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VARIOUS DEFINITIONS OF SPECTRUM OF ALMOST

PERIODIC FUNCTIONS
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Abstract. We consider various definitions of the spectrum for almost periodic functions
in a finite dimensional space for uniform, Stepanov’s, Weil’s, Besicovitch’s metrics. We
prove that in these cases the classical definition of spectrum is equivalent to an analogue
of definition of Beurling’s spectrum.
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1. Introduction

Let 𝑓 be a bounded measurable function on the real axis R. Its Beurling’s spectrum is the
set of 𝜆 ∈ R such that 𝑒𝑖𝜆𝑡 lies in the closure of finite sums

∑︀
𝑗

𝑐𝑗𝑓(𝑡 + 𝑥𝑗) and the closure is

understood in the sense of the weak topology in space 𝐿∞(R) as dual for 𝐿1(R)([2]). It can be
shown that Beurling’s spectrum introduced in such way is a closed set and if 𝑓 ∈ 𝐿∞(R)∩𝐿1(R),

this set coincides with the support of the Fourier transform ̂︀𝑓(𝜆) of function 𝑓(𝑡).
If 𝑓(𝑡) is an almost periodic (a.p.) function on the real axis, its spectrum is usually defined

by the identity

sp 𝑓 = {𝜆 ∈ R : 𝑎(𝜆, 𝑓) = lim
𝑇→∞

1

2𝑇

𝑇∫︁
−𝑇

𝑓(𝑡)𝑒−𝑖𝜆𝑡 ̸= 0}.

This spectrum can be any countable set and this is why it does not necessarily coincides with
Beurling’s spectrum of function 𝑓 . However, as it was shown in [4], if Beurling’s spectrum of
function 𝑓 is bounded and countable or only countable (if 𝑓 is uniformly continuous), then 𝑓
is an a.p. function.

In the present work we consider an analogue of Beurling’s spectrum employing stronger
topologies. We show that such Beurling’s spectrum coincides with the classical definition of the
spectrum for an almost periodic function 𝑓 . We consider functions in space R𝑛, 𝑛 > 1, being
almost periodic both in the sense of Bohr, Stepanov, Weil, Besicovitch. We notice that in [3],
[7], [8] we studied the properties of spectrum of similar functions and its relations with analytic
continuation of function on space C𝑛.

Let us formulate the definitions and theorems in the theory of a.p. functions, which we shall
employ in what follows.

By Ω(𝑥, 𝑎) we denote a squared beam, i.e., the Cartesian product of segments

Ω(𝑥, 𝑎) := [𝑥1, 𝑥1 + 𝑎1] × . . .× [𝑥𝑛, 𝑥𝑛 + 𝑎𝑛],

where 𝑥, 𝑎 ∈ R𝑛, 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑎 = (𝑎1, . . . , 𝑎𝑛).
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We introduce the following definitions of the distance between two functions 𝑓(𝑥) and 𝑔(𝑥)
such that 𝑓 : R𝑛 → C, 𝑔 : R𝑛 → C.

Definition 1. The quantity

𝐷𝑈 [𝑓(𝑥), 𝑔(𝑥)] = sup
𝑥∈R𝑛

|𝑓(𝑥) − 𝑔(𝑥)|

is called the distance in the uniform metric.

Definition 2. (see [9]) The quantity

𝐷𝑆𝑝
𝑙
[𝑓(𝑥), 𝑔(𝑥)] = sup

𝑥∈R𝑛

[
1

𝑙𝑛

∫︁
Ω(𝑥,𝑙𝐼)

|𝑓(𝑦) − 𝑔(𝑦)|𝑝𝑑𝑦]
1
𝑝 ,

where 𝐼 = (1, . . . , 1) is called 𝑆-distance of order 𝑝 (𝑝 > 1) associated with length 𝑙 (𝑙 > 0).
This metric is called Stepanov’s metric.

In the case 𝑙 = 1, instead of 𝐷𝑆𝑝
1

we shall write 𝐷𝑆𝑝 . We note that 𝑆-distances are equivalent
for various 𝑙 (for the case of one variable see [9]; in the multi-dimensional case the proof is
similar).

Definition 3. (see [9]) The quantity

𝐷𝑊 𝑝 [𝑓(𝑥), 𝑔(𝑥)] = lim
𝑙→∞

𝐷𝑆𝑝
𝑙
[𝑓(𝑥), 𝑔(𝑥)] = lim

𝑙→∞
sup
𝑥∈R𝑛

[︂
1

𝑙𝑛

∫︁
Ω(𝑥, 𝑙𝐼)

|𝑓(𝑦) − 𝑔(𝑦)|𝑝𝑑𝑦
]︂ 1

𝑝

is called 𝑊 -distance of order 𝑝, (𝑝 > 1). Such metric is called Weil’s metric.

Definition 4. (see [1]) The quantity

𝐷𝐵𝑝 [𝑓(𝑥), 𝑔(𝑥)] =

{︂
lim
𝑇→∞

1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼,2𝑇𝐼)

|𝑓(𝑦) − 𝑔(𝑦)|𝑝𝑑𝑦
}︂ 1

𝑝

= {𝑀{|𝑓 − 𝑔|𝑝}}
1
𝑝

(𝑝 > 1) is called Besicovitch’s distance of order 𝑝. Such metric is called Besicovitch’s metric.

In Definition 1 we always assume that functions 𝑓(𝑥) and 𝑔(𝑥) are continuous and bounded.
In Definitions 2–4 functions 𝑓(𝑥) and 𝑔(𝑥) are measurable and 𝑝-th power integrable in each
compact set.

Let 𝐷[𝑓(𝑥), 𝑔(𝑥)] be one of the above mentioned metrics 𝐷𝑈 , 𝐷𝑆𝑝
𝑙
, 𝐷𝑊 𝑝 , 𝐷𝐵𝑝 .

Definition 5. (see [1]) Function 𝑓(𝑥) : R𝑛 → C is called 𝐷-almost periodic function if there
exists a sequence of finite exponential sums 𝑃𝑛(𝑥) =

∑︀
𝑗

𝑐𝑗𝑒
𝑖⟨𝜆𝑗 ,𝑥⟩, 𝑐𝑗 ∈ C, 𝜆𝑗 ∈ R𝑛, such that

lim
𝑛→∞

𝐷[𝑓(𝑥), 𝑃𝑛(𝑥)] = 0.

We note that one often uses equivalent definitions of metrics 𝐷𝑈 , 𝐷𝑆𝑝
𝑙
, 𝐷𝑊 𝑝 in terms of

almost periods.

Definition 6. A vector 𝜏 ∈ R𝑛 is called (𝐷, 𝜀)-almost period of a 𝑝-th power integrable (in
each compact set) function 𝑓(𝑥) : R𝑛 → C if the inequality

𝐷[𝑓(𝑥 + 𝜏), 𝑓(𝑥)] < 𝜀

holds true.

Definition 7. A measurable and 𝑝-th power integrable (in each compact set) function 𝑓(𝑥) :
R𝑛 → C is called 𝐷-almost periodic (𝐷 = 𝐷𝑆𝑙

𝑝
) if for each 𝜀 > 0 there exists a relatively dense

set of 𝐸(𝐷, 𝜀)-almost periods of 𝑓(𝑥). At that, a set 𝐸 ⊂ R𝑛 is called relatively dense if there
exists 𝐿 < ∞ such that 𝐸 ∩ Ω[𝑎, 𝐿𝐼] ̸= ∅ for each 𝑎 ∈ R𝑛.
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For 𝑊 𝑝-a.p. functions this definition should be slightly changed. Under the above conditions,
𝑓 is 𝑊 𝑝-a.p. function if for each 𝜀 > 0 there exist 𝑙 < ∞ and relatively dense set of 𝐸(𝐷𝑆𝑙

𝑝
, 𝜀)-

almost periods 𝑓(𝑥).
For 𝑈 -a.p. function one should replace the property of measurability and integrability by

the property of continuity of function 𝑓(𝑥).
The definition of a.p. function implies immediately

Theorem 1. 𝐷-a.p. function 𝑓(𝑥) : R𝑛 → C is 𝐷-bounded and 𝐷-uniformly continuous.

Theorem 2. (see [9]) For each 𝐷-a.p. function 𝑓(𝑥) of several variables there exists the
mean value

𝑀{𝑓(𝑥)} = lim
𝑇→∞

1

𝑇 𝑛

∫︁
Ω(0, 𝑇 𝐼)

𝑓(𝑥)𝑑𝑥.

The limit lim
𝑇→∞

1
𝑇𝑛

∫︀
Ω(𝑎, 𝑇 𝐼)

𝑓(𝑥)𝑑𝑥 = 𝑀{𝑓(𝑥+ 𝑎)} exists uniformly in 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ R𝑛, and

the identity
𝑀{𝑓(𝑥 + 𝑎)} = 𝑀{𝑓(𝑥)}

holds true. The uniformity is absent in the case 𝐷 = 𝐷𝐵𝑝 , although the identity is still valid.

In particular, 𝑀{𝑓(𝑥)} = lim
𝑇→∞

1
(2𝑇 )𝑛

∫︀
Ω(−𝑇𝐼, 2𝑇𝐼)

𝑓(𝑥)𝑑𝑥.

To each 𝐷-a.p. function 𝑓(𝑥) of several variables we associate the Fourier series 𝑓(𝑥) ∼∑︀
𝜆∈R𝑛

𝑎(𝜆, 𝑓)𝑒𝑖⟨𝜆,𝑥⟩, where 𝑎(𝜆, 𝑓) = 𝑀{𝑓(𝑥)𝑒−𝑖⟨𝜆,𝑥⟩}.

Definition 8. (see [1] for 𝑛 = 1 and [5] for 𝑛 > 1) The spectrum of function 𝑓(𝑥) is the set
sp 𝑓 = {𝜆 ∈ R𝑛 : 𝑎(𝜆, 𝑓) ̸= 0}.

Theorem 3. The spectrum of a 𝐷-a.p. function 𝑓(𝑥) of several variables is at most count-
able.

The proofs of Theorems 1–3 for the one-dimensional case can be found in [9], while the case
of several variables can be treated in the same way.

Definition 9. Beurling’s type spectrum of an a.p. function is

sp𝐵 𝑓 = {𝜆 ∈ R𝑛 : 𝑒𝑖⟨𝜆,𝑡⟩ ∈ 𝐿𝑖𝑛{𝑓(𝑥 + 𝑡)}𝑥∈R𝑛}.

We note that the closure is taken in the same metric 𝐷, in which we define the periodicity.
In the work we prove the following theorem.

Theorem 4. Let 𝑓(𝑥) : R𝑛 → C be an 𝐷-a.p. function integrable in the Riemann sense
over each squared beam. Then sp 𝑓 = sp𝐵 𝑓 .

Proof. Let us prove the inclusion sp 𝑓 ⊂ sp𝐵 𝑓 .
1) Consider the case 𝐷 = 𝐷𝑊 𝑝 .
Let 𝜆 ∈ sp 𝑓 , then 𝑀{𝑓(𝑡)𝑒−𝑖⟨𝜆,𝑡⟩} = 𝛼 ̸= 0. We let 𝑓1(𝑡) = 1

𝛼
𝑓(𝑡)𝑒−𝑖⟨𝜆,𝑡⟩. It means that there

exists the limit

lim
𝑇→∞

1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥 = 1

uniformly in parameter 𝑡 ∈ R𝑛. Thus, for each 𝜀 > 0 there exists an independent of 𝑡 number
𝑇0 = 𝑇0(𝜀) such that for each 𝑇 > 𝑇0 the inequality⃒⃒⃒⃒

1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥− 1

⃒⃒⃒⃒
< 𝜀 (1)
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holds true. Let us show that for each 𝜀 > 0 there exists an integral sum associated with the
above written integral and approximating it in Weil’s metric uniformly in 𝑡 ∈ R𝑛. Since 𝑓1(𝑡)
is 𝑊 𝑝-a.p. function, it is 𝑊 𝑝-uniformly continuous, i.e., for each 𝜀 > 0 there exist 𝑙0 = 𝑙0(𝜀)
and 𝛿 = 𝛿(𝜀) such that for 𝑙 > 𝑙0 and |ℎ| < 𝛿 we have

𝐷𝑆𝑝
𝑙
[𝑓1(𝑡 + ℎ), 𝑓1(𝑡)] < 𝜀. (2)

Let {𝐵𝑘}𝑁𝑘=1 be an arbitrary partition of squared beam Ω(0, 𝑇 𝐼) such that diam(Bk) < 𝛿

(𝑘 = 1, 𝑁), where 𝛿 is taken from (2). It is obvious that
𝑁∑︀
𝑘=1

𝜇(𝐵𝑘) = 𝑇 𝑛 (where 𝜇 is the

Lebesgue measure in R𝑛). Let {ℎ𝑘}𝑁𝑘=1 be an arbtirary set of points in R𝑛 such that ℎ𝑘 ∈ 𝐵𝑘,
𝑘 = 1, 𝑁 . Then the integral sum corresponding to this partition reads as

𝜎(𝑓1) =
1

𝑇 𝑛

𝑁∑︁
𝑘=1

𝑓1(𝑡 + ℎ𝑘)𝜇(𝐵𝑘).

Let us show that

𝐷𝑊 𝑝

[︂
1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥, 𝜎(𝑓1)

]︂
< 𝜀,

i.e., that

lim
𝑙→∞

𝐷𝑆𝑝
𝑙

[︂
1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥, 𝜎(𝑓1)

]︂
< 𝜀.

In other words, there exists 𝑙0 > 0 such that for each 𝑙 > 𝑙0 and 𝑦 ∈ R𝑛 the inequality⎛⎜⎝ 1

𝑙𝑛

∫︁
Ω(0,𝑙𝐼)

⃒⃒⃒⃒
1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑥 + 𝑦 + 𝑡)𝑑𝑥− 1

𝑇 𝑛

𝑁∑︁
𝑘=1

𝑓1(𝑡 + ℎ𝑘 + 𝑦)𝜇(𝐵𝑘)

⃒⃒⃒⃒𝑝
𝑑𝑡

⎞⎟⎠
1
𝑝

< 𝜀 (3)

or ⎛⎜⎝ 1

𝑙𝑛

∫︁
Ω(0,𝑙𝐼)

⃒⃒⃒⃒
1

𝑇 𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

(𝑓1(𝑥 + 𝑡 + 𝑦) − 𝑓1(𝑡 + ℎ𝑘 + 𝑦))𝑑𝑥

⃒⃒⃒⃒𝑝
𝑑𝑡

⎞⎟⎠
1
𝑝

< 𝜀. (4)

We apply Hölder inequality to the expression⃒⃒⃒⃒
1

𝑇 𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

(𝑓1(𝑥 + 𝑡 + 𝑦) − 𝑓1(𝑡 + ℎ𝑘 + 𝑦))𝑑𝑥

⃒⃒⃒⃒𝑝
and obtain that it does not exceed

1

𝑇 𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

|𝑓1(𝑥 + 𝑡 + 𝑦) − 𝑓1(𝑡 + ℎ𝑘 + 𝑦)|𝑝 𝑑𝑥.

To prove (4), it is sufficient to satisfy

1

𝑙𝑛

∫︁
Ω(0,𝑙𝐼)

1

𝑇 𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

|𝑓1(𝑥 + 𝑡 + 𝑦) − 𝑓1(𝑡 + ℎ𝑘 + 𝑦)|𝑝 𝑑𝑥𝑑𝑡 < 𝜀𝑝. (5)

Switching the integration order, we obtain

1

𝑇 𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

1

𝑙𝑛

∫︁
Ω(0,𝑙𝐼)

|𝑓1(𝑥 + 𝑡 + 𝑦) − 𝑓1(𝑡 + ℎ𝑘 + 𝑦)|𝑝 𝑑𝑡𝑑𝑥. (6)
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We note that the following inequality

1

𝑇 𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

1

𝑙𝑛

∫︁
Ω(0,𝑙𝐼)

|𝑓1(𝑡 + 𝑥 + 𝑦) − 𝑓1(𝑡 + ℎ𝑘 + 𝑦)|𝑝𝑑𝑡𝑑𝑥

6
1

𝑇 𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

𝐷𝑝
𝑆𝑝
𝑙
[𝑓1(𝑡 + 𝑥), 𝑓1(𝑡 + ℎ𝑘)]𝑑𝑥

(7)

holds true. We apply inequality (2). Since 𝜇(𝐵𝑘) < 𝛿, 𝑘 = 1, 𝑁 , then |(𝑥 + 𝑡) − (𝑡 + ℎ𝑘)| < 𝛿
holds true ∀𝑥 ∈ 𝐵𝑘. Hence, there exists 𝑙0 > 0 such that for each 𝑙 > 𝑙0, each 𝑘 = 1, 𝑁 , each
𝑥 ∈ 𝐵𝑘 we have

𝐷𝑆𝑝
𝑙
[𝑓1(𝑡 + 𝑥), 𝑓1(𝑡 + ℎ𝑘)] < 𝜀.

This is why expression (7) does not exceed

1

𝑇 𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

𝜀𝑝𝑑𝑥 = 𝜀𝑝

that implies (5).
Thus, for each 𝜀 > 0 there exists integral sum 𝜎(𝑓1) associated with a partition independent

of 𝑡 ∈ R𝑛 such that

𝐷𝑊 𝑝 [
1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥, 𝜎(𝑓1)] < 𝜀.

Then

𝐷𝑊 𝑝 [𝜎(𝑓1), 1] 6 𝐷𝑊 𝑝

[︂
1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥, 𝜎(𝑓1)

]︂
+ 𝐷𝑊 𝑝

[︂
1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥, 1

]︂
.

Let us check that

𝐷𝑊 𝑝

[︂
1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥, 1

]︂
< 𝜀.

It follows from inequality (1) that⃒⃒⃒⃒
1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥− 1

⃒⃒⃒⃒𝑝
< 𝜀𝑝. (8)

Employing (8), we write out an obvious chain of relations

𝐷𝑊 𝑝

[︂
1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥, 1

]︂
= lim

𝑙→∞
sup
𝑦∈R𝑛

⎛⎜⎝ 1

𝑙𝑛

∫︁
Ω(𝑦,𝑙𝐼)

⃒⃒⃒⃒
1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑡 + 𝑥)𝑑𝑥− 1

⃒⃒⃒⃒𝑝
𝑑𝑡

⎞⎟⎠
1
𝑝

<

(︂
1

𝑙𝑛
𝑙𝑛𝜀𝑝

)︂ 1
𝑝

= 𝜀.

It follows that 𝐷𝑊 𝑝 [𝜎(𝑓1), 1] < 2𝜀.
Returning back to the previous notation, we have

𝐷𝑊 𝑝

[︂
𝛼

𝑇 𝑛

𝑁∑︁
𝑘=1

𝑓(𝑡 + ℎ𝑘)𝑒−𝑖⟨𝜆,𝑡⟩𝑒−𝑖⟨𝜆,ℎ𝑘⟩𝜇(𝐵𝑘), 1

]︂
< 2𝜀.
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We let 𝐴𝑘 := 𝛼𝜇(𝐵𝑘)𝑒
−𝑖⟨𝜆,ℎ𝑘⟩

𝑇𝑛 and we get

𝐷𝑊 𝑝

[︂ 𝑁∑︁
𝑘=1

𝐴𝑘𝑓(𝑡 + ℎ𝑘), 𝑒𝑖⟨𝜆,𝑡⟩
]︂
< 2𝜀.

Since 𝜀 is arbitrary, we obtain that 𝜆 ∈ sp𝐵 𝑓 .
2) In the case 𝐷 = 𝐷𝑆𝑝 , one just reproduce the above proof almost literally. In the parts of

the proof involving a limit as 𝑙 → ∞, one should choose 𝑙 = 1. Since 𝑆-distances corresponding
to various 𝑙 are topologically equivalent, the inclusion is also proven for 𝐷 = 𝐷𝑆𝑝

𝑙
.

3) We consider the case 𝐷 = 𝐷𝐵𝑝 .
Let 𝜆 ∈ sp 𝑓 . We denote 𝑓1(𝑡) = 1

𝛼
𝑓(𝑡)𝑒−𝑖⟨𝜆,𝑡⟩, where 𝛼 = 𝑀{𝑓(𝑡)𝑒−𝑖⟨𝜆,𝑡⟩} ≠ 0. It means that

there exists the limit

lim
𝑇→∞

1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼,2𝑇𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥 = 1.

For each 𝜀 > 0 there exists a number 𝑇0 = 𝑇0(𝜀) (depending probably of 𝑡 ∈ R𝑛) such that for
each 𝑇 > 𝑇0 the inequality ⃒⃒⃒⃒

1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼,2𝑇𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥− 1

⃒⃒⃒⃒
< 𝜀 (9)

is satisfied. Let us show that for each 𝜀 > 0 there exists an integral sum associated with the
above integral, which approximates the integral in Besicovitch’s metric. Since 𝑓1(𝑡) is 𝐵𝑝-a.p.
function, it is 𝐵𝑝-uniformly continuous, i.e., for each 𝜀 > 0 there exists 𝛿 = 𝛿(𝜀) such that

𝐷𝐵𝑝 [𝑓1(𝑡 + ℎ), 𝑓1(𝑡)] < 𝜀 (10)

for |ℎ| < 𝛿.
Let {𝐵𝑘}𝑁𝑘=1 be an arbitrary partition of squared beam Ω(−𝑇𝐼, 2𝑇𝐼) such that diam(Bk) < 𝛿

(𝑘 = 1, 𝑁), where 𝛿 is taken from (10). It is obvious that
𝑁∑︀
𝑘=1

𝜇(𝐵𝑘) = (2𝑇 )𝑛, where 𝜇 is the

Lebesgue measure in R𝑛. Let {ℎ𝑘}𝑁𝑘=1 be an arbitrary set of points in R𝑛 such that ℎ𝑘 ∈ 𝐵𝑘,
𝑘 = 1, 𝑁 . Then the integral sum associated with such partition reads as

𝜎(𝑓1) =
1

(2𝑇 )𝑛

𝑁∑︁
𝑘=1

𝑓1(𝑡 + ℎ𝑘)𝜇(𝐵𝑘).

Let us show that

𝐷𝐵𝑝

[︂
1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼,2𝑇𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥, 𝜎(𝑓1)

]︂
< 𝜀,

i.e., there exists 𝑆0 > 0 such that for each 𝑆 > 𝑆0 the inequality⎛⎜⎝ 1

(2𝑆)𝑛

∫︁
Ω(−𝑆𝐼,2𝑆𝐼)

⃒⃒⃒⃒
1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼,2𝑇𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥− 1

(2𝑇 )𝑛

𝑁∑︁
𝑘=1

𝑓1(𝑡 + ℎ𝑘)𝜇(𝐵𝑘)

⃒⃒⃒⃒𝑝
𝑑𝑡

⎞⎟⎠
1
𝑝

< 𝜀 (11)

holds true or⎛⎜⎝ 1

(2𝑆)𝑛

∫︁
Ω(−𝑆𝐼,2𝑆𝐼)

⃒⃒⃒⃒
1

(2𝑇 )𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

(𝑓1(𝑥 + 𝑡) − 𝑓1(𝑡 + ℎ𝑘))𝑑𝑥

⃒⃒⃒⃒𝑝
𝑑𝑡

⎞⎟⎠
1
𝑝

< 𝜀. (12)
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We apply Hölder inequality to the expression⃒⃒⃒⃒
1

(2𝑇 )𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

(𝑓1(𝑥 + 𝑡) − 𝑓1(𝑡 + ℎ𝑘))𝑑𝑥

⃒⃒⃒⃒𝑝
and obtain that it does not exceed

1

(2𝑇 )𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

|𝑓1(𝑥 + 𝑡) − 𝑓1(𝑡 + ℎ𝑘)|𝑝 𝑑𝑥.

To satisfy (12), it is sufficient to prove

1

(2𝑆)𝑛

∫︁
Ω(−𝑆𝐼,2𝑆𝐼)

1

(2𝑇 )𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

|𝑓1(𝑥 + 𝑡) − 𝑓1(𝑡 + ℎ𝑘)|𝑝 𝑑𝑥𝑑𝑡 < 𝜀𝑝 (13)

or

1

(2𝑇 )𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

1

(2𝑆)𝑛

∫︁
Ω(−𝑆𝐼,2𝑆𝐼)

|𝑓1(𝑥 + 𝑡) − 𝑓1(𝑡 + ℎ𝑘)|𝑝 𝑑𝑡𝑑𝑥 < 𝜀𝑝. (14)

Let us estimate each term in the sum. Let ∀𝑥 ∈ 𝐵𝑘, max{|x|,|hk|} = bk. Then the following
chain of inequalities hold:⎛⎜⎝ 1

(2𝑆)𝑛

∫︁
Ω(−𝑆𝐼,2𝑆𝐼)

|𝑓1(𝑥 + 𝑡) − 𝑓1(𝑡 + ℎ𝑘)|𝑝 𝑑𝑡

⎞⎟⎠
1
𝑝

6

⎛⎜⎝ 1

(2𝑆)𝑛

∫︁
Ω(−𝑆𝐼,2𝑆𝐼)

|𝑓1(𝑥 + 𝑡)|𝑝 𝑑𝑡

⎞⎟⎠
1
𝑝

+

⎛⎜⎝ 1

(2𝑆)𝑛

∫︁
Ω(−𝑆𝐼,2𝑆𝐼)

|𝑓1(𝑡 + ℎ𝑘)|𝑝 𝑑𝑡

⎞⎟⎠
1
𝑝

6

⎛⎜⎝2𝑛+1(𝑆 + 𝑏𝑘)𝑛

(2𝑆)𝑛
1

2𝑛(𝑆 + 𝑏𝑘)𝑛

∫︁
Ω((−𝑆−𝑏𝑘)𝐼,2(𝑆+𝑏𝑘)𝐼)

|𝑓1(𝑡)|𝑝 𝑑𝑡

⎞⎟⎠
1
𝑝

.

(15)

Since 𝑓1(𝑡) is an 𝐵𝑝-a.p. function, for sufficiently large 𝑆 there exists 𝐶𝑘 > 0, 𝑘 = 1, . . . , 𝑁 ,
such that ⎛⎜⎝ 1

2𝑛(𝑆 + 𝑏𝑘)𝑛

∫︁
Ω((−𝑆−𝑏𝑘)𝐼,2(𝑆+𝑏𝑘)𝐼)

|𝑓1(𝑡)|𝑝 𝑑𝑡

⎞⎟⎠
1
𝑝

< 𝐶𝑘.

Since the factor
(︁

2𝑛+1(𝑆+𝑏𝑘)
𝑛

(2𝑆)𝑛

)︁ 1
𝑝

is bounded for sufficiently large 𝑆, expression (15) does not

exceed some constant and therefore, each expression

1

(2𝑆)𝑛

∫︁
Ω(−𝑆𝐼,2𝑆𝐼)

|𝑓1(𝑥 + 𝑡) − 𝑓1(𝑡 + ℎ𝑘)|𝑝 𝑑𝑡

is bounded for sufficiently large 𝑆.
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Passing to the limit, we arrive at the following inequality

lim
𝑆→∞

1

(2𝑇 )𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

1

(2𝑆)𝑛

∫︁
Ω(−𝑆𝐼,2𝑆𝐼)

|𝑓1(𝑡 + 𝑥) − 𝑓1(𝑡 + ℎ𝑘)|𝑝𝑑𝑡𝑑𝑥

6
1

(2𝑇 )𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

𝐷𝑝
𝐵𝑝 [𝑓1(𝑡 + 𝑥), 𝑓1(𝑡 + ℎ𝑘)]𝑑𝑥.

(16)

We apply inequality (10). Since 𝜇(𝐵𝑘) < 𝛿, 𝑘 = 1, 𝑁 , then |(𝑥 + 𝑡) − (𝑡 + ℎ𝑘)| < 𝛿 holds
∀𝑥 ∈ 𝐵𝑘. Hence, for each 𝑘 = 1, 𝑁 and each 𝑥 ∈ 𝐵𝑘 the inequlaity

𝐷𝑝
𝐵𝑝 [𝑓1(𝑡 + 𝑥), 𝑓1(𝑡 + ℎ𝑘)] < 𝜀𝑝 (17)

holds true. Therefore, expression (16) does not exceed

1

(2𝑇 )𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

𝜀𝑝𝑑𝑥 = 𝜀𝑝

that yields (13).
Thus, we have

𝐷𝐵𝑝

[︂
1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼,2𝑇𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥, 𝜎(𝑓1)

]︂
6 𝜀.

Then

𝐷𝐵𝑝 [𝜎(𝑓1), 1] 6 𝐷𝐵𝑝

[︂
1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼,2𝑇𝐼)

𝑓1(𝑥+ 𝑡)𝑑𝑥, 𝜎(𝑓1)

]︂
+𝐷𝐵𝑝

[︂
1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼,2𝑇𝐼)

𝑓1(𝑥+ 𝑡)𝑑𝑥, 1

]︂
.

Let us check that

𝐷𝐵𝑝

[︂
1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼,2𝑇𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥, 1

]︂
< 𝜀.

It follows from inequality (9) that⃒⃒⃒⃒
1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼,2𝑇𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥− 1

⃒⃒⃒⃒𝑝
6 𝜀𝑝. (18)

Employing (18) we write the obvious chain of inequalities

𝐷𝐵𝑝

[︂
1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼,2𝑇𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥, 1

]︂

=

⎛⎜⎝ lim
𝑆→∞

1

(2𝑆)𝑛

∫︁
Ω(−𝑆𝐼,2𝑆𝐼)

⃒⃒⃒⃒
1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼,2𝑇𝐼)

𝑓1(𝑡 + 𝑥)𝑑𝑥− 1

⃒⃒⃒⃒𝑝
𝑑𝑡

⎞⎟⎠
1
𝑝

6

(︂
lim
𝑆→∞

1

(2𝑆)𝑛
(2𝑆)𝑛𝜀𝑝

)︂ 1
𝑝

= 𝜀.

It implies 𝐷𝐵𝑝 [𝜎(𝑓1), 1] < 2𝜀.
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We return back to the previous notation and let 𝐴𝑘 := 𝛼𝜇(𝐵𝑘)𝑒
−𝑖⟨𝜆,ℎ𝑘⟩

(2𝑇 )𝑛
to obtain

𝐷𝐵𝑝

[︂ 𝑁∑︁
𝑘=1

𝐴𝑘𝑓(𝑡 + ℎ𝑘), 𝑒𝑖⟨𝜆,𝑡⟩
]︂
< 2𝜀.

Since 𝜀 is arbitrary, we obtain that 𝜆 ∈ sp𝐵 𝑓 .
4) We consider the case 𝐷 = 𝐷𝑈 .
Let 𝜆 ∈ sp 𝑓 and 𝑓1(𝑡) = 1

𝛼
𝑓(𝑡)𝑒−𝑖⟨𝜆,𝑡⟩, where 𝛼 = 𝑀{𝑓(𝑡)𝑒−𝑖⟨𝜆,𝑡⟩}, 𝛼 ∈ R ∖ {0}. Then there

exists the limit lim
𝑡→∞

1
𝑇𝑛

∫︀
Ω(0,𝑇 𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥 = 1 uniformly in parameter 𝑡 ∈ R𝑛. Thus, for each

𝜀 > 0 there exists a number 𝑇0 = 𝑇0(𝜀) independent of 𝑡 such that for each 𝑇 > 𝑇0 the inequality⃒⃒⃒⃒
1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑥 + 𝑡)𝑑𝑥− 1

⃒⃒⃒⃒
< 𝜀 (19)

holds true. Let us show that for each 𝜀 > 0 there exists an integral sum corresponding to the
above integral, which approximates this integral uniformly in 𝑡 ∈ R𝑛. Since 𝑓1(𝑡) is uniform
a.p. function, it is uniformly continuous in R𝑛, i.e., for each 𝜀 > 0 there exists 𝛿 = 𝛿(𝜀) such
that if |ℎ| < 𝛿, then for each 𝑡 ∈ R𝑛

|𝑓1(𝑡 + ℎ) − 𝑓1(𝑡)| < 𝜀. (20)

As above, let {𝐵𝑘}𝑁𝑘=1 be an arbitrary partition of squared beam Ω(0, 𝑇 𝐼) such that

diam(Bk) < 𝛿 (𝑘 = 1, 𝑁), where 𝛿 is taken from (20). It is obvious that
𝑁∑︀
𝑘=1

𝜇(𝐵𝑘) = 𝑇 𝑛,

where 𝜇 is the Lebesgue measure in R𝑛. Let {ℎ𝑘}𝑁𝑘=1 be an arbitrary set of points in R𝑛 such
that ℎ𝑘 ∈ 𝐵𝑘, 𝑘 = 1, 𝑁 . Then the integral sum associated with this partition reads as

𝜎(𝑓1) =
1

𝑇 𝑛

𝑁∑︁
𝑘=1

𝑓1(𝑡 + ℎ𝑘)𝜇(𝐵𝑘).

We estimate
⃒⃒⃒

1
𝑇𝑛

∫︀
Ω(0,𝑇 𝐼)

𝑓1(𝑡 + 𝑥)𝑑𝑥− 𝜎(𝑓1)
⃒⃒⃒

and obtain

⃒⃒⃒⃒
1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑡 + 𝑥)𝑑𝑥− 1

𝑇 𝑛

𝑁∑︁
𝑘=1

𝑓1(𝑡 + ℎ𝑘)𝜇(𝐵𝑘)

⃒⃒⃒⃒

=
1

𝑇 𝑛

⃒⃒⃒⃒ 𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

(𝑓1(𝑡 + 𝑥) − 𝑓1(𝑡 + ℎ𝑘))𝑑𝑥

⃒⃒⃒⃒

6
1

𝑇 𝑛

𝑁∑︁
𝑘=1

∫︁
𝐵𝑘

|𝑓1(𝑡 + 𝑥) − 𝑓1(𝑡 + ℎ𝑘)|𝑑𝑥.

(21)

We observe that if diam(Bk) < 𝛿 (𝑘 = 1, 𝑁), then for each 𝑥 ∈ 𝐵𝑘 we have |(𝑥+ 𝑡)− (𝑡+ℎ𝑘)| =
|𝑥− ℎ𝑘| < 𝛿. By (20) it implies

|𝑓1(𝑥 + 𝑡) − 𝑓1(𝑡 + ℎ𝑘)| < 𝜀. (22)

Employing (22) for (21), we obtain that (21) does not exceed 1
𝑇𝑛 𝜀

𝑁∑︀
𝑘=1

𝜇(𝐵𝑘) = 1
𝑇𝑛 𝜀𝑇

𝑛 = 𝜀.
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Thus, for each 𝜀 > 0 there exists integral sum 𝜎(𝑓1) associated with a partition independent
of 𝑡 such that ⃒⃒⃒⃒

1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑡 + 𝑥)𝑑𝑥− 𝜎(𝑓1)

⃒⃒⃒⃒
< 𝜀 (∀𝑡 ∈ R𝑛). (23)

It follows from inequalities (19) and (23) that⃒⃒⃒⃒
𝜎(𝑓1) − 1

⃒⃒⃒⃒
6

⃒⃒⃒⃒
𝜎(𝑓1) −

1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑡 + 𝑥)𝑑𝑥

⃒⃒⃒⃒
+

⃒⃒⃒⃒
1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓1(𝑡 + 𝑥)𝑑𝑥− 1

⃒⃒⃒⃒
< 2𝜀,

or, returning back to the previous notations, we have⃒⃒⃒⃒
⃒ 𝛼𝑇 𝑛

𝑁∑︁
𝑘=1

𝑓(𝑡 + ℎ𝑘)𝑒−𝑖⟨𝜆,𝑡⟩𝑒−𝑖⟨𝜆,ℎ𝑘⟩𝜇(𝐵𝑘) − 1

⃒⃒⃒⃒
⃒ < 2𝜀.

We denote 𝐴𝑘 := 𝛼𝜇(𝐵𝑘)𝑒
−𝑖⟨𝜆,ℎ𝑘⟩

𝑇𝑛 to obtain⃒⃒⃒⃒
⃒

𝑁∑︁
𝑘=1

𝐴𝑘𝑓(𝑡 + ℎ𝑘) − 𝑒𝑖⟨𝜆,𝑡⟩

⃒⃒⃒⃒
⃒ < 2𝜀.

Hence, 𝜆 ∈ sp𝐵 𝑓 .
Thus, the inclusion sp 𝑓 ⊂ sp𝐵 𝑓 is proved for the cases 𝐷 = 𝐷𝑈 , 𝐷𝑆𝑝

𝑙
, 𝐷𝑊 𝑝 , 𝐷𝐵𝑝 .

Let us prove the inclusion sp𝐵 𝑓 ⊂ sp 𝑓. We shall argue by contradiction.
1) We consider the case 𝐷 = 𝐷𝑊 𝑝 .
Let 𝜆 ∈ sp𝐵 𝑓 ∖ sp 𝑓 . Employing the properties of the mean, we have the following chain of

equivalent statements

𝜆 ̸∈ sp 𝑓 ⇔ 𝑀{𝑓(𝑡)𝑒−𝑖⟨𝜆,𝑡⟩} = 0 ⇔ 𝑀{𝑓(𝑡 + 𝑥)𝑒−𝑖⟨𝜆,𝑡+𝑥⟩} = 0

⇔ 𝑀{𝑓(𝑡 + 𝑥)𝑒−𝑖⟨𝜆,𝑡⟩} = 0.
(24)

Since 𝜆 ∈ sp𝐵 𝑓, then ∀𝜀 > 0 ∃{𝐴𝑘}𝑚𝑘=1 ⊂ R ∃{ℎ𝑘}𝑚𝑘=1 ⊂ R𝑛 :

𝐷𝑊 𝑝 [𝑒𝑖⟨𝜆,𝑥⟩,
𝑚∑︁
𝑘=1

𝐴𝑘𝑓(𝑥 + ℎ𝑘)] < 𝜀.

In other words, ∀𝜀 > 0 ∃{𝐴𝑘}𝑚𝑘=1 ⊂ R ∃{ℎ𝑘}𝑚𝑘=1 ⊂ R𝑛 :

lim
𝑙→∞

sup
𝑡∈R𝑛

⎛⎜⎝ 1

𝑙𝑛

∫︁
Ω(𝑡, 𝑙𝐼)

⃒⃒⃒⃒
⃒

𝑚∑︁
𝑘=1

𝐴𝑘𝑓(ℎ𝑘 + 𝑥) − 𝑒𝑖⟨𝜆,𝑥⟩

⃒⃒⃒⃒
⃒
𝑝

𝑑𝑥

⎞⎟⎠
1
𝑝

< 𝜀.

In what follows we fix 𝜀 and we assume 𝜀 < 1
2
. It yields the existence of 𝑙 < ∞ such that

sup
𝑡∈R𝑛

⎛⎜⎝ 1

𝑙𝑛

∫︁
Ω(𝑡, 𝑙𝐼)

⃒⃒⃒⃒
⃒

𝑚∑︁
𝑘=1

𝐴𝑘𝑓(ℎ𝑘 + 𝑥) − 𝑒𝑖⟨𝜆,𝑥⟩

⃒⃒⃒⃒
⃒
𝑝

𝑑𝑥

⎞⎟⎠
1
𝑝

< 𝜀.

This is why for each 𝑡 ∈ R𝑛 the inequality⎛⎜⎝ 1

𝑙𝑛

∫︁
Ω(𝑡, 𝑙𝐼)

⃒⃒⃒⃒
⃒

𝑚∑︁
𝑘=1

𝐴𝑘𝑓(ℎ𝑘 + 𝑥) − 𝑒𝑖⟨𝜆,𝑥⟩

⃒⃒⃒⃒
⃒
𝑝

𝑑𝑥

⎞⎟⎠
1
𝑝

< 𝜀
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holds true or ⎛⎜⎝ 1

𝑙𝑛

∫︁
Ω(𝑡, 𝑙𝐼)

⃒⃒⃒⃒
⃒

𝑚∑︁
𝑘=1

𝐴𝑘𝑓(ℎ𝑘 + 𝑥)𝑒−𝑖⟨𝜆,𝑥⟩ − 1

⃒⃒⃒⃒
⃒
𝑝

𝑑𝑥

⎞⎟⎠
1
𝑝

< 𝜀.

We make a change of variables and get⎛⎜⎝ 1

𝑙𝑛

∫︁
Ω(0, 𝑙𝐼)

⃒⃒⃒⃒
⃒

𝑚∑︁
𝑘=1

𝐴𝑘𝑓(ℎ𝑘 + 𝑥 + 𝑡)𝑒−𝑖⟨𝜆,𝑡+𝑥⟩ − 1

⃒⃒⃒⃒
⃒
𝑝

𝑑𝑥

⎞⎟⎠
1
𝑝

< 𝜀. (25)

Applying Hölder inequality to (25), we have

1

𝑙𝑛

∫︁
Ω(0, 𝑙𝐼)

⃒⃒⃒⃒
⃒

𝑚∑︁
𝑘=1

𝐴𝑘𝑓(ℎ𝑘 + 𝑥 + 𝑡)𝑒−𝑖⟨𝜆,𝑡+𝑥⟩ − 1

⃒⃒⃒⃒
⃒ 𝑑𝑥

6

⎛⎜⎝ 1

𝑙𝑛

∫︁
Ω(0, 𝑙𝐼)

⃒⃒⃒⃒
⃒

𝑚∑︁
𝑘=1

𝐴𝑘𝑓(ℎ𝑘 + 𝑥 + 𝑡)𝑒−𝑖⟨𝜆,𝑡+𝑥⟩ − 1

⃒⃒⃒⃒
⃒
𝑝

𝑑𝑥

⎞⎟⎠
1
𝑝

< 𝜀.

(26)

We integrate the left hand side of (26) over Ω(0, 𝑇 𝐼), where 𝑇 > 𝑇0. Then we switch the
integration order to obtain

1

𝑙𝑛

∫︁
Ω(0, 𝑙𝐼)

1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

⃒⃒⃒⃒
⃒

𝑚∑︁
𝑘=1

𝐴𝑘𝑓(ℎ𝑘 + 𝑥 + 𝑡)𝑒−𝑖⟨𝜆,𝑥+𝑡⟩ − 1

⃒⃒⃒⃒
⃒ 𝑑𝑡𝑑𝑥 < 𝜀.

Then

1

𝑙𝑛

∫︁
Ω(0, 𝑙𝐼)

⃒⃒⃒⃒
1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

(︃
𝑚∑︁
𝑘=1

𝐴𝑘𝑓(ℎ𝑘 + 𝑥 + 𝑡)𝑒−𝑖⟨𝜆,𝑥+𝑡⟩ − 1

)︃
𝑑𝑡

⃒⃒⃒⃒
𝑑𝑥 < 𝜀.

or

1

𝑙𝑛

∫︁
Ω(0, 𝑙𝐼)

⃒⃒⃒⃒ 𝑚∑︁
𝑘=1

𝐴𝑘𝑒
−𝑖⟨𝜆,𝑥⟩ 1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓(ℎ𝑘 + 𝑥 + 𝑡)𝑒−𝑖⟨𝜆,𝑡⟩𝑑𝑡− 1

⃒⃒⃒⃒
𝑑𝑥 < 𝜀. (27)

Employing the definition of the mean, by (24) we obtain

∀𝜀1 > 0 ∃𝑇0 > 0∀𝑇 > 𝑇0 :

⃒⃒⃒⃒
1

𝑇 𝑛

∫︁
Ω(0, 𝑇 𝐼)

𝑓(ℎ𝑘 + 𝑥 + 𝑡)𝑒−𝑖⟨𝜆,𝑡⟩𝑑𝑡

⃒⃒⃒⃒
< 𝜀1, (28)

where we choose 𝜀1 = 𝜀
𝑚∑︀

𝑘=1

|𝐴𝑘|
.

By (28) we have⃒⃒⃒⃒ 𝑚∑︁
𝑘=1

𝐴𝑘𝑒
−𝑖⟨𝜆,𝑥⟩ 1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓(ℎ𝑘 + 𝑥 + 𝑡)𝑒−𝑖⟨𝜆,𝑡⟩𝑑𝑡

⃒⃒⃒⃒

6
𝑚∑︁
𝑘=1

|𝐴𝑘| ·
⃒⃒⃒⃒

1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓(ℎ𝑘 + 𝑥 + 𝑡)𝑒−𝑖⟨𝜆,𝑡⟩𝑑𝑡

⃒⃒⃒⃒
< 𝜀1

𝑚∑︁
𝑘=1

|𝐴𝑘| = 𝜀.
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This is why

1

𝑙𝑛

∫︁
Ω(0, 𝑙𝐼)

⃒⃒⃒⃒ 𝑚∑︁
𝑘=1

𝐴𝑘𝑒
−𝑖⟨𝜆,𝑥⟩ 1

𝑇 𝑛

∫︁
Ω(0,𝑇 𝐼)

𝑓(ℎ𝑘 + 𝑥 + 𝑡)𝑒−𝑖⟨𝜆,𝑡⟩𝑑𝑡− 1

⃒⃒⃒⃒
𝑑𝑥 > 1 − 𝜀.

The obtained inequality contradicts (27) and the choice of 𝜀. It proves the inclusion sp𝐵 𝑓 ⊂ sp 𝑓
in the considered case.

2) It is easy to see that in the case 𝐷 = 𝐷𝑆𝑝 the proof becomes simpler. It is sufficient to
choose 𝑙 = 1 and to reproduce literally the main part of the proof.

3) We consider the case 𝐷 = 𝐷𝐵𝑝 . We note that (24) still holds.
Let 𝜆 ∈ sp𝐵 𝑓 ∖ sp 𝑓, then ∀𝜀 > 0 ∃{𝐴𝑘}𝑚𝑘=1 ⊂ R ∃{ℎ𝑘}𝑚𝑘=1 ⊂ R𝑛 :

𝐷𝐵𝑝

[︂
𝑒𝑖⟨𝜆,𝑥⟩,

𝑚∑︁
𝑘=1

𝐴𝑘𝑓(𝑥 + ℎ𝑘)

]︂
< 𝜀.

In other words, ∀𝜀 > 0 ∃{𝐴𝑘}𝑚𝑘=1 ⊂ R ∃{ℎ𝑘}𝑚𝑘=1 ⊂ R𝑛 :⎛⎜⎝ lim
𝑇→∞

1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼, 2𝑇𝐼)

⃒⃒⃒⃒
⃒

𝑚∑︁
𝑘=1

𝐴𝑘𝑓(ℎ𝑘 + 𝑥) − 𝑒𝑖⟨𝜆,𝑥⟩

⃒⃒⃒⃒
⃒
𝑝

𝑑𝑥

⎞⎟⎠
1
𝑝

< 𝜀,

and we still assume that 𝜀 < 1
2
.

Applying Hölder inequality, we have

lim
𝑇→∞

1

(2𝑇 )𝑛

⃒⃒⃒⃒
⃒⃒⃒ ∫︁
Ω(−𝑇𝐼, 2𝑇𝐼)

(︃
𝑚∑︁
𝑘=1

𝐴𝑘𝑓(ℎ𝑘 + 𝑥) − 𝑒𝑖⟨𝜆,𝑥⟩

)︃⃒⃒⃒⃒⃒⃒⃒ 𝑑𝑥 < 𝜀. (29)

We then obtain

lim
𝑇→∞

⃒⃒⃒⃒
⃒⃒⃒ 𝑚∑︁
𝑘=1

𝐴𝑘
1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼, 2𝑇𝐼)

𝑓(ℎ𝑘 + 𝑥)𝑒−𝑖⟨𝜆,𝑥⟩𝑑𝑥− 1

⃒⃒⃒⃒
⃒⃒⃒ < 𝜀. (30)

On the other hand, employing the definition of the mean, by (24) we obtain

∀ℎ𝑘 > 0 ∃𝑇𝑘 > 0∀𝑇 > 𝑇𝑘 :

⃒⃒⃒⃒
⃒⃒⃒ 1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼, 2𝑇𝐼)

𝑓(ℎ𝑘 + 𝑡)𝑒−𝑖⟨𝜆,𝑡⟩𝑑𝑡

⃒⃒⃒⃒
⃒⃒⃒ < 𝜀1, (31)

where we choose 𝜀1 = 𝜀
𝑚∑︀

𝑘=1
|𝐴𝑘|

.

By (31) for all 𝑇 > max
𝑘

𝑇𝑘 we have⃒⃒⃒⃒ 𝑚∑︁
𝑘=1

𝐴𝑘
1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼, 2𝑇𝐼)

𝑓(ℎ𝑘 + 𝑥)𝑒−𝑖⟨𝜆,𝑡⟩𝑑𝑥

⃒⃒⃒⃒

6
𝑚∑︁
𝑘=1

|𝐴𝑘| ·
⃒⃒⃒⃒

1

𝑇 𝑛

∫︁
Ω(−𝑇𝐼, 2𝑇𝐼)

𝑓(ℎ𝑘 + 𝑥)𝑒−𝑖⟨𝜆,𝑥⟩𝑑𝑥

⃒⃒⃒⃒
< 𝜀1

𝑚∑︁
𝑘=1

|𝐴𝑘| = 𝜀.

This is why ⃒⃒⃒⃒ 𝑚∑︁
𝑘=1

𝐴𝑘
1

(2𝑇 )𝑛

∫︁
Ω(−𝑇𝐼, 2𝑇𝐼)

𝑓(ℎ𝑘 + 𝑥)𝑒−𝑖⟨𝜆,𝑥⟩𝑑𝑥− 1

⃒⃒⃒⃒
> 1 − 𝜀.
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The obtained inequality contradicts (30) and the choice of 𝜀 that proves the inclusion sp𝐵 𝑓 ⊂
sp 𝑓 in the considered case.

4) In the case of uniform metric, by (24) and inequality |𝑀{𝑓(𝑡)}| 6 sup
𝑡∈R𝑛

|𝑓(𝑡)|, instead of

(25)–(27) we obtain: ∀𝜀 > 0 ∃{𝐴𝑘}𝑚𝑘=1 ⊂ R ∃{ℎ𝑘}𝑚𝑘=1 ⊂ R𝑛 :⃒⃒⃒⃒
𝑀

{︂ 𝑚∑︁
𝑘=1

𝐴𝑘𝑓(𝑡 + ℎ𝑘)𝑒−𝑖⟨𝜆,𝑡⟩ − 1

}︂⃒⃒⃒⃒
< 𝜀.

Then ⃒⃒⃒⃒ 𝑚∑︁
𝑘=1

𝐴𝑘𝑀{𝑓(𝑡 + ℎ𝑘)𝑒−𝑖⟨𝜆,𝑡⟩} − 1

⃒⃒⃒⃒
< 𝜀

that contradicts to the choice of 𝜀. The proof is complete.
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