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CONVOLUTION, FOURIER TRANSFORM AND SOBOLEV
SPACES GENERATED BY NON-LOCAL IONKIN PROBLEM

B.E. KANGUZHIN, N.E. TOKMAGAMBETOV

Abstract. In this work, given a second order differential operator ℬ subject to non-local
boundary conditions, we assign Fourier transform and convolution to this problem. We
study the properties of the introduced convolution and describe the class of test functions.
We also introduce Sobolev spaces and obtain Plancherel identity related to operator ℬ.
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1. Introduction

The standard Fourier transform is a unitary transform in Hilbert space 𝐿2(0, 𝑏) and it is
generated by the differentiation operator (−𝑖 𝑑

𝑑𝑥
) since the system of exponentials {𝑒𝑥𝑝(𝑖𝜆𝑥), 𝜆 ∈

R} is a system “eigenfunctions” associated with its continuous spectrum. Bilinear commutative
associative convolution without annihilators is very close related with Fourier transform. In
papers [1]–[4], instead of the differentiation operator (−𝑖 𝑑

𝑑𝑥
) in space 𝐿2(−∞,∞), there was

considered the operator generated by the differential expression (−𝑖 𝑑
𝑑𝑥
) in Hilbert space 𝐿2(0, 𝑏)

as 𝑏 < ∞ and there were introduced Fourier transform and the convolution generated by this
operator. In paper [5], a Fourier analysis generated by a differential operator in a bounded
domain with simple eigenvalues was developed. The main difference of the present paper
from paper [5] is that the generating operator has multiple eigenvalues. In the paper we
introduce the notion of Fourier transform and convolution generated by the operator of double
differentiation in space 𝐿2(0, 1) subject to nonlocal boundary conditions studied in work [6]. It is
known what role is played by generalized solutions to differential equations. Nonlocal boundary
value operators happen to produce its own class of test functions. This is why new classes of
generalized functions appear which reflect features of nonlocal boundary conditions.

In Hilbert space 𝐿2(0, 1) we define operator ℬ generated by the differential expression

𝑙(𝑢) ≡ −𝑑
2𝑢(𝑥)

𝑑𝑥2
, 0 < 𝑥 < 1, (1.1)

on the domain
𝐷(ℬ) = {𝑢 ∈ 𝑊 2

2 [0, 1] : 𝑢(0) = 0, 𝑢′(0) = 𝑢′(1)}.
Its spectral properties were studied in details in work by N.I. Ionkin [6]. Operator ℬ is not
self-adjoint, but the system of its eigenfunctions and adjoint functions is a basis in 𝐿2(0, 1). It
gives an opportunity to develop a nonharmonic analysis related with operator ℬ. A nonharmonic
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analysis generated by the exponential systems was studied in details in works by A.M. Sedletskii
[7], [8]. In further works we shall introduce pseudodifferential operators and other elements of
the harmonic analysis generated by operator ℬ.

We denote by ℬ* the adjoint operator for ℬ; this operator is generated by differential
expression (1.1) and the boundary conditions

𝑣′(1) = 0, 𝑣(0) = 𝑣(1). (1.2)

Operator ℬ has the eigenvalues

𝜆𝑘 = (2𝜋𝑘)2, 𝑘 = 0, 1, . . . ,

and the eigenfunctions and the adjoint functions read as

𝑢0(𝑥) = 𝑥, 𝑢2𝑘−1(𝑥) = sin(2𝜋𝑘𝑥), 𝑢2𝑘(𝑥) = 𝑥 cos(2𝜋𝑘𝑥), 𝑘 = 1, 2, . . . (1.3)

It means that as 𝑘 > 0, functions in (1.3) belong to 𝐷(ℬ) and solve the differential equations

−𝑢′′2𝑘−1(𝑥) = 𝜆𝑘𝑢2𝑘−1(𝑥), −𝑢′′2𝑘(𝑥) = 𝜆𝑘𝑢2𝑘(𝑥) + 2
√︀
𝜆𝑘𝑢2𝑘−1(𝑥).

Eigenfunction 𝑢2𝑘−1(𝑥) and adjoint function 𝑢2𝑘(𝑥) are associated with each eigenvalue 𝜆𝑘 for
𝑘 > 0.

The eigenvalues of operator ℬ* are

𝜇𝑘 = (2𝜋𝑘)2, 𝑘 = 0, 1, . . . ,

and eigenfunctions and adjoint functions are

𝑣0(𝑥) = 2, 𝑣2𝑘−1(𝑥) = 4(1− 𝑥) sin(2𝜋𝑘𝑥), 𝑣2𝑘(𝑥) = 4 cos(2𝜋𝑘𝑥), 𝑘 = 1, 2, . . . (1.4)

At that, eigenfunction 𝑣2𝑘(𝑥) and adjoint function 𝑣2𝑘−1(𝑥) are associated with eigenvalue 𝜇𝑘

for 𝑘 > 0, i.e., functions in (1.4) satisfy the relations

−𝑣′′2𝑘(𝑥) = 𝜇𝑘𝑣2𝑘(𝑥), −𝑣′′2𝑘−1(𝑥) = 𝜇𝑘𝑣2𝑘−1(𝑥) + 2
√
𝜇𝑘𝑣2𝑘(𝑥)

and boundary conditions (1.2).
We cite the following results of work [6].

Lemma 1.1. Sequences of functions (1.3) and (1.4) form a biorthogonal system of functions
on the interval (0, 1) such that for each 𝑖, 𝑗 ∈ N the relation

(𝑢2𝑖−𝑘, 𝑣2𝑗−𝑙) =

∫︁ 1

0

𝑢2𝑖−𝑘(𝑥)𝑣2𝑗−𝑙(𝑥)𝑑𝑥 = 𝛿2𝑖−𝑘,2𝑗−𝑙, 𝑘 = 0,𝑚𝑖 − 1; 𝑙 = 0,𝑚𝑗 − 1,

holds true. Here 𝛿2𝑖−𝑘,2𝑗−𝑙 is the Kronecker delta, 𝑚0 = 1, and 𝑚𝑖 = 2, 𝑖 > 1.

Theorem 1.1. The sequence of functions

𝑢0(𝑥) = 𝑥, 𝑢2𝑘−1(𝑥) = sin(2𝜋𝑘𝑥), 𝑢2𝑘(𝑥) = 𝑥 cos(2𝜋𝑘𝑥), 𝑘 ∈ N
forms a Riesz basis in space 𝐿2(0, 1).

2. Convolution generated by operator ℬ

In space 𝐿2(0, 1) we introduce the convolution by the formula

(𝑔 * 𝑓)(𝑥) =1

2

∫︁ 1

𝑥

𝑔(1 + 𝑥− 𝑡)𝑓(𝑡)𝑑𝑡+
1

2

∫︁ 1

1−𝑥

𝑔(𝑥− 1 + 𝑡)𝑓(𝑡)𝑑𝑡

+

∫︁ 𝑥

0

𝑔(𝑥− 𝑡)𝑓(𝑡)𝑑𝑡− 1

2

∫︁ 1−𝑥

0

𝑔(1− 𝑥− 𝑡)𝑓(𝑡)𝑑𝑡+
1

2

∫︁ 𝑥

0

𝑔(1 + 𝑡− 𝑥)𝑓(𝑡)𝑑𝑡.

Lemma 2.1. a) The introduced convolution is bilinear, commutative and associative for
each 𝑓, 𝑔 ∈ 𝐿2(0, 1).
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b) The resolvent of operator ℬ has the convolution representation

(ℬ − 𝜆𝐼)−1𝑓 = 𝑔 * 𝑓,

where 𝑔(𝑥) = sin
√
𝜆𝑥√

𝜆(cos
√
𝜆−1)

, 𝐼 is the identity operator.
c) Convolution of functions 𝑔 and 𝑓 belong to the domain of operator ℬ if 𝑔 ∈ 𝐷(ℬ) and the

identity
ℬ(𝑔 * 𝑓) = ℬ𝑔 * 𝑓

holds true.
d) The convolution generated by operator ℬ has no annihilator, i.e., if 𝑔 * 𝑓 ≡ 0 is valid for

each 𝑔 ∈ 𝐿2(0, 1), then 𝑓 ≡ 0.

Доказательство. a) The bilinearity and associativity of introduced convolution is checked
trivially. Let us show that the convolution is commutative in the space of summable functions.
We introduce the integrals

𝐼1(𝑔, 𝑓) =

∫︁ 1

𝑥

𝑔(1 + 𝑥− 𝑡)𝑓(𝑡)𝑑𝑡, 𝐼2(𝑔, 𝑓) =

∫︁ 𝑥

0

𝑔(𝑥− 𝑡)𝑓(𝑡)𝑑𝑡,

𝐼3(𝑔, 𝑓) =

∫︁ 1−𝑥

0

𝑔(1− 𝑥− 𝑡)𝑓(𝑡)𝑑𝑡, 𝐼4(𝑔, 𝑓) =

∫︁ 1

1−𝑥

𝑔(𝑥− 1 + 𝑡)𝑓(𝑡)𝑑𝑡,

𝐼5(𝑔, 𝑓) =

∫︁ 𝑥

0

𝑔(1 + 𝑡− 𝑥)𝑓(𝑡)𝑑𝑡,

where 𝑥 ∈ (0, 1).
It is easy to make sure that

𝐼𝑘(𝑔, 𝑓) = 𝐼𝑘(𝑓, 𝑔) as 𝑘 = 1, 2, 3.

Let us consider 𝐼4(𝑔, 𝑓) and let us make the change 𝜏 = 𝑥− 1 + 𝑡 in this integral. We have

𝐼4(𝑔, 𝑓) =

∫︁ 𝑥

0

𝑔(𝜏)𝑓(1− 𝑥+ 𝜏)𝑑𝜏.

It implies that 𝐼4(𝑔, 𝑓) = 𝐼5(𝑓, 𝑔). Exactly in the same way we check the relation 𝐼5(𝑔, 𝑓) =
𝐼4(𝑓, 𝑔). Since by the definition of the convolution we have

𝑔 * 𝑓 =
1

2
𝐼1(𝑔, 𝑓) + 𝐼2(𝑔, 𝑓)−

1

2
𝐼3(𝑔, 𝑓) +

1

2
𝐼4(𝑔, 𝑓) +

1

2
𝐼5(𝑔, 𝑓),

it implies the commutation identity 𝑔 * 𝑓 = 𝑓 * 𝑔.
b) We denote

𝑦(𝑥, 𝜆) = (𝑔 * 𝑓)(𝑥),
where 𝑔(𝑥, 𝜆) = sin

√
𝜆𝑥√

𝜆(cos
√
𝜆−1)

. Let us calculate the derivative of 𝑦(𝑥, 𝜆) w.r.t. 𝑥:

𝑦′(𝑥, 𝜆) =
1√

𝜆(cos
√
𝜆− 1)

𝑑

𝑑𝑥

[︁1
2

∫︁ 1

𝑥

sin
√
𝜆(1 + 𝑥− 𝑡)𝑓(𝑡)𝑑𝑡+

∫︁ 𝑥

0

sin
√
𝜆(𝑥− 𝑡)𝑓(𝑡)𝑑𝑡

− 1

2

∫︁ 1−𝑥

0

sin
√
𝜆(1− 𝑥− 𝑡)𝑓(𝑡)𝑑𝑡+

1

2

∫︁ 1

1−𝑥

sin
√
𝜆(𝑥− 1 + 𝑡)𝑓(𝑡)𝑑𝑡

+
1

2

∫︁ 𝑥

0

sin
√
𝜆(1 + 𝑡− 𝑥)𝑓(𝑡)𝑑𝑡

]︁
=

𝑓(𝑥)

2
√
𝜆(cos

√
𝜆− 1)

[︁
− sin

√
𝜆+ sin

√
𝜆
]︁

+
1√

𝜆(cos
√
𝜆− 1)

[︁1
2

∫︁ 1

𝑥

cos
√
𝜆(1− 𝑥− 𝑡)𝑓(𝑡)𝑑𝑡+

∫︁ 𝑥

0

cos
√
𝜆(𝑥− 𝑡)𝑓(𝑡)𝑑𝑡
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+
1

2

∫︁ 1−𝑥

0

cos
√
𝜆(1− 𝑥− 𝑡)𝑓(𝑡)𝑑𝑡+

1

2

∫︁ 1

1−𝑥

cos
√
𝜆(𝑥− 1 + 𝑡)𝑓(𝑡)𝑑𝑡

− 1

2

∫︁ 𝑥

0

cos
√
𝜆(1 + 𝑡− 𝑥)𝑓(𝑡)𝑑𝑡

]︁
.

In the same way we calculate the second derivative of 𝑦(𝑥, 𝜆) w.r.t. 𝑥. Finally we have

𝑦′′(𝑥, 𝜆) =
1

2
√
𝜆(cos

√
𝜆− 1)

[︁
− cos

√
𝜆𝑓(𝑥) + 2𝑓(𝑥)− 𝑓(𝑥)− 𝑓(𝑥)− cos

√
𝜆𝑓(𝑥)

]︁
− 𝜆𝑦(𝑥, 𝜆).

It implies that 𝑦(𝑥, 𝜆) satisfies the equation

−𝑦′′(𝑥, 𝜆) = 𝜆𝑦(𝑥, 𝜆) + 𝑓(𝑥).

It remains to check the boundary conditions. The first boundary condition is checked
straightforwardly by substituting 𝑥 = 0:

𝑦(0, 𝜆) =
1

2
√
𝜆(cos

√
𝜆− 1)

[︁ ∫︁ 1

0

sin
√
𝜆(1− 𝑡)𝑓(𝑡)𝑑𝑡−

∫︁ 1

0

sin
√
𝜆(1− 𝑡)𝑓(𝑡)𝑑𝑡

]︁
= 0.

We check the second boundary condition:

𝑦′(0, 𝜆) =
1

2
√
𝜆(cos

√
𝜆− 1)

[︁ ∫︁ 1

0

cos
√
𝜆(1− 𝑡)𝑓(𝑡)𝑑𝑡+

∫︁ 1

0

cos
√
𝜆(1− 𝑡)𝑓(𝑡)𝑑𝑡

]︁
,

𝑦′(1, 𝜆) =
1

2
√
𝜆(cos

√
𝜆− 1)

[︁
2

∫︁ 1

0

cos
√
𝜆(1− 𝑡)𝑓(𝑡)𝑑𝑡

+

∫︁ 1

0

cos(
√
𝜆𝑡)𝑓(𝑡)𝑑𝑡−

∫︁ 1

0

cos(
√
𝜆𝑡)𝑓(𝑡)𝑑𝑡

]︁
.

It implies 𝑦′(0) = 𝑦′(1).
c) Let 𝑔 ∈ 𝐷(ℬ). We consider the convolution 𝑔 *𝑓 , where 𝑓 ∈ 𝐿2(0, 1). Since 𝑔 ∈ 𝐷(ℬ), then

𝑔 * 𝑓 ∈ 𝑊 2
2 [0, 1]. Indeed, the following representation of the first and the second derivatives of

the convolution w.r.t. 𝑥 hold:
𝑑

𝑑𝑥
(𝑔 * 𝑓)(𝑥) =

∫︁ 1

𝑥

𝑔′(1 + 𝑥− 𝑡)𝑓(𝑡)𝑑𝑡+

∫︁ 1

1−𝑥

𝑔′(𝑥− 1 + 𝑡)𝑓(𝑡)𝑑𝑡+ 2

∫︁ 𝑥

0

𝑔′(𝑥− 𝑡)𝑓(𝑡)𝑑𝑡

+

∫︁ 1−𝑥

0

𝑔′(1− 𝑥− 𝑡)𝑓(𝑡)𝑑𝑡−
∫︁ 𝑥

0

𝑔′(1 + 𝑡− 𝑥)𝑓(𝑡)𝑑𝑡,

𝑑2

𝑑𝑥2
(𝑔 * 𝑓)(𝑥) =(𝑔′′ * 𝑓)(𝑥).

Here we have employed essentially that 𝑔(0) = 0 and 𝑔′(0) = 𝑔′(1).
d) Suppose that 𝑔 * 𝑓 ≡ 0 for each 𝑔 ∈ 𝐿2(0, 1). We introduce the function 𝑔(𝑥) =
sin

√
𝜆𝑥√

𝜆(cos
√
𝜆−1)

⃒⃒⃒
𝜆=1

, which is well-defined since cos 1 ̸= 1. In accordance with Statement b),
convolution 𝑔 * 𝑓 means (ℬ − 𝐼)−1𝑓. If (ℬ − 𝐼)−1𝑓(𝑥) ≡ 0, then 𝑓(𝑥) ≡ 0. The proof is
complete.

We provide one more useful identity.

Lemma 2.2. For each complex 𝛼 and 𝛽 the identity

sin(𝛼𝑥)

𝛼
* sin(𝛽𝑥)

𝛽
=

(︂
sin(𝛼𝑥)

𝛼
(cos 𝛽 − 1)− sin(𝛽𝑥)

𝛽
(cos𝛼− 1)

)︂
/(𝛽2 − 𝛼2) (2.1)

holds true.
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Доказательство. We denote

𝑦(𝑥) =
sin(𝛼𝑥)

𝛼
* sin(𝛽𝑥)

𝛽

and

𝑢(𝑥) =

(︂
sin(𝛼𝑥)

𝛼
(cos 𝛽 − 1)− sin(𝛽𝑥)

𝛽
(cos𝛼− 1)

)︂
/(𝛽2 − 𝛼2).

It follows from Statement b) of Lemma 2.1 that function 𝑦(𝑥) satisfies the equation

− 𝑦′′(𝑥) = 𝛼2𝑦(𝑥) +
sin(𝛽𝑥)

𝛽
(cos𝛼− 1) (2.2)

and the boundary conditions
𝑦(0) = 0, 𝑦′(0) = 𝑦′(1). (2.3)

Let us show that function 𝑢(𝑥) also satisfy equation (2.2) and boundary conditions (2.3) and
it will complete the proof.

We find the first and the second derivative of function 𝑢(𝑥):

𝑢′(𝑥) =

(︂
𝛼
cos(𝛼𝑥)

𝛼
(cos 𝛽 − 1)− 𝛽

cos(𝛽𝑥)

𝛽
(cos𝛼− 1)

)︂
/(𝛽2 − 𝛼2),

𝑢′′(𝑥) =

(︂
−𝛼2 sin(𝛼𝑥)

𝛼
(cos 𝛽 − 1) + 𝛽2 sin(𝛽𝑥)

𝛽
(cos𝛼− 1)

)︂
/(𝛽2 − 𝛼2)

=− 𝛼2

(︂
sin(𝛼𝑥)

𝛼
(cos 𝛽 − 1)− sin(𝛽𝑥)

𝛽
(cos𝛼− 1)

)︂
/(𝛽2 − 𝛼2)

+ (𝛽2 − 𝛼2)

(︂
sin(𝛽𝑥)

𝛽
(cos𝛼− 1)

)︂
/(𝛽2 − 𝛼2)

=− 𝛼2𝑢(𝑥) +
sin(𝛽𝑥)

𝛽
(cos𝛼− 1).

Hence, function 𝑢(𝑥) satisfies equation (2.2). Simple calculations

𝑢(0) =

(︂
sin(𝛼0)

𝛼
(cos 𝛽 − 1)− sin(𝛽0)

𝛽
(cos𝛼− 1)

)︂
/(𝛽2 − 𝛼2) = 0,

𝑢′(0) =

(︂
𝛼
1

𝛼
(cos 𝛽 − 1)− 𝛽

1

𝛽
(cos𝛼− 1)

)︂
/(𝛽2 − 𝛼2)

= ((cos 𝛽 − 1)− (cos𝛼− 1)) /(𝛽2 − 𝛼2) = (cos 𝛽 − cos𝛼)) /(𝛽2 − 𝛼2),

𝑢′(1) =

(︂
𝛼
cos𝛼

𝛼
(cos 𝛽 − 1)− 𝛽

cos 𝛽

𝛽
(cos𝛼− 1)

)︂
/(𝛽2 − 𝛼2)

= (cos𝛼(cos 𝛽 − 1)− cos 𝛽(cos𝛼− 1)) /(𝛽2 − 𝛼2) = (cos 𝛽 − cos𝛼) /(𝛽2 − 𝛼2),

lead us to boundary conditions (2.3). The proof is complete.

We rewrite formula (2.1) as

sin(𝛼𝑥) * sin(𝛽𝑥) = (𝛽 sin(𝛼𝑥)(cos 𝛽 − 1)− 𝛼 sin(𝛽𝑥)(cos𝛼− 1))

𝛽2 − 𝛼2
. (2.4)

Lemma 2.3. For 𝜉 ∈ Z+ the identity

sin(2𝜋𝜉𝑥) * sin(2𝜋𝜉𝑥) = 0

holds true.
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Доказательство. To prove the lemma, we make use of the following identities implied by
formula (2.4) and based on simple substitutions and calculations. Substituting 𝛽 = 2𝜋𝜉 for
𝜉 > 0 in formula (2.4), we obtain that

sin(𝛼𝑥) * sin(2𝜋𝜉𝑥) = 𝛼 sin(2𝜋𝜉𝑥)(cos𝛼− 1)

𝛼2 − (2𝜋𝜉)2
. (2.5)

Passing to the limit as 𝛼 → 2𝜋𝜉 in (2.5), we get

sin(2𝜋𝜉𝑥) * sin(2𝜋𝜉𝑥) = lim
𝛼→2𝜋𝜉

sin(𝛼𝑥) * sin(2𝜋𝜉𝑥) = lim
𝛼→2𝜋𝜉

𝛼 sin(2𝜋𝜉𝑥)(cos𝛼− 1)

𝛼2 − (2𝜋𝜉)2
= 0. (2.6)

The proof is complete.

We observe that for each integer 𝜂

sin(2𝜋𝜂𝑥) * sin(2𝜋𝜉𝑥) = 0, (2.7)

since cos𝛼− 1 = 0 as 𝛼 = 2𝜋𝜉.

Lemma 2.4. For 𝜉 ∈ Z+ the identity

𝑥 cos(2𝜋𝜉𝑥) * sin(2𝜋𝜉𝑥) = −1

4
sin(2𝜋𝜉𝑥) (2.8)

holds true.

Доказательство. We differentiate identity (2.5) w.r.t. 𝛼

𝑥 cos(𝛼𝑥) * sin(2𝜋𝜉𝑥) = sin(2𝜋𝜉𝑥)
[cos𝛼− 1− 𝛼 sin𝛼](𝛼2 − (2𝜋𝜉)2)− 2𝛼2(cos𝛼− 1)

(𝛼2 − (2𝜋𝜉)2)2
. (2.9)

Passing to the limit as 𝛼 → 2𝜋𝜉, by (2.9) we have

𝑥 cos(2𝜋𝜉𝑥) * sin(2𝜋𝜉𝑥) = lim
𝛼→2𝜋𝜉

𝑥 cos(𝛼𝑥) * sin(2𝜋𝜉𝑥)

= sin(2𝜋𝜉𝑥) lim
𝛼→2𝜋𝜉

[cos𝛼− 1− 𝛼 sin𝛼](𝛼2 − (2𝜋𝜉)2)− 2𝛼2(cos𝛼− 1)

(𝛼2 − (2𝜋𝜉)2)2

= − sin(2𝜋𝜉𝑥)

[︂
lim

𝛼→2𝜋𝜉

𝛼 sin𝛼

𝛼2 − (2𝜋𝜉)2
+ 2 lim

𝛼→2𝜋𝜉

𝛼2(cos𝛼− 1)

(𝛼2 − (2𝜋𝜉)2)2

]︂
= − sin(2𝜋𝜉𝑥)

[︂
1

2
− 1

4

]︂
= −1

4
sin(2𝜋𝜉𝑥).

Thus, identity (2.8) holds true. The proof is complete.

Lemma 2.5. For 𝜉 ∈ Z+ the identity

𝑥 cos(2𝜋𝜉𝑥) * 𝑥 cos(2𝜋𝜉𝑥) = −1

4
sin(2𝜋𝜉𝑥)− 1

4
𝑥 cos(2𝜋𝜉𝑥)

holds true.

Доказательство. We calculate

𝑥 cos(2𝜋𝜉𝑥) * 𝑥 cos(2𝜋𝜉𝑥) = lim
𝛼→2𝜋𝜉

𝑑

𝑑𝛼

[︂
lim

𝛽→2𝜋𝜉

𝑑

𝑑𝛽
(sin(𝛼𝑥) * sin(𝛽𝑥))

]︂
= lim

𝛼→2𝜋𝜉

𝑑

𝑑𝛼

[︂
lim

𝛽→2𝜋𝜉

𝑑

𝑑𝛽

(︂
(𝛽 sin(𝛼𝑥)(cos 𝛽 − 1)− 𝛼 sin(𝛽𝑥)(cos𝛼− 1))

𝛽2 − 𝛼2

)︂]︂
= lim

𝛼→2𝜋𝜉

𝑑

𝑑𝛼

[︂
lim

𝛽→2𝜋𝜉
𝐾(𝛼, 𝛽)

]︂
,
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where

𝐾(𝛼, 𝛽) =
sin(𝛼𝑥)(cos 𝛽 − 1− 𝛽 sin 𝛽)− 𝛼𝑥 cos(𝛽𝑥)(cos𝛼− 1)

𝛽2 − 𝛼2

− 2𝛽(𝛽 sin(𝛼𝑥)(cos 𝛽 − 1)− 𝛼 sin(𝛽𝑥)(cos𝛼− 1))

(𝛽2 − 𝛼2)2
.

Since

lim
𝛽→2𝜋𝜉

𝐾(𝛼, 𝛽) = −𝑥 cos(2𝜋𝜉𝑥)𝛼(cos𝛼− 1)

(2𝜋𝜉)2 − 𝛼2
+ 4𝜋𝜉 sin(2𝜋𝜉𝑥)

𝛼(cos𝛼− 1)

((2𝜋𝜉)2 − 𝛼2)2
,

we arrive at

𝑥 cos(2𝜋𝜉𝑥) * 𝑥 cos(2𝜋𝜉𝑥)

= lim
𝛼→2𝜋𝜉

𝑑

𝑑𝛼

[︂
−𝑥 cos(2𝜋𝜉𝑥)𝛼(cos𝛼− 1)

(2𝜋𝜉)2 − 𝛼2
+ 4𝜋𝜉 sin(2𝜋𝜉𝑥)

𝛼(cos𝛼− 1)

((2𝜋𝜉)2 − 𝛼2)2

]︂
= lim

𝛼→2𝜋𝜉
𝐹 (𝛼),

where

𝐹 (𝛼) =− 𝑥 cos(2𝜋𝜉𝑥)

(︂
cos𝛼− 1− 𝛼 sin𝛼

(2𝜋𝜉)2 − 𝛼2
+ 2𝛼

𝛼(cos𝛼− 1)

((2𝜋𝜉)2 − 𝛼2)2

)︂
+ 4𝜋𝜉 sin(2𝜋𝜉𝑥)

(︂
cos𝛼− 1− 𝛼 sin𝛼

((2𝜋𝜉)2 − 𝛼2)2
+ 4𝛼

𝛼(cos𝛼− 1)

((2𝜋𝜉)2 − 𝛼2)3

)︂
.

We calculate

lim
𝛼→2𝜋𝜉

𝐹 (𝛼) = −1

4
sin(2𝜋𝜉𝑥)− 1

4
𝑥 cos(2𝜋𝜉𝑥).

We finally have

𝑥 cos(2𝜋𝜉𝑥) * 𝑥 cos(2𝜋𝜉𝑥) = −1

4
sin(2𝜋𝜉𝑥)− 1

4
𝑥 cos(2𝜋𝜉𝑥).

The proof is complete.

The next identity is checked by straightforward calculations

𝑥 * 𝑥 =
1

2
𝑥. (2.10)

In the same way it is easy to show that for 𝜉 ̸= 𝜂 > 0 the identities

sin(2𝜋𝜉𝑥) * sin(2𝜋𝜂𝑥) = 0, 𝑥 cos(2𝜋𝜉𝑥) * sin(2𝜋𝜂𝑥) = 0, (2.11)
𝑥 cos(2𝜋𝜉𝑥) * 𝑥 cos(2𝜋𝜂𝑥) = 0, sin(2𝜋𝜉𝑥) * 𝑥 = 0, 𝑥 cos(2𝜋𝜉𝑥) * 𝑥 = 0. (2.12)

hold true.

3. Test functions, ℬ-Fourier transform and Sobolev spaces ℬ𝑊 𝑠
2 [0, 1]

While introducing distributions on R, an important role is played by a class of test functions.
As test functions on R, infinitely differentiable compactly supported functions can serve. In
studying periodic processes, infinitely differentiable periodic functions are employed as test
functions. In our case, as test functions, we consider the class 𝐷(ℬ∞) =

⋂︀∞
𝑚=1𝐷(ℬ𝑚), where

𝐷(ℬ𝑚) is the domain of operator ℬ𝑚 for 𝑚 > 1.
In the next lemma we solve the issue on existence of test functions in 𝐷(ℬ∞).

Lemma 3.1. If 𝑔 ∈ 𝐷(ℬ∞), then for each 𝑓 ∈ 𝐿2(0, 1) we have 𝑔 * 𝑓 ∈ 𝐷(ℬ∞).
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The statement of this lemma is implied by Statement c) of Lemma 2.1.
In accordance with Lemma 3.1, it is sufficient to construct one function 𝑔 ∈ 𝐷(ℬ∞) to obtain

infinitely many other functions in 𝐷(ℬ∞). As 𝑔 we can take eigenfunctions and adjoint functions
of operator ℬ. We need to choose probably a finite set of functions 𝑔1, 𝑔2, . . . in 𝐷(ℬ∞) so that
the closure of linear span 𝑠𝑝𝑎𝑛 {𝑔𝑠 * 𝑓 : 𝑠 = 1, 2, . . . , 𝑓 ∈ 𝐿2(0, 1)} coincides with 𝐷(ℬ∞). In
order to define the closure, we need to introduce a topology in linear space 𝐷(ℬ∞). We shall say
that a sequence of functions 𝑦𝑗 in 𝐷(ℬ∞) converges to zero as 𝑗 → ∞ in the sense of topology
in 𝐷(ℬ∞) if for each 𝑚 = 1, 2, . . .

ℬ𝑚𝑦𝑗 ⇒
[0, 1] 0, 𝑗 → ∞,

where ⇒[0, 1] denotes the uniform in [0, 1] convergence.
We introduce the notation 𝐶∞

ℬ [0, 1] := 𝐷(ℬ∞). In fact, functions in 𝐶∞
ℬ [0, 1] are defined only

on the interval [0, 1]. In what follows, we extend functions 𝐶∞
ℬ [0, 1] continuously on the whole

axis.
We begin with continuing functions in 𝐶∞

ℬ [0, 1] into [−1, 0). In view of the boundary condition
𝑦(0) = 0, we continue this function by the oddness, i.e.,

𝑦(0− 𝑥) = −𝑦(0 + 𝑥), 𝑥 ∈ (0, 1]

or
𝑦(𝑥) = −𝑦(−𝑥), 𝑥 ∈ [−1, 0).

Now we define function 𝑦 inductively on 𝐼𝑛 = (𝑛, 𝑛+ 1] as follows

𝑦(𝑥) = 2𝑦(𝑥− 1)− 𝑦(𝑥− 2), 𝑥 ∈ 𝐼𝑛.

Definition 3.1. The space 𝒟′
ℬ(0, 1) := ℒ(𝐶∞

ℬ [0, 1],C) dual to 𝐶∞
ℬ [0, 1] is called a space of

ℬ-distributions. For 𝑢 ∈ 𝒟′
ℬ(0, 1) и 𝜙 ∈ 𝐶∞

ℬ [0, 1] we write

𝑢(𝜙) = ⟨𝑢, 𝜙⟩.
For each 𝜓 ∈ 𝐶∞

ℬ [0, 1] the mapping

𝜙 ↦→
∫︁ 1

0

𝜙(𝑥)𝜓(𝑥)𝑑𝑥

is a ℬ-distribution that implies 𝜓 ∈ 𝐶∞
ℬ [0, 1] ⊂ 𝒟′

ℬ(0, 1).

Definition 3.2. By 𝒮(Z+) we denote the space of rapidly decaying functions acting from
Z+ into C. That is, 𝜙 ∈ 𝒮(Z+) if for an arbitrary 𝑀 < ∞ there exists a constant 𝐶𝜙,𝑀 such
that the estimate

|𝜙(𝜉)| 6 𝐶𝜙,𝑀⟨𝜉⟩−𝑀

holds true for all 𝜉 ∈ Z+, where
⟨𝜉⟩ := (1 +

√︀
𝜆𝜉).

The topology on 𝒮(Z+) is defined by semi-norms 𝑝𝑘, where 𝑘 ∈ Z+ and 𝑝𝑘(𝜙) :=
sup𝜉∈Z+

⟨𝜉⟩𝑘|𝜙(𝜉)|.

Remark 3.1. Linear continuous functionals on 𝒮(Z+) read as

𝜙 ↦→ ⟨𝑢, 𝜙⟩ :=
∑︁
𝜉∈Z

𝑢(𝜉)𝜙(𝜉),

where functions 𝑢 : Z+ → C grow polynomially at infinity, i.e., there exist constants 𝑀 < ∞
and 𝐶𝑢,𝑀 such that the inequality

|𝑢(𝜉)| 6 𝐶𝑢,𝑀⟨𝜉⟩𝑀

holds true for all 𝜉 ∈ Z+. Such distributions 𝑢 : Z+ → C form space 𝒮 ′(Z+).
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Definition 3.3. Given 𝑓 ∈ 𝐶∞
ℬ [0, 1], we introduce ℬ-Fourier transform by the formula

̂︀𝑓(𝜉) := (ℱℬ𝑓)(𝜉) =

∫︁ 1

0

𝑓(𝑥)𝑣𝜉(𝑥)𝑑𝑥. (3.1)

In the same way, for 𝑓 ∈ 𝐶∞
ℬ* [0, 1] we introduce ℬ*-Fourier transform by the formula

̂︀𝑓 *(𝜉) := (ℱℬ*𝑓)(𝜉) =

∫︁ 1

0

𝑓(𝑥)𝑢𝜉(𝑥)𝑑𝑥. (3.2)

Lemma 3.2. ℱℬ is a continuous bijection

(ℱℬ𝑓)(𝜉) = (𝑓 ↦→ ̂︀𝑓(𝜉)) : 𝐶∞
ℬ [0, 1] → 𝒮(Z+),

and the inverse transform ℱ−1
ℬ : 𝒮(Z+) → 𝐶∞

ℬ [0, 1] is defined by the formula

𝑓(𝑥) =
∑︁
𝜉∈Z+

̂︀𝑓(𝜉)𝑢𝜉(𝑥). (3.3)

Similarly, ℱℬ* is a continuous bijection

(ℱℬ*𝑓)(𝜉) = (𝑓 ↦→ ̂︀𝑓 *(𝜉)) : 𝐶∞
ℬ* [0, 1] → 𝒮(Z+)

and the inverse transform ℱ−1
ℬ* : 𝒮(Z+) → 𝐶∞

ℬ* [0, 1] is defined by the formula

𝑓(𝑥) =
∑︁
𝜉∈Z+

̂︀𝑓 *(𝜉)𝑣𝜉(𝑥). (3.4)

Доказательство. The proof of Lemma 3.2 is in fact the same as for the classical periodic case
except the steps, where biorthogonality properties are essentially employed. Let us show first
that for 𝑓 ∈ 𝐶∞

ℬ [0, 1], we have ̂︀𝑓 ∈ 𝒮(Z+), i.e., for each 𝑀 <∞ there exists a constant 𝐶 such
that the estimate

| ̂︀𝑓(𝜉)| 6 𝐶⟨𝜉⟩−𝑀

holds true for all 𝜉 ∈ Z+. Indeed, for an arbitrary 𝑀 ∈ N and even 𝜉 we obtain the inequality

| ̂︀𝑓(𝜉)| = ⃒⃒⃒⃒∫︁ 1

0

𝑓(𝑥)𝑣𝜉(𝑥)𝑑𝑥

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒
∫︁ 1

0

𝑓(𝑥)
(ℬ*)𝑀𝑣𝜉(𝑥)

𝜆𝑀𝜉
𝑑𝑥

⃒⃒⃒⃒
⃒ =

=

⃒⃒⃒⃒
⃒ 1

𝜆𝑀𝜉

∫︁ 1

0

ℬ𝑀𝑓(𝑥)𝑣𝜉(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒ 6 𝐶‖ℬ𝑀𝑓‖𝐿2(0,1)⟨𝜉⟩−2𝑀 .

The same estimate is true for odd 𝜉. Thus, for 𝑓 ∈ 𝐶∞
ℬ [0, 1] we have ̂︀𝑓 ∈ 𝒮(Z+). Since

‖ℬ𝑀𝑓‖𝐿2(0,1) define semi-norms in space 𝑓𝐶∞
ℬ [0, 1], it implies the continuity of operator ℱℬ

from 𝐶∞
ℬ [0, 1] into 𝒮(Z+).

It is clear that for ℎ ∈ 𝒮(Z+) formula (3.3) defines a function ℱ−1
ℬ ℎ ∈ 𝐶∞

ℬ [0, 1] with Fourier
coefficient ℎ(𝜉). If two functions 𝑓1, 𝑓2 ∈ 𝐶∞

ℬ [0, 1] have the same Fourier coefficients ̂︀𝑓1(𝜉) =̂︀𝑓2(𝜉) 𝜉 ∈ Z+, by the density of the linear span {𝑢𝜉}𝜉∈Z+ in 𝐶∞
ℬ [0, 1], we obtain

𝑓1(𝑥) =
∑︁
𝜉∈Z+

̂︀𝑓1(𝜉)𝑢𝜉(𝑥) = ∑︁
𝜉∈Z+

̂︀𝑓2(𝜉)𝑢𝜉(𝑥) = 𝑓2(𝑥).

The continuity of the mapping ℱ−1
ℬ : 𝒮(Z+) → 𝐶∞

ℬ [0, 1] is proved by the same arguments. The
properties of the adjoint transform ℱℬ* are proved in the same way. The proof is complete.

By means of the inverse ℬ-Fourier transform ℱ−1
ℬ : 𝒮(Z+) → 𝐶∞

ℬ [0, 1] we uniquely continue
ℬ-Fourier transform to the mapping

ℱℬ : 𝒟′
ℬ(0, 1) → 𝒮 ′(Z+)
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by the formula

⟨ℱℬ𝑤,𝜙⟩ := ⟨𝑤,ℱ−1
ℬ* 𝜙⟩, для 𝑤 ∈ 𝒟′

ℬ(0, 1), 𝜙 ∈ 𝒮(Z+). (3.5)

It follows that if 𝑤 ∈ 𝒟′
ℬ(0, 1), then ̂︀𝑤 ∈ 𝒮 ′(Z+). We also observe that if 𝑤 ∈ 𝐶∞

ℬ [0, 1], then
the identity

⟨ ̂︀𝑤,𝜙⟩ = ∑︁
𝜉∈Z+

̂︀𝑤(𝜉)𝜙(𝜉) = ∑︁
𝜉∈Z+

(︂∫︁ 1

0

𝑤(𝑥)𝑣𝜉(𝑥)𝑑𝑥

)︂
𝜙(𝜉)

=

∫︁ 1

0

𝑤(𝑥)

⎛⎝∑︁
𝜉∈Z+

𝜙(𝜉)𝑣𝜉(𝑥)

⎞⎠𝑑𝑥 =

∫︁ 1

0

𝑤(𝑥)
(︀
ℱ−1

ℬ* 𝜙
)︀
𝑑𝑥 = ⟨𝑤,ℱ−1

ℬ* 𝜙⟩

holds true.
In the same way we define the mapping

ℱℬ* : 𝒟′
ℬ*(0, 1) → 𝒮 ′(Z+).

In the space of sequences 𝑋 =
∏︀∞

𝑘=0C
𝑚𝑘 we introduce the inner Cauchy convolution, where

indices 𝑚𝑘 in Lemma 1.1 are 𝑚0 = 1 and 𝑚𝑖 = 2, 𝑖 > 1. Let 𝜉 = {𝜉0; 𝜉2𝑘−1, 𝜉2𝑘, 𝑘 > 0} and
𝜂 = {𝜂0; 𝜂2𝑘−1, 𝜂2𝑘, 𝑘 > 0} are the elements of 𝑋 =

∏︀∞
𝑘=0C

𝑚𝑘 . Its convolution is the sequence
𝜃 = {𝜃0; 𝜃2𝑘−1, 𝜃2𝑘, 𝑘 > 0}, where

𝜃0 = 𝜉0𝜂0, 𝜃2𝑘−1 = 𝜉2𝑘−1𝜂2𝑘 + 𝜉2𝑘𝜂2𝑘 + 𝜉2𝑘𝜂2𝑘−1, 𝜃2𝑘 = 𝜉2𝑘𝜂2𝑘.

The obtained in this way convolution will be denoted by 𝜉*𝑋𝜂 := 𝜃. The introduced convolutions
*𝑋 and * are related by the Fourier transform.

Theorem 3.1. For each two elements 𝑓, 𝑔 ∈ 𝐶∞
ℬ [0, 1] the identity

𝑓 * 𝑔 = ̂︀𝑓 *𝑋 ̂︀𝑔
holds true.

Доказательство. Taking into consideration identities (2.4)-(2.12) and Lemmata 2.3-2.5, we
rewrite the convolution as follows

(𝑓 * 𝑔)(𝑥) =
∞∑︁
𝜉=0

𝑚𝜉∑︁
𝑘=0

̂︀𝑓(2𝜉 − 𝑘)𝑢2𝜉−𝑘(𝑥) *
∞∑︁
𝜂=0

𝑚𝜂∑︁
𝑠=0

̂︀𝑔(2𝜂 − 𝑠)𝑢2𝜂−𝑠(𝑥)

=
1

2
̂︀𝑓(0)̂︀𝑔(0)𝑢0(𝑥)− 1

4

∞∑︁
𝜉=1

[︁
( ̂︀𝑓(2𝜉 − 1)̂︀𝑔(2𝜉) + ̂︀𝑓(2𝜉)̂︀𝑔(2𝜉)
+ ̂︀𝑓(2𝜉)̂︀𝑔(2𝜉 − 1))𝑢2𝜉−1(𝑥) + ̂︀𝑓(2𝜉)̂︀𝑔(2𝜉)𝑢2𝜉(𝑥)]︁.

Applying Fourier transform, we obtain the required identity. The proof is complete.

We introduce a space of sequences ℬ𝑙2 generated by the systems of functions {𝑢𝜉}∞𝜉=0 and
{𝑣𝜉}∞𝜉=0 with the scalar product

( ̂︀𝑓, ̂︀𝑔)ℬ𝑙2 := ∑︁
𝜉∈Z+

̂︀𝑓(𝜉) ̂︀𝑔*(𝜉). (3.6)

It is easy to make sure that space ℬ𝑙2 is a Hilbert one. Indeed,

( ̂︀𝑓, ̂︀𝑔)ℬ𝑙2 = ( ̂︀𝑓, ̂︀𝑔*)𝑙2 .
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Moreover,

( ̂︀𝑓, ̂︀𝑔)ℬ𝑙2 = ∑︁
𝜉∈Z+

̂︀𝑓(𝜉)̂︀𝑔*(𝜉) = ̂︀𝑓(0)̂︀𝑔*(0) +∑︁
𝜉∈N

2∑︁
𝑖=1

̂︀𝑓(2(𝜉 − 1) + 𝑖)̂︀𝑔*(2(𝜉 − 1) + 𝑖)

= ̂︀𝑓(0)̂︀𝑔*(0) +∑︁
𝜉∈N

∑︁
𝜂∈N

2∑︁
𝑖=1

̂︀𝑓(2(𝜉 − 1) + 𝑖)̂︀𝑔*(2(𝜂 − 1) + 𝑖)(𝑢2(𝜉−1)+𝑖, 𝑣2(𝜂−1)+𝑖)𝐿2

=(𝑓, 𝑔)𝐿2 .

Thus,
( ̂︀𝑓, ̂︀𝑔)ℬ𝑙2 = (𝑓, 𝑔)𝐿2 .

The Hilbert space axioms are implied by the obtained identity. Hence, the Plancherel identity
holds true.

Lemma 3.3 (Plancherel identity). If 𝑓 ∈ 𝐿2(0, 1), then ̂︀𝑓 ∈ ℬ𝑙2 and

‖𝑓‖𝐿2 = ‖ ̂︀𝑓‖ℬ𝑙2 . (3.7)

Доказательство. By straightforward calculations we check that

‖𝑓‖2𝐿2
=(𝑓, 𝑓)𝐿2 =

⎛⎝∑︁
𝜉∈Z+

̂︀𝑓(𝜉)𝑢𝜉, ∑︁
𝜂∈Z+

̂︀𝑓 *(𝜂)𝑣𝜂

⎞⎠
𝐿2

= ̂︀𝑓(0)̂︀𝑔*(0) +∑︁
𝜉∈N

∑︁
𝜂∈N

2∑︁
𝑖=1

̂︀𝑓(2(𝜉 − 1) + 𝑖)̂︀𝑔*(2(𝜂 − 1) + 𝑖)(𝑢2(𝜉−1)+𝑖, 𝑣2(𝜂−1)+𝑖)𝐿2

=
∑︁
𝜉∈Z+

̂︀𝑓(𝜉)̂︀𝑔*(𝜉) = ( ̂︀𝑓, ̂︀𝑓)ℬ𝑙2 = ‖ ̂︀𝑓‖2ℬ𝑙2 .
It completes the proof.

In the next definition we introduce a Sobolev space generated by operator ℬ:

Definition 3.4. (Sobolev space ℬ𝑊 𝑠[0, 1]) Given 𝑓 ∈ 𝒟′
ℬ(0, 1) and a number 𝑠 ∈ R, we

define norm ‖ · ‖ℬ𝑊 𝑠[0,1] by the formula

‖𝑓‖ℬ𝑊 𝑠[0,1] :=

(︃∑︁
𝜉∈Z

⟨𝜉⟩2𝑠 ̂︀𝑓(𝜉) ̂︀𝑓 *(𝜉)

)︃1/2

. (3.8)

Sobolev space ℬ𝑊 𝑠[0, 1] is the space of ℬ-distributions 𝑓 for which ‖𝑓‖ℬ𝑊 𝑠[0,1] < ∞. Or, for
𝑓 ∈ 𝐿2(0, 1): 𝑓 ∈ ℬ𝑊 𝑠[0, 1] if and only if ⟨𝜉⟩𝑠 ̂︀𝑓(𝜉) ∈ ℬ𝑙2.

Lemma 3.4. For each 𝑠 ∈ R, Sobolev space ℬ𝑊 𝑠[0, 1] is a Hilbert space with the scalar
product

(𝑓, 𝑔)ℬ𝑊 𝑠 :=
∑︁
𝜉∈Z+

⟨𝜉⟩2𝑠 ̂︀𝑓(𝜉)̂︀𝑔*(𝜉).
Доказательство. Spaces ℬ𝑊 0[0, 1] and ℬ𝑊 𝑠[0, 1] are isometrically isomorphic via the
canonical isomorphism 𝜙𝑠 : ℬ𝑊 0[0, 1] → ℬ𝑊 𝑠[0, 1] defined by the formula

𝜙𝑠𝑓(𝑥) :=
∑︁
𝜉∈Z+

⟨𝜉⟩−𝑠 ̂︀𝑓(𝜉)𝑢𝜉(𝑥).
Indeed, 𝜙𝑠 is a linear isometry between ℬ𝑊 𝑡[0, 1] and ℬ𝑊 𝑡+𝑠[0, 1] for each 𝑠 ∈ R and the
formulae 𝜙𝑠1𝜙𝑠2 = 𝜙𝑠1+𝑠2 and 𝜙−1

𝑠 = 𝜙−𝑠 hold true. Thus, the density of space 𝐿2(0, 1) =
ℬ𝑊 0[0, 1] is transferred for space ℬ𝑊 𝑠[0, 1] for each 𝑠 ∈ R.
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