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Abstract. In the paper we study a regularized trace formula for discrete self-adjoint
operators with a perturbation in Schatten-von Neumann class (𝜎𝑝, 𝑝 ∈ N). We prove that
the regularized trace vanishes after deducting (𝑝− 1) terms of perturbation theory if there
are no dilating gaps in the spectrum of the unperturbed operator.
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1. Introduction

Let 𝐿0 be a lower semi-bounded self-adjoint discrete operator in a separable Hilbert space 𝐻,
𝑉 = 𝑉 * be a bounded operator in 𝐻. By 𝜆𝑘 and 𝜇𝑘, 𝑘 = 1, 2, . . ., we denote the eigenvalues of
operators 𝐿0 and 𝐿 = 𝐿0 + 𝑉 indexed in the ascending order counting multiplicities. By 𝑓𝑘 we
denote an orthonormalized basis in 𝐻 formed by the eigenfunctions of operator 𝐿0 associated
with eigenvalues 𝜆𝑘 and let 𝑁(𝜆) =

∑︀
𝜆𝑘<𝜆

1 be the counting function for the spectrum of operator

𝐿0; 𝜎𝑝, 𝑝 ∈ N, be the Schatten-von Neumann class of compact operators.
It follows from the results by M.G. Krein [1], in particular, for discrete operators, that if

𝑉 = 𝑉 * ∈ 𝜎1, i.e., 𝑉 is nuclear, then the relations

∞∑︁
𝑘=1

(𝜇𝑘 − 𝜆𝑘) = Sp𝑉 =
∞∑︁
𝑘=1

(𝑉 𝑓𝑘, 𝑓𝑘) (1)

hold true, i.e.,
∞∑︁
𝑘=1

(𝜇𝑘 − 𝜆𝑘 − (𝑉 𝑓𝑘, 𝑓𝑘)) = 0. (2)

These results were followed by numerous attempt to prove formula (2) for non-nuclear pertur-
bations 𝑉 . Let us mention the most essential works in this direction.

Kh.Kh. Murtazin, Z.Yu. Fazullin, Regularized trace formula for discrete operators with
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In work [2], for arbitrary bounded perturbations 𝑉 (not necessarily self-adjoint) it was proved
for the case when the resolvent 𝑅0(𝑧) = (𝐿0 − 𝑧)−1 is a nuclear operator that there exists a
subsequence of natural numbers {𝑛𝑚}∞𝑚=1 such that

lim
𝑚→∞

𝑛𝑚∑︁
𝑘=1

(𝜇𝑘 − 𝜆𝑘 − (𝑉 𝑓𝑘, 𝑓𝑘)) = 0. (3)

In work [3] formula (2) was proved for arbitrary bounded self-adjoint perturbations 𝑉 under
a weaker assumption, namely, as 𝑁(𝜆) = 𝑜(𝜆), 𝜆→ ∞.

For arbitrary compact perturbations 𝑉 formula (3) was proved in work [2] under the following
two conditions:

1) there exists 𝛿 > 0 such that operator 𝑉 𝐿𝛿
0 can be continued to a bounded one;

2) 𝐿
−(1+𝛿)
0 is a nuclear operator.

In work [3] formula (3) was proved for arbitrary compact perturbations 𝑉 = 𝑉 * under the
condition that 𝑁(𝜆) = 𝑂(𝜆), 𝜆→ ∞.

In view of the above statements for arbitrary bounded and compact perturbations, in order
to prove formula (3), one has to impose a condition for counting function 𝑁(𝜆) of the spectrum
of unperturbed operator 𝐿0, while for perturbations 𝑉 ∈ 𝜎1 there is no need in conditions for
the growth of function 𝑁(𝜆) (cf. formula (2)).

The next progress in this direction was made in work [3], where an analogue of formula (1)
for Hilbert-Schmidt perturbations (𝑉 ∈ 𝜎2) was obtained and it was proved that formula (3)
(vanishing of regularized trace with the first term of pertubation theory deducted) is true for
perturbations 𝑉 = 𝑉 * ∈ 𝜎2 with no restrictions for function𝑁(𝜆). Therefore, a natural question
appears: how many terms of perturbation theory one has to deduct to vanish the regularized
trace in the case of a perturbation in class 𝜎𝑝, 𝑝 > 3, without imposing any restriction for the
growth of function 𝑁(𝜆). A particular answer was provided in work [2], where the authors
proved that the regularized trace vanishes after deducting of (𝑝 − 1) terms of perturbation
theory (see formula (4) in the present work) for perturbations in class 𝜎𝑝, 𝑝 > 2, under the
existence of the system of dilating gaps in the spectrum of unperturbed operator 𝐿0. The latter
means that there exists a subsequence {𝑛𝑚}∞𝑚=1 such that 𝜆𝑛𝑚+1 − 𝜆𝑛𝑚 → ∞ as 𝑚 → ∞, and
it is a rather strict condition in the perturbation theory. In the present work we succeeded to
omit this condition and answer the posed question.

In order to formulate the main result of the work we introduce the notations

𝑅0(𝑧) = (𝐿0 − 𝑧)−1, 𝑅(𝑧) = (𝐿− 𝑧)−1, 𝑟𝑚 =
𝜆𝑛𝑚+1 + 𝜆𝑛𝑚

2
, Γ𝑚 = {𝑧 : |𝑧| = 𝑟𝑚} .

Theorem. Assume that there exists 𝛿 > 0 and a sequence {𝑛𝑚}∞𝑚=1 ⊂ 𝑁 such that 𝜆𝑛𝑚+1 −
𝜆𝑛𝑚 > 𝛿. Then

lim
𝑚→∞

𝑛𝑚∑︁
𝑘=1

(︃
𝜇𝑘 − 𝜆𝑘 −

𝑝−1∑︁
𝑙=1

𝛼
(𝑚)
𝑙

)︃
= 0, (4)

for 𝑉 = 𝑉 * ∈ 𝜎𝑝, 3 6 𝑝, 𝑝 ∈ N, where 𝛼(𝑚)
𝑙 = (2𝜋𝑖)−1(−1)𝑙Sp

∮︀
Γ𝑚

𝑧(𝑅0(𝑧)𝑉 )𝑙𝑅0(𝑧)𝑑𝑧 is the 𝑙-th

term of the perturbation theory.

We first prove auxiliary statements concerning placing of summation brackets.

Lemma 1. Suppose that there exists 𝛿 > 0 and a subsequence {𝑛𝑚}∞𝑚=1 ⊂ N such that
𝜆𝑛𝑚+1 − 𝜆𝑛𝑚 > 𝛿. Then for each compact operator 𝑉 in 𝐻

lim
𝑚→∞

max
|𝑧|=𝑟𝑚

‖𝑉 𝑅0(𝑧)‖ = 0 (1.1)

holds true.
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Proof. Let 𝑓 ∈ 𝐻. Since

𝑅0(𝑧) =
∞∑︁
𝑘=1

(𝑓, 𝑓𝑘)𝑓𝑘
𝜆𝑘 − 𝑧

,

for each 𝑁 ∈ N and 𝑧 ∈ Γ𝑚 we have

‖𝑅0(𝑧)𝑓‖2 =
𝑁∑︁
𝑘=1

|(𝑓, 𝑓𝑘)|2

|𝜆𝑘 − 𝑧|2
+

∞∑︁
𝑘=𝑁+1

|(𝑓, 𝑓𝑘)|2

|𝜆𝑘 − 𝑧|2
. (1.1)

Given 𝑓 , since |𝜆𝑘 − 𝑧| > 𝛿
2
, 𝑘 ∈ N, and

∞∑︀
𝑘=1

|(𝑓, 𝑓𝑘)| = ‖𝑓‖2 < ∞, by choosing appropriate

𝑁 the second term can be made arbitrarily small, i.e.,
∞∑︁

𝑘=𝑁+1

|(𝑓, 𝑓𝑘)|2

|𝜆𝑘 − 𝑧|2
6

4

𝛿2

∞∑︁
𝑘=𝑁+1

|(𝑓, 𝑓𝑘)|2 < 𝜖

2
. (1.2)

We fix 𝑁 , then as 𝑧 ∈ Γ𝑚, 𝑚≫ 𝑁 we get

𝑁∑︁
𝑘=1

|(𝑓, 𝑓𝑘)|2

|𝜆𝑘 − 𝑧|2
6

𝐶𝑁

|𝜆𝑁 − 𝑧|2
𝑁∑︁
𝑘=1

|(𝑓, 𝑓𝑘)|2 < 𝜖

2
, (1.3)

since |𝜆𝑁 − 𝑧| → ∞ as 𝑚→ ∞. Therefore, by (1.2) and (1.3) we conclude that for an arbitrary
𝑓 ∈ 𝐻

lim
𝑚→∞

max
|𝑧|=𝑟𝑚

‖𝑅0(𝑧)𝑓‖ = 0. (1.4)

Since 𝑉 is a compact operator, it can be represented as [4, Ch. IX, Lm. 9.11]

𝑉 = 𝐾1𝑛 +𝐾2𝑛, (1.5)

where 𝐾1𝑛 is a finite-dimensional operator and operator 𝐾2𝑛 is such that ‖𝐾2𝑛‖ → 0 as 𝑛→ ∞.
Since for each finite-dimensional operator the representation

𝐾1𝑛 =
𝑛∑︁

𝑗=1

(·, 𝜓𝑗)𝜙𝑗, (1.2)

holds true [5, Ch. 1], we have

𝐾1𝑛𝑅0(𝑧) =
𝑛∑︁

𝑗=1

(·, 𝑅*
0(𝑧)𝜓𝑗)𝜙𝑗, 𝑧 ∈ Γ𝑚. (1.3)

Hence,

‖𝐾1𝑛𝑅0(𝑧)‖ 6
𝑛∑︁

𝑗=1

‖𝑅*
0(𝑧)𝜓𝑗‖ ‖𝜙𝑗‖ , 𝑧 ∈ Γ𝑚, (1.4)

that by (1.4), (1.5) lead us to relation (1.1). The proof is complete.

Lemma 2. Let 𝑉 be an arbitrary compact operator in 𝐻 and assume that there exists a
subsequence {𝑛𝑚}∞𝑚=1 ⊂ N such that 𝜆𝑛𝑚+1 − 𝜆𝑛𝑚 > 𝛿, 𝛿 > 0. Then contours Γ𝑚 contain the
same number of eigenvalues of operators 𝐿0 and 𝐿 = 𝐿0 + 𝑉 .

Proof. Since 𝐷(𝐿0) ⊆ 𝐷(𝑉 ) = 𝐻, the family of operators 𝐿𝑥 = 𝐿0 + 𝑥𝑉 , 𝑥 ∈ [0, 1], is
a holomorphic family of type (A) [6, Ch. VII]. Therefore, in accordance with the analytic
perturbation theorty [6, Ch. VII], eigenvalues 𝜆𝑛(𝑥) of operators 𝐿𝑥 are at least continuous
functions of parameter 𝑥. Let 𝑚≫ 1 and 𝑧 ∈ Γ𝑚, then by Lemma 1

‖𝑥𝑉 𝑅0(𝑧)‖ 6 ‖𝑉 𝑅0(𝑧)‖ < 1. (1.5)
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This is why all 𝑧 ∈ Γ𝑚 belong to the resolvent set of operators 𝐿𝑥 as 𝑚≫ 1 since

𝑅𝑥(𝑧) = (𝐿𝑥 − 𝑧𝐼)−1 =
∞∑︁
𝑘=0

(−1)𝑘𝑅0(𝑧) [𝑥𝑉 𝑅0(𝑧)]𝑘 , 𝑧 ∈ Γ𝑚, (1.6)

and the series converges. Therefore, in accordance with Theorems 3.16, 3.18 in [6, Ch. IV],
eigenvalues 𝜆𝑛(𝑥) (continuous functions w.r.t. parameter 𝑥) of the family of operators 𝐿𝑥 do
not intersect contour Γ𝑚 as 𝑥 ∈ [0, 1]. The proof is complete.

Proof of Theorem. According to Lemma 1, as 𝑚 ≫ 1, 𝑧 ∈ Γ𝑚 ‖𝑉 𝑅0(𝑧)‖ < 1. Therefore, the
resolvent of perturbed operator 𝐿 satisfies the representation

𝑅(𝑧) =
∞∑︁
𝑙=𝑜

(−1)𝑙(𝑅0(𝑧)𝑉 )𝑙𝑅0(𝑧). (1.7)

Hence, for 𝑝 > 3 we have

𝑅(𝑧) −𝑅0(𝑧) −
𝑝−1∑︁
𝑙=1

(−1)𝑙(𝑅0(𝑧)𝑉 )𝑙𝑅0(𝑧) = 𝐺𝑝(𝑧) 𝑧 ∈ Γ𝑚, (1.6)

where

𝐺𝑝(𝑧) =
∞∑︁
𝑙=𝑝

(−1)𝑙(𝑅0(𝑧)𝑉 )𝑙𝑅0(𝑧)

=(−1)𝑝(𝑅0(𝑧)𝑉 )𝑝𝑅(𝑧) = (−1)𝑝(𝑅0(𝑧)𝑉 )𝑝−1𝑅(𝑧)𝑉 𝑅0(𝑧).

(1.7)

It implies that 𝐺𝑝(𝑧) is a nuclear operator since 𝑉 ∈ 𝜎𝑝.
The following lemma holds true.

Lemma 3. As 𝑚≫ 1, ∮︁
Γ𝑚

Sp𝐺𝑝(𝑧)𝑑𝑧 = 0. (1.8)

Proof. In view of (1.7) it is sufficient to show that∮︁
Γ𝑚

Sp (𝑅0(𝑧)𝑉 )𝑙𝑅0(𝑧)𝑑𝑧 = 0 (1.8)

for 𝑙 > 𝑝. In order to do it, we introduce the operators

𝐿𝑥 = 𝐿0 + 𝑥𝑉, 𝑅𝑥(𝑧) = (𝐿𝑥 − 𝑧)−1, 0 6 𝑥 6 1.

It is well-known [6, Ch. I, Sect. 4. Subsect. 5, Sect. 5, Subsect. 2] that there exists 𝑑𝑠

𝑑𝑥𝑠𝑅𝑥(𝑧) in
the uniform topology as 𝑧 ∈ Γ𝑚 and

𝑑𝑠

𝑑𝑥𝑠
𝑅𝑥(𝑧) = 𝑠![𝑅𝑥(𝑧)𝑉 ]𝑠𝑅𝑥(𝑧), (1.9)

at that, 𝑅𝑥(𝑧) = 𝑅0(𝑧) as 𝑥 = 0, and 𝑅𝑥(𝑧) = 𝑅(𝑧) as 𝑥 = 1.
It is easy to see that

Sp

∮︁
Γ𝑚

𝑅𝑥(𝑧)𝑉 𝑅𝑥(𝑧)𝑑𝑧 = 0 (1.10)

for 𝑚≫ 1. Therefore, differentiating (1.10), by (1.9) we obtain that∮︁
Γ𝑚

Sp [𝑅𝑥(𝑧)𝑉 ]𝑙𝑅𝑥(𝑧)𝑑𝑧 = 0 (1.11)

for each 𝑙 > 𝑝. Letting 𝑥 = 0 in (1.11), we arrive at (1.8). The proof is complete.
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Since 𝑉 ∈ 𝜎𝑝, 𝑝 > 3, and operator 𝐺𝑝 is nuclear, by applying operator Sp

(︃
− 1

2𝜋𝑖

∮︀
Γ𝑚

( · )𝑧𝑑𝑧

)︃
to identity (1.6), we obtain

𝑛𝑚∑︁
𝑘=1

(︃
𝜇𝑘 − 𝜆𝑘 −

𝑝−1∑︁
𝑙=1

𝛼
(𝑚)
𝑙

)︃
= 𝛽(𝑚)

𝑝 ,

where 𝛽
(𝑚)
𝑝 = −(2𝜋𝑖)−1

∮︀
Γ𝑚

𝑧Sp𝐺𝑝(𝑧)𝑑𝑧. Therefore, to prove the theorem, it is sufficient to show

that
lim

𝑚→∞
𝛽(𝑚)
𝑝 = 0. (1.12)

In order to do it, we introduce the projectors

𝑄𝑚 = −(2𝜋𝑖)−1

∮︁
Γ𝑚

𝑅(𝑧)𝑑𝑧, 𝑄0
𝑚 = −(2𝜋𝑖)−1

∮︁
Γ𝑚

𝑅0(𝑧)𝑑𝑧, 𝑄⊥
𝑚 = 𝐼 −𝑄𝑚, 𝑄0⊥

𝑚 = 𝐼 −𝑄0
𝑚,

and operators

𝑅𝑚1(𝑧) = 𝑅(𝑧)𝑄𝑚, 𝑅𝑚2(𝑧) = 𝑅(𝑧)𝑄⊥
𝑚, 𝑅0

𝑚1(𝑧) = 𝑅0(𝑧)𝑄𝑚, 𝑅0
𝑚2(𝑧) = 𝑅0(𝑧)𝑄0⊥

𝑚 .

Let us demonstrate the proof of (1.12) as 𝑝 = 3.

Lemma 4. If 𝑉 ∈ 𝜎3, then∮︁
Γ𝑚

𝑧Sp
{︀

(𝑅0
𝑚𝑠(𝑧)𝑉 )2𝑅𝑚𝑠(𝑧)𝑉 𝑅0

𝑚𝑠(𝑧)
}︀
𝑑𝑧

=

∮︁
Γ𝑚

Sp
{︀

(𝑅0
𝑚𝑠(𝑧)𝑉 )2𝑅𝑚𝑠(𝑧)𝑉 𝑅0

𝑚𝑠(𝑧)
}︀
𝑑𝑧 = 0, 𝑠 = 1, 2.

(1.13)

Proof. Relations (1.13) for 𝑠 = 2 are implied by the fact that operator functions 𝑅0
𝑚2(𝑧) and

𝑅𝑚2(𝑧) have no singularities in contour Γ𝑚.
Let 𝑓(𝑧) = 𝑧𝑙Sp {(𝑅0

𝑚1(𝑧)𝑉 )2𝑅𝑚1(𝑧)𝑉 𝑅0
𝑚1(𝑧)}, 𝑙 = 0, 1. Since all the singularities of function

𝑓(𝑧) are located inside contour Γ𝑚 and∑︁
𝜆𝑗 ,𝜇𝑗

res 𝑓(𝑧) = −res𝑧=∞𝑓(𝑧).

Thus, relations (1.13) are implied by the expansion as 𝑧 ∈ Γ𝑚

𝑓(𝑧) = 𝑧𝑙
{︁𝑎4
𝑧4

+
𝑎5
𝑧5

+ . . .
}︁
, 𝑙 = 0, 1. (1.9)

The proof is complete.

We replace integration over contour Γ𝑚 by the integration over straight line 𝑧𝑚 =
{𝑟𝑚 + 𝑖𝑡, 𝑡 ∈ 𝑅}. By (1.7) and Lemmata 3, 4 we find that

𝛽
(𝑚)
3 =(2𝜋𝑖)−1

𝑛𝑚∑︁
𝑘=1

∞∫︁
−∞

𝑡(𝜆𝑘 − 𝑟𝑚 − 𝑖𝑡)−2[(𝑉 𝑅0
𝑚1(𝑟𝑚 + 𝑖𝑡)𝑅𝑚2(𝑟𝑚 + 𝑖𝑡)𝑉 𝑓𝑘, 𝑓𝑘)

+ (𝑉 𝑅0
𝑚2(𝑟𝑚 + 𝑖𝑡)𝑉 𝑅𝑚1(𝑟𝑚 + 𝑖𝑡)𝑉 𝑓𝑘, 𝑓𝑓𝑘) + (𝑉 𝑅0

𝑚2(𝑟𝑚 + 𝑖𝑡)𝑉 𝑅𝑚2(𝑟𝑚 + 𝑖𝑡)𝑉 𝑓𝑘, 𝑓𝑘)]𝑑𝑡

+ (2𝜋𝑖)−1

∞∑︁
𝑘=𝑛𝑚+1

∞∫︁
−∞

𝑡(𝜆𝑘 − 𝑟𝑚 − 𝑖𝑡)−2[(𝑉 𝑅0
𝑚1𝑉 𝑅𝑚2(𝑟𝑚 + 𝑖𝑡)𝑉 𝑓𝑘, 𝑓𝑘)

+ (𝑉 𝑅0
𝑚2(𝑟𝑚 + 𝑖𝑡)𝑉 𝑅𝑚1(𝑟𝑚 + 𝑖𝑡)𝑉 𝑓𝑘, 𝑓𝑘) + (𝑉 𝑅0

𝑚1(𝑟𝑚 + 𝑖𝑡)𝑉 𝑅𝑚1(𝑟𝑚 + 𝑖𝑡)𝑉 𝑓𝑘, 𝑓𝑘)]𝑑𝑡.
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Let us prove that each of six terms tends to zero as 𝑚 → ∞. We restrict ourselves by proving

this statement for the first term 𝛽
(𝑚)
31 ; for other terms the arguments are similar.

Employing polar representation of a bounded operator and by [6]

𝑈 |𝑉 |𝑈* = |𝑉 *| = |𝑉 |
and Cauchy-Schwarz-Bunyakovsky inequality, we have the estimate⃒⃒(︀
𝑉 𝑅0

𝑚1(𝑧)𝑉 𝑅𝑚2(𝑧)𝑉 𝑓𝑘, 𝑓𝑘
)︀⃒⃒2

6 (𝑉 𝑅*
𝑚2(𝑧) |𝑉 |𝑅𝑚2(𝑧)𝑉 𝑓𝑘, 𝑓𝑘) ·

(︀
𝑉 𝑅*0

𝑚1(𝑧) |𝑉 |𝑅𝑚1(𝑧)𝑉 𝑓𝑘, 𝑓𝑘
)︀
.

By this estimate and Hölder inequality we find that⃒⃒⃒
𝛽
(𝑚)
31

⃒⃒⃒
6
{︁
𝛾
(𝑚)
31

}︁ 1
2 ·
{︁
𝜔
(𝑚)
31

}︁ 1
2
, (1.14)

where

𝛾
(𝑚)
31 =

1

2𝜋

𝑛𝑚∑︁
𝑘=1

∞∫︁
−∞

|𝑡| ((𝜆𝑘 − 𝑟𝑚)2 + 𝑡2)−1(𝑉 𝑅*
𝑚2(𝑧) |𝑉 |𝑅𝑚2(𝑧)𝑉 𝑓𝑘, 𝑓𝑘)𝑑𝑡,

𝜔
(𝑚)
31 =

1

2𝜋

𝑛𝑚∑︁
𝑘=1

∞∫︁
−∞

|𝑡| ((𝜆𝑘 − 𝑟𝑚)2 + 𝑡2)−1(𝑉 𝑅*0
𝑚1(𝑧) |𝑉 |𝑅0

𝑚1(𝑧)𝑉 𝑓𝑘, 𝑓𝑘)𝑑𝑡, 𝑧 = 𝑟𝑚 + 𝑖𝑡.

Let us show that 𝛾
(𝑚)
31 → 0 as 𝑚→ ∞. Employing the integral representation for 𝑧 = 𝑟𝑚 + 𝑖𝑡

(𝑉 𝑅*
𝑚2(𝑧) |𝑉 |𝑅𝑚2(𝑧)𝑉 𝑓𝑘, 𝑓𝑘) =

∞∫︁
𝜇𝑛𝑚+1

𝑑𝑠

∞∫︁
𝜇𝑛𝑚+1

𝑑𝜏
(𝑉 [𝐸(𝑠) −𝑄𝑚] |𝑣| [𝐸(𝜏) −𝑄𝑚]𝑉 𝑓𝑘, 𝑓𝑘)

(𝑠− 𝑟𝑚 + 𝑖𝑡)2(𝜏 − 𝑟𝑚 − 𝑖𝑡)2

and the estimate

|(𝑉 [𝐸(𝑠) −𝑄𝑚] |𝑉 | [𝐸(𝜏) −𝑄𝑚]𝑉 𝑓𝑘, 𝑓𝑘)| 6

6
1

2
{(𝑉 [𝐸(𝑠) −𝑄𝑚] |𝑉 | [𝐸(𝑠) −𝑄𝑚]𝑉 𝑓𝑘, 𝑓𝑘) + (𝑉 [𝐸(𝜏) −𝑄𝑚] |𝑉 | [𝐸(𝜏) −𝑄𝑚]𝑉 𝑓𝑘, 𝑓𝑘)} ,

we find that (𝑧 = 𝑟𝑚 + 𝑖𝑡)

|(𝑉 𝑅*
𝑚2(𝑧) |𝑉 |𝑅𝑚2(𝑧)𝑉 𝑓𝑘, 𝑓𝑘)| 6 𝜋

|𝑡|

∞∫︁
𝜇𝑛𝑚+1

(𝑉 [𝐸(𝑠) −𝑄𝑚] |𝑉 | [𝐸(𝑠) −𝑄𝑚]𝑉 𝑓𝑘, 𝑓𝑘)

(𝑠− 𝑟𝑚)2 + 𝑡2
𝑑𝑠.

Therefore,

𝛾
(𝑚)
31 6

𝜋

8

∞∫︁
𝜇𝑛𝑚+1

1

(𝑠− 𝑟𝑚)3
Sp (𝑉 [𝐸(𝑠) −𝑄𝑚] |𝑉 | [𝐸(𝑠) −𝑄𝑚]𝑉 )𝑑𝑠. (1.15)

Let {𝛼𝑖}∞𝑖=1 = 𝜎(𝑉 ) be the spectrum of operator 𝑉 , {𝜓𝑖}∞𝑖=1 be the associated sequence of
eigenfunctions. Then in accordance with Hölder inequality

Sp (𝑉 [𝐸(𝑠) −𝑄𝑚] |𝑉 | [𝐸(𝑠) −𝑄𝑚]𝑉 ) =
∞∑︁
𝑖=1

|𝛼𝑖|2 (|𝑉 | [𝐸(𝑠) −𝑄𝑚]𝜓𝑖, [𝐸(𝑠) −𝑄𝑚]𝜓𝑖)

6 (
∞∑︁
𝑖=1

|𝛼𝑖|3)
2
3 · (

∞∑︁
𝑖=1

(|𝑉 | [𝐸(𝑠) −𝑄𝑚]𝜓𝑖, [𝐸(𝑠) −𝑄𝑚]𝜓𝑖)
3)

1
3 .

(1.16)

Since

(|𝑉 | [𝐸(𝑠) −𝑄𝑚]𝜓𝑖, [𝐸(𝑠) −𝑄𝑚]𝜓𝑖)
3 6 (|𝑉 |3 [𝐸(𝑠) −𝑄𝑚]𝜓𝑖, [𝐸(𝑠) −𝑄𝑚]𝜓𝑖)

and
Sp [𝐸(𝑠) −𝑄𝑚] |𝑉 |3 [𝐸(𝑠) −𝑄𝑚] 6 Sp (𝑄⊥

𝑚 |𝑉 |3𝑄⊥
𝑚),
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by (1.15), (1.16) we obtain that

𝛾
(𝑚)
31 6

𝐶

(𝜇𝑛𝑚+1 − 𝑟𝑚)2
Sp (𝑄⊥

𝑚 |𝑉 |3𝑄⊥
𝑚)

1
3 , 𝐶 > 0.

Since 𝜇𝑛𝑚+1 − 𝑟𝑚 ≈ 2(𝜆𝑛𝑚+1 − 𝜆𝑛𝑚) as 𝑚→ ∞, we conclude that 𝛾
(𝑚)
31 → 0 as 𝑚→ ∞. In the

same way one can show that 𝜔
(𝑚)
31 6 𝐶Sp (𝑄⊥

𝑚 |𝑉 |3𝑄⊥
𝑚). Therefore, in accordance with (1.14)

we have proved that 𝛽
(𝑚)
31 → 0 as 𝑚 → ∞. The terms 𝛽

(𝑚)
3𝑖 , 𝑖 = 2, 6, are studied in the same

way. The proof of Theorem is complete.
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