doi:10.13108/2015-7-4-15

UDC 517.53

EXACTNESS OF ESTIMATES FOR *k*-th ORDER OF DIRICHLET SERIES IN A SEMI-STRIP

N.N. AITKUZHINA, A.M. GAISIN

Dedicated to the memory of professor Igor' Fedorovich Krasichkov-Ternovskii

Abstract. We study Dirichlet series converging only in a half-plane such that their sequence of exponents admits an extension to a "regular" sequence. We prove the exactness of two-sided estimates for k-order of the sum of the Dirichlet series in a semi-strip whose width depends on the special distribution density of the exponents.

Keywords: *k*-order of the Dirichlet series in a semi-strip, entire functions with a prescribed asymptotics on the positive axis.

Mathematics Subject Classification: 3010

Let $\Lambda = \{\lambda_n\} \ (0 < \lambda_n \uparrow \infty)$ be a sequence satisfying the condition

$$\lim_{n \to \infty} \frac{\ln n}{\lambda_n} = H < \infty.$$
(1)

In studying entire functions

$$F(s) = \sum_{n=1}^{\infty} a_n e^{\lambda_n s} \quad (s = \sigma + it)$$
⁽²⁾

defined by everywhere convergent Dirichlet series, Ritt introduced the notion of R-order [1]:

$$\rho_R = \lim_{\sigma \to +\infty} \frac{\ln \ln M(\sigma)}{\sigma}$$

where $M(\sigma) = \sup_{|t| < \infty} |F(\sigma + it)|$. We note that by condition (1) series (2) converges absolutely in the whole plane. It is known that $\ln M(\sigma)$ is an increasing convex function of σ , $\lim_{\sigma \to +\infty} \ln M(\sigma) = +\infty$. The quantity

$$\rho_s = \lim_{\sigma \to +\infty} \frac{\ln^+ \ln M_s(\sigma)}{\sigma} \quad (a^+ = \max(a, 0))$$

is called *R*-order of function *F* in strip $S(a, t_0) = \{s = \sigma + it : |t - t_0| \leq a\}$. Here $M_s(\sigma) = \max_{|t-t_0|\leq a} |F(\sigma + it)|$.

In [2] sufficient conditions for Λ and *a* ensuring $\rho_R = \rho_S$ were obtained. The most general results on relation between ρ_R and ρ_s was established by A.F. Leontiev [3].

Similar issues in the case when H = 0 and the convergence domain of series (2) is the half-plane $\Pi_0 = \{s = \sigma + it : \sigma < 0\}$ were studied by A.M. Gaisin in [4].

Submitted October 6, 2015.

N.N. AITKUZHINA, A.M. GAISIN, EXACTNESS OF ESTIMATES FOR k-th order of Dirichlet series in a semi-strip.

[©] Aitkuzhina N.N., Gaisin A.M. 2015.

The work is supported by RFBR (grant no. 15-01-01661) and the Program of fundamental research of the Department of Mathematics of RAS "Modern problems of theoretical mathematics", project "Complex analysis and functional equations".

As H = 0, if series (2) converges in half-plane Π_0 , it converges absolutely in Π_0 . Then the sum of series F is analytic in this half-plane. The class of all unbounded analytic functions represented by Dirichlet series (2) converging just in half-plane Π_0 is denoted by $D_0(\Lambda)$.

Let $S(a, t_0) = \{s = \sigma + it : |t - t_0| \leq a, \sigma < 0\}$ be a semi-strip. The quantities

$$\rho_R = \lim_{\sigma \to 0^-} \frac{\ln^+ \ln M(\sigma)}{|\sigma|^{-1}}, \qquad \rho_s = \lim_{\sigma \to 0^-} \frac{\ln^+ \ln M_s(\sigma)}{|\sigma|^{-1}}$$

are called Ritt orders of function F in half-plane Π_0 and semi-strip $S(a, t_0)$ [4]. In what follows we call ρ_R and ρ_s orders in the half-plane and the semi-strip. If it is necessary, instead of ρ_R and ρ_s we shall write $\rho_R(F)$ and $\rho_s(F)$.

It was shown in [4] that condition

$$\lim_{n \to \infty} \frac{\ln \lambda_n}{\lambda_n} \ln n = 0$$

is sufficient for order ρ_R of each function $F \in D_0(\Lambda)$ to be

$$\rho_R = \lim_{n \to \infty} \frac{\ln \lambda_n}{\lambda_n} \ln^+ |a_n|.$$
(3)

Let sequence Λ have a finite upper density D. Then

$$L(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\lambda_n^2} \right) \quad (z = x + iy)$$

is an entire function of exponential type. If $h(\varphi)$ is the growth indicatri, and τ is a type of function L, then $\tau = h(\frac{+\pi}{2}) \leq \pi D^*$ (D^* is the averaged upper density of sequence Λ) [2]. Assume that

$$|L(x)| \leqslant e^{g(x)} \quad (x \ge 0), \qquad \lim_{x \to +\infty} \frac{g(x) \ln x}{x} = 0, \tag{4}$$

where g is a non-negative on $\mathbb{R}_+ = [0, \infty)$ function. In this case the adjoint diagram of function L is the segment $I = [-\tau i, \tau i], h(\varphi) = \tau |\sin \varphi|.$

In [4] the following theorem was proved.

Theorem I. Suppose that function L satisfies conditions (4) and has type τ ($0 \leq \tau < \infty$). We let q = q(L), where

$$q(L) = \overline{\lim_{n \to \infty} \frac{\ln \lambda_n}{\lambda_n}} \ln \left| \frac{1}{L'(\lambda_n)} \right|.$$
(5)

Then order ρ_s in the half-plane $S(a, t_0)$ as $a > \tau$ and order ρ_R of each function $F \in D_0(\Lambda)$ in half-plane Π_0 satisfy the eistimates

$$\rho_s \leqslant \rho_R \leqslant \rho_s + q. \tag{6}$$

The left estimate in (6) is exact [4]. In the general situation the right estimate is not exact, moreover, the pair of conditions (4) can fail. But there can exist an entire function Q of exponential type with simple zeroes at the points of sequence Λ , for which conditions (4) hold and $q(Q) = q^*$, where

$$q^* = \lim_{n \to \infty} \frac{\ln \lambda_n}{\lambda_n} \int_0^1 \frac{n(\lambda_n; t)}{t} dt,$$

q(Q) is the quantity defined in the same way as q(L) in (5), and $n(\lambda_n; t)$ is the amount of points $\lambda_k \neq \lambda_n$ in the segment $\{x : |x - \lambda_n| \leq t\}$. Paper [5] is devoted to constructing such entire functions Q with a prescribed subset of zeroes Λ and a prescribed asymptotics at the real axis. It turns out that in terms of a special distribution density G(R) of sequence Λ one can provide conditions under which the estimates

$$\rho_s \leqslant \rho_R \leqslant \rho_s + q^*$$

hold true, where ρ_s is the order in a semi-strip $S(a, t_0)$ of the width greater than $2\pi G(R)$) and these estimates are the best possible in class $D_0(\Lambda)$ [6]. Similar estimates for k-orders were obtained in [7]. The aim of the paper is prove the exactness of these estimates.

1. Definitions and needed facts

Let $\Lambda = \{\lambda_n\}, (0 < \lambda_n \uparrow \infty)$ be a sequence having a finite upper density, L be the class of positive continuous and unboundedly increasing on $[0, \infty)$ functions. By K we denote a subclass of functions h in L such that h(0) = 0, h(t) = o(t) as $t \to \infty, \frac{h(t)}{t} \downarrow$ as $t \uparrow (\frac{h(t)}{t}$ decreases monotonically as t > 0). In particular, if $h \in K$, the $h(2t) \leq 2h(t)$ (t > 0), $h(t) \leq h(1)t$ as $t \geq 1$.

K-density of sequence Λ is the quantity

$$G(K) = \inf_{h \in K} \lim_{t \to \infty} \frac{\mu_{\Lambda}(\omega(t))}{h(t)},\tag{7}$$

where $\omega(t) = [t, t + h(t))$ is a semi-interval, $\mu_{\Lambda}(\omega(t))$ is the amount of points of Λ lying in semi-interval $\omega(t)$.

Let $\Omega = \{\omega\}$ be a family of semi-intervals $\omega = [a, b)$. By $|\omega|$ we denote the length of ω . Each sequence $\Lambda = \{\lambda_n\}, (0 < \lambda_n \uparrow \infty)$ generates an integer-valued counting measure μ_{Λ} :

$$\mu_{\Lambda}(\omega) = \sum_{\lambda_n \in \omega} 1, \quad \omega \in \Omega.$$

Let μ_{Γ} be a counting measure generated by the sequence $\Gamma = {\{\mu_n\}}, (0 < \mu_n \uparrow \infty)$. Then the inclusion $\Lambda \subset \Gamma$ means that $\mu_{\Lambda}(\omega) \leq \mu_{\Gamma}(\omega)$ for each $\omega \in \Omega$. In this case we shall say that measure μ_{Γ} majorizes measure μ_{Λ} .

By D(K) we denote the infimum of numbers $b \ (0 \le b < \infty)$ for which there exists measure μ_{Γ} majorizing μ_{Λ} such that

$$|M(t) - bt| \leqslant h(t) \qquad (t \ge 0) \tag{8}$$

for some function $h \in K$. Here $\Lambda = \{\lambda_n\}, \Gamma = \{\mu_n\}, M(t) = \sum_{\mu_n \leq t} 1$.

It was shown in [6] that D(K) = G(K). The quantity

$$\rho_k = \lim_{\sigma \to 0_-} \frac{\ln_k M(\sigma)}{|\sigma|^{-1}} \quad (k \ge 2)$$
(9)

is called k-order of function $F \in D_0(\Lambda)$ in half-plane $\Pi_0 = \{s : \sigma = \operatorname{Re} s < 0\}$ [7]. Here $\ln_0 t = t, \ln_k t = \underbrace{\ln \ln \dots \ln t}_k \ (k \ge 1)$. In view of the definition of k-order (9) we see that $\rho_2 = \rho_R$,

where ρ_R is the *R*-order in half-plane Π_0 [4].

The following theorem was proven in [7].

Theorem II. The condition

$$\lim_{n \to \infty} \frac{\ln n \ln_{k-1} \lambda_n}{\lambda_n} = 0 \quad (k \ge 2)$$
(10)

is necessary and sufficient for k-order ρ_k of each function $F \in D_0(\Lambda)$ to satisfy the formula

$$\rho_k = \lim_{n \to \infty} \frac{\ln |a_n|}{\lambda_n} \ln_{k-1} \lambda_n \quad (k \ge 2; \ 0 \le \rho_R \le \infty).$$
(11)

We observe that formula (3) is a particular case of identity (11).

In the same way one introduces the notion of k-order $\rho_s^{(k)}$ in semi-strip $S(a, t_0)$. For the sake of convenience, we shall still denote it by ρ_s .

We introduce the following classes of functions:

$$L_{k} = \{h \in L : h(x) \ln_{k-1} x = o(x), \quad x \to \infty\} \quad (k \ge 2),$$

$$S = \{h \in K : d(h) = \lim_{x \to \infty} \frac{h(x) \ln h(x)}{x \ln \frac{x}{h(x)}} < \infty\},$$

$$R_{k} = \{h \in S : h(x) \ln \frac{x}{h(x)} = o\left(\frac{x}{\ln_{k-1} x}\right), \quad x \to \infty\} \quad (k \ge 2).$$

The following theorem was proved in paper [7].

Theorem III. Let $\Lambda = \{\lambda_n\}$, $(0 < \lambda_n \uparrow \infty)$ be a sequence satisfying the conditions 1) $\Lambda(x + \rho) - \Lambda(x) \leq c\rho + d + \frac{\varphi(x)}{\ln^+ \rho + 1}$, $(\rho \geq 0)$, where $\Lambda(x) = \sum_{\lambda_n \leq x} 1$, φ is a function in L_k k > 2):

 $(k \ge 2);$

2) $q_k^* = \overline{\lim}_{n \to \infty} \frac{\ln_{k-1} \lambda_n}{\lambda_n} \int_0^1 \frac{n(\lambda_n; t)}{t} dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of points of } dt < \infty \ (k \ge 2), \text{ where } n(\lambda_n; t) \text{ is the amount of po$

 $\lambda_k \neq \lambda_n$ lying in the segment $\{x : |x - \lambda_n| \leq t\}.$

If density R_k of sequence Λ is equal to G(R), then k-order ρ_s of each function $F \in D_0(\Lambda)$ in semi-strip $S(a, t_0)$ as $a > \pi G(R_k)$ and order ρ_R of this function in half-plane Π_0 satisfies the estimates

$$\rho_s \leqslant \rho_k \leqslant \rho_s + q_k^* \quad (k \ge 2). \tag{12}$$

As it is known, estimate $\rho_s \leq \rho_k$ in (12) is exact. In what follows we discuss the exactness of inequality $\rho_k \leq \rho_s + q_k^*$ $(k \geq 2)$.

2. Main theorem on exact estimates for k-order

The main result of the paper is the following theorem.

Theorem 1. Let Λ be a sequence satisfying the assumptions of Theorem III. Then there exists a function $F \in D_0(\Lambda)$ such that $\rho_k(F) = \rho_s(F) + q^*$, where $\rho_k(F)$ is the order in halfplane Π_0 , and $\rho_s(F)$ is order in semi-strip $S(a, t_0)$, $(a > \pi G(R))$.

Corollary. Suppose that Λ satisfies the assumptions of Theorem 1. Order $\rho_k(F)$ of each function $F \in D_0(\Lambda)$ is equal to order $\rho_s(F)$ in each semi-strip $S(a, t_0)$ $(a > \pi G(R))$ if and only $q^* = 0$.

In the proof of Theorem 1 we shall make use of

Theorem IV [6]. Let $\Lambda = \{\lambda_n\}$ $(0 < \lambda_n \uparrow \infty)$ be a sequence having a finite S-density G(S). Then for each b > G(S) there exists a sequence $\Gamma = \{\mu_n\}$ $(0 < \mu_n \uparrow \infty)$ containing Λ and having density b such that the entire function

$$Q(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\mu_n^2} \right) \quad (z = x + iy)$$

of exponential type πb possesses the properties:

1) $Q(\lambda_n) = 0, Q'(\lambda_n) \neq 0$ for each $\lambda_n \in \Lambda$;

2) there exists $H \in S$ such that

$$\ln|Q(x)| \leqslant AH(x)\ln^{+}\frac{x}{H(x)} + B;$$
(13)

3) if $\Lambda(x) = \sum_{\lambda_n \leqslant x} 1$, and

$$\Lambda(x+\rho) - \Lambda(x) \leqslant a\rho + b + \frac{\varphi(x)}{\ln^+ \rho + 1} \quad (\rho \ge 0)$$
(14)

(φ is an arbitrary non-negative non-decreasing function defined on the ray $[0,\infty)$, $1 \leq \varphi(x) \leq \alpha x \ln^+ x + \beta$), then there exists a sequence $\{r_n\}, 0 < r_n \uparrow \infty, r_{n+1} - r_n = O(H(r_n))$ as $n \to \infty$, such that for $x = r_n$ $(n \geq 1)$

$$\ln|Q(x)| \ge -CH(x)\ln^+\frac{x}{H(x)} - 2\varphi(x) - D;$$
(15)

4) if

$$\Delta = \lim_{n \to \infty} \frac{1}{\lambda_n} \int_0^1 \frac{n(\lambda_n; t)}{t} dt < \infty,$$

then under condition (14)

$$\left|\ln\left|\frac{1}{Q'(\lambda_n)}\right| - \int_0^1 \frac{n(\lambda_n; t)}{t} dt\right| \leqslant EH(\lambda_n) \ln^+ \frac{\lambda_n}{H(\lambda_n)} + 2\varphi(\lambda_n) + F \ln \lambda_n + L \quad (n \ge 1), \quad (16)$$

where $n(\lambda_n; t)$ is the amount of points $\lambda_k \neq \lambda_n$ in the segment $\{x : |x - \lambda_n| \leq t\}$.

Here all constants are finite and positive.

Let $\Lambda = \{\lambda_n\}$ be a sequence satisfying assumptions of Theorem III. Then in accordance with Theorem IV for each $b > G(R_k)$ ($G(R_k)$ is R_k -density of sequence Λ) there exists a sequence $\Gamma = \{\mu_n\}$ ($0 < \mu_1 \leq \mu_2 \leq \ldots \leq \mu_n \to \infty$) containing Λ such that

$$|M(t) - bt| \leqslant H(t) \quad (t \ge 0), \quad H \in R, \tag{17}$$

and entire function

$$Q(z) = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\mu_n^2} \right) \quad (z = x + iy) \tag{18}$$

of exponential type πb possesses the properties

- 1⁰. $Q(\lambda_n) = 0, \ Q'(\lambda_n) \neq 0 \ (n \ge 1);$
- 2⁰. $\ln |Q(x)| \leq g(x) \ (x \geq 0), g \in L_k;$

 3^0 . The estimate

$$\ln |Q(x)| \ge -CH(x) \ln^+ \frac{x}{H(x)} - 2\varphi(x) - D, \quad H \in R_{\mathbb{A}}$$

holds true as $x = r_n$ $(n \ge 1)$. Estimates 2⁰, 3⁰ in Theorem III follows from (13), (15). But since $H \in R_k$, $\varphi \in L_k$, there exists function $V \in L_k$ such that

$$\ln|Q(z)| \ge \ln|Q(r)| \ge -V(r) \tag{19}$$

as $r = r_n \ (r = |z|) \ (n \ge 1)$.

Let $\{r_n\}$ be the sequence from Theorem IV (estimates (19) hold true as $|z| = r_n (n \ge 1)$). Let $\Delta_n = (r_{p_n}, r_{p_n+1})$ $(n \ge 1)$ be all the intervals each of which contains at leas one point in Λ (some of intervals (r_n, r_{n+1}) can contain no points in Λ).

By Γ_{p_n} $(n \ge 1)$ we denote a closed contour formed by two arcs of the circles $K_{p_n} = \{\lambda : |\lambda| = r_{p_n}\}$ and $K_{p_n+1} = \{\lambda : |\lambda| = r_{p_n+1}\}$ in the angle $\{\lambda : |\arg \lambda| \le \varphi_n < \frac{\pi}{4}\}$ and by the segments of the rays $\{\lambda : |\arg \lambda| = \varphi_n\}$.

In the proof of Theorem 1 we employ the functions

$$q_n(\lambda) = \prod_{\nu_k \in \Delta_n} \left(1 - \frac{\lambda}{\nu_k} \right),$$

where $\Delta_n = (r_{p_n}, r_{p_n+1}), \nu = \{\nu_k\} = \Gamma \setminus \Lambda$. Sequence ν is constructed in the proof of Theorem IV and possesses the properties [6]:

a) $\inf_{i \neq j} |\nu_i - \nu_j| \ge \tau > 0;$

b) $\inf_{m \ge 1} |\lambda_n - \nu_m| \ge \frac{\gamma}{\varphi(2\lambda_n)}$ ($\gamma > 0, n \ge 1$), where φ is the functions from condition (14) of Theorem IV.

Let us establish estimates for $|q_n(\lambda)|$.

Lemma 1. There exists function $u \in L_k$ such that

$$\max_{\lambda_j \in \Delta_n} |\ln |q_n(\lambda_j)|| \leqslant u(r_{p_n}) \quad (n \ge 1).$$
(20)

Proof. Indeed, let $\lambda_j \in \Delta_n, \nu'_j$ and ν''_j be the closest to λ_j points of sequence ν located to the left and to right of λ_j , respectively. We have

$$\left|\frac{\nu_j' - \lambda_j}{\nu_j'}\right| \left|\frac{\nu_j'' - \lambda_j}{\nu_j''}\right| \ge \left[\frac{\gamma}{\varphi(2\lambda_j)}\right]^2 r_{p_n+1}^{-2} \quad (\lambda_j \in \Delta_n).$$

Since $1 \leq \varphi(x) \leq \alpha x \ln^+ x + \beta$, $r_{p_n}/r_{p_n+1} \to 1$ as $n \to \infty$, it implies the estimate

$$\left|1 - \frac{\lambda_j}{\nu_j'}\right| \left|1 - \frac{\lambda_j}{\nu_j''}\right| \ge e^{-c_1 - c_2 \ln r_{p_n}} \quad (\lambda_j \in \Delta_n),$$
(21)

where $0 < c_i < \infty$ (i = 1, 2).

Let $\Delta'_n = \Delta_n \setminus \{\nu'_j, \nu''_j\}$. Then

$$\prod_{\substack{\nu_k \in \Delta'_n \\ \nu_k < \lambda_j}} \left| \frac{\nu_k - \lambda_j}{\nu_k} \right| \ge \left(\frac{\tau}{r_{p_n+1}} \right)^{s_n} s_n!, \tag{22}$$

where s_n is the amount of points $\nu_k < \lambda_j, \ \nu_k \in \Delta'_n$. In the same way,

$$\prod_{\substack{\nu_k \in \Delta'_n \\ \nu_k > \lambda_j}} \left| \frac{\nu_k - \lambda_j}{\nu_k} \right| \ge \left(\frac{\tau}{r_{p_n+1}} \right)^{l_n} l_n!, \tag{23}$$

where l_n is the amount of points $\nu_k > \lambda_j$, $\nu_k \in \Delta'_n$. It follows from (21)–(23) that as $\lambda_j \in \Delta_n$, $(n \ge 1)$

$$|q_n(\lambda_j)| \ge e^{-c_1 - c_2 \ln r_{p_n}} \left(\frac{\delta}{r_{p_n}}\right)^{s_n + l_n} s_n! l_n! \quad (0 < \delta \le 1).$$

$$\tag{24}$$

If $\sup_{n \ge 1} (s_n + l_n) < \infty$, the required lower estimate for $|q_n(\lambda_j)|$ is obvious. Otherwise we first employ the known estimate

$$s_n!l_n! \geqslant \frac{(s_n+l_n)!}{2^{s_n+l_n}}$$

and then we use Stirling's asymptotic formula

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

as $n \to \infty$.

Then by (24) we obtain

$$|q_n(\lambda_j)| \ge \exp\left(-c_3 - c_2 \ln r_{p_n}\right) \left[\frac{\delta(s_n + l_n)}{2er_{p_n}}\right]^{s_n + l_n} \quad (n \ge 1),$$

where $0 < c_i < \infty$ (i = 2, 3). Letting $s_n + l_n = m_n$, for $\lambda_j \in \Delta_n$ we have

$$|q_n(\lambda_j)| \ge \exp\left(-c_3 - c_2 \ln r_{p_n} - m_n \ln \frac{2er_{p_n}}{\delta m_n}\right),\tag{25}$$

where $n \ge 1$, m_n is a number not exceeding the amount of points ν_k in interval Δ_n . Since $0 < r_{p_n+1} - r_{p_n} \le pH(p_n)$ ($0), taking into consideration property a) of sequence <math>\nu$, we

have $m_n \leq c_4 H(r_{p_n}), 0 < c_4 < \infty$ $(n \geq 1)$. Then $\frac{H(x)}{x} \downarrow 0$ as $x \uparrow \infty$ and function $\psi(x) = x \ln \frac{\Delta}{x}$ (Δ is a positive constant) is increasing as $0 < x < \frac{\Delta}{e}$. Therefore, by (25) we get that

$$\ln |q_n(\lambda_j)| \ge -c_5 - c_2 \ln r_{p_n} - c_6 H(r_{p_n}) \ln \frac{r_{p_n}}{H(r_{p_n})}$$

for $\lambda_j \in \Delta_n$ $(n \ge n_0)$, where $0 < c_i < \infty$ (i = 2, 5, 6). Since $H \in R_k$, there exists $u_1 \in L_k$ such that

$$\ln|q_n(\lambda_j)| \ge -u_1(r_{p_n}) \quad (n \ge 1)$$
(26)

for $\lambda_j \in \Delta_n$.

Let us estimate $\ln |q_n(\lambda_i)|$ from above. In order to do it, we observe that as $n \ge n_1$,

$$\left|1 - \frac{\lambda_j}{\nu_k}\right| \leqslant 1 + \frac{r_{p_n+1}}{r_{p_n}} \leqslant e$$

for each $\lambda_j \in \Delta_n$. Thus,

$$\ln |q_n(\lambda_j)| \leq m_n + 2 \leq c_4 H(r_{p_n}) + 2 \quad (n \geq n_1)$$

for $\lambda_i \in \Delta_n$. It follows that

$$\ln |q_n(\lambda_j)| \leqslant u_2(r_{p_n}) \quad (n \ge 1)$$
(27)

for some function $u_2 \in L_k$. Thus, by (26), (27) we finally obtain that

$$\max_{\lambda_j \in \Delta_n} |\ln |q_n(\lambda_j)|| \leqslant u(r_{p_n}) \quad (n \ge 1),$$

where $u = u_1 + u_2$. The proof is complete.

We let $\gamma_n = \Gamma_{p_n} \ (n \ge 1)$.

Lemma 2. For each $n \ge 1$

$$M_n = \max_{\lambda \in \gamma_n} \ln |q_n(\lambda)| \leqslant u(r_{p_n}),$$
(28)

where u is a function in L_k .

Proof. For each $\lambda \in \gamma_n$, $\nu_k \in \Delta_n$ as $n \ge n_1$ we have

$$\left|1 - \frac{\lambda}{\nu_k}\right| \leqslant 1 + \frac{r_{p_n+1}}{r_{p_n}} \leqslant e.$$

Therefore, as in Lemma 1, $M_n \leq u_2(r_{p_n}) \leq u(r_{p_n})$ $(n \geq 1)$. Thus, estimate (28) indeed holds true.

Now we are in position to prove Theorem 1.

Proof of Theorem 1. Let $\gamma_n = \Gamma_{p_n}$ $(n \ge 1)$. We let $\rho'_n = r_{p_n}$, $\rho''_n = r_{p_{n+1}}$. Then $\Delta_n = (\rho'_n, \rho''_n)$ $(n \ge 1)$.

We consider Dirichlet series

$$F(s) = \sum_{j=1}^{\infty} a_j e^{\lambda_j s} \quad (s = \sigma + it),$$
(29)

where

$$a_j = \exp\left((\rho - q^*) \frac{\rho'_n}{\ln_{k-1} \rho'_n}\right) \frac{q_n(\lambda_j)}{Q'(\lambda_j)} \quad (j \ge 1)$$

for $\lambda_j \in \Delta_n$ $(n \ge 1)$. Here Q is function (18), q_n is the function described in Lemmata 1, 2, $0 \le \rho < \infty$, and q^* is the quantity defined in Theorem III. Since $H \in R_k$, $\varphi \in L_k$, estimate (16) in Theorem IV implies that $q^* = q(Q) \ge 0$, where

$$q(Q) = \overline{\lim_{n \to \infty}} \frac{\ln \lambda_n}{\lambda_n} \ln \left| \frac{1}{Q'(\lambda_n)} \right|.$$

Since $\rho_n''/\rho_n' \to 1$ as $n \to \infty$, $q(Q) < \infty$, by (20) we obtain that

$$\overline{\lim_{j \to \infty} \frac{\ln |a_j|}{\lambda_j}} = 0.$$

Hence, $F \in D_0(\Lambda)$. Taking into consideration (20) once again and employing formula (11) for calculating k-order ρ_k , we have

$$\rho_k(F) = \overline{\lim_{j \to \infty} \frac{\ln_{k-1} \lambda_j}{\lambda_j}} \ln_{k-1} \left| \frac{1}{Q'(\lambda_j)} \right| + \lim_{j \to \infty} \frac{\ln_{k-1} \lambda_j}{\lambda_j} \ln |q_n(\lambda_j)|$$
$$+ \lim_{j \to \infty} \frac{\ln \lambda_j}{\lambda_j} (\rho - q^*) \frac{\rho'_n}{\ln_{k-1} \rho'_n} = q(Q) + \rho - q^* = \rho.$$

Let us estimate order $\rho_s(F)$ in semi-strip $S(a, t_0)$ $(a > \pi G(R_k))$. Sequence $\Gamma = \{\mu_n\}$ of zeroes of function Q has density b that follows from (17) and G(R) < b. Given $G(R_k)$ and a, we choose parameter b in Theorem IV so that $G(R_k) < b < \frac{a}{\pi}$.

Then we observe that

$$A_n \stackrel{def}{\equiv} \sum_{\lambda_j \in \Delta_n} a_j e^{\lambda_j s} = e^{(\rho - q^*) \frac{\rho'_n}{\ln_{k-1} \rho'_n}} \frac{1}{2\pi i} \int\limits_{\gamma_n} \frac{q_n(\xi)}{Q(\xi)} e^{s\xi} d\xi, \tag{30}$$

where γ_n is a closed contour formed by the arcs of circles $K_{\rho'_n}$ and $K_{\rho''_n}$ in the angle $\{\lambda : |\arg \lambda| \leq \varphi_n < \frac{\pi}{4}\}$ and by the segments of rays $\{\lambda : |\arg \lambda| = \varphi_n\}$. We take $\varphi_n = \varepsilon_0 \frac{H(\rho'_n)}{\rho'_n}$ ($0 < \varepsilon_0 < 1$). Since $H \in R_k$, then $\varphi_n \downarrow 0$ as $n \to \infty$. We choose number ε_0 so that $0 < \varphi_n < \frac{\pi}{4}$ ($n \ge 1$).

Let us estimate function $\left|\frac{q_n(\xi)}{Q(\xi)}\right|$ on contour γ_n . In order to do it, we employ (17) and estimate [5]

$$-\ln|Q(re^{\pm i\varphi_n})| \leqslant 6H(r)\ln\frac{r}{H(r)} + \frac{8\pi}{|\varphi_n|}\frac{H^2(r)}{r} + 3\mu_1 b, \quad r \ge \rho_{n_0}'$$

We note that this "effective" estimate of Weierstrass product is valid under the only restriction, which is condition (17).

Let
$$\rho'_n \leq r \leq \rho''_n$$
, $n \geq n_0$. Since $\frac{H(r)}{r} \downarrow$ as $r \uparrow$, then $H(r) \leq \frac{r}{\rho'_n} H(\rho'_n) \leq \frac{\rho''_n}{\rho'_n} H(\rho'_n)$. Hence,

$$-\ln|Q(re^{\pm i\varphi_n})| \leq 12H(\rho'_n)\ln\frac{\rho'_n}{H(\rho'_n)} + \frac{32\pi}{\varepsilon_0}H(\rho'_n) + 3\mu_1b$$
(31)

as $\lambda_j \in \Delta_n$ $(n \ge 1)$. Estimates (19) hold true on the arcs of circles $K_{\rho'_n}$ and $K_{\rho''_n}$ in contour γ_n . Since $H \in R_k$, in view of $\rho''_n / \rho'_n \to 1$ as $n \to \infty$, by (19), (31) we obtain that

$$-\ln|Q(\xi)| \leq w(\rho'_n), \quad \xi \in \gamma_n \quad (n \ge n_1)$$

for some function $w \in L_k$. Therefore, employing Lemma 2, we obtain the estimate

$$\max_{\xi \in \gamma_n} \left| \frac{q_n(\xi)}{Q(\xi)} \right| \leqslant e^{u(\rho'_n) + w(\rho'_n)} \quad (n \ge n_1),$$

where u, w are functions in L_k . But then it follows from (30) that

$$|A_n| \leqslant 2\rho_n'' e^{(\rho-q^*)\frac{\rho_n'}{\ln\rho_n'} + u(\rho_n') + w(\rho_n')} e^{\max_{\xi \in \gamma_n} \operatorname{Re}(s\xi)}$$
(32)

as $n \ge n_1$.

Let $s \in S(a, t_0), \xi \in \gamma_n, s = \sigma + it, \xi = \xi_1 + i\xi_2$. Then

$$\left|\sum_{\lambda_j < \rho'_{n_1}} a_j e^{\lambda_j s}\right| \leqslant \sum_{\lambda_j < \rho'_{n_1}} |a_j| e^{\lambda_j \sigma} \leqslant \sum_{\lambda_j < \rho'_{n_1}} |a_j| = M,\tag{33}$$

Re $(s\xi) = \sigma\xi_1 - t\xi_2 \leq \sigma\rho'_n + (|t_0| + a)|\operatorname{Im} \xi|$. Since $|\operatorname{Im} \xi| \leq \rho''_n |\sin \varphi_n| \leq \rho'_n |\varphi_n| = \varepsilon_0 \frac{\rho''_n}{\rho'_n} H(\rho'_n)$ as $\xi \in \gamma_n$, then there exists $d(0 < d < \infty)$ such that

$$\max_{\xi \in \gamma_n} (s\xi) \leqslant \sigma \rho'_n + dH(\rho'_n), \quad (n \ge 1)$$
(34)

as $s \in S(a, t_0)$. Therefore, by (32)–(34) we obtain

$$M_s(\sigma) = \max_{|t-t_0| \leq a} |F(\sigma+it)| \leq M + \sum_{n=n_1}^{\infty} \gamma_n e^{\sigma \rho'_n} \quad (\sigma < 0),$$

where

$$\gamma_n = \exp\left[\ln(2\rho_n'') + (\rho - q^*)\frac{\rho_n'}{\ln\rho_n'} + dH(\rho_n') + u(\rho_n') + w(\rho_n')\right].$$

We introduce an auxiliary series

$$\Phi(s) = \sum_{n=1}^{\infty} \gamma_n e^{s\rho'_n} \quad (s = \sigma + it).$$

Since H, u, w belong to L_k , $\rho''_n/\rho'_n \to 1$ as $n \to \infty$, then in accordance with formula (11), the order of function Φ in half-plane Π_0 is equal to $\rho_k(\Phi) = \rho - q^*$. But $M_s(\sigma) \leq \Phi(\sigma) + M$. Hence, $\rho_s(F) \leq \rho - q^*$. It follows from Theorem III that $\rho_k(F) \leq \rho_s(F) + q^*$. Since $\rho_k(F) = \rho$, then $\rho_k(F) = \rho_s(F) + q^*$, and the proof of Theorem 1 is complete.

BIBLIOGRAPHY

- 1. J.F. Ritt. On certain points in the theory of Dirichlet series // Amer. J. Math. 50:1, 73-86 (1928).
- S. Mandelbrojt. Séries adhérentes. Régularisation des suites. Applications. Gauthier-Villars, Paris (1952).
- 3. A.F. Leontiev. *Exponential series*. Nauka, Moscow (1976). (in Russian).
- 4. A.M. Gaĭsin. A bound for the growth in a half-strip of a function represented by a Dirichlet series // Matem. Sbornik. 117(159):3, 412–424 (1982). [Math. USSR-Sbornik. 43:3, 411–422 (1983).]
- A.M. Gaisin, D.I. Sergeeva. Entire functions with a given sequence of zeros and of regular behavior on the real axis. I // Sibir. Matem. Zhurn. 48:5, 995–1007 (2007). [Siber. Math. J. 48:5, 798–808 (2007).]
- A.M. Gaisin, D.I. Sergeeva. An estimate for the Dirichlet series in a half-strip in the case of the irregular distribution of exponents. II // Sibir. Matem. Zhurn. 49:2, 280–298 (2008). [Siber. Math. J. 49:2, 222–238 (2008).]
- N.N. Aitkuzhina, A.M. Gaisin. Two-sided k-order estimate for Dirichlet series in a half-strip // Ufimskij Matem. Zhurn. 6:4, 19–31 (2014). [Ufa Math. J. 6:4, 18–30 (2014).]

Narkes Nurmukhametovna Aitkuzhina, Bashkir State University, Z. Validi str., 32, 450074, Ufa, Russia E-mail: Yusupovan@rambler.ru

Akhtyar Magazovich Gaisin, Institute of Mathematics CC USC RAS, Chernyshevskii str., 112, 450008, Ufa, Russia Bashkir State University, Zaki Validi str., 32, 450074, Ufa, Russia E-mail: Gaisinam@mail.ru