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ON PERTURBATION OF SCHRÖDINGER OPERATOR

ON AXIS BY NARROW POTENTIALS

A.R. BIKMETOV, V.F. VIL’DANOVA, I.KH. KHUSNULLIN

Abstract. We consider a Schrödinger operator on the axis with two complex-valued po-
tentials depending on two small parameters. One of these parameters describes the length
of the supports of the potentials, while the other corresponds to the maximal values of the
absolute values of the potentials. We obtain the sufficient condition ensuring the emergence
of an eigenvalues from the threshold of the essential spectrum. The asymptotics for this
eigenvalue is constructed.
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1. Problem an main results

Let 𝑉1(𝑥) and 𝑉2(𝑥) be complex-valued functions in 𝐶∞
0 (R), 𝑥1, 𝑥2 be arbitrary numbers

(𝑥1 < 𝑥2), parameters 0 < 𝜇, 𝜀 ≪ 1 satisfy the relation

𝜀𝜇−1 = 𝑜(1). (1)

In the work we consider the operator

ℋ𝜀,𝜇 := − 𝑑2

𝑑𝑥2
+ 𝜇−1

(︂
𝑉1

(︂
𝑥− 𝑥1

𝜀

)︂
+ 𝑉2

(︂
𝑥− 𝑥2

𝜀

)︂)︂
, 𝑥1 < 𝑥2 (2)

in 𝐿2(R) on domain 𝑊 2
2 (R).

It is well-known (see, for instance, [1, Ch. V]) that operator ℋ0 := − 𝑑2

𝑑𝑥2 in 𝐿2(R) on
domain 𝑊 2

2 (R) is self-adjoint, its discrete spectrum is empty, and the continuous spectrum
coincides with the semi-axis [0,+∞). Since functions 𝑉𝑗 are compactly supported, by [1, Ch.
IV, Thms. 1.1, 5.35]) continuous spectrum of operator ℋ𝜀,𝜇 is the semi-axis [0,+∞) (for the
case of complex-valued functions see, for instance, [2]).

In [3]–[6] the effect of new eigenvalues emerging from the thresholds of the continuous spec-
trum for the operator ℋ0 + 𝜀𝑊 (𝑥) was studied, where 𝑊 (𝑥) is a real-valued potential de-
caying sufficiently fast at infinity. In [3] the case when function 𝑊 (𝑥) satisfies the condition∫︀
R
|𝑊 (𝑥)|(1 + 𝑥2)𝑑𝑥 < ∞ was considered. It was shown that if

∫︀
R
𝑊 (𝑡)𝑑𝑡 6 0, operator

ℋ0 + 𝜀𝑊 (𝑥) had the unique eigenvalue. In [4] a wider class of functions 𝑊 (𝑥) was considered,
for which

∫︀
R
|𝑊 (𝑥)|(1 + 𝑥2)𝑑𝑥 = ∞. Three cases were treated when 𝑊 (𝑥) behaves as −𝑎𝑥−𝛽

for 𝑥 → ∞. It was shown that as 2 < 𝛽 < 3, the results obtained in [3] remained true. In
[5] there was proven the existence of the eigenvalue for the operator ℋ0 + 𝜀𝑊 (𝑥), when 𝑊 (𝑥)
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obeys the conditions
∫︀
R
|𝑊 (𝑥)|(1 + |𝑥|)𝑑𝑥 < ∞ and

∫︀
R
𝑊 (𝑡)𝑑𝑡 6 0. It was also proved there

that once
∫︀
R
𝑊 (𝑡)𝑑𝑡 > 0, there is no such eigenvalue.

In [7] the operator ℋ0 − 𝜀ℒ𝜀 was considered, where 0 < 𝜀 ≪ 1, ℒ𝜀 : 𝑊 2
2,𝑙𝑜𝑐(R) → 𝐿2(R;𝑄) is

an arbitrary linear operator satisfying uniform in 𝜀 inequality

‖ℒ𝜀𝑢‖𝐿2(R) 6 𝐶‖𝑢‖𝑊 2
2 (𝑄) (3)

for a finite interval 𝑄 in the axis; constant 𝐶 is independent of 𝜀, 𝐿2(R;𝑄) is the subset
of functions 𝐿2(R) with supports in 𝑄, 𝑊 2

2,𝑙𝑜𝑐(R) is the set of functions defined on space R,

whose restriction on each bounded set 𝐷 ⊂ R belongs to 𝑊 2
2 (𝐷). Sufficient conditions for the

existence of small eigenvalues of the considered operator were obtained. In the case of existence,
the asymptotics for the eigenvalues were constructed.

In [8], the effect of the emergence of eigenvalues from a threshold of the essential spectrum was
studied for operators with narrow potentials. A particular case of such operator was operator
(2). On the basis of the results obtained in [7], there were found sufficient conditions ensuring
the emergence of eigenvalues from the threshold of continuous spectrum under the assumption
that there exists a number 𝛾 > 0 such that 𝜇−1𝜀1/2 = 𝑜(𝜀𝛾).

On the other hand, in view of the results obtained in [9], [10], it is natural to expect that the
results of [8] on perturbing discrete spectrum of Schrödginer operators with narrow potentials
are valid for a wider class of parameters 𝜀, 𝜇 satisfying condition (1). In the present work we
employ the approach proposed in [11] to show that this conjecture is true and we establish
sufficient conditions for the emergence of the eigenvalues from the threshold of the essential
spectrum under condition (1).

Suppose that segment 𝑄 = [𝑎, 𝑏] is such that 𝑥𝑗 ∈ 𝑄 and supp𝑉𝑗(𝑥) ⊂ 𝑄, 𝑗 = 1, 2. We denote

⟨𝑔⟩ :=

∫︁
R

𝑔(𝑡)𝑑𝑡.

Our main result is the following theorem.

Theorem 1. Suppose that condition (1) holds true. If

Re (⟨𝑉1⟩ + ⟨𝑉2⟩) > 0, (4)

then there exists the unique eigenvalue 𝜆𝜀,𝜇 of operator ℋ𝜀,𝜇 tending to zero as 𝜀 → 0. This
eigenvalue is simple and its asymptotics reads as

𝜆𝜀,𝜇 = −1

4

(︀
𝜀𝜇−1

)︀2
(⟨𝑉1⟩ + ⟨𝑉2⟩)2 + 𝑂

(︀
𝜀3𝜇−3

)︀
. (5)

If
Re (⟨𝑉1⟩ + ⟨𝑉2⟩) < 0, (6)

then operator ℋ𝜀,𝜇 has no eigenvalues converging to zero as 𝜀 → 0.

2. Auxiliary statements

It is easy to see that the function

𝑊𝑗(𝜉) =
1

2

∫︁
R

|𝜉 − 𝑡|𝑉𝑗(𝑡)𝑑𝑡,

solves the equation
𝑊 ′′

𝑗 (𝜉) = 𝑉𝑗(𝜉), 𝑗 = 1, 2. (7)

Since 𝑥1 < 𝑥2, then supp𝑉1(
𝑥−𝑥1

𝜀
) ∩ supp𝑉2(

𝑥−𝑥2

𝜀
) = ∅ for sufficiently small 𝜀. This is why

there exist fixed intervals 𝑄1 ⊂ 𝑄 and 𝑄2 ⊂ 𝑄 such that supp𝑉𝑗(
𝑥−𝑥𝑗

𝜀
) ⊂ 𝑄𝑗, 𝑗 = 1, 2 and

𝑄1 ∩𝑄2 = ∅. We choose cut-off functions 𝜒𝑗(𝑥) satisfying the following conditions: functions
𝜒𝑗(𝑥) are equal to one as 𝑥 ∈ 𝑄𝑗, respectively, vanish as 𝑥 ̸∈ 𝑄𝑗 and 𝜒1(𝑥)𝜒2(𝑥) = 0.
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We follow the approach proposed [11]. We let

𝜙𝜀,𝜇(𝑥) := 1 + 𝜀2𝜇−1

(︂
𝜒1(𝑥)𝑊1

(︂
𝑥− 𝑥1

𝜀

)︂
+ 𝜒2(𝑥)𝑊2

(︂
𝑥− 𝑥2

𝜀

)︂)︂
. (8)

We denote by 𝑈𝜀,𝜇 the operator of multiplication by function 𝜙𝜀,𝜇(𝑥):

𝑈𝜀,𝜇[𝑣] := 𝜙𝜀,𝜇(𝑥)𝑣. (9)

Operator 𝑈𝜀,𝜇 makes one-to-one correspondence of 𝐿2(R) onto itself. Hence, eigenvalues of
operator ℋ𝜀,𝜇 coincides with the eigenvalues of operator 𝑈−1

𝜀,𝜇ℋ𝜀,𝜇𝑈𝜀,𝜇.

Lemma 1. Suppose that condition (1) is satisfied. Then operator 𝑈𝜀,𝜇 satisfy the estimates⃒⃒
𝑈−1
𝜀,𝜇 [1]

⃒⃒
6 𝐶1, 𝑥 ∈ 𝑄, (10)

𝑈−1
𝜀,𝜇 [1] =1 + 𝑂(𝜀𝜇−1), 𝑥 ∈ 𝑄. (11)

Proof. Estimate (10) is implied immediately by the definition of functions 𝜒𝑗, 𝑊𝑗 and (1), (9).
It follows from (9) that

𝑈−1
𝜀,𝜇 [1] =

1

𝜙𝜀,𝜇(𝑥)
:= ̃︀𝜙𝜀,𝜇(𝑥).

We expand function ̃︀𝜙𝜀,𝜇(𝑥) into a series in the vicinity of zero:̃︀𝜙𝜀,𝜇(𝑥) = ̃︀𝜙𝜀,𝜇(0) + ̃︀𝜙′
𝜀,𝜇(𝑐)𝑥, 0 < 𝑐 < 𝑥, 𝑥 ∈ 𝑄,

where

̃︀𝜙′
𝜀,𝜇(𝑥) = − 𝜀𝜇−1

𝜙2
𝜀,𝜇(𝑥)

(︁
𝜒1(𝑥)𝑊 ′

1 (𝜉1) + 𝜒2(𝑥)𝑊 ′
2 (𝜉2) + 𝜀 (𝜒′

1(𝑥)𝑊1 (𝜉1) + 𝜒′
2(𝑥)𝑊2 (𝜉2))

)︁
,

𝜉𝑗 = (𝑥− 𝑥𝑗)𝜀
−1.

The definition of function ̃︀𝜙𝜀,𝜇(𝑥) yields

̃︀𝜙𝜀,𝜇(0) =
1

1 + 𝑞
,

̃︀𝜙′
𝜀,𝜇(𝑐) = − 𝜀𝜇−1

𝜙2
𝜀,𝜇(𝑐)

(︂
𝜒1(𝑐)𝑊

′
1

(︂
𝑐− 𝑥1

𝜀

)︂
+ 𝜒2(𝑐)𝑊

′
2

(︂
𝑐− 𝑥2

𝜀

)︂)︂
− 𝜀2𝜇−1

𝜙2
𝜀,𝜇(𝑐)

(︂
𝜒′
1(𝑐)𝑊1

(︂
𝑐− 𝑥1

𝜀

)︂
+ 𝜒′

2(𝑐)𝑊2

(︂
𝑐− 𝑥2

𝜀

)︂)︂
,

(12)

where

𝑞 = 𝜀2𝜇−1

(︂
𝜒1(0)𝑊1

(︂
−𝑥1

𝜀

)︂
+ 𝜒2(0)𝑊2

(︂
−𝑥2

𝜀

)︂)︂
.

By (1), (8) and the definition of functions 𝜒𝑗, 𝑊𝑗 we obtain the estimates

|𝑞| < 1, |𝜙−2
𝜀,𝜇(𝑐)| 6 𝐶2.

These estimates and (12) yield̃︀𝜙𝜀,𝜇(0) = 1 + 𝑂(𝑞) = 1 + 𝑂(𝜀2𝜇−1), ̃︀𝜙′
𝜀,𝜇(𝑐) = 𝑂(𝜀𝜇−1).

The latter estimates imply (11). The proof is complete.

Lemma 2. Suppose that condition (1) is satisfied. Then the representation

𝑈−1
𝜀,𝜇ℋ𝜀,𝜇𝑈𝜀,𝜇 = ℋ0 + 𝜀𝜇−1ℒ𝜀,𝜇 (13)

holds true, where ℒ𝜀,𝜇 is a second order differential operator with bounded compactly supported
coefficients satisfying the estimate

‖ℒ𝜀,𝜇𝑢‖𝐿2(R) 6 𝐶3‖𝑢‖𝑊 2
2 (𝑄), (14)

constant 𝐶3 is independent of 𝜀.
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Proof. By (2) and (9) we get

ℋ𝜀,𝜇𝑈𝜀,𝜇 =
(︀
ℋ0 + 𝜇−1 (𝑉1(𝜉1) + 𝑉2(𝜉2))

)︀ [︁
1 + 𝜀2𝜇−1 (𝜒1(𝑥)𝑊1(𝜉1) + 𝜒2(𝑥)𝑊2(𝜉2))

]︁
=𝑈𝜀,𝜇[1]ℋ0 + 𝜇−1 (𝑉1(𝜉1) + 𝑉2(𝜉2)) + 𝜀2𝜇−1

(︁
𝜒1(𝑥)ℋ0[𝑊1(𝜉1)] + 𝜒2(𝑥)ℋ0[𝑊2(𝜉2)]

)︁
+ 𝜀2𝜇−1

2∑︁
𝑗=1

(︁
𝑊𝑗(𝜉𝑗)ℋ0[𝜒𝑗(𝑥)] − 2

𝑑

𝑑𝑥
[𝜒𝑗(𝑥)]

𝑑

𝑑𝑥
[𝑊𝑗(𝜉𝑗)]

− 2𝑊𝑗(𝜉𝑗)
𝑑

𝑑𝑥
[𝜒𝑗(𝑥)]

𝑑

𝑑𝑥
− 2𝜒𝑗(𝑥)

𝑑

𝑑𝑥
[𝑊𝑗(𝜉𝑗)]

𝑑

𝑑𝑥

)︁
+ 𝜀2𝜇−2

(︁
𝑉1(𝜉1)𝑊1(𝜉1) + 𝑉2(𝜉2)𝑊2(𝜉2) + 𝑉1(𝜉1)𝜒2(𝑥)𝑊2(𝜉2) + 𝑉2(𝜉2)𝜒1(𝑥)𝑊1(𝜉1)

)︁
.

By (7), the definition of operator ℋ0 and function 𝜒𝑗 it implies

𝜇−1 (𝑉1(𝜉1) + 𝑉2(𝜉2)) + 𝜀2𝜇−1 (𝜒1(𝑥)ℋ0[𝑊1(𝜉1)] + 𝜒2(𝑥)ℋ0[𝑊2(𝜉2)])

= 𝜇−1 (𝑉1(𝜉1) + 𝑉2(𝜉2)) + 𝜀2𝜇−1 (ℋ0[𝑊1(𝜉1)] + ℋ0[𝑊2(𝜉2)])

= 𝜇−1 (𝑉1(𝜉1) + 𝑉2(𝜉2)) − 𝜇−1 (𝑉1(𝜉1) + 𝑉2(𝜉2)) = 0.

It follows from the definition of 𝜒𝑗 that

𝑉1(𝜉1)𝜒2(𝑥)𝑊2(𝜉2) = 0, 𝑉2(𝜉2)𝜒1(𝑥)𝑊1(𝜉1) = 0.

In view of these identities we obtain that

ℋ𝜀,𝜇𝑈𝜀,𝜇 =𝑈𝜀,𝜇[1]ℋ0 + 𝜀2𝜇−1

2∑︁
𝑗=1

(︁
𝑊𝑗(𝜉𝑗)ℋ0[𝜒𝑗(𝑥)] − 2

𝑑

𝑑𝑥
[𝜒𝑗(𝑥)]

𝑑

𝑑𝑥
[𝑊𝑗(𝜉𝑗)]

− 2𝑊𝑗(𝜉𝑗)
𝑑

𝑑𝑥
[𝜒𝑗(𝑥)]

𝑑

𝑑𝑥
− 2𝜒𝑗(𝑥)

𝑑

𝑑𝑥
[𝑊𝑗(𝜉𝑗)]

𝑑

𝑑𝑥

)︁
+ 𝜀2𝜇−2

(︁
𝑉1(𝜉1)𝑊1(𝜉1) + 𝑉2(𝜉2)𝑊2(𝜉2)

)︁
.

This identity and (9) lead us to identity (13), where

ℒ𝜀,𝜇 =𝑈−1
𝜀,𝜇 [1]𝜀

2∑︁
𝑗=1

(︁
𝑊𝑗(𝜉𝑗)ℋ0[𝜒𝑗(𝑥)] − 2

𝑑

𝑑𝑥
[𝜒𝑗(𝑥)]

𝑑

𝑑𝑥
[𝑊𝑗(𝜉𝑗)]−

− 2𝑊𝑗(𝜉𝑗)
𝑑

𝑑𝑥
[𝜒𝑗(𝑥)]

𝑑

𝑑𝑥
− 2𝜒𝑗(𝑥)

𝑑

𝑑𝑥
[𝑊𝑗(𝜉𝑗)]

𝑑

𝑑𝑥

)︁
+

+ 𝑈−1
𝜀,𝜇 [1]𝜀𝜇−1

(︁
𝑉1(𝜉1)𝑊1(𝜉1) + 𝑉2(𝜉2)𝑊2(𝜉2)

)︁
.

(15)

Let us prove that operator ℒ𝜀,𝜇 satisfies estimate (14). It follows from (10) that

‖ℒ𝜀,𝜇𝑢‖𝐿2(R) 6𝜀𝐶1

2∑︁
𝑗=1

(︁⃦⃦⃦
𝑊𝑗(𝜉𝑗)ℋ0[𝜒𝑗(𝑥)]𝑢

⃦⃦⃦
𝐿2(R)

+ 2
⃦⃦⃦ 𝑑

𝑑𝑥
[𝜒𝑗(𝑥)]

𝑑

𝑑𝑥
[𝑊𝑗(𝜉𝑗)]𝑢

⃦⃦⃦
𝐿2(R)

+

+ 2
⃦⃦⃦
𝑊𝑗(𝜉𝑗)

𝑑

𝑑𝑥
[𝜒𝑗(𝑥)]

𝑑𝑢

𝑑𝑥

⃦⃦⃦
𝐿2(R)

+ 2
⃦⃦⃦
𝜒𝑗(𝑥)

𝑑

𝑑𝑥
[𝑊𝑗(𝜉𝑗)]

𝑑𝑢

𝑑𝑥

⃦⃦⃦
𝐿2(R)

)︁
+

+ 𝜀𝜇−1𝐶1

(︂⃦⃦⃦
𝑉1(𝜉1)𝑊1(𝜉1)𝑢

⃦⃦⃦
𝐿2(R)

+
⃦⃦⃦
𝑉2(𝜉2)𝑊2(𝜉2)𝑢

⃦⃦⃦
𝐿2(R)

)︂
.

(16)

Now we estimate each term in the right hand side of the latter inequality. By the definition of
functions 𝜒𝑗 we have⃦⃦⃦

𝑊𝑗(𝜉𝑗)ℋ0[𝜒𝑗(𝑥)]𝑢
⃦⃦⃦
𝐿2(R)

=
⃦⃦⃦
𝑊𝑗(𝜉𝑗)𝜒

′′
𝑗 (𝑥)𝑢

⃦⃦⃦
𝐿2(𝑄)

6 𝐶𝑗
4‖𝑢‖𝐿2(𝑄) 6 𝐶𝑗

4‖𝑢‖𝑊 2
2 (𝑄),
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where 𝐶𝑗
4 = max

𝑥∈𝑄
(|𝑊𝑗(𝜉𝑗)𝜒

′′
𝑗 (𝑥)|),⃦⃦⃦ 𝑑

𝑑𝑥
[𝜒𝑗(𝑥)]

𝑑

𝑑𝑥
[𝑊𝑗(𝜉𝑗)]𝑢

⃦⃦⃦
𝐿2(R)

= 𝜀−1
⃦⃦⃦
𝜒′
𝑗(𝑥)𝑊 ′

𝑗(𝜉𝑗)𝑢
⃦⃦⃦
𝐿2(𝑄)

6 𝜀−1𝐶𝑗
5‖𝑢‖𝐿2(𝑄) 6 𝜀−1𝐶𝑗

5‖𝑢‖𝑊 2
2 (𝑄),

where 𝐶𝑗
5 = max

𝑥∈𝑄
(|𝜒′

𝑗(𝑥)𝑊 ′
𝑗(𝜉𝑗)|),⃦⃦⃦

𝑊𝑗(𝜉𝑗)
𝑑

𝑑𝑥
[𝜒𝑗(𝑥)]

𝑑𝑢

𝑑𝑥

⃦⃦⃦
𝐿2(R)

=
⃦⃦⃦
𝑊𝑗(𝜉𝑗)𝜒

′
𝑗(𝑥)

𝑑𝑢

𝑑𝑥

⃦⃦⃦
𝐿2(𝑄)

6 𝐶𝑗
6

⃦⃦⃦𝑑𝑢
𝑑𝑥

⃦⃦⃦
𝐿2(𝑄)

6 𝐶𝑗
6‖𝑢‖𝑊 2

2 (𝑄),

where 𝐶𝑗
6 = max

𝑥∈𝑄
(|𝑊𝑗(𝜉𝑗)𝜒

′
𝑗(𝑥)|),⃦⃦⃦

𝜒𝑗(𝑥)
𝑑

𝑑𝑥
[𝑊𝑗(𝜉𝑗)]

𝑑𝑢

𝑑𝑥

⃦⃦⃦
𝐿2(R)

= 𝜀−1
⃦⃦⃦
𝜒𝑗(𝑥)𝑊 ′

𝑗(𝜉𝑗)
𝑑𝑢

𝑑𝑥

⃦⃦⃦
𝐿2(𝑄)

6 𝜀−1𝐶𝑗
7

⃦⃦⃦𝑑𝑢
𝑑𝑥

⃦⃦⃦
𝐿2(𝑄)

6 𝜀−1𝐶𝑗
7‖𝑢‖𝑊 2

2 (𝑄),

where 𝐶𝑗
7 = max

𝑥∈𝑄
(|𝜒𝑗(𝑥)𝑊 ′

𝑗(𝜉𝑗)|),⃦⃦⃦
𝑉𝑗(𝜉𝑗)𝑊𝑗(𝜉𝑗)𝑢

⃦⃦⃦
𝐿2(R)

=
⃦⃦⃦
𝑉𝑗(𝜉𝑗)𝑊𝑗(𝜉𝑗)𝑢

⃦⃦⃦
𝐿2(𝑄)

6 𝐶𝑗
8‖𝑢‖𝐿2(𝑄) 6 𝐶𝑗

8‖𝑢‖𝑊 2
2 (𝑄),

where 𝐶𝑗
8 = max

𝑥∈𝑄
(|𝑉𝑗(𝜉𝑗)𝑊𝑗(𝜉𝑗)|). These estimate and (16) imply (14).

3. Proof of the theorem

We introduce the notations

𝑚(1)
𝜀,𝜇 :=

∫︁
R

ℒ𝜀,𝜇[1]𝑑𝑥, 𝑚(2)
𝜀,𝜇 :=

∫︁
R

ℒ𝜀,𝜇

[︂∫︁
R

|𝑥− 𝑡|ℒ𝜀,𝜇[1]𝑑𝑡

]︂
𝑑𝑥,

𝑘𝜀,𝜇 :=
𝜀𝜇−1

2
𝑚(1)

𝜀,𝜇 +
(𝜀𝜇−1)2

2
𝑚(2)

𝜀,𝜇.

(17)

Since operator ℒ𝜀,𝜇 satisfies inequality (14), Theorem 1 in work [7] implies that once

𝑘𝜀,𝜇 = 𝜀𝜇−1𝑐1 + (𝜀𝜇−1)2𝑐2 + 𝑂
(︀
(𝜀𝜇−1)3

)︀
, 𝑐1, 𝑐2 = const, (18)

a sufficient condition for the existence of an eigenvalue converging to zero as 𝜀 → 0 of the
operator (ℋ0 − 𝜀𝜇−1ℒ𝜀,𝜇) is the inequality

Re(𝑐1 + 𝜀𝜇−1𝑐2) < 0, (19)

while a sufficient condition for the absence of such eigenvalue is the inequality

Re(𝑐1 + 𝜀𝜇−1𝑐2) > 0. (20)

If (19) is satisfied, then operator (ℋ0− 𝜀𝜇−1ℒ𝜀,𝜇) has the unique eigenvalue converging to zero.
This eigenvalue is simple and has the asymptotics

𝜆𝜀,𝜇 = −
(︀
𝜀𝜇−1𝑐1 + (𝜀𝜇−1)2𝑐2

)︀2
+ 𝑂

(︀
𝑐1(𝜀𝜇

−1)4 + (𝜀𝜇−1)5
)︀
. (21)

It follows from (15) that∫︁
R

ℒ𝜀,𝜇[1]𝑑𝑥 =𝜀

∫︁
R

𝑈−1
𝜀,𝜇 [1]

2∑︁
𝑗=1

(︁
𝑊𝑗(𝜉𝑗)ℋ0[𝜒𝑗(𝑥)] − 2

𝑑

𝑑𝑥
[𝜒𝑗(𝑥)]

𝑑

𝑑𝑥
[𝑊𝑗(𝜉𝑗)]

)︁
𝑑𝑥

+ 𝜀𝜇−1

∫︁
R

𝑈−1
𝜀,𝜇 [1]

(︁
𝑉1(𝜉1)𝑊1(𝜉1) + 𝑉2(𝜉2)𝑊2(𝜉2)

)︁
𝑑𝑥.

(22)

Changing the variable, we obtain the estimate∫︁
R

𝑉𝑗

(︂
𝑥− 𝑥𝑗

𝜀

)︂
𝑊𝑗

(︂
𝑥− 𝑥𝑗

𝜀

)︂
𝑑𝑥 = 𝜀

∫︁
R

𝑉𝑗(𝑡)𝑊𝑗(𝑡)𝑑𝑡 = 𝑂(𝜀).
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This estimate and (11) yield

𝜀𝜇−1

∫︁
R

𝑈−1
𝜀,𝜇 [1]

(︁
𝑉1(𝜉1)𝑊1(𝜉1) + 𝑉2(𝜉2)𝑊2(𝜉2)

)︁
𝑑𝑥 = 𝑂(𝜀2𝜇−1).

The definition of operator ℋ0 and (22) imply

𝜀

∫︁
R

(︂
𝑊𝑗(𝜉𝑗)ℋ0[𝜒𝑗(𝑥)] − 2

𝑑

𝑑𝑥
[𝜒𝑗(𝑥)]

𝑑

𝑑𝑥
[𝑊𝑗(𝜉𝑗)]

)︂
𝑑𝑥

= 𝜀

∫︁
R

(︀
−𝑊𝑗(𝜉𝑗)𝜒

′′
𝑗 (𝑥) − 2𝜀−1𝜒′

𝑗(𝑥)𝑊 ′
𝑗(𝜉𝑗)

)︀
𝑑𝑥.

(23)

Integrating twice by parts, by the latter identity, (7), the definition of functions 𝜒𝑗(𝑥) we obtain

𝜀

∫︁
R

(︀
−𝑊𝑗(𝜉𝑗)𝜒

′′
𝑗 (𝑥) − 2𝜀−1𝜒′

𝑗(𝑥)𝑊 ′
𝑗(𝜉𝑗)

)︀
𝑑𝑥 = −

∫︁
R

𝜒′
𝑗(𝑥)𝑊 ′

𝑗(𝜉𝑗)𝑑𝑥

= 𝜀−1

∫︁
R

𝜒𝑗(𝑥)𝑊 ′′
𝑗 (𝜉𝑗)𝑑𝑥 = 𝜀−1

∫︁
R

𝑉𝑗(𝜉𝑗)𝑑𝑥 =

∫︁
R

𝑉𝑗(𝑡)𝑑𝑡.

(24)

It follows from (22), (11), (23) and (24) that∫︁
R

ℒ𝜀,𝜇[1]𝑑𝑥 = ⟨𝑉1⟩ + ⟨𝑉2⟩ + 𝑂(𝜀𝜇−1). (25)

Let us prove the estimate

𝑚(2)
𝜀,𝜇 = 𝑂(1). (26)

By (17) we get

𝑚(2)
𝜀,𝜇 =

∫︁
R

ℒ𝜀,𝜇

[︂∫︁
R

|𝑥− 𝑡|ℒ𝜀,𝜇[1]𝑑𝑡

]︂
𝑑𝑥 =

∫︁
R

ℒ𝜀,𝜇[𝑓(𝑥)]𝑑𝑥,

where

𝑓(𝑥) :=

∫︁
R

|𝑥− 𝑡|ℒ𝜀,𝜇[1]𝑑𝑡. (27)

The definition of operator ℒ𝜀,𝜇 and (25) yield⃒⃒⃒⃒∫︁
R

|𝑥− 𝑡|ℒ𝜀,𝜇[1]𝑑𝑡

⃒⃒⃒⃒
=

⃒⃒⃒⃒∫︁
𝑄

|𝑥− 𝑡|ℒ𝜀,𝜇[1]𝑑𝑡

⃒⃒⃒⃒
6 𝐶𝑄

⃒⃒⃒⃒∫︁
𝑄

ℒ𝜀,𝜇[1]𝑑𝑡

⃒⃒⃒⃒
6 𝐶9

as 𝑥 ∈ 𝑄, where 𝐶𝑄 = max
𝑥,𝑡∈𝑄

|𝑥− 𝑡|. Therefore,

|𝑓(𝑥)| 6 𝐶9, 𝑥 ∈ 𝑄. (28)

Estimate (16) yields⃒⃒⃒⃒∫︁
R

ℒ𝜀,𝜇[𝑓(𝑥)]𝑑𝑥

⃒⃒⃒⃒
6𝜀𝐶1

2∑︁
𝑗=1

(︁∫︁
R

⃒⃒⃒
𝑊𝑗(𝜉𝑗)𝜒

′′
𝑗 (𝑥)𝑓(𝑥)

⃒⃒⃒
𝑑𝑥 + 2𝜀−1

∫︁
R

⃒⃒⃒
𝜒′
𝑗(𝑥)𝑊 ′

𝑗(𝜉𝑗)𝑓(𝑥)
⃒⃒⃒
𝑑𝑥+

+ 2

∫︁
R

⃒⃒⃒
𝑊𝑗(𝜉𝑗)𝜒

′
𝑗(𝑥)𝑓 ′(𝑥)

⃒⃒⃒
𝑑𝑥 + 2𝜀−1

∫︁
R

⃒⃒⃒
𝜒𝑗(𝑥)𝑊 ′

𝑗(𝜉𝑗)𝑓
′(𝑥)

⃒⃒⃒
𝑑𝑥

)︁
+

+ 𝜀𝜇−1𝐶1

(︂∫︁
R

⃒⃒⃒
𝑉1(𝜉1)𝑊1(𝜉1)𝑓(𝑥)

⃒⃒⃒
𝑑𝑥 +

∫︁
R

⃒⃒⃒
𝑉2(𝜉2)𝑊2(𝜉2)𝑓(𝑥)

⃒⃒⃒
𝑑𝑥

)︂
.

(29)
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Since functions 𝜒𝑗 𝑉𝑗 are compactly supported, by (28) we arrive at the estimates∫︁
R

⃒⃒⃒
𝑊𝑗(𝜉𝑗)𝜒

′′
𝑗 (𝑥)𝑓(𝑥)

⃒⃒⃒
𝑑𝑥 =

∫︁
𝑄

⃒⃒⃒
𝑊𝑗(𝜉𝑗)𝜒

′′
𝑗 (𝑥)𝑓(𝑥)

⃒⃒⃒
𝑑𝑥 6 𝐶10,∫︁

R

⃒⃒⃒
𝜒′
𝑗(𝑥)𝑊 ′

𝑗(𝜉𝑗)𝑓(𝑥)
⃒⃒⃒
𝑑𝑥 =

∫︁
𝑄

⃒⃒⃒
𝜒′
𝑗(𝑥)𝑊 ′

𝑗(𝜉𝑗)𝑓(𝑥)
⃒⃒⃒
𝑑𝑥 6 𝐶11,∫︁

R

⃒⃒⃒
𝑉𝑗(𝜉𝑗)𝑊𝑗(𝜉𝑗)𝑓(𝑥)

⃒⃒⃒
𝑑𝑥 =

∫︁
𝑄

⃒⃒⃒
𝑉𝑗(𝜉𝑗)𝑊𝑗(𝜉𝑗)𝑓(𝑥)

⃒⃒⃒
𝑑𝑥 6 𝐶12.

(30)

It follows from (27) that

𝑓 ′(𝑥) =

∫︁ 𝑥

−∞
ℒ𝜀,𝜇[1]𝑑𝑡 +

∫︁ 𝑥

+∞
ℒ𝜀,𝜇[1]𝑑𝑡. (31)

We denote
𝑓 (1)
𝜀 (𝑥) := 𝜒𝑗(𝑥)𝑊 ′

𝑗(𝜉𝑗), 𝑓 (2)
𝜀 (𝑥) := 𝜒′

𝑗(𝑥)𝑊𝑗(𝜉𝑗).

By (31) the inequality∫︁
R

⃒⃒⃒
𝑓 (𝑗)
𝜀 (𝑥)𝑓 ′(𝑥)

⃒⃒⃒
𝑑𝑥 6

∫︁
R

⃒⃒⃒
𝑓 (𝑗)
𝜀 (𝑥)

∫︁ 𝑥

−∞
ℒ𝜀,𝜇[1]𝑑𝑡

⃒⃒⃒
𝑑𝑥 +

∫︁
R

⃒⃒⃒
𝑓 (𝑗)
𝜀 (𝑥)

∫︁ 𝑥

+∞
ℒ𝜀,𝜇[1]𝑑𝑡

⃒⃒⃒
𝑑𝑥

holds true. Switching the integration order in the second integral, we rewrite the latter inequal-
ity as ∫︁

R

⃒⃒
𝑓 (𝑗)
𝜀 (𝑥)𝑓 ′(𝑥)

⃒⃒
𝑑𝑥 6 2

∫︁
R

⃒⃒⃒⃒
𝑓 (𝑗)
𝜀 (𝑥)

∫︁ 𝑥

−∞
ℒ𝜀,𝜇[1]𝑑𝑡

⃒⃒⃒⃒
𝑑𝑥. (32)

By (25) we have∫︁
R

⃒⃒⃒⃒
𝑓 (𝑗)
𝜀 (𝑥)

∫︁ 𝑥

−∞
ℒ𝜀,𝜇[1]𝑑𝑡

⃒⃒⃒⃒
𝑑𝑥 =

∫︁
𝑄

⃒⃒⃒⃒
𝑓 (𝑗)
𝜀 (𝑥)

∫︁ 𝑥

−∞
ℒ𝜀,𝜇[1]𝑑𝑡

⃒⃒⃒⃒
𝑑𝑥 6

∫︁
𝑄

⃒⃒
𝑓 (𝑗)
𝜀 (𝑥)

⃒⃒ ⃒⃒⃒⃒∫︁ 𝑥

−∞
ℒ𝜀,𝜇[1]𝑑𝑡

⃒⃒⃒⃒
𝑑𝑥

6
∫︁
𝑄

⃒⃒
𝑓 (𝑗)
𝜀 (𝑥)

⃒⃒ ⃒⃒⃒⃒∫︁
𝑄

ℒ𝜀,𝜇[1]𝑑𝑡

⃒⃒⃒⃒
𝑑𝑥 6 𝐶𝑗

13

⃒⃒⃒⃒∫︁
𝑄

ℒ𝜀,𝜇[1]𝑑𝑡

⃒⃒⃒⃒
6 𝐶𝑗

14.

This inequality and (32) implies that∫︁
R

⃒⃒
𝑓 (𝑗)
𝜀 (𝑥)𝑓 ′(𝑥)

⃒⃒
𝑑𝑥 6 2𝐶𝑗

14.

This inequality and (29), (30) yield estimate (26).
It follows from (17), (25), (26) that

𝑘𝜀,𝜇 =
𝜀𝜇−1

2
(⟨𝑉1⟩ + ⟨𝑉2⟩) + 𝑂

(︀
𝜀2𝜇−2

)︀
.

Thus, inequality (18) holds true once

𝑐1 =
⟨𝑉1⟩ + ⟨𝑉2⟩

2
, 𝑐2 = 𝑂(1). (33)

It follows from (19) and (20) that the sufficient condition for the existence of an eigenvalue
converging to zero as 𝜀 → 0 for the operator (ℋ0 + 𝜀𝜇−1ℒ𝜀,𝜇) is the inequality

Re(𝑐1 + 𝜀𝜇−1𝑐2) > 0, (34)

while the sufficient condition for the absence of such eigenvalue is the inequality

Re(𝑐1 + 𝜀𝜇−1𝑐2) < 0. (35)

It follows from (1) and (33) that for sufficiently small 𝜀, 𝜇 the sign of Re(𝑐1 + 𝜀𝜇−1𝑐2) coincides
with the sign of Re(𝑐1). Therefore, by (34), (35) and (33) we arrive at inequalities (4) and (6).
Asymptotics (5) is implied by (21) and (33).
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4. Concluding remarks

It follows from Theorem 1 in work [7] that apart of the eigenvalue converging to zero, all
other eigenvalues of operator ℋ𝜀,𝜇 (if they exist) tend to infinity as 𝜀 → 0.

Acknowledgments. The authors thank D.I. Borisov for useful remarks and R.R. Gadyl’shin
for the attention to the work.
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