𝑛)), 𝑥 = (𝑥1, . . . , 𝑥𝑛), be a vector function defined on R𝑛

+ ={︀
𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, 𝑥𝑗 > 0, 𝑗 = 1, 𝑛

}︀
, C𝑛+ be the tubular domain with the basis R𝑛

+, i.e.,

C𝑛+ =
{︀
𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛 : (Im 𝑧1, . . . , Im 𝑧𝑛) ∈ R𝑛

+

}︀
.

Let

𝐴𝑞𝑃
(︀
C𝑛+
)︀

=

{︃
𝑓 ∈ 𝐻

(︀
C𝑛+
)︀

: ‖𝑓‖𝐴𝑞
𝑃

=

(︂∫︁
C𝑛

+

|𝑓 (𝑧)|𝑝 exp (−𝑃 (|𝑧|)) 𝑑𝑚2𝑛 (𝑧)

)︂ 1
𝑞

< +∞

}︃
,

where 𝑧 = (𝑧1, . . . , 𝑧𝑛) , exp (−𝑃 (|𝑧|)) :=
𝑛∏︀
𝑗=1

exp (−𝑝𝑗 (|𝑧𝑗|)); 𝑑𝑚2𝑛 is the 2𝑛-dimensional

Lebesgue measure in C𝑛+.
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In what follows we assume that 𝑝𝑗 (𝑥) =

𝑥∫︁
1

𝜔𝑗 (𝑡)

𝑡
𝑑𝑡, 𝑗 = 1, 𝑛, where 𝜔𝑗 are defined on

R+ := R1
+, and 𝜔𝑗 (𝑡) ↑+∞ (𝑡→ +∞), 1 6 𝑗 6 𝑛. Such functions will be called weights, while

vectors functions 𝑃 = (𝑝1, . . . , 𝑝𝑛) will be called weight vector function. The set of all weight
vector functions is denoted by Ω.

The main results of the paper are the two following statements.

Theorem 1. Let 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ R𝑛
+, 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛+, 𝑎𝑧 =

𝑛∑︀
𝑗=1

𝑎𝑗𝑧𝑗, 𝑆𝑎 (𝑧) =

exp

(︂
𝑖
𝑛∑︀
𝑗=1

𝑎𝑗𝑧𝑗

)︂
, 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛+, 𝑃 = (𝑝1, . . . , 𝑝𝑛) ∈ Ω. Then

1) the following statements are equivalent:
a) function 𝑆𝑎 is weakly invertible in space 𝐴𝑞𝑃 for some 𝑞 = 𝑞0, 1 6 𝑞0 < +∞;
b) 𝑆𝑎 is weakly invertible in space 𝐴𝑞𝑃 for all 0 < 𝑞 < +∞;
c)

+∞∫︁
1

p𝑗 (𝑡)

𝑡2
𝑑𝑡 = +∞, 𝑗 = 1, 𝑛; (3)

2) If at least one of the integrals in (3) converges, then function 𝑆𝑎 is not weakly invertible
in each space 𝐴𝑞𝑃 , 0 < 𝑞 < +∞.

Theorem 2. Let 𝑃 = (𝑝1, . . . , 𝑝𝑛) be a vector function in Ω, 𝑓 ∈ 𝐻∞ (︀C𝑛−𝜂)︀, where C𝑛−𝜂 ={︀
𝑧 = (𝑧1, . . . , 𝑧𝑛) : Im 𝑧𝑗 > −𝜂, 𝑗 = 1, 𝑛

}︀
, 𝑓 (𝑧) ̸= 0, 𝑧 ∈ C𝑛−𝜂, 0 < 𝑠 < 1.

Let 𝑀𝑚 = sup
𝑧∈C𝑛

+

{|ln 𝑓 (𝑧)|𝑚 exp (−𝑠𝑃 (|𝑧|))}, where the principal branch of the logarithm is

fixed. If
∞∑︁
𝑚=1

1
𝑚
√
𝑀𝑚

= +∞, (4)

then function 𝑓 is weakly invertible in space 𝐴𝑞𝑃
(︀
C𝑛+
)︀
for all 0 < 𝑞 < +∞.

Remark 1. We note that the conditions 𝑓 ∈ 𝐻∞ (︀C𝑛+)︀ and 𝑓 (𝑧) ̸= 0, 𝑧 ∈ C𝑛+, are not

sufficient for the weak invertibility of function 𝑓 in space 𝐴𝑞𝑃
(︀
C𝑛+
)︀
.

Indeed, in view of the results of work [8], it is easy to establish that the functions 𝑓𝑎 (𝑧) =

exp

(︂
−

𝑛∑︁
𝑗=1

𝑖𝑐𝑗
𝑧𝑗 − 𝑎𝑗

)︂
, 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ C𝑛+, 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ R𝑛, 𝑐 = (𝑐1, . . . , 𝑐𝑛) ∈ R𝑛

+, are

not weakly invertible in space 𝐴𝑞𝑃 (C𝑛+).

Remark 2. If series (4) diverges, and function 𝑓 coincides with function 𝑆𝑎, then it follows
from Theorem 1 that function 𝑓 is not weakly invertible in space 𝐴𝑞𝑃 (C𝑛+) for each 𝑞 > 0, since
the convergence of series (4) is equivalent to the convergence of integrals (3) (see [12]).

Before proving Theorems 1 and 2, we provide the following auxiliary statements.
Let 𝑘 = (𝑘1, . . . , 𝑘𝑛) be a permutation of numbers (1, 2, . . . , 𝑛), 𝑛 ∈ N, 1 6 𝑚 6 𝑛. Then the

vector with the coordinates (𝑘1, . . . , 𝑘𝑚) is called a tuple of order 𝑚. The set of all tuples of order
𝑚 is denoted by𝐾𝑚. It is clear that if 1 6 𝑟, 𝑚 6 𝑛, then the identity (𝑘1, . . . , 𝑘𝑟) = (𝑠1, . . . , 𝑠𝑚)
holds true if and only if 𝑟 = 𝑚, 𝑠𝑖 = 𝑘𝑖, 𝑖 = 1,𝑚.

Lemma 1. Let 𝑓 ∈ 𝐻
(︀
C𝑛+
)︀
, 𝑘 = (𝑘1, . . . , 𝑘𝑚) ∈ 𝐾𝑚, ̃︀𝑧 = (̃︀𝑧1, . . . , ̃︀𝑧𝑛) ∈ C𝑛+, and ̃︀𝑧𝑗 = 𝑧𝑘𝑗 , if

𝑗 = 𝑘𝑗 for some 𝑘𝑗 ∈ 𝐾𝑚, and ̃︀𝑧𝑗 = 𝑖, if 𝑗 ̸= 𝑘𝑗, 𝑗 = 1, 𝑛.
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Suppose that 𝑃 = (𝑝1, . . . , 𝑝𝑛) is a weight vector function, 𝑃 ∈ Ω. If 0 < 𝑠 < +∞, then the
estimate

|𝑓 (̃︀𝑧)|𝑠 exp (−𝑃 (2 |̃︀𝑧|)) 6 𝑐0 (𝑠)
𝑚∏︀
𝑗=1

𝑦2𝑘𝑗

∫︁
̃︀𝑈𝑛(̃︀𝑧)

|𝑓 (𝜁)|𝑠 exp (−𝑃 (|𝜁|)) 𝑑𝑚2𝑛 (𝜁) (5)

holds true, where ̃︀𝑈𝑛 (̃︀𝑧) =

{︂
𝜁 = (𝜁1, . . . , 𝜁𝑛) ∈ C𝑛+ : |𝜁𝑗 − ̃︀𝑧𝑗| < Im ̃︀𝑧𝑗

2
, 𝑗 = 1, 𝑛

}︂
.

Proof. Without loss of generality we can assume that 𝑗 = 𝑘𝑗, 1 6 𝑗 6 𝑚. Then

̃︀𝑈𝑛 (̃︀𝑧) =

{︂
𝜁 = (𝜁1, . . . , 𝜁𝑛) : |𝜁𝑗 − 𝑧𝑗| <

𝑦𝑗
2
, 1 6 𝑗 6 𝑚, |𝜁𝑗 − 𝑖| < 1

2
, 𝑚+ 1 6 𝑗 6 𝑛

}︂
.

Taking into consideration the 𝑛-subharmonicity of the function |𝑓 (𝜁)|𝑠, 𝜁 ∈ C𝑛+, we obtain

|𝑓 (̃︀𝑧)|𝑠 6 22𝑚

𝜋𝑛
𝑚∏︀
𝑗=1

𝑦2𝑗

∫︁
̃︀𝑈𝑛(̃︀𝑧)

|𝑓 (𝜁)|𝑠 𝑑𝑚2𝑛 (𝜁) , (6)

where ̃︀𝑧 = (𝑧1, . . . , 𝑧𝑚, 𝑖, . . . , 𝑖). We note that if 𝜁 ∈ ̃︀𝑈𝑛, 𝜁 = (𝜁1, . . . , 𝜁𝑛), then |𝑧𝑗 − 𝜁𝑗| <
𝑦𝑗
2
,

𝑧𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗, 𝑗 = 1,𝑚, and |𝑖− 𝜁𝑗| <
1

2
if 𝑗 = 𝑚+ 1, 𝑛. Hence,

|𝑧𝑗|
2

6 |𝑧𝑗| −
|𝑦𝑗|
2

6 |𝜁𝑗| 6 |𝑧𝑗| +
|𝑦𝑗|
2

6
3

2
|𝑧𝑗| , 𝑗 = 1,𝑚;

1

2
6 |𝜁𝑗| 6

3

2
, 𝑗 = 𝑚+ 1, 𝑛.

Therefore,

exp

(︂
−𝑝𝑗

(︂
3

2
|𝑧𝑗|
)︂)︂

6 exp (−𝑝𝑗 (|𝜁𝑗|))

6 exp

(︂
−𝑝𝑗

(︂
|𝑧𝑗|
2

)︂)︂
, 𝜁 = (𝜁1, . . . , 𝜁𝑛) ∈ ̃︀𝑈𝑛 (̃︀𝑧) , 𝑗 = 1, 𝑛.

(7)

Employing estimates (6), (7), we arrive at the inequality

|𝑓(̃︀𝑧)|𝑠 exp

(︂
−𝑝𝑗

(︂
3

2
|̃︀𝑧|)︂)︂ = |𝑓 (𝑧1, . . . , 𝑧𝑚, 𝑖, . . . , 𝑖)|𝑠 exp

(︃
−

𝑚∑︁
𝑗=1

𝑝𝑗

(︂
3

2
|𝑧𝑗|
)︂)︃

6
22𝑚

𝜋𝑛
𝑚∏︀
𝑗=1

𝑦2𝑗

∫︁
̃︀𝑈𝑛(̃︀𝑧)

|𝑓 (𝜁)|𝑠 exp− (𝑃 (|𝜁|)) 𝑑𝑚2𝑛 (𝜁)

6
𝐶 (𝑚,𝑛)

𝑚∏︀
𝑗=1

𝑦2𝑗

∫︁
C𝑛

+

|𝑓 (𝜁)|𝑠 exp (−𝑃 (|𝜁|)) 𝑑𝑚2𝑛 (𝜁) .

(8)

The proof is complete.

The next statement was proved in the work by M.M. Dzhrbashyan [9], see also [10].

Lemma 2. Let 𝑃 = (𝑝1, . . . , 𝑝𝑛) be a weight vector function, 1 6 𝑞 < +∞. Then the
following statements are equivalent:

1) the set of all algebraic polynomials of (𝑧1, . . . , 𝑧𝑛) is an everywhere dense in 𝐴𝑞𝑃 (C+) set;
2) statements (3) of Theorem 1 hold true and if one of the integrals in (3) diverges, the set

of the polynomials is not dense in space 𝐴𝑞𝑃 (C𝑛+) for arbitrary 0 < 𝑞 < +∞.
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Proof. Let 1 6 𝑞 < +∞. We prove Lemma for 𝑛 = 2, for other 𝑛 the main milestones of the
proof are same.

Let

𝐿𝑞
′

𝑃

(︀
C2

+

)︀
:=

{︃
𝑓 ∈ 𝑆

(︀
C𝑛+
)︀

:

(︂∫︁
C2

+

|𝑓 (𝜁)|𝑞
′
exp (−𝑃 (|𝜁|)) 𝑑𝑚4 (𝜁)

)︂ 1
𝑞′

< +∞

}︃
,

where 𝑆 is the set of all measurable on C𝑛+ functions, and 𝑞′ =
𝑞

𝑞 − 1
. Suppose that 𝑔 ∈ 𝐿𝑞

′

𝑃

(︀
C2

+

)︀
is such that ∫︁

C2
+

𝑔 (𝜁1, 𝜁2) 𝜁
𝑘1
1 𝜁

𝑘2
2 𝑒

−𝑝1(|𝜁1|)−𝑝2(|𝜁2|)𝑑𝑚4 (𝜁1, 𝜁2) = 0, 𝑘 = (𝑘1, 𝑘2) ∈ Z2
+. (9)

Let us prove that ∫︁
C2

+

𝑔 (𝜁1, 𝜁2) 𝑓 (𝜁1, 𝜁2) 𝑒
−𝑝1(|𝜁1|)−𝑝2(|𝜁2|)𝑑𝑚4 (𝜁1, 𝜁2) = 0 (10)

for each 𝑓 ∈ 𝐴𝑞𝑃
(︀
C2

+

)︀
.

Let ̃︀𝑔 (𝜁1) =

∫︁
C+

𝑔 (𝜁1, 𝜁2) exp (−𝑝2 (|𝜁2|)) 𝑑𝑚2 (𝜁2). It is obvious that ̃︀𝑔 (𝜁1) is an almost ev-

erywhere finite function. Let us prove that ̃︀𝑔 (𝜁1) ∈ 𝐿𝑞
′
𝑝1

(C+). By the Hölder inequality we
have∫︁

C+

|̃︀𝑔 (𝜁1)|𝑞
′
𝑒−𝑝1(|𝜁1|)𝑑𝑚2 (𝜁1) =

∫︁
C+

⎛⎝∫︁
C+

|𝑔 (𝜁1, 𝜁2)| 𝑒−𝑝2(|𝜁2|)𝑑𝑚2 (𝜁2)

⎞⎠𝑞′

𝑒−𝑝1(|𝜁1|)𝑑𝑚2 (𝜁1)

6
∫︁
C2

+

|𝑔 (𝜁1, 𝜁2)|𝑞
′
𝑒−𝑝2(|𝜁2|)𝑒−𝑝1(|𝜁1|)𝑑𝑚4 (𝜁1, 𝜁2)

⎛⎝∫︁
C+

𝑒−𝑝2(|𝜁2|)𝑑𝑚2 (𝜁2)

⎞⎠
𝑞′
𝑞

6 𝑐𝑜𝑛𝑠𝑡

∫︁
C+

|𝑔 (𝜁1)|𝑞
′
𝑒−𝑝1(|𝜁1|)𝑑𝑚2 (𝜁1) < +∞.

Therefore, by M.M. Dzrbashyan theorem (see [9]),∫︁
C+

̃︀𝑔 (𝜁1) 𝑓 (𝜁1) 𝑒
−𝑝1(|𝜁1|)𝑑𝑚2 (𝜁1) = 0 (11)

for an arbitrary 𝑓 ∈ 𝐴𝑞𝑃1
(C+).

Exactly in the same way one can prove that if 𝑓 ∈ 𝐴𝑞𝑃1

(︀
C2

+

)︀
, then the function 𝑓 (𝜁1) =∫︁

C+

𝑓 (𝜁1, 𝜁2) exp (−𝑝2 (|𝜁2|)) 𝑑𝑚2 (𝜁2) belongs to class 𝐴𝑞𝑃1
(C+). Hence, applying M.M. Dzr-

bashyan theorem, we obtain that∫︁
C+

̃︀𝑔 (𝜁1) ̃︀𝑓 (𝜁1) 𝑑𝑚2 (𝜁1) = 0,
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i.e., ∫︁
C2

+

𝑔 (𝜁1, 𝜁2) 𝑓 (𝜁1, 𝜁2) exp (−𝑝1 (|𝜁1|)) exp (−𝑝2 (|𝜁2|)) 𝑑𝑚4 (𝜁1, 𝜁2) = 0.

This identity and Hahn-Banach theorem imply the first part of the lemma.
We proceed to the proof of the second part. It follows from Lemma 1 that if the polynomials

are dense in 𝐴𝑞𝑃 (C𝑛+), then there exists a sequence of polynomials 𝑃𝑚 (𝑧) =
𝑚∑︁
𝑘=1

𝑎
(𝑚)
𝑘 𝑧𝑘, 𝑧 ∈ C+

such that max
𝑧∈C+

{︁⃒⃒⃒
𝑃𝑚 (𝑧) − 𝑓 (𝑧)

⃒⃒⃒
exp(−𝑝𝑗 (|𝑧|))

}︁
= 0, 1 6 𝑗 6 𝑛, for each 𝑓 ∈ 𝐴∞

𝑃𝑗
(C+) 0. Then

M.M. Dzhrbashyan theorem impliesL

+∞∫︁
1

𝑝𝑗 (𝑡)

𝑡2
𝑑𝑡 = +∞ (see [9], [10]).

The next lemma was proved in work [11].

Lemma 3. Let 𝑝 be a weight function such that

+∞∫︁
0

p (𝑡)

1 + 𝑡2
𝑑𝑡 < +∞.

Suppose that 𝐺 is the external function in the half-plane C+ readings as

𝐺 (𝑧) = exp

⎛⎝−4𝑖

𝜋

+∞∫︁
−∞

𝑡𝑧 + 1

𝑡− 𝑧

𝑝 (𝑡)

1 + 𝑡2
𝑑𝑡

⎞⎠ , 𝑧 ∈ C+.

Then there exists a positive number 𝑐 such that

exp (−𝑐𝑝 (3 |𝑧|)) 6 |𝐺 (𝑧)| 6 exp (−𝑝 (|𝑧|)) , 𝑧 ∈ C+. (12)

3. Proof of the main results

Proof of Theorem 1. We begin with the first statement c) ⇒ b).
Let 1 6 𝑞 < +∞, 𝑎 = (𝑎1, . . . , 𝑎𝑛), 𝑎𝑗 > 0, 𝑗 = 1, 𝑛. We denote by 𝐸𝑞 (𝑆𝑎) the closure of

set 𝐻∞ (︀C𝑛+)︀𝑆𝑎 in space 𝐴𝑞𝑃
(︀
C𝑛+
)︀
. To prove the desired statement, it is sufficient to show that

1 ∈ 𝐸𝑞 (𝑆𝑎).
Let Φ be a linear continuous functional orthogonal to 𝐸𝑞 (𝑆𝑎). Let us prove that Φ (1) = 0.

We suppose that Φ is generated by some function Ψ ∈ 𝐿𝑞
′

𝑃

(︀
C𝑛+
)︀
, where

1

𝑞
+

1

𝑞′
= 1, then

Φ (𝑆𝑎𝐹 ) =

∫︁
C𝑛

+

𝑒𝑖𝑎𝑧𝐹 (𝑧) Ψ (𝑧) 𝑒−𝑃 (|𝑧|)𝑑𝑚2𝑛 (𝑧) = 0,

for each 𝐹 ∈ 𝐻∞ (︀C𝑛+)︀ as well as for 𝐹 (𝑧1, . . . , 𝑧𝑛) = 𝑧𝑚1
1 . . . 𝑧𝑚𝑛

𝑛 , 𝑚 = (𝑚1, . . . ,𝑚𝑛) ∈ Z𝑛+.

Given 𝑡 ∈ [0, 1], we let 𝑒1 (𝑡) =

∫︁
C𝑛

+

𝑒𝑖𝑎1𝑡𝑧1+𝑖̃︀𝑎̃︀𝑧Ψ (𝑧) 𝑒−𝑃 (|𝑧|)𝑑𝑚2𝑛 (𝑧), where ̃︀𝑧 = (𝑧2, 𝑧3, . . . , 𝑧𝑛),

̃︀𝑎 = (𝑎2, . . . , 𝑎𝑛).
It is clear that

𝑒
(𝑚)
1 (𝑡) =

∫︁
C𝑛

+

𝑒𝑖𝑎1𝑧1𝑡+𝑖̃︀𝑎̃︀𝑧 (𝑖𝑎1𝑧1)
𝑚 Ψ (𝑧) 𝑒(−𝑝1(|𝑧1|)−

̃︀𝑃 (|𝑧|))𝑑𝑚2𝑛 (𝑧) ,
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where exp(− ̃︀𝑃 (|̃︀𝑧|)) = exp (−𝑝2 (|𝑧2|) . . .− 𝑝𝑛 (|𝑧𝑛|)). It is obvious that

𝑒
(𝑚)
1 (1) = 0, 𝑚 ∈ Z+. (13)

Let us prove that function 𝑒 belongs to the quasi-analytic class on the segment [0, 1] (see [12]).
Indeed, applying Hölder inequality, we have⃒⃒⃒

𝑒
(𝑚)
1 (𝑡)

⃒⃒⃒
6
∫︁
C𝑛

+

exp (−𝑝1 (|𝑧1|)) |𝑎1|𝑚 |𝑧1|𝑚 |Ψ (𝑧)| exp
(︁
− ̃︀𝑃 (|̃︀𝑧|))︁ 𝑑𝑚2𝑛 (𝑧)

6 |𝑎1|𝑚
(︂∫︁
C+

𝑒(−𝑝1(|𝑧1|)) |𝑧1|𝑚𝑞 𝑑𝑚2 (𝑧1)

)︂ 1
𝑞

·

(︃∫︁
C+

𝑒(−𝑝1(|𝑧1|))
(︂ ∫︁
C𝑛−1

+

|Ψ (𝑧)| 𝑒(− ̃︀𝑃 (|𝑧|))𝑑𝑚2𝑛−2 (𝑧)

)︂𝑞′
𝑑𝑚2 (𝑧)

)︃ 1
𝑞′

.

Applying Hölder inequality once again, we arrive at the estimate⃒⃒⃒
𝑒
(𝑚)
1 (𝑡)

⃒⃒⃒
6 |𝑎1|𝑚

(︂∫︁
C+

|𝑧1|𝑚𝑞 𝑒(−𝑝1(|𝑧1|))𝑑𝑚2 (𝑧)

)︂ 1
𝑞

(︃∫︁
C+

𝑒(−𝑝1(|𝑧1|))
(︂ ∫︁
C𝑛−1

+

|Ψ (𝑧)|𝑞
′
𝑒(−

̃︀𝑃 (|𝑧|))𝑑𝑚2𝑛−2 (𝑧)

)︂
𝑑𝑚2𝑛 (𝑧)

)︃

·
(︂ ∫︁
C𝑛−1

+

𝑒(−
̃︀𝑃 (|𝑧|))𝑑𝑚2𝑛−2 (𝑧)

)︂ 𝑞′
𝑞

6𝐶1 |𝑎1|𝑚
⎛⎝∫︁
C+

|𝑧1|𝑚𝑞 𝑒(−𝑝1(|𝑧1|))𝑑𝑚2 (𝑧1)

⎞⎠ 1
𝑞 (︂∫︁

C𝑛
+

|Ψ (𝑧)|𝑞
′
𝑒(−𝑃 (|𝑧|))𝑑𝑚2𝑛 (𝑧)

)︂ 1
𝑞′

.

(14)

Let 𝛿 be an arbitrary positive number 𝛿 ∈ (0, 1). Then the latter estimate yields

⃒⃒⃒
𝑒
(𝑚)
1 (𝑡)

⃒⃒⃒
6𝐶2 |𝑎1|𝑚 sup

𝑟>0

(︁
𝑟𝑚𝑒−

𝛿
𝑞
𝑝1(𝑟)

)︁⎛⎝∫︁
C+

𝑒−(1−𝛿)𝑝1(|𝑧|)𝑑𝑚2 (𝑧)

⎞⎠ 1
𝑞

=𝐶2 |𝑎1|𝑚 sup
𝑟>0

(︁
𝑟𝑚𝑒−

𝛿
𝑞
𝑝1(𝑟)

)︁⎛⎝ +∞∫︁
0

𝜋∫︁
0

𝑒−(1−𝛿)𝑝1(|𝜌|)𝜌𝑑𝜌𝑑𝜙

⎞⎠ 1
𝑞

= 𝐶3 |𝑎1|𝑚 sup
𝑟>0

(︁
𝑟𝑚𝑒−

𝛿
𝑞
𝑝1(𝑟)

)︁
.

Thus, we finally obtain ⃒⃒⃒
𝑒
(𝑚)
1 (𝑡)

⃒⃒⃒
6 𝐶3 |𝑎1|𝑚𝑀𝑚,

where 𝑀𝑚 = sup
𝑟>0

(︁
𝑟𝑚𝑒−

𝛿
𝑞
𝑝1(𝑟)

)︁
.

Now we employ Carleman-Ostrowski theorem (see [12]) on the quasi-analyticity of the class

𝐶∞ (𝑀𝑚) =
{︀
𝜙 ∈ 𝐶∞ [0, 1] :

⃒⃒
𝜙(𝑚) (𝑡)

⃒⃒
6 𝐴𝑚𝑀𝑚

}︀
,
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in accordance to which the criterion of the quasi-analyticity of class 𝐶∞ (𝑀𝑚) is

+∞∫︁
1

ln𝑇 (𝑟)

𝑟2
𝑑𝑟 = +∞, (15)

where 𝑇 (𝑟) = sup
𝑟>1

𝑟𝑚

𝑀𝑚

(see [12]).

But by M.M. Dzhrbashyan theorem (see [9], [10]), the convergence of the integral

+∞∫︁
1

𝑝1 (𝑟)

𝑟2
𝑑𝑟

is equivalent to condition (15). Therefore, function 𝑒 (𝑡) belongs to the quasi-analytic Carleman-
Ostrowsi class on the segment [0, 1]. In view of condition (13) we have 𝑒1 (𝑡) = 0, ∀𝑡 ∈ [0, 1],
i.e., 𝑒1 (0) = 0. Hence, ∫︁

C𝑛
+

𝑒−𝑖𝑎̃𝑧Ψ(𝑧)𝑒−𝑃 (|𝑧|)𝑑𝑚2𝑛(𝑧) = 0.

We let

𝑒2(𝑡) =

∫︁
C𝑛

+

𝑒−𝑖𝑎2𝑧2𝑡−𝑖̃︀𝑎̃︀𝑧𝜓(𝑧)𝑒−𝑝2(|𝑧2|)−𝑃 (|𝑧|)𝑑𝑚2𝑛(𝑧),

where ̃︀𝑎 and ̃︀𝑧 are introduced as above.
Reproducing the above arguments, we obtain 𝑒2(0) = 0. Repeating these arguments 𝑛 − 1

times, we obtain that ∫︁
C𝑛

+

Ψ(𝑧)𝑒−𝑃 (|𝑧|)𝑑𝑚2𝑛(𝑧) = 0,

i.e., Φ (1) = 0.
By Hahn-Banach theorem 1 ∈ 𝐸𝑞 (𝑆𝑎) .
Thus, the implication c) ⇒ b) is proved under the condition 𝑞 > 1. But since for an arbitrary

𝑓 ∈ 𝐻∞ (︀C𝑛+)︀ , 0 < 𝑞 < 1,

‖𝑓𝑆𝑎 − 1‖𝐴𝑞
𝑃 (C𝑛

+) 6 ‖𝑓𝑆𝑎 − 1‖𝐴1
𝑃 (C𝑛

+)

(︃∫︁
C𝑛

+

𝑒−𝑃 (|𝑧|)𝑑𝑚2𝑛(𝑧)

)︃ 1−𝑞
𝑞

,

it completes the proof of this implication.
The implication b) ⇒ c) is obvious. This is why we have proved that c) ⇒ b) ⇒ a). To

prove the first statement of the theorem, it remains to establish the implication a) ⇒ c).
It is obvious that the implication a) ⇒ c) of the first statement is implied immediately

by the second statement of the theorem. This is why we proceed to the proof of the second
statement.

Suppose that there exists some 𝑘 = (𝑘1, . . . , 𝑘𝑚) ∈ 𝐾𝑚, such that

+∞∫︁
1

𝑝𝑘𝑗(𝑡)

𝑡2
𝑑𝑡 < +∞, 𝑗 = 1,𝑚.

Without loss of generality we assume that 𝑘𝑗 = 𝑗, 𝑗 = 1,𝑚.
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As in Lemma 3, by means of function 𝑝𝑗, 𝑗 = 1,𝑚, we construct the set of external functions

𝐺𝑗 (𝑧) = exp

⎛⎝−4𝑖

𝜋

+∞∫︁
−∞

𝑡𝑧 + 1

𝑡− 𝑧

𝑝𝑗 (3 |𝑡|)
1 + 𝑡2

𝑑𝑡

⎞⎠ , 𝑗 = 1,𝑚.

We also let

𝐺 (𝑧) =
𝑚∏︁
𝑗=1

𝐺𝑗 (𝑧𝑗) = exp

⎛⎝−4𝑖

𝜋

𝑚∑︁
𝑗=1

⎛⎝ +∞∫︁
−∞

𝑡𝑗𝑧𝑗 + 1

𝑡𝑗 − 𝑧𝑗

𝑝𝑗 (3 |𝑡𝑗|)
1 + 𝑡2𝑗

𝑑𝑡𝑗

⎞⎠⎞⎠ , 𝑧 = (𝑧1, . . . , 𝑧𝑚) ∈ C𝑚+ .

Employing Lemma 3, we obtain

exp

(︂
− 𝑐

𝑚∑︁
𝑗=1

𝑝𝑗 (9 |𝑧𝑗|)
)︂

6 |𝐺 (𝑧)| 6 exp

(︂
−

𝑚∑︁
𝑗=1

𝑝𝑗 (3 |𝑧𝑗|)
)︂
, 𝑧 = (𝑧1, . . . , 𝑧𝑚) ∈ C𝑚+ , (16)

for some positive 𝑐.
Suppose that on the contrary to the second statement, there exists a sequence {𝑓𝑘}+∞

𝑘=1,
𝑓𝑘 ∈ 𝐻∞ (︀C𝑛+)︀, such that

lim
𝑘→+∞

‖𝑓𝑘𝑆𝑎 − 1‖𝐴𝑞
𝑃 (C𝑛

+) = 0. (17)

Employing Lemma 1, we obtain

|𝑓𝑘(𝑧1, . . . , 𝑧𝑚, 𝑖, . . . , 𝑖)𝑆𝑎(𝑧1, . . . , 𝑧𝑚, 𝑖, . . . , 𝑖) − 1|𝑞 exp

(︂
−

𝑚∑︁
𝑗=1

𝑝𝑗 (2 |𝑧𝑗|)
)︂

6
𝑐0 (𝑞)
𝑚∏︀
𝑗=1

𝑦2𝑗

‖𝑓𝑘𝑆𝑎 − 1‖𝑞
𝐴
𝑞
𝑃 (C𝑛+)

, 𝑧 = (𝑧1, . . . , 𝑧𝑚, 𝑖, . . . , 𝑖) ∈ C𝑛+.
(18)

It follows immediately from estimates (16) and (18) that

|𝑓𝑘(𝑧1, . . . , 𝑧𝑚, 𝑖, . . . , 𝑖)𝑆𝑎(𝑧1, . . . , 𝑧𝑚, 𝑖, . . . , 𝑖) − 1|𝑞|𝐺 (𝑧1, . . . , 𝑧𝑚) |

6
𝑐 (𝑞)
𝑚∏︀
𝑗=1

𝑦2𝑗

‖𝑓𝑘𝑆𝑎 − 1‖𝑞
𝐴
𝑞
𝑝(C𝑛+)

, 𝑧 = (𝑧1, . . . , 𝑧𝑚) ∈ C𝑛+. (19)

In particular, it follows immediately from estimate (19) that

|𝑓𝑘(𝑥1 + 𝑖, 𝑥2 + 𝑖, . . . , 𝑥𝑚 + 𝑖, 𝑖, . . . , 𝑖)𝑆𝑎(𝑥1 + 𝑖, 𝑥2 + 𝑖, . . . , 𝑥𝑚 + 𝑖, 𝑖, . . . , 𝑖) − 1|𝑞

· |𝐺(𝑥1 + 𝑖, 𝑥2 + 𝑖, . . . , 𝑥𝑚 + 𝑖)| 6 1,

as 𝑘 > 𝑘0. Therefore,

|𝑓𝑘(𝑥1 + 𝑖, . . . , 𝑥𝑚+𝑖, 𝑖, . . . , 𝑖)|𝑞|𝐺(𝑥1 + 𝑖, . . . , 𝑥𝑚 + 𝑖)||𝑆𝑎(𝑥1 + 𝑖, . . . , 𝑥𝑚 + 𝑖, 𝑖, . . . , 𝑖)|𝑞

6 |𝐺(𝑥+ 𝑖)||𝑓𝑘(𝑥+ 𝑖)𝑆𝑎(𝑥+ 𝑖) − 1|𝑞 + |𝐺(𝑥+ 𝑖)| 6 1 + |𝐺(𝑥+ 𝑖)|,
(20)

where 𝑥+ 𝑖 = (𝑥1 + 𝑖, 𝑥2 + 𝑖, . . . , 𝑥𝑚 + 𝑖, 𝑖, 𝑖 . . . , 𝑖) ∈ C𝑚+ .
It is obvious that estimate (16) implies that |𝐺 (𝑧)| 6 1 for each 𝑧 ∈ C𝑚+ , moreover,

|𝑆𝑎 (𝑥+ 𝑖)|𝑞 =

⃒⃒⃒⃒
⃒exp 𝑖

𝑛∑︁
𝑗=1

𝑎𝑗 (𝑥𝑗 + 𝑖)

⃒⃒⃒⃒
⃒
𝑞

= exp

(︃
−𝑞

𝑛∑︁
𝑗=1

𝑎𝑗

)︃
6 1.
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Letting 𝐴 = exp

(︃
−𝑞

𝑛∑︁
𝑗=1

𝑎𝑗

)︃
, by (20) we obtain that

⃒⃒⃒
𝑓𝑘

(︁
𝑥+ 𝑖

)︁⃒⃒⃒𝑞
|𝐺 (𝑥+ 𝑖)| 6 2𝐴,

i.e., ⃒⃒⃒
𝑓𝑘

(︁
𝑥+ 𝑖

)︁⃒⃒⃒
|𝐺 (𝑥+ 𝑖)|

1
𝑞 6 (2𝐴)

1
𝑞 . (21)

Since the function

𝐹𝑘(𝑧) = 𝑓𝑘 (𝑧 + 𝑖) (𝐺 (𝑧 + 𝑖))
1
𝑞 , 𝑘 = 1, 2, . . . ,

can be represented by the Poisson integral (see [13], [14]) in the half-space C𝑚+ and 𝐹𝑘 ∈
𝐻∞ (︀C𝑚+)︀, we obtain estimate (21) in half-space C𝑚+ , i.e.,

|𝑓𝑘 (𝑧 + 𝑖)|𝑞 |𝐺 (𝑧 + 𝑖)| 6 2𝐴, (22)

for each 𝑧 = (𝑧1, . . . , 𝑧𝑚) ∈ C𝑚+ .
Taking into consideration that

lim
𝑘→+∞

𝑓𝑘 (𝑧1, . . . , 𝑧𝑚, 𝑖, . . . , 𝑖) = 𝑒
−

𝑚∑︀
𝑗=1

𝑖𝑎𝑗𝑧𝑗+
𝑛∑︀

𝑗=𝑚+1
𝑎𝑗
, (𝑧1, . . . , 𝑧𝑚) ∈ C𝑚+ ,

and passing to the limit in inequality (22), we finally obtain(︃
exp

𝑚∑︁
𝑗=1

𝑞𝑎𝑗𝑦𝑗 + 𝑞
𝑛∑︁

𝑗=𝑚+1

𝑎𝑗

)︃
6 2𝐴

𝑚∏︁
𝑗=1

exp(𝑐𝑝𝑗 (3 |𝑧𝑗|)), (𝑧1, . . . , 𝑧𝑚) ∈ C𝑚+ . (23)

It follows from (3) that

lim
𝑦→+∞

𝑝𝑗 (3𝑦)

𝑦
= 0, 𝑗 = 1,𝑚.

But it is impossible in view of estimate (23). The proof is complete.

Proof of Theorem 2. We first prove that if 𝑓 ∈ 𝐻∞ (︀C𝑛−𝜂)︀ , 𝑓(𝑧) ̸= 0, 𝑧 ∈ C𝑛+ ∪ R𝑛, for some
𝜂 > 0, then the function (ln 𝑓)𝑚 with the principal branch of the logarithm belongs to class
𝐴𝑞𝑃
(︀
C𝑛+
)︀
, 1 6 𝑞 < +∞, 𝑃 ∈ Ω. Indeed, without loss of generality we can assume that

|𝑓 (𝑧)| 6 1, 𝑧 ∈ C𝑛−𝜂. Hence, function Ψ (𝑧) = −𝑖 ln 𝑓 (𝑧 − 𝑖𝛿) satisfies condition Im Ψ (𝑧) > 0,

and Ψ ∈ 𝐻
(︁
C𝑛−𝜂

2

)︁
. We let 𝛿 =

𝜂

2
and apply Schwarz kind formulae for function Ψ in C𝑛+ (see

[13]). We obtain

Ψ (𝑧) =
2𝑖𝑛

(2𝜋)𝑛

∫︁
𝑅𝑛

𝑛∏︁
𝑗=1

(︂
𝑖+ 𝑧𝑗
𝑧𝑗 − 𝑡𝑗

)︂
1

𝑖+ 𝑡𝑗
× ln

1

|𝑓 (𝑡)|
𝑑𝑡+ 𝑖 arg 𝑓(𝑖).

Hence,

|ln 𝑓 |𝑧 − 𝑖𝛿|| 6 2

(2𝜋)𝑛

∫︁
𝑅𝑛

𝑛∏︁
𝑗=1

(︂⃒⃒⃒⃒
𝑖+ 𝑧𝑗
𝑧𝑗 − 𝑡𝑗

⃒⃒⃒⃒
1

𝑖+ 𝑡𝑗

)︂
× ln

1

|𝑓 (𝑡− 𝑖𝛿)|
𝑑𝑡+ 𝑐0.

Employing the elementary estimate

sup
𝑡∈𝑅

⃒⃒⃒⃒
𝑖− 𝑡

𝑧 − 𝑡

⃒⃒⃒⃒
=

|𝑧 − 𝑖| + |𝑧 + 𝑖|
2Im 𝑧

,
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where 𝑧 ∈ C+ (see [12]), we obtain

|ln |𝑓 (𝑧 − 𝑖𝛿)|| 6 2

(2𝜋)𝑛

∫︁
𝑅𝑛

𝑛∏︁
𝑗=1

(︂
|𝑖+ 𝑧𝑗|
|𝑖− 𝑡𝑗|

|𝑖− 𝑡𝑗|
|𝑧𝑗 − 𝑡𝑗| (𝑖+ 𝑡𝑗)

)︂
× ln

1

|𝑓 (𝑡− 𝑖𝛿)|

6
2

(2𝜋)𝑛

∫︁
𝑅𝑛

𝑛∏︁
𝑗=1

(1 + |𝑧𝑗|)
∫︁
𝑅𝑛

ln 1
|𝑓(𝑡−𝑖𝛿)|

𝑛∏︀
𝑗=1

(︀
1 + 𝑡2𝑗

)︀ × 𝑛∏︁
𝑗=1

sup
𝑡𝑗∈𝑅

⃒⃒⃒⃒
𝑖− 𝑡𝑗
𝑧𝑗 − 𝑡𝑗

⃒⃒⃒⃒

6
2

(2𝜋)𝑛

𝑛∏︁
𝑗=1

[︂
(1 + |𝑧𝑗|)

(︂
|𝑧𝑗 − 1| + |𝑧𝑗 + 1|

2Im 𝑧𝑗

)︂]︂
×
∫︁
𝑅𝑛

ln 1
|𝑓(𝑡−𝑖𝛿)|

𝑛∏︀
𝑗=1

(︀
1 + 𝑡2𝑗

)︀𝑑𝑡1 . . . 𝑑𝑡𝑛,
𝑡 = (𝑡1, . . . , 𝑡𝑛). Thus, we finally get

|ln |𝑓 (𝑧 − 𝑖𝛿)|| 6 𝑐𝑜𝑛𝑠𝑡

∫︁
𝑅𝑛

ln 1
|𝑓(𝑡−𝑖𝛿)|

𝑛∏︀
𝑗=1

(︀
1 + 𝑡2𝑗

)︀𝑑𝑡× 𝑛∏︁
𝑗=1

(︀
1 + |𝑧𝑗|2

)︀
Im 𝑧𝑗

6 𝑐𝑜𝑛𝑠𝑡

𝑛∏︁
𝑗=1

(︀
1 + |𝑧𝑗|2

)︀
Im 𝑧𝑗

.

We let 𝜁 = 𝑧 − 𝑖𝛿 in this inequality. If Im 𝜁𝑗 > 0, then Im 𝑧𝑗 > 𝛿, 1 6 𝑗 6 𝑛. Therefore,

|ln |𝑓 (𝜁)|| 6 𝑐𝑜𝑛𝑠𝑡
𝑛∏︁
𝑗=1

(︀
1 + |𝑧𝑗|2

)︀
Im 𝑧𝑗

6 𝑐𝑜𝑛𝑠𝑡
𝑛∏︁
𝑘=1

(︀
1 + |𝑧𝑘|2

)︀
𝛿

, 𝜁 ∈ C𝑛+. (24)

Here we have employed the estimate [13]∫︁
𝑅𝑛

ln 1
|𝑓(𝑡−𝑖𝛿)|

𝑛∏︀
𝑗=1

(︀
1 + 𝑡2𝑗

)︀𝑑𝑡1 . . . 𝑑𝑡𝑛 < +∞, 𝑡 = (𝑡1, . . . , 𝑡𝑛) .

By estimate (24) we obtain that the function Ψ𝑚 (𝑧) = (ln 𝑓 (𝑧))𝑚 belongs to class 𝐴𝑞𝑃
(︀
C𝑛+
)︀

for each 1 6 𝑞 < +∞.
Now we follow the lines of the proof of Theorem 1. Let 1 6 𝑞 < +∞.
We let once again

𝑒 (𝑡) =

∫︁
C𝑛

+

𝑓 𝑡 (𝜁) Ψ (𝜁) 𝑒−𝑃 (|𝜁|)𝑑𝑚2𝑛 (𝜁) , 0 6 𝑡 6 1,

where the principal branch of the power function is used, and Ψ is an arbitrary function in

𝐴𝑞
′

𝑃

(︀
C𝑛+
)︀
,

1

𝑞
+

1

𝑞′
= 1, and ∫︁

C𝑛
+

Ψ (𝜁)𝐹 (𝜁) 𝑒−𝑃 (|𝜁|)𝑑𝑚2𝑛 (𝜁) = 0,

for arbitrary 𝐹 ∈ 𝐸𝑞 (𝑓). We recall that 𝐸𝑞 (𝑓) is the closure of set 𝐻∞ (︀C𝑛+)︀ 𝑓 in space

𝐴𝑞𝑃
(︀
C𝑛+
)︀
. It is clear that

𝑒(𝑚) (𝑡) =

∫︁
C𝑛

+

𝑓 𝑡 (𝜁) (ln 𝑓 (𝜁))𝑚 Ψ (𝜁) 𝑒−𝑃 (|𝜁|)𝑑𝑚2𝑛 (𝜁) .
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As in the proof of Theorem 1, let us prove that 𝑒(𝑚) (1) = 0, 𝑚 = 0, 1 . . . Indeed,

𝑒(𝑚) (1) =

∫︁
C𝑛

+

𝑓 (𝜁) (ln 𝑓 (𝜁))𝑚 𝑒−𝑃 (|𝜁|)𝑑𝑚2𝑛 (𝜁) .

Hence, for an arbitrary sequence {𝑓𝑘} ∈ 𝐻∞ (︀C𝑛+)︀ we have

‖𝑓𝑘𝑓 − 𝑓Ψ𝑚‖𝐴𝑞
𝑃 (C𝑛

+) 6 ‖𝑓‖∞ ‖𝑓𝑘 − Ψ𝑚‖𝐴𝑞
𝑃 (C𝑛

+) ,

where Ψ𝑚 = (ln 𝑓)𝑚, 𝑚 ∈ Z+. As it was established above, Ψ𝑚 ∈ 𝐴𝑞𝑃
(︀
C𝑛+
)︀
, and this is why

we can choose a sequence {𝑓𝑘}∞ ∈ 𝐻∞ (︀C𝑛+)︀ such that ‖𝑓𝑘 − Ψ𝑚‖𝐴𝑞
𝑃 (C𝑛

+) → 0 as 𝑘 → +∞,

𝑚 = 1, 2 . . ..
Thus, 𝑓 (ln 𝑓)𝑚 ∈ 𝐸𝑞 (𝑓). We proceed to the estimate 𝑒(𝑚) (𝑡) on the segment [0, 1].
We have ⃒⃒

𝑒(𝑚) (𝑡)
⃒⃒
6
∫︁
C𝑛

+

⃒⃒
𝑓 𝑡 (𝜁)

⃒⃒
|ln 𝑓 (𝜁)|𝑚 |Ψ (𝜁)| 𝑒−𝑃 (|𝜁|)𝑑𝑚2𝑛 (𝜁) .

Now we employ the estimate⃒⃒
𝑓 𝑡 (𝜁)

⃒⃒
6 (|𝑓 (𝜁)| + 1) 6 2, 𝜁 ∈ C𝑛+, 𝑡 ∈ [0, 1] .

Then ⃒⃒
𝑒(𝑚) (𝑡)

⃒⃒
6 2

∫︁
C𝑛

+

|ln 𝑓 (𝜁)|𝑚 |Ψ (𝜁)| 𝑒−𝑃 (|𝜁|)𝑑𝑚2𝑛 (𝜁) .

Applying Hölder inequality, we arrive at the estimate

⃒⃒
𝑒(𝑚) (𝑡)

⃒⃒
6 2

(︃∫︁
C𝑛

+

|ln 𝑓 (𝜁)|𝑞𝑚 𝑒−𝑞𝑃 (|𝜁|)𝑑𝑚2𝑛 (𝜁)

)︃ 1
𝑞
(︃∫︁
C𝑛

+

|Ψ (𝜁)|𝑞
′
𝑒−𝑞

′𝑃 (|𝜁|)𝑑𝑚2𝑛 (𝜁)

)︃ 1
𝑞′

.

Therefore, if 0 < 𝑠 < 1, then

⃒⃒
𝑒(𝑚) (𝑡)

⃒⃒
62

(︃∫︁
C𝑛

+

(︀
|ln 𝑓 (𝜁)|𝑚 𝑒−𝑠𝑃 (|𝜁|))︀𝑞 𝑒(−𝑞(1−𝑠)𝑃 (|𝜁|))𝑑𝑚2𝑛 (𝜁)

)︃ 1
𝑞

·

(︃∫︁
C𝑛

+

|Ψ (𝜁)|𝑞
′
𝑒−𝑞

′𝑃 (|𝜁|)𝑑𝑚2𝑛 (𝜁)

)︃ 1
𝑞′

62𝑀𝑚

(︃∫︁
C𝑛

+

𝑒−(𝑞(1−𝑠)𝑃 (|𝜁|))𝑑𝑚2𝑛 (𝜁)

)︃ 1
𝑞
(︃∫︁
C𝑛

+

|Ψ (𝜁)|𝑞
′
𝑒−𝑞

′𝑃 (|𝜁|)𝑑𝑚2𝑛 (𝜁)

)︃ 1
𝑞′

,

where 𝑠 ∈ (0, 1). In view of 𝑃 ∈ Ω we finally we obtain⃒⃒
𝑒(𝑚) (𝑡)

⃒⃒
6 𝐴𝑚𝑀𝑚, 𝑚 ∈ Z+, 𝑡 ∈ [0, 1] .

Now we employ the condition 𝑒(𝑚) (1) = 0, 𝑚 = 0, 1, . . .. At that, the convergence of the
series implies that 𝑒 belongs to Carleman-Ostrowski quasi-analytic class (see [12]). Hence,
𝑒 (0) = 0. The proof is complete.
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