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ON UNCONDITIONAL EXPONENTIAL BASES

IN WEIGHTED SPACES ON REAL AXIS

A.A. YUNUSOV

Abstract. We prove that if there exists an unconditional exponential basis in integral
weighted functional space on interval (−1, 1) and the generating entire function satisfies
some condition, then as a normed space, space 𝐿2(ℎ) is isomorphic to classical space 𝐿2.
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1. Introduction

In the paper we consider the problem on existence of unconditional exponential bases in
Hilbert spaces

𝐿2(ℎ) = {𝑓 ∈ 𝐿loc(−1, 1) : ‖𝑓‖2 =

∫︁ 1

−1

|𝑓(𝑡)|2𝑒−2ℎ(𝑡)𝑑𝑡 < ∞},

where ℎ is a convex function on (−1, 1).
In the classical case ℎ(𝑡) ≡ 0 the Fourier system {𝑒𝜋𝑛𝑖}𝑛∈Z forms an orthonormalized basis.

It is obvious that in other cases there can be no exponential orthonormalized bases in spaces
𝐿2(ℎ). The notion of Riesz basis was introduced in [1] and denotes the image of orthonormalized
basis under the action of a bounded invertible basis.

The system of elements {𝑒𝑘, 𝑘 = 1, 2, . . . } in Hilber space 𝐻 is called unconditional basis
([2], [3]) if it is complete and there exist numbers 𝑐, 𝐶 > 0 such that for each set of numbers
𝑐1, 𝑐2, . . . , 𝑐𝑛 the relation

𝑐

𝑛∑︁
𝑗=1

|𝑐𝑘|2‖𝑒𝑘‖2 6 ‖
𝑛∑︁

𝑗=1

𝑐𝑘𝑒𝑘‖2 6 𝐶

𝑛∑︁
𝑗=1

|𝑐𝑘|2‖𝑒𝑘‖2

holds true. It is known (see [4],[5]) that if a system {𝑒𝑘, 𝑘 = 1, 2, . . . } is an unconditional
basis, then each element in space 𝐻 can be uniquely represented by the series

𝑥 =
∞∑︁
𝑘=1

𝑥𝑘𝑒𝑘,

and

𝑐

∞∑︁
𝑘=1

|𝑥𝑘|2‖𝑒𝑘‖2 6 ‖𝑥‖2 6 𝐶
∞∑︁
𝑘=1

|𝑥𝑘|2‖𝑒𝑘‖2.

Uncoditional basis {𝑒𝑘, 𝑘 = 1, 2, . . . } becomes Riesz basis if and only if 0 < inf ‖𝑒𝑘‖ 6
sup ‖𝑒𝑘‖ < ∞.

In work [6], there was initiated the study of unconditional exponential bases in Hilbert sub-
spaces of space 𝐻(𝐷) formed by functional analytic in a bounded convex domain 𝐷 ⊂ C. For
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Smirnov space 𝐸2(𝐷) on a convex polygon there were constructed unconditional exponential
bases. In work [7] the existence of exponential bases in 𝐸2(𝐷) on a convex domain 𝐷 with a
smooth boundary was considered. It was proved in dissertation [8] that there exist no uncondi-
tional exponential bases in Smirnov spaces on convex domains containing a smooth arc on the
boundary. It was shown in [9] that there exist no unconditional exponential bases in Bergman
spaces on convex domains whose boundary contains a point with a nonzero curvature.

In dissertation [10], an analogue of this result in weighted spaces 𝐿2(ℎ) was proved: under
certain regular growth conditions of weighted function ℎ(𝑡), if for each 𝑘 ∈ N

𝑒ℎ(𝑡)(1 − |𝑡|)𝑘 −→ ∞, |𝑡| −→ 1,

then there is no unconditional exponential bases in space 𝐿2(ℎ).
The same essence of the problems on unconditional exponential bases in Smirnov spaces,

Bergman spaces and spaces 𝐿2(ℎ) becomes clear if by Fourier-Laplace transform we pass to an
equivalent problem on unconditional bases of reproducing kernels in Hilbert spaces of entire
functions.

If 𝑋 is a Hilbert space of functions, in which the set of all exponentials 𝑒𝜆𝑧, 𝜆 ∈ C, is
complete, then Fourier-Laplace transform mapping each linear continuous functional 𝑆 ∈ 𝑋*

into the function ̂︀𝑆(𝜆) = 𝑆(𝑒𝜆𝑧), 𝜆 ∈ C,
makes a one-to-one correspondence between the dual space 𝑋* and some space of functions ̂︀𝑋.

Under natural conditions for original space 𝑋, space ̂︀𝑋 happens to be a Hilbert space of entire
functions with the structure inherited from 𝑋*, in which point functionals 𝐹 −→ 𝐹 (𝑧) happen
to be bounded for each 𝑧 ∈ C. Thus, by the self-adjointness of Hilbert space, a reproducing
kernel 𝐾(𝜆, 𝑧) appears [11]:

(𝐹 (𝜆), 𝐾(𝜆, 𝑧)) ̂︀𝑋 = 𝐹 (𝑧), ∀𝐹 ∈ ̂︀𝑋.

Simple functional-analytic arguments yield that the system of exponentials 𝑒𝜆𝑘𝑧, 𝑘 ∈ Z, is an
unconditional basis in 𝑋 if and only if the system 𝐾(𝜆, 𝜆𝑘), 𝑘 ∈ Z, is an unconditional basis

in ̂︀𝑋.
The problem on unconditional basis of reproducing kernels in weighted spaces of entire func-

tions was studied by many authors. For instance, in works [12]–[15], the weighted spaces of
entire functions

𝐻(𝜙) = {𝐹 ∈ 𝐻(C) : ‖𝐹‖2 =

∫︁
C

|𝐹 (𝑧)|2𝑒−2𝜙(𝑧)𝑑𝑚(𝑧) < ∞}

where considered, where 𝜙 is a subharmonic function on the plane, 𝑑𝑚(𝑧) is the planar Lebesgue
measure. It was proven in work [13] that under a certain growth regularity of function 𝜙(𝑧) =
𝜙(|𝑧|), if

ln2 𝑡 = 𝑜(𝜙(𝑡)), 𝑡 −→ ∞,

there exist no bases of reproducing kernels in space 𝐻(𝜙), while in the weighted spaces

𝜙(𝑡) = 𝑂(ln2 𝑡), 𝑡 −→ ∞,

they exist.
In work [16] there was proved a general condition for Bergman function of a weighted space

of entire functions ensuring the absence of the basis of reproducing kernels in this space.
The results of work [13] suggest a some stability of existence of unconditional bases in

weighted spaces under “perturbation” of the weight. The matter is that as 𝜙(𝜆) = 𝑂(ln |𝜆|),
𝜆 −→ ∞, spaces 𝐻(𝜙) become finite-dimensional and thus, there are unconditional bases of
reproducing kernels in these spaces. Then a natural conjecture is that for weights ℎ growing
rather slowly as |𝑡| −→ 1, there can be unconditional exponential spaces in space 𝐿2(ℎ) since



110 A.A. YUNUSOV

they exist in the classical space 𝐿2. Theorem 1 proven in this paper provides rather an argument
against conjecture.

2. Notations, preliminaries and formulation of statements

The fact that two nonnegative functions 𝑓 , 𝑔 satisfy the estimate 𝑓(𝑥) 6 𝐶𝑔(𝑥),∀𝑥 ∈ 𝑋, for
some constant 𝐶 will be denoted by the symbol ≺:

𝑓(𝑥) ≺ 𝑔(𝑥), 𝑥 ∈ 𝑋.

The symbols ≻ and ≍ have corresponding meanings.

It was shown in work [17] that a space ̂︀𝐿2(ℎ) of Fourier-Laplace transforms of the function-
als continuous on 𝐿2(ℎ) is isomorphic as a normed space to the space of entire functions of
exponential type with the norm

‖𝐹‖2 :=

∫︁ ∞

−∞

∫︁ ∞

−∞

|𝐹 (𝑥 + 𝑖𝑦)|2

𝐾(𝑥)
𝑑𝑦𝑑̃︀ℎ(𝑥), (1)

where ̃︀ℎ(𝑥) = sup
|𝑡|<1

(𝑥𝑡− ℎ(𝑡))

is the Young dual function for function ℎ and

𝐾(𝑥) = ‖𝑒(𝑥+𝑖𝑦)𝑡‖2 =

∫︁ 1

−1

𝑒2𝑥𝑡−2ℎ(𝑡)𝑑𝑡.

If 𝛿𝑧 : 𝐹 (·) −→ 𝐹 (𝑧) is a point-wise functional on ̂︀𝐿2(ℎ), then by the definition of Fourier-
Laplace transform

‖𝛿𝑧‖2̂︀𝐿2(ℎ)*
= ‖𝑒𝑧𝑡‖2 = 𝐾(Re 𝑧).

Let the system of exponentials {𝑒𝜆𝑘𝑡, 𝑘 ∈ Z} form an unconditional basis in space 𝐿2(ℎ) and
𝑆𝑘, 𝑘 ∈ Z be a biorthogonal system. We let

𝐿(𝜆) := (𝜆− 𝜆0)̂︀𝑆0(𝜆).

Then ̂︀𝑆𝑘(𝜆) =
𝐿(𝜆)

𝐿′(𝜆𝑘)(𝜆− 𝜆𝑘)
, 𝑘 ∈ Z,

and this system forms an unconditional basis in space ̂︀𝐿2(ℎ), and hence,⃒⃒⃒⃒⃒⃒⃒⃒
𝐿(𝜆)

𝐿′(𝜆𝑘)(𝜆− 𝜆𝑘)

⃒⃒⃒⃒⃒⃒⃒⃒2
=

1

𝐾(𝜆𝑘)
. (2)

By formula (1) we have (𝜆 = 𝑥 + 𝑖𝑦)∫︁ ∞

−∞

∫︁ ∞

−∞

⃒⃒⃒⃒
𝐿(𝜆)

𝐿′(𝜆𝑘)(𝜆− 𝜆𝑘)

⃒⃒⃒⃒2
𝑑𝑦𝑑̃︀ℎ(𝑥)

𝐾(𝑥)
≍ 1

𝐾(Re𝜆𝑘)
, 𝑘 ∈ Z. (3)

In what follows, entire function 𝐿 will be called a generating function of unconditional basis.
In the examples of unconditional bases we know, in order to construct a basis, one takes a
generating function satisfying very strict conditions for the asymptotics at infinity. To describe
the system of exponentials forming an unconditional basis in the classical space 𝐿2, B.Ya. Levin
introduced the notion of sine type entire function. In what follows this notion was generalized
for unconditional bases in Smirnov spaces ([6],[7]). In work [17] a more general definition of
sine type function was given for a subharmonic function.
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Definition 1. Let 𝑢 be a continuous subharmonic function on the plane and 𝜏(𝑢, 𝑧) be the
radius of maximal circle centered at point 𝑧 in which function 𝑢 deviate from the space of
harmonic functions on this circle by at most 1. A sine type function for function 𝑢 is an entire
function 𝐿 satisfying the conditions:

1. All the zeroes 𝑧𝑛, 𝑛 ∈ N, of function 𝐿 are simple and for some 𝜀 > 0 the balls
𝐵(𝑧𝑛, 𝜀𝜏(𝑢, 𝑧𝑛)), 𝑛 ∈ N, are mutually disjoint.

2. For each 𝜀 > 0, outside the set of circles 𝐵(𝑧𝑛, 𝜀𝜏(𝑢, 𝑧𝑛)), 𝑛 ∈ N, the relation

| ln |𝐿(𝑧)| − 𝑢(𝑧)| 6 𝐴(𝜀)

holds true.

The subharmonicity and the definition of quantity 𝜏(𝑢, 𝑧) implies the property:
2′. For each 𝑧 ∈ C the upper estimate

ln |𝐿(𝑧)| 6 |𝑢(𝑧)| + 𝐴1(𝜀)

is valid.
In such general sense sine type entire functions were used for constructing unconditional

bases in Bergman spaces on convex polygons [22] and in spaces 𝐻(𝜙) ([13]). Since space ̂︀𝐿2(ℎ)
is invariant w.r.t. the shifts along the imaginary axis, it is naturally to seek the generating
function of unconditional basis among the sine type functions for some subharmonic function
depending only on real part of its argument, i.e., for some convex function of one variable 𝑢(𝑥).
Such entire function satisfies the condition

|𝐿(𝜆)| ≍ 1, |Re𝜆| < 𝑞, 𝜆 /∈
⋃︁
𝑘

𝐵𝑘, (4)

in each strip {𝜆 : |Re𝜆| < 𝑞} outside the balls 𝐵𝑘(𝛿) := 𝐵(𝜆𝑘, 𝛿), where 𝜆𝑘 are zeroes of function
𝐿. At that, for some 𝛿 > 0 balls 𝐵𝑘(𝛿) are mutually disjoint.

Theorem 1. Suppose that the generating function 𝐿 of some unconditional basis in space
𝐿2(ℎ) satisfies condition (4). Then as a normed space, space 𝐿2(ℎ) is isomorphic to classical
space 𝐿2.

In the proof of this theorem we shall make use the following facts on unconditional bases and
generating functions. The definition of unconditional basis implies (see, for instance, [9])

1

𝑃
𝐾(𝑧) 6

∑︁
𝑘

|𝐿(𝑧)|2𝐾(𝑧𝑘)

|𝐿′(𝑧𝑘)|2|𝑧 − 𝑧𝑘|2
6 𝑃𝐾(𝑧), 𝑧 ∈ C, (5)

where 𝑃 is a positive constant. We introduce a more general characteristics for the functions
continuous on the plane.

Definition 2. Given a continuous in 𝐵(𝑧, 𝑟) function 𝑓 , we let

‖𝑓‖𝑟 = max
𝑤∈𝐵(𝑧,𝑟)

|𝑓(𝑤)|.

Let 𝑑(𝑓, 𝑧, 𝑟) be the distance from function 𝑓 to the space of harmonic in 𝐵(𝑧, 𝑟) functions:

𝑑(𝑓, 𝑧, 𝑟) = inf{‖𝑓 −𝐻‖𝑟, 𝐻is harmonic in 𝐵(𝑧, 𝑟)}.
For a function u continuous on C and a positive constant we let

𝜏(𝑢, 𝑧, 𝑝) = sup{𝑟 : 𝑑(𝑢, 𝑧, 𝑟) 6 𝑝}.
It was shown in [21, Lm. 1.1] that in the case when 𝑢 is continuous subharmonic function, the

quantity 𝜏 = 𝜏(𝑢, 𝜆, 𝑝) is completely defined by the condition: if 𝐻(𝑧) is a harmonic majorant
for fucntion 𝑢 in ball 𝐵(𝜆, 𝜏), then

max
𝑧∈𝐵(𝜆,𝜏)

(𝐻(𝑧) − 𝑢(𝑧)) = 2𝑝.
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We define this quantity for the function 𝑢(𝜆) = ln𝐾(𝜆) and the number ln(5𝑃 ), where 𝑃 is a
constant in inequalities (5). Hereafter we denote it simply by 𝜏(𝜆).

Theorem A ([9, Thm. 1]). 1. Each ball 𝐵(𝜆, 2𝜏(𝜆)) contains at least one zero 𝜆𝑘 of func-
tion 𝐿.
2. For each 𝑛, 𝑘, 𝑛 ̸= 𝑘, the inequality

|𝜆𝑘 − 𝜆𝑛| >
max(𝜏(𝜆𝑘), 𝜏(𝜆𝑛))

10𝑃
3
2

holds true.
3. For each 𝑘, the inequalities

1

56𝑃 8
𝐾(𝜆) 6

𝐾(𝜆𝑘)|𝐿(𝜆)|2

|𝐿′(𝜆𝑘)|2|𝜆− 𝜆𝑘|2
6 𝑃𝐾(𝜆)

hold true in the ball 𝐵
(︁
𝜆𝑘,

𝜏(𝜆𝑘)

20𝑃
3
2

)︁
.

Statement 1 of this theorem implies the estimate for the derivatives in the vicinity of the
imaginary axis. Together with (5) it yields the estimate for the function in the whole plane.

Lemma 1. If the absolute value of generating function 𝐿 is bounded from above on two
vertical lines, then for for each 𝑞 > 0 the estimates

sup
|Re𝜆𝑘|6𝑞

|𝐿′(𝜆𝑘)| < ∞, sup
𝜆∈C

|𝐿(𝜆)|𝑒−̃︀ℎ(Re𝜆) < ∞

hold true.

Assuming lower bounds for generating function, by means of (3) we obtain the lower bounds
for the derivatives |𝐿′(𝜆𝑘)|. Together with (5) it gives the lower bounds for the function outside
neighbourhoods of zeroes.

Lemma 2. Suppose that generating function 𝐿 of unconditional basis in space 𝐿2(ℎ) satisfies
the condition: for some 𝑞 > 0 and each 𝛿 > 0

|𝐿(𝜆)| ≻ 1, |Re𝜆| < 𝑞, 𝜆 /∈
⋃︁
𝑘

𝐵𝑘,

and for some 𝛿 balls 𝐵𝑘(𝛿) are mutually disjoint. Then for each 𝑘 the lower estimate

|𝐿′(𝜆𝑘)| ≻ 1

|𝑥𝑘| + 1
𝑒
̃︀ℎ(𝑥𝑘), 𝜆𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘,

holds true and for each 𝜀 > 0 the lower estimate

|𝐿(𝜆)| ≻ 𝑒
̃︀ℎ(𝑥)− 1

2
ln ln(|𝑥|+𝑒), 𝜆 = 𝑥 + 𝑖𝑦 /∈

⋃︁
𝑘

𝐵(𝜆𝑘, 𝜀(|𝑥𝑘| + 1))

is valid.

If generating function satisfies the assumptions of Theorem 1, then both the lemmata hold
true.

Lemma 3. Suppose that generating function satisfies the assumptions of Theorem 1. Then

|𝐿′(𝜆𝑘)| ≍ 1

|𝑥𝑘| + 1
𝑒
̃︀ℎ(𝑥𝑘), 𝑘 ∈ Z,

and for each 𝜀 > 0

|𝐿(𝜆)| ≻ 𝑒
̃︀ℎ(𝑥), 𝜆 = 𝑥 + 𝑖𝑦 /∈

⋃︁
𝑘

𝐵(𝜆𝑘, 𝜀(|𝑥𝑘| + 1)).

In particular, generating function 𝐿 should be a sine type function for function ̃︀ℎ.
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3. Proof of Theorem 1 and auxiliary statements

We prove Theorem 1 under the assumption that the weight function satisfies the condition:
for some 𝛼

𝑒ℎ(𝑡) = 𝑂(1 − |𝑡|)𝛼, |𝑡| −→ 1, ℎ(𝑡) > 0, 𝑡 ̸= 0, ℎ(0) = 0,

since otherwise there are no unconditional bases in space 𝐿2(ℎ) [10]. If this condition is satisfied,
then

𝜏(𝑧) ≍ |Re 𝑧| + 1. (6)

The nonnegativity of ℎ implies that for each 𝑞 > 0∫︁ 𝑞

−𝑞

𝑑̃︀ℎ(𝑥) > 0. (7)

Proof of Lemma 1. We take the vertical line Re𝜆 = 𝑎 at which |𝐿| is bounded from above.
Since 𝐾(𝜆) = ‖𝛿𝜆‖2, by formula (2) we have

|𝐿(𝜆)|2 ≺ (|𝜆| + 1)2𝐾(𝜆). (8)

As it was shown in [20],

𝐾(𝑥) ≍ 𝑒2
̃︀ℎ(𝑥)

𝜏(𝑥)
.

Hence, in view of (6),

𝐾(𝑥) ≍ 𝑒2
̃︀ℎ(𝑥)

|𝑥| + 1
≺ 𝑒2|𝑥|

|𝑥| + 1
. (9)

This is why it follows from (8) that on the half-plane Re𝜆 > 𝑎

|𝐿(𝜆)𝑒−𝜆|2 ≺ (|𝜆| + 1)2

|𝑥| + 1
.

The arc length 𝛾 of the semi-cirle 𝐶 := {𝜆 : |𝜆 − 𝑎| = 𝑅,Re𝜆 > 𝑎} located above the
parabola 𝑦 = (𝑥− 𝑎)2 is 𝑜(𝑅) as 𝑅 −→ ∞. The projection 𝐶 ∖ 𝛾 on the real axis is the interval
(𝑥𝑅, 𝑅), where 𝑥𝑅 is a positive solution to equation 𝑥2 + 𝑥4 = 𝑅2. For our needs it is sufficient

that 𝑥𝑅 ≍
√
𝑅. Let 𝐺 be a domain bounded by semi-circle 𝐶 and vertical line Re𝜆 = 𝑎. By

Cauchy formula,

𝑔′(𝜆) =
1

2𝜋𝑖

∫︁
𝜕𝐺

𝑔(𝑧)𝑑𝑧

(𝑧 − 𝜆)2

for the function 𝑔(𝜆) = 𝐿(𝜆)𝑒−𝜆 and each 𝜆 ∈ 𝐺. By the above estimates we have⃒⃒⃒⃒∫︁
𝛾
⋃︀

𝛾

𝑔(𝑧)𝑑𝑧

(𝑧 − 𝜆)2

⃒⃒⃒⃒
≺ 𝑜(𝑅)

𝑅
= 𝑜(1),

⃒⃒⃒⃒∫︁
𝐶∖(𝛾

⋃︀
𝛾)

𝑔(𝑧)𝑑𝑧

(𝑧 − 𝜆)2

⃒⃒⃒⃒
≺ sup

1√︀
|𝑥| + 1

≍ 1

𝑥𝑅

= 𝑜(1).

Thus,

𝑔′(𝜆) =
1

2𝜋𝑖

∫︁
Re 𝑧=𝑎

𝑔(𝑧)𝑑𝑧

(𝑧 − 𝜆)2
.

If |𝐿| is bounded from above on the line Re 𝑧 = 𝑎 and Re𝜆− 𝑎 > 𝜀, then

|𝑔′(𝜆)| ≺
∫︁
Re 𝑧=𝑎

𝑑Im 𝑧

|𝑧 − 𝜆|2
≺ 𝜀−1.

For 𝜆𝑘 : Re𝜆𝑘 > 𝑎 + 𝜀 we obtain (𝑥𝑘 = Re𝜆𝑘)

|𝐿′(𝜆𝑘)| ≺ 𝜀−1𝑒|𝑥𝑘|.
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We get the same estimate on the half-plane Re 𝑧 − 𝑎 < −𝜀. If Re 𝑧 = 𝑏, 𝑏 ̸= 𝑎, is the other
vertical line on which |𝐿| is bounded, then taking 𝜀 < |𝑏 − 𝑎|/3, we obtain the estimates on
four half-planes covering whole the plane. Hence,

sup
𝑘

|𝐿′(𝜆𝑘)| < ∞.

The first statement of Theorem A implies that one can find 𝑑 > 0 such that each square

𝑄𝑚 = {𝑧 : |Re 𝑧| 6 𝑑, 𝑚𝑑 6 Im 𝑧 < (𝑚 + 1)𝑑}, 𝑚 ∈ Z,

contains at least one exponent of 𝜆𝑘. We denote by 𝑧𝑚 one of the zeroes lying in square 𝑄𝑚.
By relation (5) we obtain

|𝐿(𝜆)|2
∑︁
𝑚

1

|𝜆− 𝑧𝑚|2
≺ 𝐾(𝜆).

In view of the density of zeroes 𝑧𝑚, it is easy to show that outside the balls 𝐵(𝑧𝑚, 𝛿) the relation∑︁
𝑚

1

|𝜆− 𝑧𝑚|2
≍ 1

|𝑥| + 1

holds true. Thus, outside such balls by (9) we have the estimate

|𝐿(𝜆) ≺ 𝑒
̃︀ℎ(Re𝜆).

The proof is complete.

Proof of Lemma 2. Under the assumptions of the lemma we choose 𝛿 > 0 such that the squares

𝑄𝑘(2𝛿) = {|𝑅𝑒𝑧 − Re𝜆𝑘| 6 2𝛿, |Im 𝑧 − Im𝜆𝑘| 6 2𝛿}

are mutually disjoint and we let

𝑄(𝛿) =
⋃︁
𝑘

𝑄𝑘(𝛿), 𝑄𝑥 = {𝑧 : Re 𝑧 = 𝑥} ∖𝑄(𝛿).

By relation (3) for each 𝑘 and by the lower-semiboundedness of |𝐿| we have

|𝐿′(𝜆𝑘)|2 ≻ 𝐾(𝜆𝑘)

∫︁
|𝑥|6𝑞

(︂∫︁ ∞

−∞

|𝐿(𝜆)|2𝑑𝑦
|𝜆− 𝜆𝑘|2

)︂
𝑑̃︀ℎ′(𝑥)

𝐾(𝑥)
≻ 𝐾(𝑥𝑘)

∫︁
|𝑥|6𝑞

(︂∫︁
𝑄𝑥

𝑑𝑦

|𝜆− 𝜆𝑘|2

)︂
𝑑̃︀ℎ′(𝑥)

𝐾(𝑥)
.

Taking into consideration the choice of 𝛿, it is easy to show that∫︁
𝑄𝑥

𝑑𝑦

|𝜆− 𝜆𝑘|2
≍ 1

|𝑥− 𝑥𝑘| + 1
.

Hence,

|𝐿′(𝜆𝑘)|2 ≻ 𝐾(𝜆𝑘)

∫︁
|𝑥|6𝑞

𝑑̃︀ℎ′(𝑥)

(|𝑥− 𝑥𝑘| + 1)𝐾(𝑥)
≻ 𝐾(𝑥𝑘)

|𝑥𝑘| + 1
.

By relation (9) we obtain the desired lower bound of the derivatives

|𝐿′(𝜆𝑘)| ≻ 1

(|𝑥𝑘| + 1)
𝑒
̃︀ℎ(𝑥𝑘), 𝜆𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘.

If we substitute this estimate into relation (5), we obtain

𝐾(𝜆) ≺ |𝐿(𝜆)|2
∑︁
𝑘

|𝑥𝑘| + 1

|𝜆− 𝜆𝑘|2
. (10)
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By assumption (6) and Statement 2 of Theorem A there exist numbers 𝜀 and 𝑑 ∈ (1, 2) such
that each of the squares

𝑅0,𝑛 = {0 6 Re 𝑧 < 𝜀, 𝑛𝜀 6 𝐼𝑚𝑧 < (𝑛 + 1)𝜀},
𝑅𝑚,𝑛 = {𝜀𝑑𝑚−1 6 Re 𝑧 < 𝜀𝑑𝑚, 𝑑𝑚−1𝑛𝜀 6 𝐼𝑚𝑧 < 𝑑𝑚(𝑛 + 1)𝜀}, 𝑛 ∈ Z, 𝑚 ∈ N,

and each square −𝑅𝑚,𝑛, 𝑚 = 0, 1, 2, . . . , 𝑛 ∈ Z, contains at most one zero 𝜆𝑘. We take an
arbitary 𝛿 > 0 and 𝜆 /∈

⋃︀
𝑘 𝐵(𝜆𝑘, 𝛿(|𝑥𝑘|+ 1)). Let 𝜆 ∈ 𝑅𝑠,𝑗. By A we denote the set of adjacent

with 𝑅𝑠,𝑗 squares; they are finitely many. If 𝜆𝑘 ∈ 𝑅𝑚,𝑛 ∈ A, then

|𝜆− 𝜆𝑘| ≻ (|𝑥| + 1),

and this is why ∑︁′ |𝑥𝑘| + 1

|𝜆− 𝜆𝑘|2
≺ 1

|𝑥| + 1
. (11)

The superscript prime of summation symbol means that we sum the terms (if they exist) over
𝜆𝑘 ∈ 𝑅𝑚,𝑛 ∈ A.

Let 𝑧𝑚,𝑛 be the geometric center of square 𝑅𝑚,𝑛. If 𝜆𝑘 ∈ 𝑅𝑚,𝑛 /∈ A, then

|𝜆− 𝜆𝑘| ≍ |𝜆− 𝑧𝑚,𝑛|, |𝑥𝑘| + 1 ≍ diam 𝑅𝑚,𝑛 ≍ 𝑑𝑚, 𝑘 ∈ Z.

Function |𝜆− 𝑧|−2 is subharmonic w.r.t. 𝑧 ̸= 𝜆, and therefore∑︁′ |Re𝜆𝑘| + 1

|𝜆− 𝜆𝑘|2
≺

∫︁
C∖𝐵(𝜆,𝜀(|Re𝜆|+1))

𝑑𝑚(𝑧)

(|𝑅𝑒𝑧| + 1)|𝜆− 𝑧|2
.

Here the superscript prime of the summation symbol means the summation over all 𝜆𝑘 ∈ 𝑅𝑚,𝑛 /∈
A. It yields ∑︁′ |Re𝜆𝑘| + 1

|𝜆− 𝜆𝑘|2
≺ ln(|𝑥| + 1)

|𝑥| + 1
.

In view of (11) we obtain ∑︁ |Re𝜆𝑘| + 1

|𝜆− 𝜆𝑘|2
≺ ln(|𝑥| + 1)

|𝑥| + 1
.

Together with (10), the latter relation means that

|𝐿(𝜆)| ≻ 𝑒
̃︀ℎ(𝑥)− 1

2
ln ln(|𝑥|+𝑒), 𝜆 /∈

⋃︁
𝑘

𝐵(𝜆𝑘, 𝜀(|𝑥𝑘| + 1)).

The proof is complete.

Proof of Lemma 3. Suppose the assumptions of Theorem 1. By Lemma 1,

|𝐿(𝜆)| ≺ 𝑒
̃︀ℎ(𝑥) ≍ 1

|Re𝜆| + 1
𝐾(𝜆).

By the definition of function 𝜏 , there exists a harmonic function 𝑢(𝑧) in the circle 𝐵 =
𝐵(𝜆, 𝜀(|𝑥| + 1)) differing from ln𝐾(𝑧) by at most 1. Let 𝑔 be a function analytic in this
circle and Re 𝑔 = 𝑢. By Cauchy formula

(𝐿𝑒−𝑔)′(𝜆𝑘) =
1

2𝜋𝑖

∫︁
𝜕𝐵

𝐿(𝑧)𝑒−𝑔(𝑧)𝑑𝑧

(𝑧 − 𝜆𝑘)2

we obtain the upper bound

|𝐿′(𝜆𝑘)| ≺ 𝑒
̃︀ℎ(𝑥𝑘)

|𝑥𝑘| + 1
.

The corresponding lower bounds we obtained in Lemma 2.
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We choose 𝜀 > 0 such that the circles 𝐵(𝜆𝑘, 𝜀(|𝜆𝑘| + 1)) are mutually disjoint and in each
of them the relation of Statement of Theorem A is satisfied. By the proven asymptotics for
𝐿′|(𝜆𝑘)| we obtain that the lower bound

|𝐿(𝜆)| ≻ 𝑒
̃︀ℎ(Re𝜆)

is satisfied in the annuli 𝑆𝑘 := 𝐵(𝜆𝑘, 𝜀(|𝜆𝑘| + 1)) ∖𝐵(𝜆𝑘,
𝜀
2
(|𝜆𝑘| + 1)). In view of Lemma 1

|𝐿(𝜆)| ≺ 𝑒
̃︀ℎ(Re𝜆), 𝜆 ∈ 𝑆 :=

⋃︁
𝑘

𝑆𝑘.

Let
𝐶 = sup

𝜆∈𝑆
|𝐿(𝜆)|𝑒−̃︀ℎ(Re𝜆).

We denote
Ω := C ∖

⋃︁
𝑘

𝐵(𝜆𝑘, 𝜀(|𝜆𝑘| + 1)).

The function
𝑢(𝜆) = ̃︀ℎ(Re𝜆) − ln |𝐿(𝜆)|

is subharmonic on C ∖
⋃︀

𝑘{𝜆𝑘} and by Lemma 2 the estimate

𝑢(𝜆) 6
1

2
ln ln(|Re𝜆| + 𝑒) + 𝑂(1), 𝜆 ∈ Ω

holds true. At that,
𝑢(𝜆) 6 𝐶, 𝜆 ∈ 𝜕Ω.

Function 𝑣1(𝜆) = max(𝑢(𝜆), 2𝐶) is subharmonic on the plane outside zeroes 𝜆𝑘

𝑣1(𝜆) ≡ 2𝐶, 𝜆 ∈
⋃︁
𝑘

𝑆𝑘.

Then the function

𝑣(𝜆) =

{︂
𝑣1(𝜆), 𝜆 ∈ Ω,

2𝐶, 𝑎 = 𝜆 /∈ Ω,

is subharmonic in the whole plane and satisfies the estimate

𝑣(𝜆) 6 ln ln(|𝜆| + 𝑂(1), 𝜆 ∈ C.
But in this case function 𝑣 must be constant [15] and thus,

ln |𝐿(𝜆)| > ̃︀ℎ(Re𝜆) + 𝑂(1), 𝜆 ∈ Ω.

Completing the proof of Theorem 1.1. Relation (3) implies the estimate for each 𝑥𝑘

|𝐿′(𝜆𝑘)|2

𝐾(𝑥𝑘)
≻

∫︁ |𝑥𝑘|
2

0

∫︁ ∞

−∞

|𝐿(𝑥 + 𝑖𝑦)|2

|𝑧 − 𝜆𝑘|2𝐾(𝑥)
𝑑̃︀ℎ′(𝑥)𝑑𝑦.

We estimate |𝐿|2 by Lemma 3 outside mutually disjoint squares

𝑄𝑛 := {𝑧 : |Re (𝑧 − 𝜆𝑛)| 6 𝜀(|Re𝜆𝑛| + 1), |Im (𝑧 − 𝜆𝑛)| 6 𝜀(|Re𝜆𝑛| + 1)}.
By simple lower estimates of the integral w.r.t. 𝑑𝑦 we obtain

|𝐿′(𝜆𝑘)|2

𝐾(𝑥𝑘)
≻ 1

|𝑥𝑘|

∫︁ |𝑥𝑘|
2

0

|𝑥|𝑑̃︀ℎ′(𝑥).

By Lemma 3 it implies ∫︁ |𝑥𝑘|
2

0

|𝑥|𝑑̃︀ℎ′(𝑥) ≺ 1, |𝑥𝑘| −→ ∞. (12)
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Integrating by parts, we have ∫︁ 𝑎

0

𝑡𝑑̃︀ℎ′(𝑡) = 𝑎̃︀ℎ′(𝑎) − ̃︀ℎ(𝑎) + ̃︀ℎ(0).

If ̃︀ℎ′ is a strictly increasing function, then the supremum in

ℎ(𝑡) = sup
𝑥

(𝑥𝑡− ̃︀ℎ(𝑥))

is attained at the unique point 𝑥 = 𝑥𝑡 : ̃︀ℎ′(𝑥) = 𝑡 and |𝑥𝑡| −→ ∞ if |𝑡| −→ 1. Hence,

ℎ(𝑡) = 𝑥𝑡𝑡− ̃︀ℎ(𝑥𝑡) = 𝑥𝑡
̃︀ℎ′(𝑥𝑡) − ̃︀ℎ(𝑥𝑡).

Now by (12) we obtain that ℎ(𝑡) is a bounded function, i.e., 𝐿2(ℎ) is isomorphic to classic 𝐿2.
The proof is complete.

BIBLIOGRAPHY

1. N.K. Bari. On bases in Hilbert space // Dokl. Akad. Nauk SSSR. 54, 383–386 (1946). (in Russian).
2. N.K. Nikol’skii, B.S. Pavlov, S.V. Khruschev. Unconditional bases of exponentials and reproducing

kernels. I. // Preprint LOMI. 8–80 (1980). (in Russian).
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