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COMPARISON PRINCIPLE FOR GREEN FUNCTION

OF A FOURTH ORDER BOUNDARY VALUE PROBLEM

ON A GRAPH
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Abstract. In the work we develop the disconjugacy theory for fourth order equations on

a geometric graph arising in modelling of rod junctions. The disconjugacy of an equation

is defined in terms of the properties of a special fundamental system of solutions to the

homogeneous equation. We describe the relation between disconjugacy property and the

positivity of Green function to some classes of boundary value problems for fourth order

equation on a graph.
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1. Introduction

The issue on disconjugacy of a differential equation is among the central ones in the qual-
itative theory of ordinary differential equations [1]–[4]. We recall that in the classical theory
an equation of 𝑛th order is called disconjugate a segment 𝐼 ⊂ R if each its nontrivial solution
has at most 𝑛 − 1 zeroes counting multiplicities [1], [2]. This property becomes important in
studying oscillatory properties of the spectrum of boundary value problems and first of all in
studying the positivity of the Green function for various classes of boundary value problems.
For instance, for a second order equation in a segment [𝑎, 𝑏] ⊂ R the disconjugacy is equiva-
lent, on the one hand, to the existence of a positive on the semi-interval [𝑎, 𝑏) solution to the
homogeneous equation, and on the other hand, to the positivity of the Green function for the
Dirichlet problem.

The known nowadays results related with disconjugacy of equations on graph concern first of
all second order equations and are exposed in details in monographs [5], [6]. The disconjugacy
property of a second order equation on a graph is based on the notion of 𝑆-zone being an
analogue of the interval between neighbouring zeroes of a continuous on a segment function.
Given a continuous on a graph function, by 𝑆-zone we mean any subgraph, on which function
has no zeroes and vanishes on its boundary. A second order equation is called disconjugate if
each its nontrivial solution has no 𝑆-zones in the graph. Replacement of “number of zeroes”
by “number of 𝑆-zones” in the definition of disconjugacy for second order equation allows us to
obtain an exact analogue of disconjugacy theory for an equation in a segment for second order
equations on a graph; namely, analogues of Sturm comparison theorems and Vallée-Poussin
disconjugacy criterion. At that, as in the case of an equation in a segment, disconjugacy
conditions for a second order equation on a graph turns out to be equivalent on one hand,
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to the positivity of solutions to special Dirichlet problems, and on the other hand, to the
positivity of Green function for Dirichlet problem. At the same time, the Green function for
other boundary conditions can be non-positive.

In the present work we study disconjugacy property for fourth order equations on a graph
arising in modeling elastic rod constructions. In work [7], a criterion of positivity of the Green
function for some boundary value problems for such equations was given. In accordance with
[7], the positivity of Green function is equivalent to a positive solvability of specific boundary
value problems. This result and the above arguments suggest to choose the positivity property
of some fundamental system of solutions to equations on a graph as a starting point in studying
disconjugacy property for equations on a graph. Moreover, the fundamental system of solutions
characterizes globally a differential equation. Under such approach, specific features of fourth
order equations become apparent. While for a second order equation the space of its solutions
is parametrized by boundary values of functions, for a fourth order equation a solution is
determined uniquely by pairs of values of the solution and its first (or second) derivative at the
boundary vertices of the graph. Since at each boundary vertex we have two parameters, for a
fourth order equation two types of disconjugacy arise, a weak and a strong one. For the classical
case, when there are no internal vertices on a graph, this notions are same. If the set of internal
vertices of a graph is non-empty, these notions are different in the general situation. In this work
we introduce the notion of a weakly disconjugate equation and study the implications of this
property. As we shall show, a weak disconjugacy ensures the positivity of the Green function
for a class of Dirichlet problems. Besides it, the property of weak disconjugacy allows us to
obtain the comparison principle for the Green functions of Dirichlet boundary value problems.

2. Main definitions and notations

In the present work by a geometric graph Γ we mean a connected set having a net structure
and embedded into R2. An edge of a graph is an interval in R2, while its vertex is a point
being an end-point for one or several edges. All the edges are indexed and denoted by 𝛾𝑖, and
the vertices are denoted by 𝑎, 𝑏, 𝑐 or 𝑎𝑗, 𝑏𝑗, 𝑐𝑗. At that we assume that the indexation of the
vertices is independent of that for the edges.

We denote by 𝐽(Γ) the set of graph vertices being the end-points for two or more edges. Such
vertices are called internal vertices. The vertices not belonging to 𝐽(Γ) will be called boundary
vertices and the set of them is denoted by 𝜕Γ. We assume that graph Γ is the union of the set
of all its edges 𝛾𝑖 and the set of its internal vertices 𝐽(Γ). At that, the boundary vertices do
not belong to the graph. If a vertex 𝑎 is an end-point of an edge 𝛾𝑖, we shall say that edge 𝛾𝑖
is joined to vertex 𝑎. Sometimes it will be convenient to denote an edge joined to a boundary
vertex 𝑎 ∈ 𝜕Γ by 𝛾𝑎. The set of indices of all edges joined to a vertex 𝑎 is denoted by 𝐼(𝑎).

The set obtained by removing all the vertices from the graph is denoted by Γ̊. A subgraph of
a graph Γ is any connected subset of Γ.

As a function on a graph we mean a mapping 𝑢 : Γ̊ → R. By 𝑢𝑖(𝑥) we denote the restriction
of function 𝑢(𝑥) on an edge 𝛾𝑖. By 𝐶[Γ] we denote the space of functions uniformly continuous
on each edge of graph Γ. For such functions, in each edge 𝑎 of the graph as 𝑖 ∈ 𝐼(𝑎) there exists
a limit lim

𝛾𝑖∋𝑥→𝑎
𝑢𝑖(𝑥), which we denote by 𝑢𝑖(𝑎). At that, for an internal vertex 𝑎, quantities

𝑢𝑘(𝑎) an 𝑢𝑖(𝑎) are not necessarily same as 𝑘 ̸= 𝑖 (𝑘, 𝑖 ∈ 𝐼(𝑎)). In space 𝐶[Γ] we choose the
subspace of functions satisfying 𝑢𝑘(𝑎) = 𝑢𝑖(𝑎) for each 𝑎 ∈ 𝐽(Γ) and each 𝑘, 𝑖 ∈ 𝐼(𝑎). The
set of such functions is denoted by 𝐶(Γ) and they are called continuous on the graph. Such
definition is quite natural since we can redefine them by the continuity by letting 𝑢(𝑎) = 𝑢𝑖(𝑎),
𝑖 ∈ 𝐼(𝑎).
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Let 𝑎 be a boundary vertex of a graph and 𝛾𝑎 be a joined edge. Sometimes we shall employ
the phrase “in the vicinity of vertex 𝑎 ∈ 𝜕Γ” instead of the phrase “in some semi-neighbourhood
of vertex 𝑎 contained in 𝛾𝑎”.

Let us define the notion of the derivative of a function defined on a graph. In order to do
it, we introduce a function 𝜇(𝑥) ∈ 𝐶[Γ] mapping each edge 𝛾𝑖 ⊂ Γ in one-to-one manner onto
some interval (0, 𝑙𝑖) ⊂ R for 𝑙𝑖 > 0. Function 𝜇(𝑥) is called a metric one, while quantity 𝑙𝑖
is called the length of edge 𝛾𝑖. For the restriction of function 𝜇(𝑥) on edge 𝛾𝑖 there exists an
inverse mapping 𝑥(𝜇) of interval (0, 𝑙𝑖) on edge 𝛾𝑖. The metric function defines an orientation
on each edge of graph. Funtion 𝑢(𝑥) ∈ 𝐶[Γ] is called differentiable on graph Γ if for each edge
𝛾𝑖 ⊂ Γ its restriction 𝑢𝑖(𝑥) is differentiable w.r.t. 𝜇𝑖(𝑥). At that we let

𝑢′
𝑖(𝑥0) =

𝑑𝑢𝑖(𝑥)

𝑑𝜇𝑖(𝑥)

⃒⃒
𝑥=𝑥0

= lim
𝛾𝑖∋𝑥→𝑥0

△𝑢𝑖(𝑥)

△𝜇𝑖(𝑥)
, 𝑥0 ∈ 𝛾𝑖.

In the same way we define higher derivatives. We note that the derivatives of odd order depend
on the orientation of graph edges, i.e., they are defined up to the sign, while for the derivatives
of even orders the orientation plays no role. We denote by 𝐶𝑛[Γ] the space of functions in 𝐶[Γ],
whose derivatives of orders up to 𝑛 exist and belong to space 𝐶[Γ]. Space 𝐶𝑛[Γ] has the natural

norm ‖𝑢‖ =
𝑛∑︀

𝑗=0

sup
𝑥∈Γ̊

|𝑢(𝑗)(𝑥)|.

Following [5], by a differential equation on graph we mean the set of usual differential equa-
tions on the graph edges and the set of matching conditions in internal vertices, which can be
written generally as

𝐿𝑢 = 𝑓(𝑥), 𝑥 ∈ Γ. (1)

While studying differential equations on graphs, an important role is played by the issue on
for what connection conditions at the graph vertices one should expect such key properties of
the equation like the location of extremum points (maximum principle), positivity of the Green
function for the corresponding boundary value problem, properties of the spectrum, etc. It is
clear that such properties are unlikely to be possible for all conditions. This is why the basis
for selecting classes of conditions at the graph vertices together with those an equation on the
graph inherits key properties of an equation on a segment should be the mathematical models
of real physical phenomena. Exactly this argument is taken as a premise in selecting classes of
4th order equations on a graph, for which we study analogues of properties of scalar equations
on a segment.

In the present work we consider an equation generated by the set of differential equations on
graph edges

(𝑝𝑖(𝑥)𝑢′′
𝑖 )′′ − (𝑞𝑖(𝑥)𝑢′

𝑖)
′ = 𝑓𝑖(𝑥), 𝑥 ∈ 𝛾𝑖 ⊂ Γ̊, (2)

with the coefficients described by functions 𝑝(𝑥) ∈ 𝐶2[Γ], inf
𝑥∈Γ̊

𝑝(𝑥) > 0, 𝑞(𝑥) ∈ 𝐶1[Γ], 𝑞(𝑥) > 0

on Γ, 𝑓(𝑥) ∈ 𝐶[Γ], completed by the identities

𝑢𝑖(𝑎) = 𝑢𝑘(𝑎), 𝑢′
𝑖(𝑎) = 𝛼𝑘𝑖(𝑎)𝑢′

𝑘(𝑎) + 𝛼𝑗𝑖(𝑎)𝑢′
𝑗(𝑎),∑︁

𝑖∈𝐼(𝑎)

𝑝𝑖(𝑎)𝛼𝑘𝑖(𝑎)𝑢′′
𝑖 (𝑎) = 0,

∑︁
𝑖∈𝐼(𝑎)

𝑝𝑖(𝑎)𝛼𝑗𝑖(𝑎)𝑢′′
𝑖 (𝑎) = 0, (3)

in each internal vertex 𝑎 ∈ 𝐽(Γ) and by the conditions with third derivatives∑︁
𝑖∈𝐼(𝑎)

𝐷3𝑢𝑖(𝑎) + 𝛿(𝑎)𝑢(𝑎) = 𝑓(𝑎), 𝑎 ∈ 𝐽(Γ). (4)



COMPARISON PRINCIPLE FOR GREEN FUNCTION . . . 97

At that, we assume that in conditions (3), (4) all the derivatives are calculated in the direction
from vertex 𝑎 ∈ 𝐽(Γ); 𝑘, 𝑗 are fixed (basis) indices in 𝐼(𝑎), 𝑖 ∈ 𝐼(𝑎); 𝛼𝑘𝑖(𝑎), 𝛼𝑗𝑖(𝑎) and 𝛿(𝑎),
𝑓(𝑎) are given numbers, at that 𝛼𝑘𝑘(𝑎) = 𝛼𝑗𝑗(𝑎) = 1 and 𝛼𝑘𝑗(𝑎) = 𝛼𝑗𝑘(𝑎) = 0, 𝛿(𝑎) > 0, while
in (4) by 𝐷3𝑢 we denote the third quasi-derivative (𝑝(𝑥)𝑢′′)′ − 𝑞(𝑥)𝑢′. Moreover, if just two
edges 𝛾𝑖 and 𝛾𝑘 are joined to an internal vertex 𝑎, we assume that all the quantities and relation
corresponding to index 𝑗 are absent in the system of conditions (3), (4). In this case conditions
(3), (4) become

𝑢𝑖(𝑎) = 𝑢𝑘(𝑎), 𝑢′
𝑖(𝑎) = 𝛼𝑘𝑖(𝑎)𝑢′

𝑘(𝑎),

𝛼𝑘𝑖(𝑎)𝑝𝑖(𝑎)𝑢′′
𝑖 (𝑎) + 𝑝𝑘(𝑎)(𝑎)𝑢′′

𝑘(𝑎)(𝑎) = 0, 𝐷3𝑢𝑖(𝑎) + 𝐷3𝑢𝑘(𝑎) + 𝛿(𝑎)𝑢(𝑎) = 𝑓(𝑎).

Thus, left hand side 𝐿𝑢 of equation (1) are the left hand sides of equations (2) on edges
together with identities (3) and the left hand sides of conditions (4) on 𝐽(Γ), while the right
hand side is

𝐹 (𝑥) =

{︃
𝑓(𝑥), if 𝑥 ∈ Γ̊;

𝑓(𝑎), if 𝑎 ∈ 𝐽(Γ).

A solution to differential equation (1) is any function 𝑢(𝑥) ∈ 𝐶4[Γ] satisfying associated
equation (2) on each edge of graph and conditions (3), (4) at each internal vertex.

While studying the properties of solutions to equation (1), we shall assume that the following
conditions hold true:

∙ 𝑝(𝑥) ∈ 𝐶2[Γ], inf
𝑥∈Γ

𝑝(𝑥) > 0, 𝑞(𝑥) ∈ 𝐶1[Γ], 𝑞(𝑥) > 0 on Γ, 𝑓(𝑥) ∈ 𝐶[Γ];

∙ graph Γ is a tree;
∙ for each vertex 𝑎 ∈ 𝐽(Γ) and each index 𝑖 ∈ 𝐼(𝑎) at least one of constants 𝛼𝑗𝑖(𝑎), 𝛼𝑘𝑖(𝑎) is

non-zero;
∙ for each vertex 𝑎 ∈ 𝐽(Γ) there exist basis indices 𝑗, 𝑘 ∈ 𝐼(𝑎) such that for some index

𝑖 ∈ 𝐼(𝑎) ∖ {𝑗, 𝑘} the inequalities 𝛼𝑗𝑖(𝑎) 6 0, 𝛼𝑘𝑖(𝑎) 6 0 hold true simultaneously and at least
one of the inequalities is strict.

Equation (1) has a natural physical interpretation [9]. It appears while modeling small de-
formations (not taking into consideration rotation deformations) of a planar mechanical system
consisting of thin straight rods and having a rod structure. The junctions of the system are
formed by rigid junction of three and more different rods. At that it is assumed that at some
points (not necessarily junction or boundary points) the system is elastic backed. This is why
the first series of assumption comes from the physical meaning of the problem. Two latter
assumptions are to be explained.

We impose continuity conditions of the form 𝑢𝑖(𝑎) = 𝑢𝑘(𝑎) for each internal vertex by going
over all possible indices 𝑖, 𝑘 ∈ 𝐼(𝑎). However, just |𝐼(𝑎)| − 1 conditions among them are
meaningful, where |𝐼(𝑎)| is the number of graph edges joined to a vertex 𝑎. For instance, such
conditions are those with a fixed index 𝑘 ∈ 𝐼(𝑎) and all 𝑖 ∈ 𝐼(𝑎) ∖ 𝑘. Similar assertions can be
made for the conditions for the first derivatives in (4), which physically describes the coplanarity
of all triples of tangent vectors 𝑢′

𝑖(𝑎), 𝑖 ∈ 𝐼(𝑎): if 𝜃𝑖𝑠 is the angle between the references lines of

𝑖-th and 𝑠-th rods joined to a vertex 𝑎 ∈ 𝐽(Γ), then 𝛼𝑗𝑖(𝑎) = − sin 𝜃𝑘𝑖
sin 𝜃𝑘𝑗

, 𝛼𝑘𝑖(𝑎) = − sin 𝜃𝑖𝑗
sin 𝜃𝑘𝑗

, at that,

fixed indices 𝑘 and 𝑗 are chosen so that 0 < 𝜃𝑘𝑗 < 𝜋. This is why the assumption that for each
vertex 𝑎 ∈ 𝐽(Γ) and each index 𝑖 ∈ 𝐼(𝑎) at least one of constants 𝛼𝑗𝑖(𝑎), 𝛼𝑘𝑖(𝑎) is non-zero
means that the reference lines of different rods do not overlap. This assumption implies that
the conditions for the first derivatives can be replaced by their linear combinations of the same
form such that any prescribed index 𝑖 ∈ 𝐼(𝑎) can be made one of the basis ones. Concerning
the second basis index, it can not be always arbitrary. Such situation arises in the case, when
in the given conditions for the first derivatives in (4) one of constants 𝛼𝑘𝑖(𝑎), 𝛼𝑗𝑖(𝑎), 𝑖 ̸= 𝑗, 𝑘,
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vanishes: for instance, if for some index 𝑖 ∈ 𝐼(𝑎) ∖ {𝑗, 𝑘} the identity 𝛼𝑗𝑖(𝑎) = 0 holds true,
then indices 𝑖 and 𝑘 can not be simultaneously basis ones. It follows that among all possible
options of smoothness conditions, just |𝐼(𝑎)| − 2 of them are meaningfull, for instance, when
two possible basis indices 𝑗, 𝑘 ∈ 𝐼(𝑎) are fixed and 𝑖 ∈ 𝐼(𝑎) ∖ {𝑗, 𝑘}.

In view of the above arguments and the results of works [8], [10], the latter of our assumptions
guarantees the non-degeneracy of the boundary value problem for equation (1) on graph Γ (or
on any its subgraph Γ0 ⊂ Γ) subject to the boundary conditions

𝑢(𝑎) = 0, 𝜗(𝑎)𝑢′(𝑎) − 𝛽(𝑎)𝑢′′(𝑎) = 0, 𝑎 ∈ 𝜕Γ (𝑎 ∈ 𝜕Γ0),

𝜗(𝑎), 𝛽(𝑎) > 0, 𝜗(𝑎) + 𝛽(𝑎) > 0.
(5)

In the boundary conditions we always assume that each boundary edge of graph Γ (of subgraph
Γ0) is oriented from the boundary vertex, which it is joined to.

3. Fundamental system of solutions to equation (1)

The unique solvability of boundary value problem (1), (5) provides the possibility to param-
etrize the space of solutions to equation (1) on a graph by the pairs of values of a function and
its first (second) derivative at boundary vertices of the graph.

Lemma 1. The correspondence between the solutions to homogeneous differential equation
(1) and the ordered pairs of the values of solutions and their first (or second) derivative at the
boundary is one-to-one.

Proof. By the assumptions for the coefficients of differential equation (1) and boundary condi-
tions (5) as well as by the results of works [8], [10], homogeneous boundary value problem (1),
(5) has the trivial solution only. Therefore, inhomogeneous boundary value problem (1), (5) is
uniquely solvable. It means that the mapping

𝑢 ↦→
{︀(︀

𝑢(𝑎), 𝑢(𝜔𝑎)(𝑎)
)︀}︀

𝑎∈𝜕Γ ,

where 𝜔𝑎 = 1 or 𝜔𝑎 = 2, is invertible and sujective, and therefore, it is a one-to-one mapping.
The proof is complete.

Corollary 1. Let |𝜕Γ| = 𝑚. Then the dimension of the space of solutions to homogeneous
differential equation (1) is equal to 2𝑚.

Corollary 2. Let |𝜕Γ| = 𝑚. Then the set of all solutions to homogeneous equation (1) satis-
fying 𝑛 conditions of the complete set of boundary conditions (5) form a subspace of dimension
2𝑚− 𝑛.

4. Weak disconjugacy of equation (1)

First we study qualitative properties of solutions to homogeneous equation (1) vanishing at
the whole boundary of a graph. As the results of work [7] show, the properties of such functions
determine the sign of the Green function for the Dirichlet problem for equation (1).

For each vertex 𝑎 ∈ 𝜕Γ we introduce the Dirichlet boundary value problem

𝐿𝑢 = 0, 𝑥 ∈ Γ,

𝑢(𝑎) = 0, 𝜗(𝑎)𝑢′(𝑎) − 𝛽(𝑎)𝑢′′(𝑎) = 1,

𝑢(𝑏) = 0, 𝜗(𝑏)𝑢′(𝑏) − 𝛽(𝑏)𝑢′′(𝑏) = 0, 𝑏 ∈ 𝜕Γ ∖ 𝑎.
(6)

It follows from Lemma 1 and Corollaries 1, 2 that for each vertex 𝑎 ∈ 𝜕Γ boundary value
problem (6) is uniquely solvable. The results of work [7] imply that the Green function of
boundary value problem (1), (5) is strictly positive on Γ × Γ if and only if for each boundary
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vertex 𝑎 ∈ 𝜕Γ the solution to boundary value problem (6) is positive on the whole graph Γ
(see [7]). It is clear that the solution to boundary value problem (6) depend on the values of
functions 𝜗(·), 𝛽(·) : 𝜕Γ → R+ determining the coefficients in boundary conditions (5). It was
shown in work [11] that if the boundary of graph Γ consists of two vertices only, i.e., if graph Γ
consists of two tandem edges forming a chain, then the sign-definiteness of solutions to boundary
value problems (6), 𝑎 ∈ 𝜕Γ has no relation with the values of coefficients 𝜗(·) and 𝛽(·), but
depends only of the coefficients of differential equation (1). If the graph is not homeomorphic
to an interval, the situation is completely different. Under varying the coefficients of boundary
conditions, the solution to boundary value problem (6) (together with the Green function) can
loose the positivity property, or, vice versa, to gain it, as the following example shows.

Example. Let us consider a planar graph Γ ⊂ R2 consisting of three edges 𝛾𝑖 = (𝑎𝑖, 𝑏),
𝑖 = 1, 2, 3, having a joint end-point 𝑏, which is an internal vertex of the graph. Supposing that
edges 𝛾𝑖 are oriented from boundary vertices 𝑎𝑖, we consider the homogeneous equation

𝑢𝐼𝑉 = 0, 𝑥 ∈ 𝛾𝑖,

𝑢1(𝑏) = 𝑢2(𝑏) = 𝑢3(𝑏), 𝑢′
1(𝑏) = −𝑢′

2(𝑏) − 𝑢′
3(𝑏),

−𝑢′′
1(𝑏) + 𝑢′′

2(𝑏) = 0, −𝑢′′
1(𝑏) + 𝑢′′

3(𝑏) = 0,
3∑︁

𝑖=1

𝑢′′′
𝑖 (𝑏) = 0,

(7)

on Γ. For the lengths 𝑙𝑖 of graph edges we let 𝑙1 = 𝑙2 = 1, 𝑙3 = 1
5
. We consider the boundary value

problem for equation (7) subject to the hinged-clamped boundary condition at each boundary
vertex 𝑢(𝑎𝑖) = 𝑢′′(𝑎𝑖) = 0, 𝑖 = 1, 2, 3. It was shown in [14] that the corresponding Green
function is positive, while it was shown in [7] that the positivity of the Green function for
problem (1), (5) is equivalent to the positivity on Γ of all solutions to boundary value problems
(6). Therefore, if 𝜗(·) ≡ 0 in boundary conditions (6), then the solutions to problems (6) for
equation (7) are positive on Γ.
Let us consider solution 𝑦𝑎1(𝑥) to boundary value problem (6) for equation (7) with condition

of rigid fixing (case 𝛽(·) ≡ 0), which corresponds to vertex 𝑎1 ∈ 𝜕Γ. Employing metric function
𝜇 = 𝜇(𝑥), we have

𝑦𝑎1(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑌11

𝜇3(𝑥)

6
+ 𝑌12𝜇

2(𝑥) + 𝜇(𝑥), 𝑥 ∈ 𝛾1;

𝑌𝑗1
𝜇3(𝑥)

6
+ 𝑌𝑗2

𝜇2(𝑥)

2
, 𝑥 ∈ 𝛾𝑗, 𝑗 = 2, 3.

Straightforward calculations show that

𝑌11 ≈ 3.681, 𝑌12 ≈ −3.184,

𝑌21 ≈ 0.681, 𝑌22 ≈ −0.184 𝑌31 ≈ −4.362, 𝑌32 ≈ 1.37.

It is easy to see that

𝑦′′𝑎1(𝑎2) =
𝑑2

𝑑𝜇(𝑥)2

(︂
𝑌21

𝜇3(𝑥)

6
+ 𝑌22

𝜇2(𝑥)

2

)︂ ⃒⃒⃒⃒
𝑥=𝑎2

= 𝑌22 < 0.

Since 𝑦𝑎1(𝑎2) = 0, we conclude that function 𝑦𝑎1(𝑥) is negative in the vicinity of boundary vertex
𝑎2.

We consider two pairs of nonnegative functions 𝛽(·), ̃︀𝛽(·) and 𝜗(·), ̃︀𝜗(·) defined on 𝜕Γ and
satisfying the conditions

𝛽(𝑎) + 𝜗(𝑎) > 0, ̃︀𝛽(𝑎) + ̃︀𝜗(𝑎) > 0, 𝑎 ∈ 𝜕Γ.
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Each pair 𝛽(·), 𝜗(·) and ̃︀𝛽(·), ̃︀𝜗(·) defines a set of boundary value problems (6), 𝑎 ∈ 𝜕Γ, whose
solutions are denoted by 𝑧𝑎(𝑥) and ̃︀𝑧𝑎(𝑥).

Lemma 2. Assume that the identity 𝛽(𝑎)
𝜗(𝑎)

>
̃︀𝛽(𝑎)̃︀𝜗(𝑎) holds true on 𝜕Γ (in the case 𝜗(𝑎) = 0 we

let 𝛽(𝑎)
𝜗(𝑎)

= ∞ and the same is done as ̃︀𝜗(𝑎) = 0). If all functions ̃︀𝑧𝑎(𝑥), 𝑎 ∈ 𝜕Γ, are positive on

graph Γ, then all functions 𝑧𝑎(𝑥) are positive on Γ.

Proof. If 𝛽(·)
𝜗(·) ≡ ̃︀𝛽(·)̃︀𝜗(·) on 𝜕Γ, by the non-degeneracy of problems (6) we have 𝑧𝑎(𝑥) ≡ ̃︀𝑧𝑎(𝑥) > 0

for each 𝑎 ∈ 𝜕Γ. This is why the consider the case 𝛽(·)
𝜗(·) ̸≡ ̃︀𝛽(·)̃︀𝜗(·) . We prove by induction in the

number of boundary vertices of the graph, in which the strict inequality 𝛽(·)
𝜗(·) >

̃︀𝛽(·)̃︀𝜗(·) holds true.

Suppose that the inequality 𝛽(·)
𝜗(·) >

̃︀𝛽(·)̃︀𝜗(·) holds true just in one vertex 𝑏 ∈ 𝜕Γ. The non-

degeneracy of boundary value problem (6) implies 𝑧𝑏(𝑥) ≡ 𝜆̃︀𝑧𝑏(𝑥) for some 𝜆 > 0. This is why
𝑧𝑏(𝑥) > 0 on Γ.

Consider functions 𝑧𝑎(𝑥) corresponding to other boundary vertices. We fix an arbitrary
boundary vertex 𝑎 ∈ 𝜕Γ ∖ 𝑏 and we define the function 𝑟(𝑥) = 𝑧𝑎(𝑥) − ̃︀𝑧𝑎(𝑥). It is obvious that
function 𝑟(𝑥) satisfies the same boundary conditions on 𝜕Γ ∖ {𝑎, 𝑏} as functions 𝑧𝑎(𝑥), ̃︀𝑧𝑎(𝑥),
while at vertex 𝑎 the homogeneous boundary condition

𝜗(𝑎)𝑟′(𝑎) − 𝛽(𝑎)𝑟′′(𝑎) = 0

is satisfied. Let us consider the properties of function 𝑟(𝑥) at vertex 𝑏. We observe immediately

that since ̃︀𝑧𝑎(𝑥) > 0 on graph Γ, the boundary conditions ̃︀𝑧𝑎(𝑏) = 0 and ̃︀𝜗(𝑏)̃︀𝑧′𝑎(𝑏)−̃︀𝛽(𝑏)̃︀𝑧′′𝑎(𝑏) = 0

imply that ̃︀𝑧′𝑎(𝑏)̃︀𝑧′′𝑎(𝑏) > 0, and hence, ̃︀𝑧′𝑎(𝑏) > 0 and ̃︀𝑧′′𝑎(𝑏) > 0. Since 𝛽(𝑏)
𝜗(𝑏)

>
̃︀𝛽(𝑏)̃︀𝜗(𝑏) , then 𝛽(𝑏) > 0

and ̃︀𝜗(𝑏) > 0. Therefore function 𝑟(𝑥) satisfies

𝜗(𝑏)𝑟′(𝑏) − 𝛽(𝑏)𝑟′′(𝑏) =𝜗(𝑏)𝑧′𝑎(𝑏) − 𝛽(𝑏)𝑧′′𝑎(𝑏) − 𝜗(𝑏)̃︀𝑧′𝑎(𝑏) + 𝛽(𝑏)̃︀𝑧′′𝑎(𝑏)

=𝛽(𝑏)

[︂
−𝜗(𝑏)

𝛽(𝑏)
̃︀𝑧′𝑎(𝑏) + ̃︀𝑧′′𝑎(𝑏)

]︂
> 𝛽(𝑏)

[︃
−
̃︀𝜗(𝑏)̃︀𝛽(𝑏)

̃︀𝑧′𝑎(𝑏) + ̃︀𝑧′′𝑎(𝑏)

]︃
= 0.

Thus, function 𝑟(𝑥) solves homogeneous equation (1) and satisfies the boundary conditions

𝑟(𝑏) = 0, 𝜗(𝑏)𝑟′(𝑏) − 𝛽(𝑏)𝑟′′(𝑏) > 0, 𝑟(𝑐) = 0, 𝜗(𝑐)𝑟′(𝑐) − 𝛽(𝑐)𝑟′′(𝑐) = 0, 𝑐 ∈ 𝜕Γ ∖ 𝑏.

Therefore, either 𝑟(𝑥) ≡ 0 on Γ or 𝑟(𝑥) ≡ 𝜆̃︀𝑧𝑏(𝑥) for some 𝜆 > 0. Hence, 𝑟(𝑥) > 0 on the graph,
i.e., 𝑧𝑎(𝑥) > ̃︀𝑧𝑎(𝑥) > 0, 𝑎 ∈ 𝜕Γ.

Suppose that the lemma is true for the case, when the inequality 𝛽(·)
𝜗(·) >

̃︀𝛽(·)̃︀𝜗(·) holds true in any

𝑛 boundary vertices of the graph for some 𝑛 6 𝑚−1 and let us show that then it is true for the
case of strict inequality in (𝑛 + 1)-th vertex. We choose arbitrary vertex 𝑏 ∈ 𝜕Γ, at which the

strict inequality 𝛽(𝑏)
𝜗(𝑏)

>
̃︀𝛽(𝑏)̃︀𝜗(𝑏) holds true. We replace the value of function 𝛽(·) at point 𝑏 ∈ 𝜕Γ

on ̃︀𝛽(𝑏), and value 𝜗(𝑏) is replaced by ̃︀𝜗(𝑏). Then we denote by ̂︀𝛽(·) and ̂︀𝜗(·) the obtained in
this way functions. By ̂︀𝑧𝑎(𝑥), 𝑎 ∈ 𝜕Γ, we denote solutions to boundary value problems (6),
𝑎 ∈ 𝜕Γ, obtained under the described change. By the induction assumption, for all 𝑎 ∈ 𝜕Γ
the inequalities ̂︀𝑧𝑎(𝑥) > 0 hold true on graph Γ. For an arbitrary vertex 𝑎 ∈ 𝜕Γ we introduce
the function 𝑟(𝑥) = 𝑧𝑎(𝑥)− ̂︀𝑧𝑎(𝑥) and reproducing literally the above arguments, we show that
function 𝑟(𝑥) solves homogeneous equation (1) and satisfies the boundary conditions

𝑟(𝑏) = 0, 𝜗(𝑏)𝑟′(𝑏) − 𝛽(𝑏)𝑟′′(𝑏) > 0, 𝑟(𝑐) = 0, 𝜗(𝑐)𝑟′(𝑐) − 𝛽(𝑐)𝑟′′(𝑐) = 0, 𝑐 ∈ 𝜕Γ ∖ 𝑏,
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on 𝜕Γ. It yields the identity 𝑟(𝑥) ≡ 𝜆̃︀𝑧𝑎(𝑥) for some 𝜆 > 0. This is why 𝑟(𝑥) > 0 on the graph
and hence, 𝑧𝑎(𝑥) > ̂︀𝑧𝑎(𝑥) > 0. The proof is complete.

Definition 1. Differential equation (1) is called weakly disconjugate on graph Γ if for each
boundary vertex 𝑎 ∈ 𝜕Γ boundary value problem (6) for 𝛽(·) ≡ 0 has a positive on Γ solution.

It should be noted that the definition of weak disconjugacy is extended also for the equa-
tions generated by ordinary differential equations (2) on graph edges with pin-joint connection
conditions

𝑢𝑖(𝑎) = 𝑢𝑘(𝑎), 𝜗𝑖(𝑎)𝑢′
𝑖(𝑎) − 𝛽𝑖(𝑎)𝑢′′

𝑖 (𝑎) = 0, 𝑖, 𝑘 ∈ 𝐼(𝑎), 𝑎 ∈ 𝐽(Γ),

𝜗𝑖(·), 𝛽𝑖(·) > 0, 𝜗𝑖(·) + 𝛽𝑖(·) > 0,

and conditions (4) on 𝐽(Γ) (all the derivatives are calculated from vertices 𝑎 ∈ 𝐽(Γ)). The prop-
erties of solutions to this equation, which we call (1′), were studied in works by Yu.V. Pokornyi,
A.V. Borovskich, K.P. Lazarev and R.O. Mustafakulov (see [12], [13] and the references therein)
and they are presented in details in monogrpah [5, Ch. 8]. Taking into consideration the results
of [5], we can state that equation (1′) is always weakly disconjugate. Indeed, if we replace
homogeneous equation (1) by homogeneous equation (1′) in boundary value problem (6) and
denote by 𝑣𝑎(𝑥) the solution of the obtained problem, then, as it follows from the results of
[5], [13], function 𝑣𝑎(𝑥) is monotonous on each graph edge except boundary edge 𝛾𝑎 = (𝑎, 𝑏),
𝑎 ∈ 𝜕Γ, 𝑏 ∈ 𝐽(Γ). Moreover (see [5], [13]), each solution to this equation satisfying the condition
𝑢′(·)𝑢′′(·) > 0 at each boundary vertex, attains the maximum and minimum on the boundary
of the graph (maximum principle). Since 𝑣′𝑎(𝑎) > 0, then either function 𝑣𝑎(𝑥) has a point of
maximum 𝜉 ∈ 𝛾𝑎 such that 𝑣′𝑎(𝜉) = 0 and 𝑣𝑎(𝑥) > 0 on (𝑎, 𝜉] ⊂ 𝛾𝑎 or 𝑣′𝑎(𝑥) > 0 on 𝛾𝑎, and
function 𝑣𝑎(𝑥) increases on edge 𝛾𝑎. In the former case, by the maximum principle, 𝑣𝑎(𝑥) > 0
on Γ ∖ (𝑎, 𝜉), and hence, 𝑣𝑎(𝑥) > 0 on Γ. In the latter case, function 𝑣𝑎(𝑥) is positive on edge
𝛾𝑎 and at vertex 𝑏 ∈ 𝐽(Γ). By the maximum principle it follows that 𝑣𝑎(𝑥) > 0 on each graph
branch 𝑏 ∈ 𝐽(Γ). Therefore, in any case solution 𝑣𝑎(𝑥), 𝑎 ∈ 𝜕Γ, is positive on Γ, i.e., equation
(1′) is weakly disconjugate.

In terms of weak disconjugacy we succeed to formulate a series of useful properties of solutions
to fourth order equations as well as a series of properties of the Green function for the Dirichlet
boundary value problems for fourth order equation (1).

Corollary 3. Suppose that differential equation (1) is weakly disconjugate on Γ. Then a
solution to boundary value problem (6) is positive on graph Γ for all admissible values of coef-
ficients 𝜗(·), 𝛽(·) in the boundary conditions.

Lemma 3. Suppose that differential equation (1) is weakly disconjugate on Γ. Then for each
solution of equation (1) vanishing on 𝜕Γ, the inequality 𝑢′(𝑥) > 0 on 𝜕Γ implies 𝑢(𝑥) > 0 on
Γ. If, in addition, 𝑢′(𝑥) ̸≡ 0 on 𝜕Γ, then 𝑢(𝑥) > 0 on graph Γ.

The proof is almost obvious: it follows from Lemma 1 and Corollary 3 that function 𝑢(𝑥) is
a linear combination of positive solutions to boundary value problems (6), 𝑎 ∈ 𝜕Γ, as 𝛽(·) ≡
0, with non-negative coefficients. At that, if 𝑢′(𝑎) > 0 for some vertex 𝑎 ∈ 𝜕Γ, then the
corresponding coefficient in the linear combination is positive.

Lemma 2 and Corollary 3 allow us to formulae the comparison theorem for the Green function
of Dirichlet boundary value problem (1), (5).

Theorem 1 (comparison test). Suppose that the inequality 𝛽(𝑎)
𝜗(𝑎)

>
̃︀𝛽(𝑎)̃︀𝜗(𝑎) holds true on 𝜕Γ (in

the case 𝜗(𝑎) = 0 we let 𝛽(𝑎)
𝜗(𝑎)

= ∞, and the same for ̃︀𝜗(𝑎) = 0). Then the positivity of
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the Green function ̃︀𝐺(𝑥, 𝑠) of boundary value problem (1), (5) with coefficients ̃︀𝛽(·) and ̃︀𝜗(·)
under conditions (5) implies the positivity of Green function 𝐺(𝑥, 𝑠) of problem (1), (5) with
coefficients 𝛽(·) and 𝜗(·).

Proof. It was shown in work [7] that the Green function for boundary value problem (1), (5)
is positive on Γ × Γ if and only if for each boundary vertex 𝑎 ∈ 𝜕Γ solution 𝑣𝑎(𝑥) to problem

(6) is positive on graph Γ. Since ̃︀𝐺(𝑥, 𝑠) > 0 on Γ × Γ, for each 𝑎 ∈ 𝜕Γ the strict inequalities̃︀𝑣𝑎(𝑥) > 0 hold true on graph Γ. And it follows from Lemma 2 and the assumptions of the
theorem that for each 𝑎 ∈ 𝜕Γ the inequalities 𝑣𝑎(𝑥) > 0 hold true on graph Γ that implies the
positivity of function 𝐺(𝑥, 𝑠). The proof of complete.

As corollaries of the comparison theorem we consider its limiting cases.

Corollary 4. If the Green function for the Dirichlet problem for equation (1) subject to rigid
fixing condition on the boundary is positive on Γ × Γ, then the Green function for Dirichlet
boundary value problem (1), (5) is positive for all admissible values of coefficients 𝜗(·), 𝛽(·) in
boundary conditions (5).

Corollary 5. If the Green function of the Dirichlet problem for equation (1) subject to
hinged-clamped boundary condition is sign-changing on Γ × Γ, then the Green function for
the Dirichlet problem is also sign-changing for all admissible values of coefficients 𝜗(·), 𝛽(·) in
boundary conditions (5).

As Corollary 4 shows, the property of weak disconjugacy of differential equation (1) is equiv-
alent to the positivity of the Green function for Dirichlet problem (1), (5) for all admissible
values of coefficients 𝜗(·), 𝛽(·) in the boundary conditions.

We should mention the connection of the weak disconjugacy of equation (1) with the theory
of Gantmacher-Krein oscillating kernels [15], [16]. If a graph Γ is a chain of sequentially joined
edges (see [11], [17]), the property of weak disconjugacy is necessary and sufficient for oscillation
of the Green function for Dirichlet problem (1), (5).
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