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Abstract. We study Dirichlet series converging only in a half-plane such that their
sequence of exponents admits an extension to a “regular” sequence. We prove the exactness
of two-sided estimates for 𝑘-order of the sum of the Dirichlet series in a semi-strip whose
width depends on the special distribution density of the exponents.
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Let Λ = {𝜆𝑛} (0 < 𝜆𝑛 ↑ ∞) be a sequence satisfying the condition

lim
𝑛→∞

ln𝑛

𝜆𝑛
= 𝐻 <∞. (1)

In studying entire functions

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑠 (𝑠 = 𝜎 + 𝑖𝑡) (2)

defined by everywhere convergent Dirichlet series, Ritt introduced the notion of 𝑅-order [1]:

𝜌𝑅 = lim
𝜎→+∞

ln ln𝑀(𝜎)

𝜎
,

where 𝑀(𝜎) = sup
|𝑡|<∞

|𝐹 (𝜎+ 𝑖𝑡)|. We note that by condition (1) series (2) converges absolutely in

the whole plane. It is known that ln𝑀(𝜎) is an increasing convex function of 𝜎, lim
𝜎→+∞

ln𝑀(𝜎) =

+∞. The quantity

𝜌𝑠 = lim
𝜎→+∞

ln+ ln𝑀𝑠(𝜎)

𝜎
(𝑎+ = max(𝑎, 0))

is called 𝑅-order of function 𝐹 in strip 𝑆(𝑎, 𝑡0) = {𝑠 = 𝜎 + 𝑖𝑡 : |𝑡 − 𝑡0| 6 𝑎}. Here 𝑀𝑠(𝜎) =
max

|𝑡−𝑡0|6𝑎
|𝐹 (𝜎 + 𝑖𝑡)|.

In [2] sufficient conditions for Λ and 𝑎 ensuring 𝜌𝑅 = 𝜌𝑆 were obtained. The most general
results on relation between 𝜌𝑅 and 𝜌𝑠 was established by A.F. Leontiev [3].

Similar issues in the case when 𝐻 = 0 and the convergence domain of series (2) is the
half-plane Π0 = {𝑠 = 𝜎 + 𝑖𝑡 : 𝜎 < 0} were studied by A.M. Gaisin in [4].
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As 𝐻 = 0, if series (2) converges in half-plane Π0, it converges absolutely in Π0. Then the
sum of series 𝐹 is analytic in this half-plane. The class of all unbounded analytic functions
represented by Dirichlet series (2) converging just in half-plane Π0 is denoted by 𝐷0(Λ).

Let 𝑆(𝑎, 𝑡0) = {𝑠 = 𝜎 + 𝑖𝑡 : |𝑡− 𝑡0| 6 𝑎, 𝜎 < 0} be a semi-strip. The quantities

𝜌𝑅 = lim
𝜎→0−

ln+ ln𝑀(𝜎)

|𝜎|−1
, 𝜌𝑠 = lim

𝜎→0−

ln+ ln𝑀𝑠(𝜎)

|𝜎|−1

are called Ritt orders of function 𝐹 in half-plane Π0 and semi-strip 𝑆(𝑎, 𝑡0) [4]. In what follows
we call 𝜌𝑅 and 𝜌𝑠 orders in the half-plane and the semi-strip. If it is necessary, instead of 𝜌𝑅
and 𝜌𝑠 we shall write 𝜌𝑅(𝐹 ) and 𝜌𝑠(𝐹 ).

It was shown in [4] that condition

lim
𝑛→∞

ln𝜆𝑛
𝜆𝑛

ln𝑛 = 0

is sufficient for order 𝜌𝑅 of each function 𝐹 ∈ 𝐷0(Λ) to be

𝜌𝑅 = lim
𝑛→∞

ln𝜆𝑛
𝜆𝑛

ln+ |𝑎𝑛|. (3)

Let sequence Λ have a finite upper density 𝐷. Then

𝐿(𝑧) =
∞∏︁
𝑛=1

(︂
1 − 𝑧2

𝜆2𝑛

)︂
(𝑧 = 𝑥+ 𝑖𝑦)

is an entire function of exponential type. If ℎ(𝜙) is the growth indicatri, and 𝜏 is a type of
function 𝐿, then 𝜏 = ℎ(+−

𝜋
2
) 6 𝜋𝐷* (𝐷* is the averaged upper density of sequence Λ) [2].

Assume that

|𝐿(𝑥)| 6 𝑒𝑔(𝑥) (𝑥 > 0), lim
𝑥→+∞

𝑔(𝑥) ln𝑥

𝑥
= 0, (4)

where 𝑔 is a non-negative on R+ = [0,∞) function. In this case the adjoint diagram of function
𝐿 is the segment 𝐼 = [−𝜏𝑖, 𝜏 𝑖], ℎ(𝜙) = 𝜏 | sin𝜙|.

In [4] the following theorem was proved.
Theorem I. Suppose that function 𝐿 satisfies conditions (4) and has type 𝜏 (0 6 𝜏 <∞).

We let 𝑞 = 𝑞(𝐿), where

𝑞(𝐿) = lim
𝑛→∞

ln𝜆𝑛
𝜆𝑛

ln

⃒⃒⃒⃒
1

𝐿′(𝜆𝑛)

⃒⃒⃒⃒
. (5)

Then order 𝜌𝑠 in the half-plane 𝑆(𝑎, 𝑡0) as 𝑎 > 𝜏 and order 𝜌𝑅 of each function 𝐹 ∈ 𝐷0(Λ) in
half-plane Π0 satisfy the eistimates

𝜌𝑠 6 𝜌𝑅 6 𝜌𝑠 + 𝑞. (6)

The left estimate in (6) is exact [4]. In the general situation the right estimate is not exact,
moreover, the pair of conditions (4) can fail. But there can exist an entire function 𝑄 of
exponential type with simple zeroes at the points of sequence Λ, for which conditions (4) hold
and 𝑞(𝑄) = 𝑞*, where

𝑞* = lim
𝑛→∞

ln𝜆𝑛
𝜆𝑛

1∫︁
0

𝑛(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡,

𝑞(𝑄) is the quantity defined in the same way as 𝑞(𝐿) in (5), and 𝑛(𝜆𝑛; 𝑡) is the amount of points
𝜆𝑘 ̸= 𝜆𝑛 in the segment {𝑥 : |𝑥 − 𝜆𝑛| 6 𝑡}. Paper [5] is devoted to constructing such entire
functions 𝑄 with a prescribed subset of zeroes Λ and a prescribed asymptotics at the real axis.
It turns out that in terms of a special distribution density 𝐺(𝑅) of sequence Λ one can provide
conditions under which the estimates

𝜌𝑠 6 𝜌𝑅 6 𝜌𝑠 + 𝑞*



EXACTNESS OF ESTIMATES FOR 𝑘-th ORDER . . . 17

hold true, where 𝜌𝑠 is the order in a semi-strip 𝑆(𝑎, 𝑡0) of the width greater than 2𝜋𝐺(𝑅)) and
these estimates are the best possible in class 𝐷0(Λ) [6]. Similar estimates for 𝑘-orders were
obtained in [7]. The aim of the paper is prove the exactness of these estimates.

1. Definitions and needed facts

Let Λ = {𝜆𝑛}, (0 < 𝜆𝑛 ↑ ∞) be a sequence having a finite upper density, 𝐿 be the class
of positive continuous and unboundedly increasing on [0,∞) functions. By 𝐾 we denote a

subclass of functions ℎ in 𝐿 such that ℎ(0) = 0, ℎ(𝑡) = 𝑜(𝑡) as 𝑡→ ∞, ℎ(𝑡)
𝑡

↓ as 𝑡 ↑ (ℎ(𝑡)
𝑡

decreases
monotonically as 𝑡 > 0). In particular, if ℎ ∈ 𝐾, the ℎ(2𝑡) 6 2ℎ(𝑡) (𝑡 > 0), ℎ(𝑡) 6 ℎ(1)𝑡 as
𝑡 > 1.
𝐾-density of sequence Λ is the quantity

𝐺(𝐾) = inf
ℎ∈𝐾

lim
𝑡→∞

𝜇Λ(𝜔(𝑡))

ℎ(𝑡)
, (7)

where 𝜔(𝑡) = [𝑡, 𝑡 + ℎ(𝑡)) is a semi-interval, 𝜇Λ(𝜔(𝑡)) is the amount of points of Λ lying in
semi-interval 𝜔(𝑡).

Let Ω = {𝜔} be a family of semi-intervals 𝜔 = [𝑎, 𝑏). By |𝜔| we denote the length of 𝜔. Each
sequence Λ = {𝜆𝑛}, (0 < 𝜆𝑛 ↑ ∞) generates an integer-valued counting measure 𝜇Λ:

𝜇Λ(𝜔) =
∑︁
𝜆𝑛∈𝜔

1, 𝜔 ∈ Ω.

Let 𝜇Γ be a counting measure generated by the sequence Γ = {𝜇𝑛}, (0 < 𝜇𝑛 ↑ ∞). Then
the inclusion Λ ⊂ Γ means that 𝜇Λ(𝜔) 6 𝜇Γ(𝜔) for each 𝜔 ∈ Ω. In this case we shall say that
measure 𝜇Γ majorizes measure 𝜇Λ.

By 𝐷(𝐾) we denote the infimum of numbers 𝑏 (0 6 𝑏 < ∞) for which there exists measure
𝜇Γ majorizing 𝜇Λ such that

|𝑀(𝑡) − 𝑏𝑡| 6 ℎ(𝑡) (𝑡 > 0) (8)

for some function ℎ ∈ 𝐾. Here Λ = {𝜆𝑛}, Γ = {𝜇𝑛}, 𝑀(𝑡) =
∑︀
𝜇𝑛6𝑡

1.

It was shown in [6] that 𝐷(𝐾) = 𝐺(𝐾).
The quantity

𝜌𝑘 = lim
𝜎→0−

ln𝑘𝑀(𝜎)

|𝜎|−1
(𝑘 > 2) (9)

is called 𝑘-order of function 𝐹 ∈ 𝐷0(Λ) in half-plane Π0 = {𝑠 : 𝜎 = Re 𝑠 < 0} [7]. Here
ln0 𝑡 = 𝑡, ln𝑘 𝑡 = ln ln ... ln 𝑡⏟  ⏞  

𝑘

(𝑘 > 1). In view of the definition of 𝑘-order (9) we see that 𝜌2 = 𝜌𝑅,

where 𝜌𝑅 is the 𝑅-order in half-plane Π0 [4].
The following theorem was proven in [7].
Theorem II. The condition

lim
𝑛→∞

ln𝑛 ln𝑘−1 𝜆𝑛
𝜆𝑛

= 0 (𝑘 > 2) (10)

is necessary and sufficient for 𝑘-order 𝜌𝑘 of each function 𝐹 ∈ 𝐷0(Λ) to satisfy the formula

𝜌𝑘 = lim
𝑛→∞

ln |𝑎𝑛|
𝜆𝑛

ln𝑘−1 𝜆𝑛 (𝑘 > 2; 0 6 𝜌𝑅 6 ∞). (11)

We observe that formula (3) is a particular case of identity (11).

In the same way one introduces the notion of 𝑘-order 𝜌
(𝑘)
𝑠 in semi-strip 𝑆(𝑎, 𝑡0). For the sake

of convenience, we shall still denote it by 𝜌𝑠.
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We introduce the following classes of functions:

𝐿𝑘 = {ℎ ∈ 𝐿 : ℎ(𝑥) ln𝑘−1 𝑥 = 𝑜(𝑥), 𝑥→ ∞} (𝑘 > 2),

𝑆 =
{︁
ℎ ∈ 𝐾 : 𝑑(ℎ) = lim

𝑥→∞

ℎ(𝑥) lnℎ(𝑥)

𝑥 ln 𝑥
ℎ(𝑥)

<∞
}︁
,

𝑅𝑘 =

{︂
ℎ ∈ 𝑆 : ℎ(𝑥) ln

𝑥

ℎ(𝑥)
= 𝑜

(︂
𝑥

ln𝑘−1 𝑥

)︂
, 𝑥→ ∞

}︂
(𝑘 > 2).

The following theorem was proved in paper [7].
Theorem III. Let Λ = {𝜆𝑛}, (0 < 𝜆𝑛 ↑ ∞) be a sequence satisfying the conditions

1) Λ(𝑥+ 𝜌)−Λ(𝑥) 6 𝑐𝜌+ 𝑑+
𝜙(𝑥)

ln+ 𝜌+ 1
, (𝜌 > 0), where Λ(𝑥) =

∑︀
𝜆𝑛6𝑥

1, 𝜙 is a function in 𝐿𝑘

(𝑘 > 2);

2) 𝑞*𝑘 = lim𝑛→∞
ln𝑘−1 𝜆𝑛
𝜆𝑛

1∫︀
0

𝑛(𝜆𝑛; 𝑡)
𝑡 𝑑𝑡 <∞ (𝑘 > 2), where 𝑛(𝜆𝑛; 𝑡) is the amount of points of

𝜆𝑘 ̸= 𝜆𝑛 lying in the segment {𝑥 : |𝑥− 𝜆𝑛| 6 𝑡}.
If density 𝑅𝑘 of sequence Λ is equal to 𝐺(𝑅), then 𝑘-order 𝜌𝑠 of each function 𝐹 ∈ 𝐷0(Λ) in

semi-strip 𝑆(𝑎, 𝑡0) as 𝑎 > 𝜋𝐺(𝑅𝑘) and order 𝜌𝑅 of this function in half-plane Π0 satisfies the
estimates

𝜌𝑠 6 𝜌𝑘 6 𝜌𝑠 + 𝑞*𝑘 (𝑘 > 2). (12)

As it is known, estimate 𝜌𝑠 6 𝜌𝑘 in (12) is exact. In what follows we discuss the exactness
of inequality 𝜌𝑘 6 𝜌𝑠 + 𝑞*𝑘 (𝑘 > 2).

2. Main theorem on exact estimates for 𝑘-order

The main result of the paper is the following theorem.

Theorem 1. Let Λ be a sequence satisfying the assumptions of Theorem III. Then there
exists a function 𝐹 ∈ 𝐷0(Λ) such that 𝜌𝑘(𝐹 ) = 𝜌𝑠(𝐹 ) + 𝑞*, where 𝜌𝑘(𝐹 ) is the order in half-
plane Π0, and 𝜌𝑠(𝐹 ) is order in semi-strip 𝑆(𝑎, 𝑡0), (𝑎 > 𝜋𝐺(𝑅)).

Corollary. Suppose that Λ satisfies the assumptions of Theorem 1. Order 𝜌𝑘(𝐹 ) of each
function 𝐹 ∈ 𝐷0(Λ) is equal to order 𝜌𝑠(𝐹 ) in each semi-strip 𝑆(𝑎, 𝑡0) (𝑎 > 𝜋𝐺(𝑅)) if and
only 𝑞* = 0.

In the proof of Theorem 1 we shall make use of
Theorem IV [6]. Let Λ = {𝜆𝑛} (0 < 𝜆𝑛 ↑ ∞) be a sequence having a finite 𝑆-density 𝐺(𝑆).

Then for each 𝑏 > 𝐺(𝑆) there exists a sequence Γ = {𝜇𝑛} (0 < 𝜇𝑛 ↑ ∞) containing Λ and
having density 𝑏 such that the entire function

𝑄(𝑧) =
∞∏︁
𝑛=1

(︂
1 − 𝑧2

𝜇2
𝑛

)︂
(𝑧 = 𝑥+ 𝑖𝑦)

of exponential type 𝜋𝑏 possesses the properties:
1) 𝑄(𝜆𝑛) = 0, 𝑄′(𝜆𝑛) ̸= 0 for each 𝜆𝑛 ∈ Λ;
2) there exists 𝐻 ∈ 𝑆 such that

ln |𝑄(𝑥)| 6 𝐴𝐻(𝑥) ln+ 𝑥

𝐻(𝑥)
+𝐵; (13)

3) if Λ(𝑥) =
∑︀

𝜆𝑛6𝑥

1, and

Λ(𝑥+ 𝜌) − Λ(𝑥) 6 𝑎𝜌+ 𝑏+
𝜙(𝑥)

ln+ 𝜌+ 1
(𝜌 > 0) (14)
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(𝜙 is an arbitrary non-negative non-decreasing function defined on the ray [0,∞),
1 6 𝜙(𝑥) 6 𝛼𝑥 ln+ 𝑥+ 𝛽), then there exists a sequence {𝑟𝑛}, 0 < 𝑟𝑛 ↑ ∞, 𝑟𝑛+1 − 𝑟𝑛 = 𝑂(𝐻(𝑟𝑛))
as 𝑛→ ∞, such that for 𝑥 = 𝑟𝑛 (𝑛 > 1)

ln |𝑄(𝑥)| > −𝐶𝐻(𝑥) ln+ 𝑥

𝐻(𝑥)
− 2𝜙(𝑥) −𝐷; (15)

4) if

∆ = lim
𝑛→∞

1

𝜆𝑛

1∫︁
0

𝑛(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡 <∞,

then under condition (14)⃒⃒⃒⃒
⃒⃒ln ⃒⃒⃒⃒

1

𝑄′(𝜆𝑛)

⃒⃒⃒⃒
−

1∫︁
0

𝑛(𝜆𝑛; 𝑡)

𝑡
𝑑𝑡

⃒⃒⃒⃒
⃒⃒ 6 𝐸𝐻(𝜆𝑛) ln+ 𝜆𝑛

𝐻(𝜆𝑛)
+ 2𝜙(𝜆𝑛) + 𝐹 ln𝜆𝑛 + 𝐿 (𝑛 > 1), (16)

where 𝑛(𝜆𝑛; 𝑡) is the amount of points 𝜆𝑘 ̸= 𝜆𝑛 in the segment {𝑥 : |𝑥− 𝜆𝑛| 6 𝑡}.
Here all constants are finite and positive.
Let Λ = {𝜆𝑛} be a sequence satisfying assumptions of Theorem III. Then in accordance with

Theorem IV for each 𝑏 > 𝐺(𝑅𝑘) (𝐺(𝑅𝑘) is 𝑅𝑘-density of sequence Λ) there exists a sequence
Γ = {𝜇𝑛} (0 < 𝜇1 6 𝜇2 6 . . . 6 𝜇𝑛 → ∞) contatining Λ such that

|𝑀(𝑡) − 𝑏𝑡| 6 𝐻(𝑡) (𝑡 > 0), 𝐻 ∈ 𝑅, (17)

and entire function

𝑄(𝑧) =
∞∏︁
𝑛=1

(︂
1 − 𝑧2

𝜇2
𝑛

)︂
(𝑧 = 𝑥+ 𝑖𝑦) (18)

of exponential type 𝜋𝑏 possesses the properties
10. 𝑄(𝜆𝑛) = 0, 𝑄′(𝜆𝑛) ̸= 0 (𝑛 > 1);
20. ln |𝑄(𝑥)| 6 𝑔(𝑥) (𝑥 > 0), 𝑔 ∈ 𝐿𝑘;
30. The estimate

ln |𝑄(𝑥)| > −𝐶𝐻(𝑥) ln+ 𝑥

𝐻(𝑥)
− 2𝜙(𝑥) −𝐷, 𝐻 ∈ 𝑅𝑘

holds true as 𝑥 = 𝑟𝑛 (𝑛 > 1). Estimates 20, 30 in Theorem III follows from (13), (15). But
since 𝐻 ∈ 𝑅𝑘, 𝜙 ∈ 𝐿𝑘, there exists function 𝑉 ∈ 𝐿𝑘 such that

ln |𝑄(𝑧)| > ln |𝑄(𝑟)| > −𝑉 (𝑟) (19)

as 𝑟 = 𝑟𝑛 (𝑟 = |𝑧|) (𝑛 > 1).
Let{𝑟𝑛} be the sequence from Theorem IV (estimates (19) hold true as |𝑧| = 𝑟𝑛 (𝑛 > 1)).

Let ∆𝑛 = (𝑟𝑝𝑛 , 𝑟𝑝𝑛+1) (𝑛 > 1) be all the intervals each of which contains at leas one point in Λ
(some of intervals (𝑟𝑛, 𝑟𝑛+1) can contain no points in Λ).

By Γ𝑝𝑛 (𝑛 > 1) we denote a closed contour formed by two arcs of the circles 𝐾𝑝𝑛 = {𝜆 : |𝜆| =
𝑟𝑝𝑛} and 𝐾𝑝𝑛+1 = {𝜆 : |𝜆| = 𝑟𝑝𝑛+1} in the angle {𝜆 : | arg 𝜆| 6 𝜙𝑛 <

𝜋
4
} and by the segments of

the rays {𝜆 : | arg 𝜆| = 𝜙𝑛}.
In the proof of Theorem 1 we employ the functions

𝑞𝑛(𝜆) =
∏︁

𝜈𝑘∈Δ𝑛

(︂
1 − 𝜆

𝜈𝑘

)︂
,

where ∆𝑛 = (𝑟𝑝𝑛 , 𝑟𝑝𝑛+1), 𝜈 = {𝜈𝑘} = Γ∖Λ. Sequence 𝜈 is constructed in the proof of Theorem IV
and possesses the properties [6]:

a) inf
𝑖 ̸=𝑗

|𝜈𝑖 − 𝜈𝑗| > 𝜏 > 0;

b) inf
𝑚>1

|𝜆𝑛 − 𝜈𝑚| > 𝛾
𝜙(2𝜆𝑛)

(𝛾 > 0, 𝑛 > 1), where 𝜙 is the functions from condition (14) of

Theorem IV.
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Let us establish estimates for |𝑞𝑛(𝜆)|.

Lemma 1. There exists function 𝑢 ∈ 𝐿𝑘 such that

max
𝜆𝑗∈Δ𝑛

| ln |𝑞𝑛(𝜆𝑗)|| 6 𝑢(𝑟𝑝𝑛) (𝑛 > 1). (20)

Proof. Indeed, let 𝜆𝑗 ∈ ∆𝑛, 𝜈
′
𝑗 and 𝜈 ′′𝑗 be the closest to 𝜆𝑗 points of sequence 𝜈 located to the

left and to right of 𝜆𝑗, respectively. We have⃒⃒⃒⃒
𝜈 ′𝑗 − 𝜆𝑗

𝜈 ′𝑗

⃒⃒⃒⃒ ⃒⃒⃒⃒
𝜈 ′′𝑗 − 𝜆𝑗

𝜈 ′′𝑗

⃒⃒⃒⃒
>

[︂
𝛾

𝜙(2𝜆𝑗)

]︂2
𝑟−2
𝑝𝑛+1 (𝜆𝑗 ∈ ∆𝑛).

Since 1 6 𝜙(𝑥) 6 𝛼𝑥 ln+ 𝑥+ 𝛽, 𝑟𝑝𝑛/𝑟𝑝𝑛+1 → 1 as 𝑛→ ∞, it implies the estimate⃒⃒⃒⃒
1 − 𝜆𝑗

𝜈 ′𝑗

⃒⃒⃒⃒ ⃒⃒⃒⃒
1 − 𝜆𝑗

𝜈 ′′𝑗

⃒⃒⃒⃒
> 𝑒−𝑐1−𝑐2 ln 𝑟𝑝𝑛 (𝜆𝑗 ∈ ∆𝑛), (21)

where 0 < 𝑐𝑖 <∞ (𝑖 = 1, 2).
Let ∆′

𝑛 = ∆𝑛∖{𝜈 ′𝑗, 𝜈 ′′𝑗 }. Then ∏︁
𝜈𝑘∈Δ′

𝑛
𝜈𝑘<𝜆𝑗

⃒⃒⃒⃒
𝜈𝑘 − 𝜆𝑗
𝜈𝑘

⃒⃒⃒⃒
>

(︂
𝜏

𝑟𝑝𝑛+1

)︂𝑠𝑛

𝑠𝑛!, (22)

where 𝑠𝑛 is the amount of points 𝜈𝑘 < 𝜆𝑗, 𝜈𝑘 ∈ ∆′
𝑛. In the same way,∏︁

𝜈𝑘∈Δ′
𝑛

𝜈𝑘>𝜆𝑗

⃒⃒⃒⃒
𝜈𝑘 − 𝜆𝑗
𝜈𝑘

⃒⃒⃒⃒
>

(︂
𝜏

𝑟𝑝𝑛+1

)︂𝑙𝑛

𝑙𝑛!, (23)

where 𝑙𝑛 is the amount of points 𝜈𝑘 > 𝜆𝑗, 𝜈𝑘 ∈ ∆′
𝑛. It follows from (21)–(23) that as 𝜆𝑗 ∈ ∆𝑛,

(𝑛 > 1)

|𝑞𝑛(𝜆𝑗)| > 𝑒−𝑐1−𝑐2 ln 𝑟𝑝𝑛

(︂
𝛿

𝑟𝑝𝑛

)︂𝑠𝑛+𝑙𝑛

𝑠𝑛!𝑙𝑛! (0 < 𝛿 6 1). (24)

If sup
𝑛>1

(𝑠𝑛 + 𝑙𝑛) < ∞, the required lower estimate for |𝑞𝑛(𝜆𝑗)| is obvious. Otherwise we first

employ the known estimate

𝑠𝑛!𝑙𝑛! >
(𝑠𝑛 + 𝑙𝑛)!

2𝑠𝑛+𝑙𝑛
,

and then we use Stirling’s asymptotic formula

𝑛! ≈
(︁𝑛
𝑒

)︁𝑛√
2𝜋𝑛

as 𝑛→ ∞.
Then by (24) we obtain

|𝑞𝑛(𝜆𝑗)| > exp (−𝑐3 − 𝑐2 ln 𝑟𝑝𝑛)

[︂
𝛿(𝑠𝑛 + 𝑙𝑛)

2𝑒𝑟𝑝𝑛

]︂𝑠𝑛+𝑙𝑛

(𝑛 > 1),

where 0 < 𝑐𝑖 <∞ (𝑖 = 2, 3). Letting 𝑠𝑛 + 𝑙𝑛 = 𝑚𝑛, for 𝜆𝑗 ∈ ∆𝑛 we have

|𝑞𝑛(𝜆𝑗)| > exp

(︂
−𝑐3 − 𝑐2 ln 𝑟𝑝𝑛 −𝑚𝑛 ln

2𝑒𝑟𝑝𝑛
𝛿𝑚𝑛

)︂
, (25)

where 𝑛 > 1, 𝑚𝑛 is a number not exceeding the amount of points 𝜈𝑘 in interval ∆𝑛. Since
0 < 𝑟𝑝𝑛+1− 𝑟𝑝𝑛 6 𝑝𝐻(𝑝𝑛) (0 < 𝑝 <∞), taking into consideration property a) of sequence 𝜈, we
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have 𝑚𝑛 6 𝑐4𝐻(𝑟𝑝𝑛), 0 < 𝑐4 < ∞ (𝑛 > 1). Then 𝐻(𝑥)
𝑥

↓ 0 as 𝑥 ↑ ∞ and function 𝜓(𝑥) = 𝑥 ln Δ
𝑥

(∆ is a positive constant) is increasing as 0 < 𝑥 < Δ
𝑒

. Therefore, by (25) we get that

ln |𝑞𝑛(𝜆𝑗)| > −𝑐5 − 𝑐2 ln 𝑟𝑝𝑛 − 𝑐6𝐻(𝑟𝑝𝑛) ln
𝑟𝑝𝑛

𝐻(𝑟𝑝𝑛)

for 𝜆𝑗 ∈ ∆𝑛 (𝑛 > 𝑛0), where 0 < 𝑐𝑖 < ∞ (𝑖 = 2, 5, 6). Since 𝐻 ∈ 𝑅𝑘, there exists 𝑢1 ∈ 𝐿𝑘 such
that

ln |𝑞𝑛(𝜆𝑗)| > −𝑢1(𝑟𝑝𝑛) (𝑛 > 1) (26)

for 𝜆𝑗 ∈ ∆𝑛.
Let us estimate ln |𝑞𝑛(𝜆𝑗)| from above. In order to do it, we observe that as 𝑛 > 𝑛1,⃒⃒⃒⃒

1 − 𝜆𝑗
𝜈𝑘

⃒⃒⃒⃒
6 1 +

𝑟𝑝𝑛+1

𝑟𝑝𝑛
6 𝑒

for each 𝜆𝑗 ∈ ∆𝑛. Thus,

ln |𝑞𝑛(𝜆𝑗)| 6 𝑚𝑛 + 2 6 𝑐4𝐻(𝑟𝑝𝑛) + 2 (𝑛 > 𝑛1)

for 𝜆𝑗 ∈ ∆𝑛. It follows that
ln |𝑞𝑛(𝜆𝑗)| 6 𝑢2(𝑟𝑝𝑛) (𝑛 > 1) (27)

for some function 𝑢2 ∈ 𝐿𝑘. Thus, by (26), (27) we finally obtain that

max
𝜆𝑗∈Δ𝑛

| ln |𝑞𝑛(𝜆𝑗)|| 6 𝑢(𝑟𝑝𝑛) (𝑛 > 1),

where 𝑢 = 𝑢1 + 𝑢2. The proof is complete.

We let 𝛾𝑛 = Γ𝑝𝑛 (𝑛 > 1).

Lemma 2. For each 𝑛 > 1

𝑀𝑛 = max
𝜆∈𝛾𝑛

ln |𝑞𝑛(𝜆)| 6 𝑢(𝑟𝑝𝑛), (28)

where 𝑢 is a function in 𝐿𝑘.

Proof. For each 𝜆 ∈ 𝛾𝑛, 𝜈𝑘 ∈ ∆𝑛 as 𝑛 > 𝑛1 we have⃒⃒⃒⃒
1 − 𝜆

𝜈𝑘

⃒⃒⃒⃒
6 1 +

𝑟𝑝𝑛+1

𝑟𝑝𝑛
6 𝑒.

Therefore, as in Lemma 1, 𝑀𝑛 6 𝑢2(𝑟𝑝𝑛) 6 𝑢(𝑟𝑝𝑛) (𝑛 > 1). Thus, estimate (28) indeed holds
true.

Now we are in position to prove Theorem 1.

Proof of Theorem 1. Let 𝛾𝑛 = Γ𝑝𝑛 (𝑛 > 1). We let 𝜌′𝑛 = 𝑟𝑝𝑛 , 𝜌′′𝑛 = 𝑟𝑝𝑛+1. Then ∆𝑛 = (𝜌′𝑛, 𝜌
′′
𝑛)

(𝑛 > 1).
We consider Dirichlet series

𝐹 (𝑠) =
∞∑︁
𝑗=1

𝑎𝑗𝑒
𝜆𝑗𝑠 (𝑠 = 𝜎 + 𝑖𝑡), (29)

where

𝑎𝑗 = exp

(︂
(𝜌− 𝑞*)

𝜌′𝑛
ln𝑘−1 𝜌′𝑛

)︂
𝑞𝑛(𝜆𝑗)

𝑄′(𝜆𝑗)
(𝑗 > 1)

for 𝜆𝑗 ∈ ∆𝑛 (𝑛 > 1). Here 𝑄 is function (18), 𝑞𝑛 is the function described in Lemmata 1, 2,
0 6 𝜌 < ∞, and 𝑞* is the quantity defined in Theorem III. Since 𝐻 ∈ 𝑅𝑘, 𝜙 ∈ 𝐿𝑘, estimate
(16) in Theorem IV implies that 𝑞* = 𝑞(𝑄) > 0, where

𝑞(𝑄) = lim
𝑛→∞

ln𝜆𝑛
𝜆𝑛

ln

⃒⃒⃒⃒
1

𝑄′(𝜆𝑛)

⃒⃒⃒⃒
.
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Since 𝜌′′𝑛/𝜌
′
𝑛 → 1 as 𝑛→ ∞, 𝑞(𝑄) <∞, by (20) we obtain that

lim
𝑗→∞

ln |𝑎𝑗|
𝜆𝑗

= 0.

Hence, 𝐹 ∈ 𝐷0(Λ). Taking into consideration (20) once again and employing formula (11) for
calculating 𝑘-order 𝜌𝑘, we have

𝜌𝑘(𝐹 ) = lim
𝑗→∞

ln𝑘−1 𝜆𝑗
𝜆𝑗

ln𝑘−1

⃒⃒⃒⃒
1

𝑄′(𝜆𝑗)

⃒⃒⃒⃒
+ lim

𝑗→∞

ln𝑘−1 𝜆𝑗
𝜆𝑗

ln |𝑞𝑛(𝜆𝑗)|

+ lim
𝑗→∞

ln𝜆𝑗
𝜆𝑗

(𝜌− 𝑞*)
𝜌′𝑛

ln𝑘−1 𝜌′𝑛
= 𝑞(𝑄) + 𝜌− 𝑞* = 𝜌.

Let us estimate order 𝜌𝑠(𝐹 ) in semi-strip 𝑆(𝑎, 𝑡0) (𝑎 > 𝜋𝐺(𝑅𝑘)). Sequence Γ = {𝜇𝑛} of
zeroes of function 𝑄 has density 𝑏 that follows from (17) and 𝐺(𝑅) < 𝑏. Given 𝐺(𝑅𝑘) and 𝑎,
we choose parameter 𝑏 in Theorem IV so that 𝐺(𝑅𝑘) < 𝑏 < 𝑎

𝜋
.

Then we observe that

𝐴𝑛

𝑑𝑒𝑓
≡

∑︁
𝜆𝑗∈Δ𝑛

𝑎𝑗𝑒
𝜆𝑗𝑠 = 𝑒

(𝜌−𝑞*)
𝜌′𝑛

ln𝑘−1 𝜌′𝑛
1

2𝜋𝑖

∫︁
𝛾𝑛

𝑞𝑛(𝜉)

𝑄(𝜉)
𝑒𝑠𝜉𝑑𝜉, (30)

where 𝛾𝑛 is a closed contour formed by the arcs of circles 𝐾𝜌′𝑛 and 𝐾𝜌′′𝑛 in the angle {𝜆 : | arg 𝜆| 6
𝜙𝑛 <

𝜋
4
} and by the segments of rays {𝜆 : | arg 𝜆| = 𝜙𝑛}. We take 𝜙𝑛 = 𝜀0

𝐻(𝜌′𝑛)
𝜌′𝑛

(0 < 𝜀0 < 1).

Since 𝐻 ∈ 𝑅𝑘, then 𝜙𝑛 ↓ 0 as 𝑛→ ∞. We choose number 𝜀0 so that 0 < 𝜙𝑛 <
𝜋
4

(𝑛 > 1).

Let us estimate function
⃒⃒⃒
𝑞𝑛(𝜉)
𝑄(𝜉)

⃒⃒⃒
on contour 𝛾𝑛. In order to do it, we employ (17) and estimate

[5]

− ln |𝑄(𝑟𝑒±𝑖𝜙𝑛)| 6 6𝐻(𝑟) ln
𝑟

𝐻(𝑟)
+

8𝜋

|𝜙𝑛|
𝐻2(𝑟)

𝑟
+ 3𝜇1𝑏, 𝑟 > 𝜌′𝑛0

.

We note that this “effective” estimate of Weierstrass product is valid under the only restric-
tion, which is condition (17).

Let 𝜌′𝑛 6 𝑟 6 𝜌′′𝑛, 𝑛 > 𝑛0. Since 𝐻(𝑟)
𝑟

↓ as 𝑟 ↑, then 𝐻(𝑟) 6 𝑟
𝜌′𝑛
𝐻(𝜌′𝑛) 6 𝜌′′𝑛

𝜌′𝑛
𝐻(𝜌′𝑛). Hence,

− ln |𝑄(𝑟𝑒±𝑖𝜙𝑛)| 6 12𝐻(𝜌′𝑛) ln
𝜌′𝑛

𝐻(𝜌′𝑛)
+

32𝜋

𝜀0
𝐻(𝜌′𝑛) + 3𝜇1𝑏 (31)

as 𝜆𝑗 ∈ ∆𝑛 (𝑛 > 1). Estimates (19) hold true on the arcs of circles 𝐾𝜌′𝑛 and 𝐾𝜌′′𝑛 in contour 𝛾𝑛.
Since 𝐻 ∈ 𝑅𝑘, in view of 𝜌′′𝑛/𝜌

′
𝑛 → 1 as 𝑛→ ∞, by (19), (31) we obtain that

− ln |𝑄(𝜉)| 6 𝑤(𝜌′𝑛), 𝜉 ∈ 𝛾𝑛 (𝑛 > 𝑛1)

for some function 𝑤 ∈ 𝐿𝑘. Therefore, employing Lemma 2, we obtain the estimate

max
𝜉∈𝛾𝑛

⃒⃒⃒⃒
𝑞𝑛(𝜉)

𝑄(𝜉)

⃒⃒⃒⃒
6 𝑒𝑢(𝜌

′
𝑛)+𝑤(𝜌′𝑛) (𝑛 > 𝑛1),

where 𝑢, 𝑤 are functions in 𝐿𝑘. But then it follows from (30) that

|𝐴𝑛| 6 2𝜌′′𝑛𝑒
(𝜌−𝑞*)

𝜌′𝑛
ln 𝜌′𝑛

+𝑢(𝜌′𝑛)+𝑤(𝜌′𝑛)𝑒
max
𝜉∈𝛾𝑛

Re (𝑠𝜉)
(32)

as 𝑛 > 𝑛1.
Let 𝑠 ∈ 𝑆(𝑎, 𝑡0), 𝜉 ∈ 𝛾𝑛, 𝑠 = 𝜎 + 𝑖𝑡, 𝜉 = 𝜉1 + 𝑖𝜉2. Then⃒⃒⃒⃒

⃒⃒ ∑︁
𝜆𝑗<𝜌′𝑛1

𝑎𝑗𝑒
𝜆𝑗𝑠

⃒⃒⃒⃒
⃒⃒ 6 ∑︁

𝜆𝑗<𝜌′𝑛1

|𝑎𝑗|𝑒𝜆𝑗𝜎 6
∑︁

𝜆𝑗<𝜌′𝑛1

|𝑎𝑗| = 𝑀, (33)
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Re (𝑠𝜉) = 𝜎𝜉1 − 𝑡𝜉2 6 𝜎𝜌′𝑛 + (|𝑡0|+ 𝑎)|Im 𝜉|. Since |Im 𝜉| 6 𝜌′′𝑛| sin𝜙𝑛| 6 𝜌′𝑛|𝜙𝑛| = 𝜀0
𝜌′′𝑛
𝜌′𝑛
𝐻(𝜌′𝑛) as

𝜉 ∈ 𝛾𝑛, then there exists 𝑑(0 < 𝑑 <∞) such that

max
𝜉∈𝛾𝑛

(𝑠𝜉) 6 𝜎𝜌′𝑛 + 𝑑𝐻(𝜌′𝑛), (𝑛 > 1) (34)

as 𝑠 ∈ 𝑆(𝑎, 𝑡0). Therefore, by (32)–(34) we obtain

𝑀𝑠(𝜎) = max
|𝑡−𝑡0|6𝑎

|𝐹 (𝜎 + 𝑖𝑡)| 6𝑀 +
∞∑︁

𝑛=𝑛1

𝛾𝑛𝑒
𝜎𝜌′𝑛 (𝜎 < 0),

where

𝛾𝑛 = exp

[︂
ln(2𝜌′′𝑛) + (𝜌− 𝑞*)

𝜌′𝑛
ln 𝜌′𝑛

+ 𝑑𝐻(𝜌′𝑛) + 𝑢(𝜌′𝑛) + 𝑤(𝜌′𝑛)

]︂
.

We introduce an auxiliary series

Φ(𝑠) =
∞∑︁
𝑛=1

𝛾𝑛𝑒
𝑠𝜌′𝑛 (𝑠 = 𝜎 + 𝑖𝑡).

Since 𝐻, 𝑢, 𝑤 belong to 𝐿𝑘, 𝜌′′𝑛/𝜌
′
𝑛 → 1 as 𝑛 → ∞, then in accordance with formula (11), the

order of function Φ in half-plane Π0 is equal to 𝜌𝑘(Φ) = 𝜌−𝑞*. But 𝑀𝑠(𝜎) 6 Φ(𝜎)+𝑀 . Hence,
𝜌𝑠(𝐹 ) 6 𝜌 − 𝑞*. It follows from Theorem III that 𝜌𝑘(𝐹 ) 6 𝜌𝑠(𝐹 ) + 𝑞*. Since 𝜌𝑘(𝐹 ) = 𝜌, then
𝜌𝑘(𝐹 ) = 𝜌𝑠(𝐹 ) + 𝑞*, and the proof of Theorem 1 is complete.
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4. A.M. Găısin. A bound for the growth in a half-strip of a function represented by a Dirichlet series

// Matem. Sbornik. 117(159):3, 412–424 (1982). [Math. USSR-Sbornik. 43:3, 411–422 (1983).]
5. A.M. Gaisin, D.I. Sergeeva. Entire functions with a given sequence of zeros and of regular behavior

on the real axis. I // Sibir. Matem. Zhurn. 48:5, 995–1007 (2007). [Siber. Math. J. 48:5, 798–808
(2007).]

6. A.M. Gaisin, D.I. Sergeeva. An estimate for the Dirichlet series in a half-strip in the case of the
irregular distribution of exponents. II // Sibir. Matem. Zhurn. 49:2, 280–298 (2008). [Siber. Math.
J. 49:2, 222–238 (2008).]

7. N.N. Aitkuzhina, A.M. Gaisin. Two-sided k-order estimate for Dirichlet series in a half-strip //
Ufimskij Matem. Zhurn. 6:4, 19–31 (2014). [Ufa Math. J. 6:4, 18–30 (2014).]

Narkes Nurmukhametovna Aitkuzhina,
Bashkir State University,
Z. Validi str., 32,
450074, Ufa, Russia
E-mail: Yusupovan@rambler.ru

Akhtyar Magazovich Gaisin,
Institute of Mathematics CC USC RAS,
Chernyshevskii str., 112,
450008, Ufa, Russia

Bashkir State University,
Zaki Validi str., 32,
450074, Ufa, Russia
E-mail: Gaisinam@mail.ru


	to1. Definitions and needed facts
	to2. Main theorem on exact estimates for k-order
	 References

