doi:10.13108/2015-7-4-71

UDC 517.9

ON THE ORBITS OF ANALYTIC FUNCTIONS WITH RESPECT TO A POMMIEZ TYPE OPERATOR

O.A. IVANOVA, S.N. MELIKHOV

Dedicated to the memory of Professor Igor' Fedorovich Krasichkov-Ternovskii

Abstract. Let Ω be a simply connected domain in the complex plane containing the origin, $A(\Omega)$ be the Fréchet space of all functions analytic in Ω . A function g_0 analytic in Ω such that $g_0(0) = 1$ defines the Pommiez type operator which acts continuously and linearly in $A(\Omega)$. In this article we describe cyclic elements of the Pommiez type operator in space $A(\Omega)$. Similar results were obtained early for functions g_0 having no zeroes in domain Ω .

Keywords: Pommiez operator, cyclic element, analytic function.

Mathematics Subject Classification: 47A16, 47B38, 46E10

Let Ω be a simply connected domain in \mathbb{C} containing the origin; $A(\Omega)$ be the Fréchet space of all functions analytic in Ω . Let a function $g_0 \in A(\Omega)$ be such that $g_0(0) = 1$. We introduce a *Pommiez type* operator as follows. For $f \in A(\Omega)$ we denote

$$D_{0,g_0}(f)(t) := \begin{cases} \frac{f(t) - g_0(t)f(0)}{t}, & t \neq 0, \\ f'(0) - g'_0(0)f(0), & t = 0. \end{cases}$$

Operator D_{0,g_0} maps linearly and continuously $A(\Omega)$ into itself. For $g_0 \equiv 1$ we let $D_0 := D_{0,g_0}$. Operator D_0 is called Pommiez operator after the works by M. Pommiez [10]–[13], where successive error terms of Taylor series were studied for the functions analytic in the unit circle.

In the present work we deal with cyclic elements of operator D_{0,g_0} in $A(\Omega)$. Given a locally convex space E and a linear continuous operator $A : E \to E$, an element $x \in E$ is called a *cyclic* element of operator A if the system (orbit of x) $\{A^n(x) : n \ge 0\}$ is complete in E, i.e., the closure of its linear span in E coincides with E.

For $g_0 \equiv 1$, the completeness conditions for the system $\{D_{0,g_0}^n(f) : n \ge 0\}$ in $A(\Omega)$ were obtained by M.G. Khaplanov [5] and N.I. Nagnibida [4] (in the case Ω is a circle). In works by Y.A. Kaz'min [2] and N.E. Linchuk [3] (also for $g_0 \equiv 1$) there were obtained cyclicity critetions of $f \in A(\Omega)$ w.r.t. operator D_{0,g_0} for an arbitrary simply connected domain Ω and a finite connected domain G in $\overline{\mathbb{C}}$ containing the origin. In work [9], Yu.S. Linchuk proved necessary and sufficient conditions for the completeness in $A(\Omega)$ of the system $\{A^n(f) : n \ge 0\}$, where $A(g)(z) = D_0(g)(z) + g(0)\varphi(z), g \in A(\Omega)$, and $\varphi \in A(\Omega)$ is a fixed function [9, Corollary]. At that, it was assumed in [9] in the corresponding criterion that function $1 - z\varphi(z)$ does not vanish in Ω . It is easy to see that $A = D_{0,g_0}$, where $g_0(z) = 1 - z\varphi(z)$.

In the present paper we prove a cyclicity criterion for a function $f \in A(\Omega)$ w.r.t. operator D_{0,g_0} for an *arbitrary* function $g_0 \in A(\Omega)$ (such that $g_0(0) = 1$) not necessary non-zero in the

© IVANOVA O.A., MELIKHOV S.N. 2015. Submitted May 14, 2015.

O.A. IVANOVA, S.N. MELIKHOV, ON THE ORBITS OF ANALYTIC FUNCTIONS WITH RESPECT TO A POMMIEZ TYPE OPERATOR.

whole domain Ω . In [9], by means [9, Lm.], see Lemma 1 in what follows, the proof of the corresponding criterion is reduced to the case $g_0 \equiv 1$ studied in [3, Thm. 2] by means of the theory of characteristic functions for linear continuous operators in $A(\Omega)$ [8]. Such reduction is impossible if g_0 has zeroes in Ω .

In the present work we employ Köthe-Silva-Grothendieck duality between $A(\Omega)$ and the space $A_0(\bar{\mathbb{C}} \setminus \Omega)$ of germs of functions analytic in $\bar{\mathbb{C}} \setminus \Omega$ and vanishing at infinity [8] as well as the results on limit values for Cauchy type integrals [1, Ch. I, Sect. 4].

We fix a function $g_0 \in A(\Omega)$ such that $g_0(0) = 1$. Following [6], [7], for $z \in \Omega$ we introduce a shift operator for D_{0,g_0}

$$T_z(f)(t) := \begin{cases} \frac{tf(t)g_0(z) - zf(z)g_0(t)}{t - z}, & t \neq z, \\ zg_0(z)f'(z) - zf(z)g'_0(z) + f(z)g_0(z), & t = z, \end{cases}$$

 $f \in A(\Omega)$. For each $z \in \Omega$ operator T_z maps linearly and continuously $A(\Omega)$ into itself. We shall make use of the following abstract functional cyclicity criterion [9, Lm.]:

Lemma 1. The following statements are equivalent:

- (i) f is a cyclic element of operator D_{0,q_0} in $A(\Omega)$.
- (ii) System $\{T_z(f) : z \in \Omega\}$ is complete in $A(\Omega)$.

This result was proven in [9] without assumption that g_0 has zeroes in Ω . In what follows by $A(\Omega)'$ we denote the topologically dual space for $A(\Omega)$.

Theorem 1. Let Ω be a simply connected domain in \mathbb{C} , $0 \in \Omega$. The following statements are equivalent

- (i) f is not a cyclic element of operator D_{0,q_0} in $A(\Omega)$.
- (ii) Functions f and g_0 have common zeroes in Ω or there exists a rational function R such that $f = g_0 R$.

Proof. (ii) \Rightarrow (i): Suppose that f and g_0 have a common zero $\alpha \in \Omega$. Then $D_{0,g_0}^n(f)(\alpha) = 0$ for each $n \ge 0$ and each function in $F := \operatorname{span}\{D_{0,g_0}^n(f) : n \ge 0\}$ vanishes at α and the same is true for each function in \overline{F} , which is the closure of F in $A(\Omega)$. Since there exists a function in $A(\Omega)$ not vanishing at α , then f is not a cyclic element of D_{0,g_0} in $A(\Omega)$.

Suppose that $f = g_0 R$, where R is a rational function. Let R = P/Q, where P, Q are polynomials, $Q \neq 0$. Let us construct a functional $\varphi \in A(\Omega)' \setminus \{0\}$ such that $\varphi(T_z(f)) = 0$ for each $z \in \Omega$. In order to do it, we construct a function $\gamma \neq 0$ analytic in $\mathbb{C} \setminus \{0\}$ such that $\gamma(\infty) = 0$ and

$$\frac{1}{2\pi i} \int_{|t|=r} \gamma(t) T_z(f)(t) dt = 0, \quad z \in \Omega.$$
(1)

Here r > 0 is such that the circle $\{t \in \mathbb{C} : |t| \leq r\}$ is contained in Ω and polynomial Q does not vanish on the circle |t| = r. Let $\gamma(t) := \sum_{k=0}^{N} \frac{c_k}{t^{k+1}}$; numbers c_k and $N \in \mathbb{N}$ will be determined later.

Condition (1) is equivalent to

$$\frac{1}{2\pi i} \int_{|t|=r} \frac{\gamma(t)g_0(t)}{Q(t)} \frac{tP(t)Q(z) - zP(z)Q(t)}{t - z} dt = 0, \quad z \in \Omega.$$
(2)

If |z| = r, then integrand is defined naturally at t = z. Since P and Q are polynomials, there exist $M \in \mathbb{N}$ and polynomials b_j , $0 \leq j \leq M$, such that

$$\frac{tP(t)Q(z) - zP(z)Q(t)}{t - z} = \sum_{j=0}^{M} b_j(z)t^j.$$

The identity (2) can be rewritten as

$$\frac{1}{2\pi i} \int_{|t|=r} \gamma(t) \frac{g_0(t)}{Q(t)} \sum_{j=0}^M b_j(z) t^j dt = 0, \quad z \in \Omega,$$

i.e.,

$$\sum_{j=0}^{M} \left(\sum_{k=0}^{N} c_k \frac{1}{2\pi i} \int\limits_{|t|=r} \frac{g_0(t)}{Q(t)} t^{j-k-1} dt \right) b_j(z) = 0, \quad z \in \Omega.$$

These identities hold true if

$$\sum_{k=0}^{N} c_k a_{jk} = 0, \ 0 \leqslant j \leqslant M, \tag{3}$$

where

$$a_{jk} := \frac{1}{2\pi i} \int_{|t|=r} \frac{g_0(t)}{Q(t)} t^{j-k-1} dt.$$

We fix N > M. Then system (3) has a nontrivial solution $c_k, 0 \leq k \leq M$. Hence, for a non-zero functional $\varphi \in A(\Omega)'$ such that

$$\varphi(f) := \frac{1}{2\pi i} \int_{|t|=r} \gamma(t) f(t) dt, \quad f \in A(\Omega),$$

the identities

$$\varphi(T_z(f)) = 0, \quad z \in \Omega,$$

hold true. Thus, the system $\{T_z(f) : z \in \Omega\}$ is incomplete in $A(\Omega)$ and by Lemma 1, f is not a cyclic element of operator D_{0,g_0} in $A(\Omega)$.

 $(i) \Rightarrow (ii)$: Suppose that f is not a cyclic element of operator D_{0,g_0} in $A(\Omega)$. Then by [8] there exist a function $\gamma \in A_0(\overline{\mathbb{C}} \setminus \Omega), \ \gamma \neq 0$, a closed rectifiable Jordan curve Γ lying in the analyticity domain of γ and in Ω , such that

$$\frac{1}{2\pi i} \int_{\Gamma} \gamma(t) \frac{tf(t)g_0(z) - zf(z)g_0(t)}{t - z} dt = 0, \ z \in \operatorname{int} \Gamma.$$
(4)

Here $A_0(\overline{\mathbb{C}} \setminus \Omega)$ denotes the space of analytic functions in $\overline{\mathbb{C}} \setminus \Omega$ vanishing at infinity; int Γ is the interior of curve Γ .

Let f and g_0 have no common zeroes in Ω . We denote

$$u(z) := \frac{1}{2\pi i} \int_{\Gamma} \frac{t\gamma(t)f(t)}{t-z} dt, \quad v(z) := \frac{1}{2\pi i} \int_{\Gamma} \frac{\gamma(t)g_0(t)}{t-z} dt, \quad z \in \operatorname{int} \Gamma.$$

Functions u and v can be analytically continued in Ω . It follows from (4) that

$$g_0(z)u(z) - zf(z)v(z) = 0, \quad z \in \Omega.$$

Since f and g_0 have no common zeroes in Ω , then

$$v_0 := \frac{v}{g_0} \in A(\Omega)$$
 and $u_0 := \frac{u}{f} \in A(\Omega).$

At that, $u_0(z) = zv_0(z), z \in \Omega$. By the Cauchy integral formula

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{tf(t)v_0(t)}{t-z} dt = f(z)u_0(z), \quad z \in \operatorname{int} \Gamma.$$

Moreover,

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{tf(t)\gamma(t)}{t-z} dt = f(z)u_0(z), \quad z \in \operatorname{int} \Gamma$$

This is why

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{tf(t)(\gamma(t) - v_0(t))}{t - z} dt = 0, \quad z \in \operatorname{int} \Gamma.$$

In the same way,

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{g_0(t)(\gamma(t) - v_0(t))}{t - z} dt = 0, \quad z \in \operatorname{int} \Gamma.$$

For $z \in \text{ext} \Gamma$ we let

$$\alpha(z) := \frac{1}{2\pi i} \int_{\Gamma} \frac{tf(t)(\gamma(t) - v_0(t))}{t - z} dt, \quad \beta(z) := \frac{1}{2\pi i} \int_{\Gamma} \frac{g_0(t)(\gamma(t) - v_0(t))}{t - z} dt.$$

Here the symbol ext Γ stands for the exterior of Γ . It follows from the properties of Cauchy type integrals and its limiting values (see [1, Ch. I, Sect. 4]) that functions α and β are analytic in ext Γ , can be analytically continued into some domain containing Γ , vanish at infinity, and

$$tf(t)(\gamma(t) - v_0(t)) = \alpha(t)$$
 and $g_0(t)(\gamma(t) - v_0(t)) = \beta(t).$

for $t \in \Gamma$. We note that $\gamma(t) - v_0(t) \neq 0$ on Γ . Indeed, otherwise function $v_0(t)$ can be analytically continued into the exterior of Γ and it vanishes at infinity. Hence, it vanishes identically. At the same time, $\gamma \neq 0$. It follows that

$$\frac{f(t)}{g_0(t)} = \frac{\alpha(t)}{t\beta(t)} =: \frac{\alpha(t)}{\omega(t)}$$

outside some finite set on Γ . This is why a meromorphic outside Γ function α/ω can be continued to a function f/g_0 meromorphic in Ω . The obtained function meromorphic in \mathbb{C} has finitely many poles and the infinity is either its zero or pole. It implies that $R := \alpha/\omega$ is a rational function.

BIBLIOGRAPHY

- F.D. Gakhov. Boundary value problems. Nauka, Moscow (1977). [Dover Publications New York (1990).]
- Yu.A. Kaz'min. On successive error terms of Taylor series // Vestn. MGU. Ser. 1. Matem. Mekh. 5, 35–46 (1963). (in Russian).
- N.E. Linchuk. Representation of commutants of the Pommiez operator and their applications // Matem. Zametki. 44:6, 794–802 (1988). [Math. Notes. 44:6, 926–930 (1988).]
- 4. N.I. Nagnibida. On a class of operators of generalized differentation in the space of functions analytic in a circle // Teor. Funkts. Funkts. Anal. Pril. Kharkov. 24, 98–106 (1975). (in Russian).
- 5. M.G. Khaplanov. On a completenetss of some system of analytic functions // Uchenye Zap. Rostov. Gos. Pedag. Univ. 3, 53–58 (1955). (in Russian).
- Z. Binderman. Functional shifts induced by right invertible operators // Math. Nachr. 157:1, 211-224 (1992).
- I.N. Dimovski, V.Z. Hristov. Commutants of the Pommiez operator // Int. J. Math. Math. Science. 2005:8, 1239–1251 (2005).

- 8. G. Köthe. Dualität in der Funktionentheorie // J. Reine Angew. Math. 1953:191, 30–49 (1953).
- 9. Yu.S. Linchuk. Cyclical elements of operators which are left-inverses to multiplication by an independent variable // Meth. Funct. Anal. Topol. 12:4, 384–388 (2006).
- M. Pommiez. Sur les zéros des reste successifs des séries de Taylor// Acad. Sci. Univ. Toulouse. 250:7, 1168–1170 (1960).
- M. Pommiez. Sur les restes successifs des séries de Taylor // C.R. Acad. Sci. 250:15, 2669–2671 (1960).
- M. Pommiez. Sur les restes et les dérivés des séries de Taylor // C.R. Acad. Sci. 251:17, 1707– 1709 (1960).
- M. Pommiez. Sur les différences divisées successives et les restes des séries de Newton généralisées // Ann. Fac. Sci. Univ. Toulouse. Ser. IV. 28, 101–110 (1964).

Ol'ga Alexandrovna Ivanova, South Federal University, I.I. Vorovich Institute of mathematics, mechanics and computer sciences, Milchakova, 8a, 344090, Rostov-on-Don, Russia E-mail: ivolga@sfedu.ru

Sergei Nikolaevich Melikhov, Southern Federal University, I.I. Vorovich Institute of mathematics, mechanics and computer sciences, Milchakova str., 8a, 344090, Rostov-on-Don, Russia,

Southern Mathematical Institute, VSC RAS, Markus str., 22, 362027, Vladikavkaz, Russia E-mail: melih@math.rsu.ru