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Abstract. We study Dirichlet series converging only in a half-plane such that their
sequence of exponents admits an extension to a “regular” sequence. We prove the exactness
of two-sided estimates for k-order of the sum of the Dirichlet series in a semi-strip whose
width depends on the special distribution density of the exponents.
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Let A ={\,} (0 < A, T 00) be a sequence satisfying the condition

i 2 H < oo (1)

n—oo A\,

In studying entire functions
F(s) = Z ane™® (s = o +it) (2)
n=1

defined by everywhere convergent Dirichlet series, Ritt introduced the notion of R-order [1]:

— Inln M (o)
pr= lim ————,
o—+o0 [0
where M (o) = sup |F(o+1it)|. We note that by condition (1) series (2) converges absolutely in
[t|<oo

the whole plane. It is known that In M (o) is an increasing convex function of o, lirf InM(o) =
o—r+00

+00. The quantity .
pe= Tm M) ra(a,0)
o——+00 g

is called R-order of function F' in strip S(a,ty) = {s = o +it : |t — to| < a}. Here My(0) =
max |F(o +it)].
|t—t0|<a

In [2] sufficient conditions for A and a ensuring pr = pgs were obtained. The most general
results on relation between pr and p,; was established by A.F. Leontiev [3].

Similar issues in the case when H = 0 and the convergence domain of series (2) is the

half-plane IIy = {s = o + it : 0 < 0} were studied by A.M. Gaisin in [4].
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As H = 0, if series (2) converges in half-plane Iy, it converges absolutely in IIy. Then the
sum of series F' is analytic in this half-plane. The class of all unbounded analytic functions
represented by Dirichlet series (2) converging just in half-plane Ij is denoted by Dgy(A).

Let S(a,ty) ={s =0 +it: |t —ty| < a,o0 <0} be a semi-strip. The quantities

— InTIn M(U)’ 9. = Tm In* In M,(o)

o—0— lo| 1 o—0— lo| 1
are called Ritt orders of function F' in half-plane ITy and semi-strip S(a, to) [4]. In what follows
we call pr and ps orders in the half-plane and the semi-strip. If it is necessary, instead of pg
and p, we shall write pr(F') and ps(F).

It was shown in [4] that condition

n

lim Inn=0
n—oo n

is sufficient for order pg of each function F' € Dy(A) to be

— InA\,
pr = lim
n—oo n

Let sequence A have a finite upper density D. Then

L(z):ﬁ(l—i—;) (z =z +1y)

n=1

In" |ay|. (3)

is an entire function of exponential type. If h(p) is the growth indicatri, and 7 is a type of
function L, then 7 = h(*Z) < wD* (D* is the averaged upper density of sequence A) [2].

Assume that i
L@)|<e?® (@>0),  tm EBT_, (4)
r—>+00 x

where g is a non-negative on R, = [0, 0c0) function. In this case the adjoint diagram of function
L is the segment [ = [—74, 7i], h(p) = 7|sing|.

In [4] the following theorem was proved.

Theorem 1. Suppose that function L satisfies conditions (4) and has type 7 (0 < 7 < 00).
We let ¢ = q(L), where

— 1
q(L) = lim A In

n—oo A\,

1

. 5)

L'(\) (5)

Then order ps in the half-plane S(a,ty) as a > T and order pg of each function F € Dy(A) in
half-plane 11y satisfy the eistimates

ps < pr < ps + 4. (6)

The left estimate in (6) is exact [4]. In the general situation the right estimate is not exact,
moreover, the pair of conditions (4) can fail. But there can exist an entire function @ of
exponential type with simple zeroes at the points of sequence A, for which conditions (4) hold

and ¢(Q) = ¢*, where
1

= Tm ln)\n/n()\n;t)dt7

noo A\ t
0

q(Q) is the quantity defined in the same way as ¢(L) in (5), and n(\,;t) is the amount of points
Ak # Ap in the segment {z : |x — \,| < t}. Paper [5] is devoted to constructing such entire
functions ) with a prescribed subset of zeroes A and a prescribed asymptotics at the real axis.
It turns out that in terms of a special distribution density G(R) of sequence A one can provide
conditions under which the estimates

Ps < pr< ps+q°
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hold true, where p; is the order in a semi-strip S(a,ty) of the width greater than 27G(R)) and
these estimates are the best possible in class Do(A) [6]. Similar estimates for k-orders were
obtained in [7]. The aim of the paper is prove the exactness of these estimates.

1. DEFINITIONS AND NEEDED FACTS

Let A = {\,}, (0 < A\, T o0) be a sequence having a finite upper density, L be the class
of positive continuous and unboundedly increasing on [0,00) functions. By K we denote a
subclass of functions h in L such that h(0) = 0, h(t) = o(t) as t — oo, @ last? (@ decreases
monotonically as t > 0). In particular, if h € K, the h(2t) < 2h(t) (t > 0), h(t) < h(1)t as
t>1.

K-density of sequence A is the quantity

()

GK) = lnf fim === @)
where w(t) = [t,t + h(t)) is a semi-interval, py(w(t)) is the amount of points of A lying in
semi-interval w(t).

Let 2 = {w} be a family of semi-intervals w = [a, b). By |w| we denote the length of w. Each
sequence A = {\,}, (0 < A\, T 00) generates an integer-valued counting measure jy:

pa(w) = Z 1, wel

An€Ew

Let ur be a counting measure generated by the sequence I' = {u,}, (0 < p, T 00). Then
the inclusion A C T means that pa(w) < pr(w) for each w € €. In this case we shall say that
measure (A Mmajorizes measure fia.

By D(K) we denote the infimum of numbers b (0 < b < oo) for which there exists measure
pr majorizing py such that

[M(t) = bt| <h(t)  (t=0) (8)
for some function h € K. Here A = {\,}, I' = {u.}, M(t) = > 1.

It was shown in [6] that D(K) = G(K).
The quantity

(k> 2) (9)

is called k-order of function F' € Dg(A) in half-plane Il = {s : o = Res < 0} [7]. Here
Ingt =t,Ingt =lnln...In¢ (k > 1). In view of the definition of k-order (9) we see that ps = pg,

k
where pg is the R-order in half-plane 1 [4].
The following theorem was proven in [7].

Theorem II. The condition

Innlng_
M:O (k> 2) (10)

lim
n—oo )\n

is necessary and sufficient for k-order py of each function F' € Do(A) to satisfy the formula
— Inla,
pr = lim |

n—oo

Ing_1 A, (k>2;0< pr<0). (11)

n

We observe that formula (3) is a particular case of identity (11).

In the same way one introduces the notion of k-order pgk) in semi-strip S(a,ty). For the sake

of convenience, we shall still denote it by ps.
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We introduce the following classes of functions:
Ly={heL: h(z)lng_1x=o0(z), = —o0} (k=2),

S:{hGK: d(h):mM<oo},

T—00 xln%
Ry = hES'h(I)lni—o ’ r—o0p (k>=2)
b ' h(z)  \Ing_ 2/’ -

The following theorem was proved in paper [7].
Theorem III. Let A = {\,}, (0 <\, T 00) be a sequence satisfying the conditions

1) ANz +p)—Ax) <cp+d+ %, (p=0), where A(x) = > 1, ¢ is a function in Ly,
A<z

(k> 2);
— 1 .
2) q; = lim,, o lnkxi An “o[ n()\?, D gt < oo (k> 2), where n(\y;t) is the amount of points of

Ak # A\ lying in the segment {x : |x — \,| < t}.

If density Ry of sequence A is equal to G(R), then k-order ps of each function F' € Dy(A) in
semi-strip S(a,ty) as a > nG(Ry) and order pr of this function in half-plane 1l satisfies the
estimates

ps < p < ps+ap (k=>2). (12)

As it is known, estimate ps < pg in (12) is exact. In what follows we discuss the exactness
of inequality pr < ps + q; (k > 2).

2. MAIN THEOREM ON EXACT ESTIMATES FOR k-ORDER
The main result of the paper is the following theorem.

Theorem 1. Let A be a sequence satisfying the assumptions of Theorem III. Then there
exists a function F € Do(A) such that pr(F) = ps(F) 4 q*, where pp(F') is the order in half-
plane 1y, and ps(F') is order in semi-strip S(a,ty), (a > 7G(R)).

Corollary. Suppose that A satisfies the assumptions of Theorem 1. Order py(F) of each
function F' € Do(A) is equal to order ps(F) in each semi-strip S(a,ty) (a > nG(R)) if and
only ¢* = 0.

In the proof of Theorem 1 we shall make use of

Theorem IV [6]. Let A = {\,} (0 <\, 1 o0) be a sequence having a finite S-density G(S).
Then for each b > G(S) there exists a sequence I' = {p,} (0 < pn, T 00) containing A and
having density b such that the entire function

0 =T1(1-%) G=vtu)

2
nel My

of exponential type wb possesses the properties:
1) Q(A\n) =0, Q' (\,) # 0 for each A\, € A;
2) there exists H € S such that

n|Q(x)| < x)Int x :
In[Q(a)| < AH(a) In” 5+ B (13)
3) if A(z) :/\Z< 1, and
A(x+p)—A(x)<ap+b+% (0> 0) (14)
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(¢ is an arbitrary mnon-negative mnon-decreasing function defined on the ray [0, 00),
1 < o(z) < axln®™ z + B), then there exists a sequence {r,}, 0 < 1, T 00, rpy1 — 1 = O(H (1))
as n — 0o, such that for x =r, (n > 1)

In|Q(z)] = —CH(z)In™

Hy 200 = D (15)

4) if

A= Tim —/n<)\"’t>dt<oo,
N /

then under condition (14)
1

_/n()‘:;t)dt < EH(\) 1n+$+2w(An)+FlnAn+L (n>1), (16)

|

1
Q' (An)

where n(Ay;t) is the amount of points A\, # A, in the segment {x : |x — \,| < t}.

Here all constants are finite and positive.

Let A = {\,} be a sequence satisfying assumptions of Theorem III. Then in accordance with
Theorem IV for each b > G(Ry) (G(Rg) is Ry-density of sequence A) there exists a sequence
D={un} (0<py <po<... < py — 00) contatining A such that

[M(t) —bt| <H(t) (t>0), HEeR, (17)
and entire function . ,
z .
oo =T[(1-5) G=s+w (18)
n=1 n
of exponential type mb possesses the properties
19Q(\,) =0, @(\,) #0(n>1);
2°. In|Q(z)| < g(x) (x > 0), g € Ly;
3%. The estimate

In|Q(x)| > —CH(x)In"

x
-2 —-D, HeR
holds true as x = r, (n > 1). Estimates 2°, 3° in Theorem III follows from (13), (15). But
since H € Ry, ¢ € Ly, there exists function V' € L; such that

n|Q(2)| = n|Q(r)[ = -V (r) (19)

asr=r, (r=|z|) (n>1).

Let{r,} be the sequence from Theorem IV (estimates (19) hold true as |z| = r, (n > 1)).
Let A, = (7,,7p,+1) (n = 1) be all the intervals each of which contains at leas one point in A
(some of intervals (7, 7,4+1) can contain no points in A).

By I',, (n > 1) we denote a closed contour formed by two arcs of the circles K,,, = {\: |\ =
Tp, y and K, 1 = {X: [A\| = rp, 1} in the angle {\ : |arg A| < ¢, < T} and by the segments of
the rays {\: |arg A| = ¢, }.

In the proof of Theorem 1 we employ the functions

A
VEEAL
where A, = (1, 7p,+1), ¥ = {v} = I'\A. Sequence v is constructed in the proof of Theorem IV
and possesses the properties [6]:
a) inf |v; —v;| = 7 > 0;
1#]
b) inf |\, — vp| =
m>1
Theorem IV.

] (v > 0,n > 1), where ¢ is the functions from condition (14) of
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Let us establish estimates for |g,(\)]|.
Lemma 1. There exists function u € Ly such that

max | lg )| < ulry,) (0> 1) (20)

J n

Proof. Indeed, let A\; € A,,v; and v be the closest to A; points of sequence v located to the
left and to right of A;, respectively. We have

V= N | [V =\ { }2
J J J J g -2
Z vy e(2);)] P !
Since 1 < p(z) < axln®™ z + B,7,, /rp.+1 — 1 as n — oo, it implies the estimate
>\‘ A —c1—c2inr
1—V—f 1—V—f, > e et (N e A), (21)
J J
where 0 < ¢; < 00 (i = 1,2).
Let A} = A, \{v},v}}. Then
—\; Sn
I1 M>< T ) s, (22)
EA! Vg Tpn+1
l/k<)\j

where s,, is the amount of points v, < A;, v € Al In the same way,
T I
11 >< )LA (23)
Tpn‘f'l

l/kEAil
I/k>/\j

where [,, is the amount of points v, > A;, v, € Al It follows from (21)-(23) that as \; € A,,,

(n>1)

I/k—)\j

Vg

Sn+ln
mum>eﬂﬂm%(ﬁ> sallal (0 <8< 1), (24)

Tp

n

If sup(s, + 1) < oo, the required lower estimate for |g,();)| is obvious. Otherwise we first
n>1

employ the known estimate

(S +1n)!

Sn‘ln' 2 2371—‘””7

and then we use Stirling’s asymptotic formula

n n
n! ~ (—) 2mn
e

as n — oo.
Then by (24) we obtain

Olsn + ) ln)} - (n>1)

000 > exp (e = ca ) [25E

where 0 < ¢; < 0o (i = 2,3). Letting s, + [, = m,, for \; € A, we have
2
|gn ()] = exp (—03 —caInr, —m,In &) , (25)

where n > 1, m,, is a number not exceeding the amount of points v} in interval A,. Since
0 <7p,41—7Tp, < PH(pn) (0 < p < 00), taking into consideration property a) of sequence v, we
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have m,, < c4H(rp,),0 < ¢y <00 (n > 1). Then @ 1 0 as z 1 oo and function ¢(z) = xIn £
(A is a positive constant) is increasing as 0 < z < £. Therefore, by (25) we get that

"pn
H(Tpn)
for \; € A, (n > ng), where 0 < ¢; < 00 (i = 2,5,6). Since H € Ry, there exists u; € Ly such
that

In|g,(A\;)| = —¢s —colnry,, — ceH(rp,) In

g, (X)) = —u(ry,) (n2>1) (26)
for \; € A,,.
Let us estimate In |g,();)| from above. In order to do it, we observe that as n > ny,
] PSS
Vi Tpp

for each A\; € A,,. Thus,
In|g,(A\j)| <my +2 < eH(rp,) +2 (n2>ny)

for \; € A,. It follows that
I |gn ()] S ualrp,) (0 =1) (27)
for some function us € Ly. Thus, by (26), (27) we finally obtain that

max [ ()| < ulry,) (0> 1),

7 n

where u = u; + us. The proof is complete. O
We let v, =T, (n>1).
Lemma 2. For eachn > 1
M, = maxin g, (V)] < u(ry,). (28)
€Yn
where u is a function in Ly.

Proof. For each X € v, v, € A, as n > ny we have

A
1—- 2l <1+ Tpnt1 <e
Vi Tpn
Therefore, as in Lemma 1, M,, < us(rp,) < u(r,,) (n > 1). Thus, estimate (28) indeed holds
true. 0

Now we are in position to prove Theorem 1.

Proof of Theorem 1. Let v, =T, (n >1). Welet p|, =1, , plr = rp, 1. Then A, = (o], p)
(n>1).
We consider Dirichlet series

F(s) = Zaje*fs (s = o +it), (29)

where

v ((p ! )lnk_lpg) ony VY
for \; € A, (n > 1). Here @ is function (18), ¢, is the function described in Lemmata 1, 2,
0 < p < o0, and ¢* is the quantity defined in Theorem III. Since H € Ry, ¢ € Ly, estimate
(16) in Theorem IV implies that ¢* = ¢(Q) > 0, where

— 1
q(Q) = lim LA In

n—oo )\n

1
Q)|
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Since p! /pl. — 1 as n — 00, ¢(Q) < oo, by (20) we obtain that

— Inla
fim 2l g,
Jj—oo )‘j

Hence, F' € Dg(A). Taking into consideration (20) once again and employing formula (11) for
calculating k-order py, we have

—_— lnk_l )\] 1 lnk 1 )\J
F)= Ing_q | ——— li In |q,
pk( ) jlﬂm Aj Ng—1 CQ(A]) _FJ_EL ; | ( ”
In \; o
1‘ ] _— * n p— _— * p— .
+ lim Iy (p—q >lnk,1 P Q) +p—q =p

Let us estimate order ps(F) in semi-strip S(a,ty) (a > 7G(Ry)). Sequence I' = {u,} of
zeroes of function @ has density b that follows from (17) and G(R) < b. Given G(Ry) and a,
we choose parameter b in Theorem IV so that G(Ry) < b < £.

Then we observe that

def ;8 (P_q*)l p%/ 1 Qn<§) s€
— Ng—1Pn — d
ST T g o

Tn

where 7, is a closed contour formed by the arcs of circles K, and K, in the angle {\ : |arg A| <
< 7} and by the segments of rays {\ : |arg A\| = ¢, }. We take ¢, = eoH(n (0 < gp < 1).
Since H € Ry, then ¢, | 0 as n — oco. We choose number ¢y so that 0 < ¢, < = (n > 1).

(&)
Q&)

Let us estimate function

[5]

‘ on contour ,. In order to do it, we employ (17) and estimate

r 8t H?(r)
+
H(r) ~ enl
We note that this “effective” estimate of Weierstrass product is valid under the only restric-
tion, which is condition (17)

—In|Q(re**")| < 6H(r)In +3mb, = p),.

Let p, <r < p’,n>ng Since 22 | as 4, then H(r) < o H(p,) < ”H(p;). Hence,
+ipn pn 32m
—In[Q(re™*")| <12H(p},) In Hp ~, Heh) +3mb (31)

as \j € A, (n > 1). Estimates (19) hold true on the arcs of circles K, and K, in contour +,.
Slnce H € Ry, in view of p!!/pl, — 1 as n — oo, by (19), (31) we obtain that

—I Q) <w(py), §€m (n>mn)

for some function w € L. Therefore, employing Lemma 2, we obtain the estimate

max
£€vn

qn(f)‘ wlpl) (o)
Q| ST e

where u, w are functions in L. But then it follows from (30) that

ru(ph)+w(p),) ax Re (s6)

| A4,] < 207 efenm (32)

asn = nj.
Let s € S(a,tg), £ € Yn,s =0 +it, £ = & + i&. Then

> aet | <Y e < Y gyl = M, (33)

Aj <Py Aj<pny Aj <Py
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Re (s€) = €1 — & < op), + (Jto] + a)[Tm&]. Since |Im €| < plf] singn| < plln] = c0Z-H (p),) as

§

€ Y, then there exists d(0 < d < co) such that
max(sg) < op, +dH(p), (n>1) (34)
€

n

as s € S(a,ty). Therefore, by (32)—(34) we obtain

— | < ap,
M,(o) max |F(o +it)] < M + ; Y7 (o < 0),

where

:0/
In p

S [ln<2p;;> =)L dH () + (s + w(o)

We introduce an auxiliary series

/
n

O(s) = Z%esﬂn (s = o +it).
n=1

Since H, u, w belong to Ly, pl/pl, — 1 as n — oo, then in accordance with formula (11), the
order of function ® in half-plane Il is equal to px(P) = p—q*. But Ms(o) < ®(o)+ M. Hence,
ps(F) < p—q¢*. Tt follows from Theorem IIT that pi(F) < ps(F) 4 ¢*. Since p(F) = p, then

pe(F) = ps(F) + ¢*, and the proof of Theorem 1 is complete. O
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