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ON SPECTRAL PROPERTIES OF STURM-LIOUVILLE

OPERATOR WITH MATRIX POTENTIAL

N.B. USKOVA

Abstract. In the work we obtain asymptotic estimates for the eigenvalues, eigenvectors
and spectral projectors of a Sturm-Liouville operator with a matrix potential subject to
quasi-periodic boundary conditions. The matrix potential is formed by functions square
summable on the segment [0, 1] and the matrix of the means of the functions have simple
eigenvalues. We consider also the case when the matrix of the means has a simple structure.
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1. Introduction

We consider Hilbert space 𝐿2[0, 1] of functions measurable and square integrable on [0, 1].
Let ℋ = 𝐿2([0, 1],C𝑚) = 𝐿𝑚

2 [0, 1] = 𝐿2[0, 1] × · · · × 𝐿2[0, 1]⏟  ⏞  
𝑚 times

be the Hilbert space of functions

with values in C𝑚 measurable and square integrable on [0, 1]. The scalar product in 𝐿𝑚
2 [0, 1] is

defined by the formula

(𝑓, 𝑔) =
𝑚∑︁
𝑖=1

(𝑓𝑖, 𝑔𝑖), 𝑓 = (𝑓1, 𝑓2, . . . , 𝑓𝑚) ∈ 𝐿𝑚
2 [0, 1], 𝑔 = (𝑔1, 𝑔2, . . . , 𝑔𝑚) ∈ 𝐿𝑚

2 [0, 1],

(𝑓𝑖, 𝑔𝑖) =
∫︀ 1

0
𝑓𝑖(𝑥)𝑔𝑖(𝑥) 𝑑𝑥 is the scalar product in space 𝐿2[0, 1] of complex-valued functions

and the norm

‖𝑓‖2 =
𝑚∑︁
𝑖=1

∫︁ 1

0

|𝑓𝑘(𝑥)|2 𝑑𝑥

is generated by this scalar product.
In space 𝐿𝑚

2 [0, 1] we consider the differential operator 𝐿 generated by the differential expres-
sion

(𝐿𝑦)(𝑡) = −𝑦′′(𝑡) + 𝑄(𝑡)𝑦(𝑡), (1)

and the quasiperiodic boundary condtions

𝑦′(1) = 𝑦′(0)𝑒𝑖𝜃, 𝑦(1) = 𝑦(0)𝑒𝑖𝜃, (2)

𝜃 ∈ (0, 2𝜋), 𝜃 ̸= 𝜋. It is a Sturm-Liouville operator with matrix potential 𝑄(𝑡) = {𝑏𝑖𝑗(𝑡)},
𝑖, 𝑗 = 1, . . . ,𝑚, and 𝑏𝑖𝑗 ∈ 𝐿2[0, 1] are complex-valued functions. By the symbol 𝑄0 = (𝑏0𝑖𝑗),
𝑖, 𝑗 = 1, 2, . . . ,𝑚, we denote the matrix formed by the mean values of functions 𝑏𝑖𝑗, i.e., 𝑏0𝑖𝑗 =∫︀ 1

0
𝑏𝑖𝑗(𝑡) d𝑡. In what follows we study the spectral characteristics of operator 𝐿 with square

integrable functions 𝑏𝑖𝑗 in the case when 𝑄0 is a normal matrix of simple structure.
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We note that in this case matrix 𝑄0 is similar to the diagonal matrix having eigenvalues
𝜇1, 𝜇2, . . . , 𝜇𝑚, on the diagonal and the basis in space C𝑚 is formed by the associated (orthog-
onal) eigenvectors of matrix 𝑄0. This is why without loss of generality we can assume that
matrix 𝑄0 is diagonal and the corresponding basis is formed by its orthonormalized eigenvectors
𝑓1, 𝑓2, . . . , 𝑓𝑚. We also assume that numbers 𝜇1, 𝜇2, . . . , 𝜇𝑚 are taken in the ascending order,
i.e., 𝜇1 6 𝜇2 6 · · · 6 𝜇𝑚.

We consider operator 𝐿0 such that 𝐿0𝑦 = −𝑦′′ with the domain coinciding with the domain
of operator 𝐿. In what follows operator 𝐿0 plays the role of an unperturbed one. It is known
that its eigenvalues are the numbers

𝜆𝑛 = 𝜆𝑛,𝑗 = (2𝜋𝑛 + 𝜃)2, 𝑛 ∈ Z, 𝑗 = 1, 2, . . . ,𝑚,

and the associated eigenvectors are the functions 𝑒𝑛,𝑗(𝑡) = 𝑒𝑖(2𝜋𝑛+𝜃)𝑡𝑓𝑗, 𝑛 ∈ Z, 𝑗 = 1, 2, . . . ,𝑚.
The multiplicity of such eigenvalue is equal to 𝑚.

Operators of such class were considered by O.A. Veliev in [1] under the condition 𝑏𝑖𝑗 ∈ 𝐿1[0, 1],
𝑖 = 1, 2, . . . ,𝑚. In that work and under the same assumptions for 𝜃 the Riesz basis property
was proven for the root functions of operator 𝐿 in the case of simple eigenvalues of matrix 𝑄0.
Estimates for the eigenvalues and eigenvectors of operator 𝐿 were obtained (see [1, Thm. 2]):

̃︀𝜆𝑘,𝑗 = (2𝜋𝑘 + 𝜃)2 + 𝜇𝑗 + 𝒪
(︂

ln |𝑘|
𝑘

)︂
, ̃︀𝑒𝑘,𝑗(𝑥) = e𝑖(2𝜋𝑘+𝜃)𝑥𝑓𝑗 + 𝒪

(︂
ln |𝑘|
𝑘

)︂
.

In the considered case (𝑏𝑖𝑗 ∈ 𝐿2[0, 1]), it is possible to improve the asymptotics of the eigenvalues
and eigenvectors of operator 𝐿 and to obtain also the estimates of equiconvergence of the
corresponding spectral resolutions. We note that in work [1], there were not considered the
estimates for the weighted mean in the case of multiple eigenvalues of matrix 𝑄0, deviation
of spectral projectors and the equiconvergence. The main result of the work is the following
theorems.

Theorem 1. There exists a natural number 𝑙 such that the spectrum 𝜎(𝐿) of operator 𝐿 is
represented as

𝜎(𝐿) = ̃︀𝜎(𝑙)

⋃︁(︂ ⋃︁
|𝑘|>𝑙

̃︀𝜎𝑘

)︂
, (3)

where ̃︀𝜎(𝑙) is a finite set of at most 2𝑙𝑚 + 𝑚 eigenvalues, ̃︀𝜎𝑘 = {̃︀𝜆𝑘,1, ̃︀𝜆𝑘,2, . . . , ̃︀𝜆𝑘,𝑚}. In the
case of simple eigenvalues 𝜇𝑗 of matrix 𝑄0 the estimates (|𝑘| > 𝑙)̃︀𝜆𝑘,𝑗 = (2𝜋𝑘 + 𝜃)2 + 𝜇𝑗 + 𝒪(|𝑘|−1), 𝑗 = 1, 2, . . . ,𝑚, (4)̃︀𝑒𝑘,𝑗 = e𝑖(2𝜋𝑘+𝜃)𝑥𝑓𝑗 + 𝒪(|𝑘|−1) (5)

hold true. If eigenvalues 𝜇𝑗 are semi-simple, the formula

1

𝑚

𝑚∑︁
𝑗=1

̃︀𝜆𝑘,𝑗 = (2𝜋𝑘 + 𝜃)2 +
1

𝑚

𝑚∑︁
𝑗=1

𝜇𝑗 + 𝒪(|𝑘|−1) (6)

holds true. The spectral projectors 𝑃𝑘 = 𝑃 (𝜎𝑘, 𝐿0) and ̃︀𝑃𝑘 = 𝑃 (̃︀𝜎𝑘, 𝐿) satisfy the asymptotic
representation (|𝑘| > 𝑙)

‖ ̃︀𝑃𝑘 − 𝑃𝑘‖2 = 𝒪(|𝑘|−1),

and ∑︁
|𝑘|>𝑙

‖ ̃︀𝑃𝑘 − 𝑃𝑘‖22 < ∞. (7)

Corollary 1. Operator 𝐿 is spectral in the sense of Dunford [2] w.r.t. resolution (3).
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Theorem 2. The estimate for uniform absolute equiconvergence of spectral resolutions

‖ ̃︀𝑃 (Ω) − 𝑃 (Ω)‖2 6 const𝒪(𝑘
− 1

2
0 ),

where 𝑃 (Ω) =
∑︀
𝑘∈Ω

𝑃𝑘, ̃︀𝑃 (Ω) =
∑︀
𝑘∈Ω

̃︀𝑃𝑘, Ω = {𝑖 ∈ Z, |𝑖| > 𝑙}, 𝑘0 = min
𝑘∈Ω

|𝑘|.

We note that since projectors 𝑃 (Ω) and ̃︀𝑃 (Ω) are similar, the series
∑︀
𝑘∈Ω

̃︀𝑃𝑘 converges abso-

lutely.

2. On similar operators methods

We introduce first the following spaces of operators. By Endℋ we denote the Banach algebra
of operators acting in ℋ with the norm ‖𝑋‖∞. Hereafter by 𝐴 we denote a closed linear
operator acting in ℋ with a domain 𝐷(𝐴), a spectrum 𝜎(𝐴) and a resolvent set 𝜌(𝐴). Operator
𝐴 plays a role of an unperturbed operator whose spectral properties are well-studied. By the
symbol L𝐴(ℋ) we denote the space of operators acting in ℋ and relatively bounded w.r.t.
operator 𝐴, i.e., 𝐵 ∈ L𝐴(ℋ) if 𝐷(𝐵) ⊃ 𝐷(𝐴) and there exists a constant 𝐶 > 0 such that
‖𝐵𝑥‖ 6 𝐶(‖𝑥‖ + ‖𝐴𝑥‖), 𝑥 ∈ 𝐷(𝐴). The norm in L𝐴(ℋ) is introduced by the formula ‖𝐵‖𝐴 =
inf{𝐶 > 0 : ‖𝐵𝑥‖ 6 𝐶(‖𝑥‖ + ‖𝐴𝑥‖), 𝑥 ∈ 𝐷(𝐴)}. We observe that 𝐵 ∈ L𝐴(ℋ) means that
there exists 𝜆0 ∈ 𝜌(𝐴) such that ‖𝐵(𝐴−𝜆0𝐼)−1‖ is finite. For the considered operator, without
loss of generality we can assume that 𝐷(𝐴) = 𝐷(𝐵).

Definition 1 ([6]). Two linear operators 𝐴𝑖 : 𝐷(𝐴𝑖) ⊂ ℋ → ℋ, 𝑖 = 1, 2, are called similar
if there exists a continuously invertible operator 𝑈 ∈ Endℋ, such that 𝑈𝐷(𝐴2) = 𝐷(𝐴1) and
𝐴1𝑈𝑥 = 𝑈𝐴2𝑥, 𝑥 ∈ 𝐷(𝐴2). Operator 𝑈 is called operator of transforming operator 𝐴1 into 𝐴2.

As a method of studying operator (1), (2), the similar operators method will serve. The main
ideas of the similar operators method are presented in the chronological order in works [3]–[7].
We shall follow work [6]. We note that by means of the similar operators method, the spectral
properties of various differential operators were studied, for instance, in works [8]–[11], [16]. To
operator 𝐿 with a matrix potential and quasiperiodic boundary conditions this method was not
applied before.

In accordance with the terminology of M.G. Krein, an operator acting in the space of oper-
ators will be called transformer.

One of important notions in the similar operators method is that of admissible triple which
is to satisfy certain condition to make the method applicable.

Definition 2 ([6]). Let ℳ ⊂ L𝐴(ℋ) be a linear subspace of operators and 𝐽 : ℳ → ℳ,
Γ : ℳ → Endℋ are transformers. The triple (ℳ, 𝐽,Γ) is called admissible triple for operator
𝐴 and ℳ is an admissible perturbation space if the following conditions hold true:

1) ℳ is a Banach space with a norm ‖ · ‖ℳ continuously embedded in L𝐴(ℋ), i.e., there
exists a constant 𝐶 > 0 such that ‖𝑋‖𝐴 6 𝐶‖𝑋‖ℳ for each 𝑋 ∈ L𝐴(ℋ);
2) 𝐽 and Γ are continuous transformers and 𝐽 is a projector, i.e., 𝐽2 = 𝐽 ;
3) (Γ𝑋)𝐷(𝐴) ⊂ 𝐷(𝐴), 𝐴Γ𝑋 − (Γ𝑋)𝐴 = 𝑋 − 𝐽𝑋, ∀𝑋 ∈ ℳ and 𝑌 = Γ𝑋 is the unique

solution to the equation 𝐴𝑌 − 𝑌 𝐴 = 𝑋 − 𝐽𝑋 satisfying the condition 𝐽𝑌 = 0;
4) 𝑋(Γ𝑌 ), (Γ𝑋)𝑌 ∈ ℳ, ∀𝑋, 𝑌 ∈ ℳ, and there exists a constant 𝛾 > 0 such that

‖Γ‖ 6 𝛾, and max{‖𝑋Γ𝑌 ‖ℳ, ‖Γ𝑋𝑌 ‖ℳ} 6 𝛾‖𝑋‖ℳ‖𝑌 ‖ℳ;

5) for each 𝑋 ∈ ℳ and each 𝜀 > 0 there exists a number 𝜆𝜀 ∈ 𝜌(𝐴) such that ‖𝑋(𝐴 −
𝜆𝜀𝐼)−1‖ < 𝜀.

Let (ℳ, 𝐽,Γ) be an admissible triple for operator 𝐴. We perturbed operator 𝐴 by some
operator 𝐵 in the space of admissible perturbations ℳ.
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Theorem 3 ([6]). Suppose that the condition 4‖𝐵‖ℳ𝛾 < 1 is satisfied. Then operators
𝐴−𝐵 and 𝐴− 𝐽𝑋 are similar, i.e.,

(𝐴−𝐵)(𝐼 + Γ𝑋) = (𝐼 + Γ𝑋)(𝐴− 𝐽𝑋),

where operator 𝑋 ∈ ℳ solves the nonlinear operator equation

𝑋 = 𝐵Γ𝑋 − (Γ𝑋)(𝐽𝐵) − (Γ𝑋)𝐽(𝐵Γ𝑋) + 𝐵, (8)

and it can be found by method of successive approximations using operator 𝐵 as the first ap-
porximation.

Sometimes it is difficult to choose a space of admissible perturbations ℳ such that operator
𝐵 belongs to ℳ and this space is convenient for further studies. This is why sometimes it is
convenient to make a preliminary similarity transformation of operator 𝐴 − 𝐵 into operator

𝐴− ̃︀𝐵, where ̃︀𝐵 ∈ ℳ (𝐵 /∈ ℳ).
Continuations of transformers 𝐽 and Γ on space L𝐴(ℋ) are denoted by the same symbols

and is made by as follows (see [6]). Let 𝜆0 ∈ 𝜌(𝐴) and

𝐽𝑋 = 𝐽(𝑋(𝐴− 𝜆0𝐼)−1)(𝐴− 𝜆0𝐼), 𝑋 ∈ L𝐴(ℋ), (9)

Γ𝑋 = Γ(𝑋(𝐴− 𝜆0𝐼)−1)(𝐴− 𝜆0𝐼), 𝑋 ∈ L𝐴(ℋ). (10)

These continuations are well-defined, i.e., they are independent of choice of number 𝜆0 ∈ 𝜌(𝐴).
If 𝑥 ∈ 𝐷(𝐴), it follows from (9) and (10) that the action of operators 𝐽𝑋 and Γ𝑋 on a vector
𝑥 is introduced in the same way as in Definition 2 and they are used in Theorem 3.

Such transformation is possible under the validity of the following assumption [6], [12].

Assumption 1. Operators Γ𝐵, 𝐽𝐵, 𝐵 satisfy the following conditions:
1) Γ𝐵 ∈ Endℋ and ‖Γ𝐵‖ < 1;
2) (Γ𝐵)𝐷(𝐴) ⊂ 𝐷(𝐴) and (𝐴Γ𝐵)𝑥− (Γ𝐵𝐴)𝑥 = 𝐵𝑥− (𝐽𝐵)𝑥, ∀𝑥 ∈ 𝐷(𝐴);
3) 𝐵Γ𝐵, (Γ𝐵)𝐽𝐵 ∈ ℳ;
4) for each number 𝜀 > 0 there exists a number 𝜆𝜀 ∈ 𝜌(𝐴) such that ‖𝐵(𝐴− 𝜆𝜀𝐼)−1‖∞ < 𝜀.

Theorem 4 ([6], [12]). Suppose Assumption 1, then operator 𝐴−𝐵 is similar to an operator

𝐴− ̃︀𝐵 being

𝐴− 𝐽𝐵 − (𝐼 + Γ𝐵)−1(𝐵Γ𝐵 − (Γ𝐵)𝐽𝐵) = 𝐴− ̃︀𝐵,

and operator 𝐼 + Γ𝐵 serves as the operator of transforming 𝐴−𝐵 into operator 𝐴− ̃︀𝐵.

3. Construction of admissible triple for an operator close to 𝐿0

We begin with the following remark. As 𝜃 ̸= 0 and 𝜃 ̸= 𝜋, the eigenvalue 𝜆𝑛 of operator 𝐿0

has multiplicity 𝑚, but as 𝜃 → 0 and 𝜃 → 𝜋, the distance between the pairs of corresponding
eigenvalues 𝜆𝑛 and 𝜆−𝑛 (𝜃 → 0) or 𝜆𝑛 and 𝜆−(𝑛+1) (𝜃 → 𝜋) tends to zero. This is why, if we
consider only the case of simple eigenvalues of operator 𝐿, then 𝜃 ∈ [𝜀1, 𝜋−𝜀2]∪ [𝜋+𝜀2, 2𝜋−𝜀3],
where 𝜀1, 𝜀2, 𝜀3 are non-zero small quantities. Under this condition all the estimated obtained
in what follows are uniform in 𝜃 in the considered segment. In what follows we deal with such
𝜃 only.

Let 𝐴 : 𝐷(𝐴) ⊂ ℋ → ℋ be a normal linear unbounded operator having semi-simple eigen-
values

𝜆𝑛,𝑖 = (𝑎𝑛 + 𝜃)2 + 𝜇𝑖, 𝑖 = 1, . . . ,𝑚, 𝑛 ∈ Z,
where 𝑎, 𝜃 are constants, 𝜃 ∈ [𝜀1, 𝜋 − 𝜀2] ∪ [𝜋 + 𝜀2, 2𝜋 − 𝜀3], 𝜇1 6 𝜇2 6 · · · 6 𝜇𝑚, and the
associated eigenvectors 𝑒𝑛,𝑖 form an orthonormalized basis in ℋ. Let 𝑃𝑛 = 𝑃 (𝜎𝑛, 𝐴) be the
Riesz projectors constructed by spectral set 𝜎𝑛 = {𝜆𝑛1, 𝜆𝑛2, . . . , 𝜆𝑛𝑚} of operator 𝐴. To each
operator 𝑋 ∈ Endℋ, we associate two matrices: operator one 𝑋 = (𝑋𝑖𝑗), where 𝑋𝑖𝑗 = 𝑃𝑖𝑋𝑃𝑗,
𝑖, 𝑗 ∈ Z, and a scalar one 𝑋 = (𝑥𝑛𝑖𝑘𝑗), where 𝑥𝑛𝑖𝑘𝑗 = (𝑋𝑒𝑘𝑗 , 𝑒𝑛𝑖

), 𝑛, 𝑘 ∈ Z, 1 6 𝑖, 𝑗 6 𝑚.
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By the symbol S2(ℋ) we denote Hilbert-Schmidt ideal of operators in Endℋ. Since projec-
tors 𝑃𝑛, 𝑛 ∈ Z, are orthoprojectors, then the norm in S2(ℋ) can be defined by the formula

‖𝑋‖22 =
∑︁
𝑖,𝑗

‖𝑃𝑖𝑋𝑃𝑗‖22, ∀𝑋 ∈ S2(ℋ), 𝑖, 𝑗 ∈ Z.

In what follows we shall also employ the notation 𝑋𝑝 for 𝑝-th diagonal of operator matrix of
operator 𝑋, i.e., 𝑋𝑝 =

∑︀
𝑖−𝑗=𝑝

𝑋𝑖𝑗. It is obvious that ‖𝑋‖22 =
∑︀
𝑝

‖𝑋𝑝‖22, 𝑋 ∈ S2(ℋ).

As the space of admissible perturbation we choose space S2(ℋ) and we perturb operator 𝐴
by an operator 𝐵 ∈ S2(ℋ). We define a family of transformers by the formula

𝐽𝑘𝑋 = 𝑄𝑘𝑋𝑄𝑘 +
∑︁
|𝑖|>𝑘

𝑃𝑖𝑋𝑃𝑖, 𝑋 ∈ S2(ℋ),

where 𝑄𝑘 =
∑︀
|𝑗|6𝑘

𝑃𝑗 and 𝐽0𝑋 =
∑︀
𝑖∈Z

𝑃𝑖𝑋𝑃𝑖. It is obvious that ‖𝐽𝑘‖ = 1 since

‖𝐽𝑘𝑋‖22 6 ‖𝑄𝑘𝑋𝑄𝑘‖22 +
∑︁
𝑖>𝑘

‖𝑃𝑖𝑋𝑃𝑖‖22 6 ‖𝑋‖22.

On the other hand, if 𝑋 =
∑︀
𝑖

𝑃𝑖𝑋𝑃𝑖, i.e., matrix of operator 𝑋 is diagonal, then 𝐽𝑘𝑋 = 𝑋

and ‖𝐽𝑘𝑋‖2 = ‖𝑋‖2.
We proceed to constructing of transformer Γ0 : S2(ℋ) → Endℋ. First we define it on

operator blocks 𝑋𝑖𝑗 = 𝑃𝑖𝑋𝑃𝑗, where 𝑋 ∈ S2(ℋ) (and 𝑋𝑖𝑗 ∈ S2(ℋ)). For each 𝑋𝑖𝑗, 𝑖 ̸= 𝑗, we
let Γ0𝑋𝑖𝑗 = 𝑌𝑖𝑗, where 𝑌𝑖𝑗 is a solution to the equation

𝐴𝑌𝑖𝑗 − 𝑌𝑖𝑗𝐴 = 𝑋𝑖𝑗, 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ Z,
and 𝑌𝑖𝑖 = 0. We observe that the latter equation can be rewritten as

𝐴𝑖𝑌𝑖𝑗 − 𝑌𝑖𝑗𝐴𝑗 = 𝑋𝑖𝑗, (11)

𝐴𝑖 = 𝐴
⃒⃒
ℋ𝑖

, ℋ𝑖 = Ran𝑃𝑖. Since 𝜎(𝐴𝑖) ∩ 𝜎(𝐴𝑗) = ∅, equations (11) are solvable [13], [14] and

‖𝑌𝑖𝑗‖2 6
const‖𝑋𝑖𝑗‖2
dist(𝜎𝑖, 𝜎𝑗)

.

It follows from [15] that const can be assumed to be one.
We recover operator Γ0𝑋 by operator blocks 𝑌𝑖𝑗 = (Γ𝑋)𝑖𝑗: Γ0𝑋 =

∑︀
𝑖,𝑗

(Γ𝑋)𝑖𝑗, and

‖Γ0𝑋‖22 =
∑︁
𝑖,𝑗

‖(Γ𝑋)𝑖𝑗‖22 6
∑︁
𝑖 ̸=𝑗

‖𝑋𝑖𝑗‖22
dist2(𝜎𝑖, 𝜎𝑗)

6 𝑑−2
0

∑︁
𝑖 ̸=𝑗

‖𝑋𝑖𝑗‖22 6 𝑑−2
0 ‖𝑋‖22.

Thus, operator Γ0𝑋 belongs to the space S2(ℋ) and ‖Γ0‖ 6 𝑑−1
0 , where the symbol 𝑑0 stands

for min
𝑖 ̸=𝑗

dist(𝜎𝑖, 𝜎𝑗).

We define the family of transformers Γ𝑘𝑋 by the formula

Γ𝑘𝑋 = Γ0𝑋 − Γ0(𝑄𝑘𝑋𝑄𝑘) = Γ0𝑋 −𝑄𝑘Γ0𝑋𝑄𝑘. (12)

It follows from this identity that

𝑑𝑘 =dist(𝜎𝑘, 𝜎𝑘+1) = |(𝑎(𝑘 + 1) + 𝜃)2 + 𝜇𝑚 − (𝑎𝑘 + 𝜃)2 − 𝜇1|
=|2𝑎2𝑘 + 2𝑎𝜃 + 𝜇𝑚 − 𝜇1| = 𝒪(𝑘),

i.e.,

‖Γ𝑘𝑋‖22 6
const

𝑘2
‖𝑋‖22. (13)

It implies that Condition 4 of Definition 2 holds true with 𝛾 of order 𝑘−1.
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Let us chech other conditions in Definition 2 concerning transformer Γ. We consider operator
𝐴𝑄𝑛Γ𝑋𝐴−1 and represent it as (𝑥 ∈ ℋ)

𝐴𝑄𝑛Γ𝑋𝐴−1𝑥 = 𝑄𝑛Γ𝑋𝑥 + 𝑄𝑛(𝑋 − 𝐽𝑋)𝐴−1𝑥, 𝑥 ∈ ℋ.

Since 𝑄𝑛Γ𝑋 → Γ𝑋𝑥, 𝑄𝑛(𝑋 − 𝐽𝑋)𝐴−1𝑥 → (𝑋 − 𝐽𝑋)𝐴−1𝑥 as 𝑛 → ∞, then 𝐴𝑄𝑛Γ𝑋𝐴−1𝑥 →
𝑦0 ∈ ℋ. Let 𝑄𝑛Γ𝑋𝐴−1𝑥 → 𝑥0 = Γ𝑋𝐴−1𝑥, then due to the closedness of operator 𝐴 we have
𝑥0 ∈ 𝐷(𝐴) and 𝐴𝑥0 = 𝑦0, where 𝑦0 = lim

𝑛→∞
𝑦𝑛.

Condition 5) is obvious since

‖𝑋(𝐴− 𝜆𝜀𝐼)−1‖22 6 ‖𝑋‖22 · ‖(𝐴− 𝜆𝜀𝐼)−1‖∞,

at that, the first factor is finite and the other can be chosen arbitrarily small.
Thus, we have proven

Theorem 5. For each 𝑘 > 0 the triple (S2(ℋ), 𝐽𝑘,Γ𝑘) is admissible for operator 𝐴.

Theorem 5 and estimate (13) imply

Theorem 6. There exists a number 𝑙 > 0 such that operator 𝐴− 𝐵 is similar to the block-
diagonal operator

𝐴−𝑄𝑙𝑋𝑄𝑙 −
∑︁
|𝑖|>𝑙

𝑃𝑖𝑋𝑃𝑖,

where 𝑋 solves nonlinear operator equation (8) with Γ𝑙 and 𝐽𝑙. The operator of transforming
is the operator 𝐼 + Γ𝑙𝑋 an the first approximation for solution 𝑋 in the iteration method is
operator 𝐵.

Lemma 1. Let 𝑋 ∈ S2(ℋ). Then operator Γ𝑘𝑋 ∈ S2(ℋ) can be represented as

Γ𝑘𝑋 = 𝑌 𝐴− 1
2 = 𝐴− 1

2𝑍, where 𝑍, 𝑌 ∈ S2(ℋ).

The proof follows from the matrix representation of operator Γ𝑘𝑋, 𝑘 > 0.
The operator 𝐴− 1

2 in Lemma 1 is defined on basis vectors as follows: if 𝑥 =
∑︀
𝑖∈Z

𝑘=1,...,𝑚

(𝑥, 𝑒𝑖,𝑘)𝑒𝑖,𝑘

and 𝐴𝑒𝑖,𝑘 = 𝜆𝑖,𝑘𝑒𝑖,𝑘, then 𝐴− 1
2𝑥 =

∑︀
𝑖∈Z

𝑘=1,...,𝑚

𝜆
− 1

2
𝑖,𝑘 (𝑥, 𝑒𝑖,𝑘)𝑒𝑖,𝑘.

Lemma 2. Under the assumptions of Theorem 6, we have𝑋 −𝐵 ∈ S1(ℋ) and

‖𝑃𝑖(𝑋 −𝐵)𝑃𝑖‖ 6 𝛼𝑖𝑖
−1, 𝑖 > 𝑙, (14)

where {𝛼𝑖} ∈ 𝑙1.

Proof. By (8) we have

𝑋 −𝐵 = 𝐵Γ𝑙𝑋 − Γ𝑙𝑋𝐽𝑙𝐵 − Γ𝑙𝑋𝐽𝑙(𝐵Γ𝑙𝑋); 𝐽𝑙(𝑋 −𝐵) = 𝐽𝑙(𝐵Γ𝑙𝑋) = 𝐽𝑙(𝐵𝑌 𝐴− 1
2 )

and 𝐽𝑙(𝑋 − 𝐵) ∈ S1(ℋ), since the product of two Hilbert-Schmidt operators is a nuclear

operator. Then 𝑃𝑖(𝑋 − 𝐵)𝑃𝑖 = 𝑃𝑖𝐵𝑌 𝐴− 1
2𝑃𝑖 = 𝑍𝑖𝑖𝜆

− 1
2

𝑖 , where 𝑍 = 𝐵𝑌 ∈ S1 and 𝑍𝑖𝑖 = 𝑃𝑖𝑍𝑃𝑖.
The proof is complete.

Assume that Theorem 6 holds true. Then the similarity of operators 𝐴 − 𝐵 and 𝐴 − 𝐽𝑙𝑋
yields 𝜎(𝐴 − 𝐵) = 𝜎(𝐴 − 𝐽𝑙𝑋) = 𝜎(𝐴(𝑙)) ∪

(︀
∪|𝑖|>𝑙 𝐴𝑖

)︀
, where 𝐴(𝑙) = (𝐴 − 𝑄𝑙𝑋𝑄𝑙)|ℋ(𝑙),

ℋ(𝑙) = Ran𝑄𝑙 and 𝐴𝑖 = (𝑃𝑖𝐴− 𝑃𝑖𝑋)|ℋ𝑖. Since operator 𝑋 is unknown and we know only the
first approximation (the second approximation is in fact not used because it is too bulky), then
𝐴𝑖 = (𝑃𝑖𝐴 − 𝑃𝑖𝐵 − 𝑃𝑖(𝑋 − 𝐵))|ℋ𝑖 and the first two operators are known, while for the third
operator we known only estimate (14) from Lemma 2.

The similarity of operators 𝐴−𝐵 and 𝐴− 𝐽𝑙𝑋 implies also the following representations of
the projectors (𝑈 = 𝐼 + Γ𝑙𝑋) ̃︀𝑄𝑙 = 𝑈−1𝑄𝑙𝑈, ̃︀𝑃𝑖 = 𝑈−1𝑃𝑖𝑈,
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where ̃︀𝑄𝑙 is the projector on the space 𝑈−1ℋ(𝑙), and ̃︀𝑃𝑖 is the projector on 𝑈−1ℋ𝑖. It implies
immediately the formulaẽ︀𝑄𝑙 −𝑄𝑙 = (Γ𝑙𝑋𝑄𝑙 −𝑄𝑙Γ𝑙𝑋)𝑈−1; ̃︀𝑃𝑖 − 𝑃𝑖 = (Γ𝑙𝑋𝑃𝑖 − 𝑃𝑖Γ𝑙𝑋)𝑈−1.

By Lemmata 1 and 2 for |𝑖| > 𝑙 we obtain

‖ ̃︀𝑃𝑖 − 𝑃𝑖‖2 6 const 𝛿𝑖𝑖
−1,

where 𝛿𝑖 ∈ 𝑙2 and

‖𝑃𝑖 − ̃︀𝑃𝑖 − Γ𝑙𝐵𝑃𝑖 − 𝑃𝑖Γ𝑙𝐵‖2 6 const 𝛿′𝑖𝑖
−2,

where 𝛿′𝑖 ∈ 𝑙2.

4. Similarity transformation of operator 𝐿

We return back to operator (1), (2). We recall that as the unperturbed operator we choose
operator (𝐴𝑦)(𝑡) = −𝑦′′(𝑡), while the perturbation is the operator of multiplication by matrix
potential (𝐵𝑦)(𝑡) = −𝑄(𝑡)𝑦(𝑡). It is obvious that operator matrix consists of the entries
𝑃𝑖𝐵𝑃𝑗 = 𝐵𝑖−𝑗 = (𝑏𝑙𝑘 𝑖−𝑗), 1 6 𝑙, 𝑘 6 𝑚, 𝑖, 𝑗 ∈ Z (respectively, scalar matrix reads as (𝑏𝑙𝑘 𝑖−𝑗)).
The operators on the diagonals of matrix 𝐵𝑖𝑗 parallel to the main one are same and on the
main diagonal we have blocks 𝐵0 consisting of matrices 𝐵0 = (𝑏𝑙𝑘0), 1 6 𝑙, 𝑘 6 𝑚, where

𝑏𝑙𝑘0 =
∫︀ 1

0
𝑏𝑙𝑘(𝑡) d𝑡. Since all the functions 𝑏𝑙𝑘 belong to 𝐿2[0, 1], they are represented by the

Fourier series 𝑏𝑙𝑘(𝑡) =
∑︀
𝑚

𝑏𝑙𝑘𝑚𝑒
𝑖2𝜋𝑚𝑡 and

∑︀
𝑚

|𝑏𝑙𝑘𝑚|2 < ∞. We note that the convergence of Fourier

series for the perturbation does not ensure the condition𝐵 ∈ S2(ℋ). This is why we first have

to make the preliminary similarity transformation of operator 𝐴−𝐵 into the operator ̃︀𝐴− ̃︀𝐵,

where ̃︀𝐵 ∈ S2(ℋ).
We define transformer 𝐽0𝐵 by the formula

𝐽0𝐵 =
∑︁
𝑛∈Z

𝑃𝑛𝐵𝑃𝑛,

where the series
∑︀
𝑛∈Z

𝑃𝑛𝐵𝑃𝑛 converges and its sum is equal to 𝐵0, i.e., transformer 𝐽0 is well-

defined. We note that 𝐽0𝐵 /∈ S2(ℋ).
We proceed to operator Γ0𝐵. Employing Condition 1 of Assumption 1, first we introduce

operator Γ0𝐵𝑖𝑗 = Γ0𝑃𝑖𝐵𝑃𝑗 = 𝑃𝑖Γ0𝐵𝑃𝑗, 𝑖, 𝑗 ∈ Z, as a solution 𝑌𝑖𝑗 ∈ Endℋ of the operator
equation

𝐴𝑌𝑖𝑗 − 𝑌𝑖𝑗𝐴 = 𝐵𝑖𝑗 − 𝐽0𝐵𝑖𝑗 (15)

satisfying the condition 𝑌𝑖𝑖 = 0. Equations (15) are solvable and each of them has solution [13],
[14]. Since this equation is rewritten as

𝐴𝑖𝑌𝑖𝑗 − 𝑌𝑖𝑗𝐴𝑗 = 𝐵𝑖𝑗 − 𝐽0𝐵𝑖𝑗,

where 𝐴𝑖 = 𝐴|ℋ𝑖, ℋ𝑖 = Ran𝑃𝑖, 𝐴𝑖𝑃𝑖 = 𝜆𝑖𝑃𝑖, then ([13]–[15])

‖𝑌𝑖𝑗‖ 6
const‖𝐵𝑖𝑗‖
|𝜆𝑖 − 𝜆𝑗|

.

We recover operator Γ0𝐵 by operator blocks Γ0𝐵𝑖𝑗, 𝑖 ̸= 𝑗, and let us show that Γ0𝐵 ∈ S2(ℋ).
Indeed,

‖Γ0𝐵𝑝‖22 =
∑︁
𝑖−𝑗=𝑝
𝑝 ̸=0

‖Γ0𝐵𝑖𝑗‖22 =
∑︁
𝑗

‖𝐵𝑝‖22
4𝜋2𝑝2(2𝜋(𝑝 + 2𝑗) + 2𝜃)2

6
‖𝐵𝑝‖22
4𝜋2𝑝2

∑︁
𝑗

1

(2𝜋(𝑝 + 2𝑗) + 2𝜃)2
,
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the latter series converges and ‖Γ0𝐵𝑝‖22 6 const
‖𝐵𝑝‖22
𝑝2

;

‖Γ0𝐵‖22 =
∑︁
𝑝

‖Γ0𝐵𝑝‖22 = const
∑︁
𝑝

‖𝐵𝑝‖22
𝑝2

< ∞.

Thus, Γ0𝐵 ∈ S2(ℋ). It is obvious that Γ0𝐵 ∈ Endℋ and Γ0𝐵 can be represented as 𝐶0𝐴
−𝛽,

where 𝛽 < 1
2
, since Γ0𝐵 = Γ0𝐵𝐴𝛽𝐴−𝛽 and for the operator 𝐶0 = Γ0𝐵𝐴𝛽, 𝛽 < 1

2
we have

‖Γ0𝐵𝐴𝛽‖22 =
∑︁
𝑝 ̸=0

‖𝐵𝑝‖22
𝑝2

∑︁
𝑗

𝑗2𝛽

(𝑝 + 2𝑗)2
.

Here the internal series converges if 2𝛽 < 1.
We consider operator 𝐵Γ0𝐵:

‖𝐵Γ0𝐵‖22 =
∑︁
𝑝

⃦⃦∑︁
𝑘

𝐵𝑘(Γ0𝐵)𝑝−𝑘

⃦⃦2

2
6

∑︁
𝑝

(︂∑︁
𝑘

‖𝐵𝑘‖∞‖Γ0𝐵𝑝−𝑘‖2
)︂2

and two sequences: the sequence 𝜉1𝑘 = ‖𝐵𝑘‖∞, by the assumption, 𝜉1𝑘 ∈ 𝑙2, and the sequence

𝜉2𝑘 = ‖Γ0𝐵𝑝‖2 6 ‖𝐵𝑝‖2
𝑝

(
∑︀
𝑗

1
(𝑝+2𝑗)2

)
1
2 ∈ 𝑙1.

The convolution of two sequences 𝜉1𝑘 in 𝑙2 and 𝜉2𝑘 in 𝑙1 is an element 𝑙2, i.e.,∑︀
𝑝

(
∑︀
𝑘

𝜉1𝑘𝜉2(𝑝−𝑘))
2 < ∞. Thus, 𝐵Γ0𝐵 ∈ S2(ℋ).

We consider operator (Γ0𝐵)𝐽0𝐵. By similar arguments:∑︁
𝑝

‖(Γ0𝐵)𝐽0𝐵‖22 6
∑︁
𝑝

⃦⃦∑︁
𝑘 ̸=0

(Γ0𝐵)𝑘(𝐽0𝐵)𝑝−𝑘

⃦⃦2

2
=

∑︁
𝑝 ̸=0

‖(Γ0𝐵)𝑝𝐵0‖22

6‖𝐵0‖2∞
∑︁
𝑝

‖(Γ0𝐵)𝑝‖22 < ∞,

i.e., (Γ0𝐵)𝐽0𝐵 ∈ S2(ℋ).
Together with operators Γ0 and 𝐽0 we consider also operators Γ𝑛 and 𝐽𝑛 defined by the

identities:

𝐽𝑛𝐵 =𝐽0𝐵 − 𝐽0(𝑄𝑛𝐵𝑄𝑛) + 𝑄𝑛𝐵𝑄𝑛 = 𝐽0𝐵 −𝑄𝑛𝐽0𝐵𝑄𝑛 + 𝑄𝑛𝐵𝑄𝑛

=𝑄𝑛𝐵𝑄𝑛 +
∑︁
|𝑘|>𝑛

𝑃𝑘𝐵𝑃𝑘; (16)

Γ𝑛𝐵 = Γ0𝐵 − Γ0(𝑄𝑛𝐵𝑄𝑛) = Γ0𝐵 −𝑄𝑛Γ0𝐵𝑄𝑛. (17)

These identities imply that Γ𝑛𝐵 ∈ S2(ℋ) for each 𝑛. Moreover,

lim
𝑛→∞

‖Γ𝑛𝐵‖22 = lim
𝑛→∞

‖Γ0𝐵 − Γ0(𝑄𝑛𝐵𝑄𝑛)‖22 = 0,

and hence, we can choose sufficiently large 𝑛 such that ‖Γ𝑛𝐵‖2 < 1.

Lemma 3. Operators Γ𝑛𝐵, 𝐽𝑛𝐵, 𝐵 satisfy Assumption 1.

Proof. The validity of Conditions 1 and 3 was proven above. Consider Condition 4. Since
𝐵 ∈ L𝐴(ℋ) and

‖𝐵(𝐴− 𝜆𝜀𝐼)−1‖ = ‖𝐵𝐴− 1
2‖ · ‖𝐴

1
2 (𝐴− 𝜆𝜀𝐼)−1‖,

and the last fact can be made arbitrarily small by an appropriate choice of number 𝜆𝜀.
The inclusion (Γ𝐵)𝐷(𝐴) ⊂ 𝐷(𝐴) is proven in the same way as in Theorem 5. The proof is

complete.
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Theorem 7. There exists a number 𝑛 such that the operator 𝐴−𝐵 is similar to the operator

𝐴− 𝐽𝑛𝐵 − (𝐼 + Γ𝑛𝐵)−1(𝐵Γ𝑛𝐵 − Γ𝑛𝐵𝐽𝑛𝐵) = ̃︀𝐴− ̃︀𝐵,

where ̃︀𝐴 = 𝐴 − 𝐽0𝐵 and ̃︀𝐵 = (𝐼 + Γ𝑛𝐵)−1(𝐵Γ𝑛𝐵 − Γ𝑛𝐵𝐽𝑛𝐵) − 𝐽0𝐵 + 𝐽𝑛𝐵 ∈ S2(ℋ). The

operator of transforming operator 𝐴 − 𝐵 into operator ̃︀𝐴 − ̃︀𝐵 is the operator 𝐼 + Γ𝑛𝐵, where
Γ𝑛𝐵 ∈ S2(ℋ).

Now it is convenient to choose operator ̃︀𝐴 as the unperturbed operator, and operator ̃︀𝐵 ∈
S2(ℋ) as the perturbation. We note that 𝐽0𝐵, 𝐽𝑛𝐵 /∈ S2(ℋ) and 𝐽0𝐵 =

∑︀
𝑘∈Z

𝐵0𝐼𝑘, where the

symbol 𝐼𝑘 stands for an operator such that 𝑃𝑘𝐼𝑘 = 𝐼𝑘𝑃𝑘 = 𝑃𝑘, 𝐼𝑘𝑃𝑙 = 𝑃𝑙𝐼𝑘 = 0 as 𝑙 ̸= 𝑘, i.e.,
operator 𝐽0𝐵 is formed by the blocks 𝐵0 on the main diagonal, while all other elements of its
operator matrix are zero. Operator 𝐽𝑛𝐵 − 𝐽0𝐵 is finite-dimensional and hence, it belongs also
to S2(ℋ), and S1(ℋ). Moreover, the main diagonal of its operator matrix is zero.

We apply Theorem 6 to operator ̃︀𝐴− ̃︀𝐵 and arrive at

Theorem 8. There exists a number 𝑙 ∈ Z (𝑙 > 𝑛) such that the operator ̃︀𝐴 − ̃︀𝐵 is similar

to the block-diagonal operator ̃︀𝐴− 𝐽𝑙𝑋, i.e.,

( ̃︀𝐴− ̃︀𝐵)(𝐼 + Γ𝑙𝑋) = (𝐼 + Γ𝑙𝑋)( ̃︀𝐴− 𝐽𝑙𝑋),

where 𝑋 ∈ S2(ℋ) is a solution in the space S2(ℋ) of nonlinear operator equation (8) with the

perturbing operator ̃︀𝐵 and operators Γ𝑙 and 𝐽𝑙 defined by formulae (16) and (17).

Theorem 8 implies

Theorem 9. There exist natural numbers 𝑛 and 𝑙 (𝑙 > 𝑛) such that operator 𝐿 defined by
identities (1), (2) is similar to an operator block-diagonal w.r.t. the system of projectors 𝑃𝑘

− 𝑑2

𝑑𝑡2
−𝑄𝑛𝐵𝑄𝑛 −

∑︁
|𝑘|>𝑛

𝑃𝑘𝐵𝑃𝑘 −𝑄𝑙𝑋𝑄𝑙 −
∑︁
|𝑘|>𝑙

𝑃𝑘𝑋𝑃𝑘, (18)

where 𝑋 ∈ S2(ℋ) is a solution to nonlinear equation (8) with 𝐽𝑙 and Γ𝑙, 𝑋 − ̃︀𝐵 ∈ S1(ℋ),

operator ̃︀𝐵 is from Theorem 7 and 𝑃𝑘𝐵𝑃𝑘 = 𝑄0𝐼𝑘. Operator of transforming is

𝑉 = 𝐼 + Γ𝑛𝐵 + Γ𝑙𝑋 + Γ𝑛𝐵Γ𝑙𝑋 = 𝐼 + 𝑌 𝑛𝑙, (19)

where 𝑌 𝑛𝑙 ∈ S2(ℋ).

Proof of Theorem 1. Theorem 9 yields that

𝜎(𝐿) = 𝜎(𝐴− 𝐽𝑛𝐵 − 𝐽𝑙𝑋) = ̃︀𝜎(𝑙)

⋃︁(︂ ⋃︁
|𝑘|>𝑙

̃︀𝜎𝑘

)︂
,

where ̃︀𝜎𝑘 = 𝜎(𝐴𝑃𝑘 − 𝑃𝑘𝐵|ℋ𝑘
− 𝑃𝑘𝑋|ℋ𝑘

), 𝐴𝑃𝑘 = 𝜆𝑘𝑃𝑘 and 𝜎(𝑃𝑘𝐵𝑃𝑘) = 𝜎(𝐵0) are known.

We represent operator ̃︀𝐵 as

̃︀𝐵 = 𝐵Γ𝑛𝐵 − Γ𝑛𝐵𝐽𝑛𝐵 +
∞∑︁
𝑘=1

(−1)𝑘Γ𝑛𝐵(𝐵Γ𝑛𝐵 − Γ𝑛𝐵𝐽𝑛𝐵) = 𝐵Γ𝑛𝐵 − Γ𝑛𝐵𝐽𝑛𝐵 + 𝑇1,

where 𝑇1 ∈ S1(ℋ). Hence,

𝐽𝑙 ̃︀𝐵 = ̃︀𝐽𝑙(𝐵Γ𝑛𝐵) + 𝐽𝑙𝑇1 =
∑︁
|𝑘|>𝑙

𝑃𝑘𝐵Γ𝑛𝐵𝑃𝑘 + 𝑄𝑙𝐵Γ𝑛𝐵𝑄𝑙 + 𝐽𝑙𝑇1,

‖𝑃𝑘𝐵Γ𝑛𝐵𝑃𝑘‖2 =

⃦⃦⃦⃦∑︁
𝑗 ̸=𝑘

𝐵𝑘𝑗𝐵𝑗𝑘

𝜆𝑘 − 𝜆𝑗

⃦⃦⃦⃦
2

6

(︂∑︁
𝑗 ̸=𝑘

‖𝐵𝑘𝑗‖22
)︂ 1

2
(︂∑︁

𝑗 ̸=𝑘

‖𝐵𝑗𝑘‖22
(𝜆𝑘 − 𝜆𝑗)2

)︂ 1
2

6const |𝑘|−1, |𝑘| > 𝑙.



ON SPECTRAL PROPERTIES OF STURM-LIOUVILLE OPERATOR . . . 93

Thus, if eigenvalues 𝜇𝑖, 𝑖 = 1, 2, . . . ,𝑚, of matrix 𝑄0 are simple, formula (4) holds true, while
if they are semi-simple, formula (6) is valid.

The similarity of operators 𝐿 and 𝐴− ̃︀𝐵 imply that spectral projectors 𝑃𝑘 of operator 𝐴 and̃︀𝑃𝑘 of operator 𝐿 are similar and ̃︀𝑃𝑘 can be represented as̃︀𝑃𝑘 = (𝐼 + 𝑌 𝑛𝑙)𝑃𝑘(𝐼 + 𝑌 𝑛𝑙)−1,

or ̃︀𝑃𝑘 − 𝑃𝑘 = (𝑌 𝑛𝑙𝑃𝑘 − 𝑃𝑘𝑌
𝑛𝑙)(𝐼 + 𝑌 𝑛𝑙)−1.

It is obvious that ̃︀𝑃𝑘 − 𝑃𝑘 ∈ S2(ℋ). We estimate quantites 𝑌 𝑛𝑙𝑃𝑘, 𝑃𝑘𝑌
𝑛𝑙 in the norm of

space S2(ℋ). Taking into account that Γ𝑙𝑋 = 𝑌 𝐴− 1
2 , Γ𝑛𝐵Γ𝑙𝑋 = Γ𝑛𝐵𝑌 𝐴− 1

2 = 𝑍𝐴− 1
2 , where

𝑌 ∈ S2(ℋ), 𝑍 ∈ S1(ℋ), we have

‖(Γ𝑛𝐵 + Γ𝑙𝑋 + Γ𝑛𝐵Γ𝑙𝑋)𝑃𝑘‖2 6
(︂∑︁

|𝑙|̸=𝑘

‖𝐵𝑙𝑘‖22
(𝜆𝑙 − 𝜆𝑘)2

)︂ 1
2

+ 𝒪
(︂

1

|𝑘|

)︂
. (20)

Since 𝐵 = (𝑏𝑖𝑗), 𝑖 = 1, 2, . . . ,𝑚, and 𝑏𝑖𝑗 ∈ 𝐿2[0, 1], then sup
∑︀
𝑙

‖𝐵𝑙𝑘‖22 < ∞ is bounded in 𝑘 and

therefore, ‖𝑌 𝑛𝑙𝑃𝑘‖2 = 𝒪( 1
|𝑘|). Then

‖ ̃︀𝑃𝑘 − 𝑃𝑘‖2 = 𝒪
(︂

1

|𝑘|

)︂
,

i.e., formula (7) is true.
The similarity of operator 𝐿 = 𝐴 − 𝐵 defined by formulae (1), (2) to operator (18) implies

the identity (in the case of simple eigenvalues of matrix 𝑄0)̃︀𝑒𝑘,𝑗 = 𝑉 𝑒𝑘,𝑗 = 𝑒𝑘,𝑗 + 𝑌 𝑛𝑙𝑒𝑘,𝑗, |𝑘| > 𝑙,

where operator 𝑉 is defined by formula (19). In order to prove identity (5), it remains to
estimate quantity 𝑌 𝑛𝑙𝑒𝑘,𝑗, and thus, estimate (5) is implied by the estimate

‖Γ𝑛𝐵𝑒𝑘,𝑗‖2 =

(︂∑︁
𝑖 ̸=𝑘

‖𝐵𝑖𝑘‖22
(𝜆𝑖 − 𝜆𝑘)2

)︂ 1
2

6
1

|𝑘|

(︂∑︁
𝑖 ̸=𝑘

‖𝐵𝑖𝑘‖22
)︂ 1

2

= const |𝑘|−1,

and the representation of Γ𝑙𝑋 and Γ𝑛𝐵Γ𝑙𝑋, 𝑋 ∈ S2(ℋ) as 𝑌 𝐴− 1
2 , 𝑍𝐴− 1

2 , 𝑌 ∈ S2(ℋ),
𝑍 ∈ S1(ℋ). The proof is complete.

We recall

Definition 3 ([2]). Let 𝐶 : 𝐷(𝐶) ⊂ ℋ → ℋ be a linear operator whose spectrum can be
represented as the union

𝜎(𝐶) =
⋃︁
𝑘∈J

𝜎𝑘, J = {N,Z}, (21)

of mutually disjoint sets 𝜎𝑘, 𝑘 ∈ J. Let 𝑃𝑘 be the Riesz projector constructed by set 𝜎𝑘. Operator
𝐶 is called spectral w.r.t. the resolution (21) (or generalized spectral) if the series

∑︀
𝑘∈J 𝑃𝑘𝑥

converges absolutely for each vector 𝑥 in ℋ.

Theorem 1 implies immediately Corollary 1.

Proof of Theorem 2. Under the assumptions of Theorem 1 the formulã︀𝑃 (Ω) − 𝑃 (Ω) = (𝑌 𝑛𝑙𝑃 (Ω) − 𝑃 (Ω)𝑌 𝑛𝑙)(𝐼 + 𝑌 𝑛𝑙)−1

holds true, and hence,

‖ ̃︀𝑃 (Ω) − 𝑃 (Ω)‖2 6 const (‖𝑌 𝑛𝑙𝑃 (Ω)‖2 + ‖𝑃 (Ω)𝑌 𝑛𝑙‖2).



94 N.B. USKOVA

Consider the former of the norms. Since

‖𝑌 𝑛𝑙𝑃 (Ω)‖2 =‖Γ𝑛𝐵𝑃 (Ω) + Γ𝑙𝑋𝑃 (Ω) + Γ𝑛𝐵Γ𝑙𝑋𝑃 (Ω)‖2 6 ‖Γ𝑛𝐵𝑃 (Ω)‖2
+ ‖𝑌 𝐴− 1

2𝑃 (Ω) + 𝑍𝐴− 1
2𝑃 (Ω)‖2 6 ‖Γ𝑛𝐵𝑃 (Ω)‖2 + 𝒪(|𝑘0|−

1
2 ),

we need to estimate only the quantity ‖Γ𝑛𝐵𝑃 (Ω)‖.

Reproducing the arguments for (20), we obtain ‖Γ𝑛𝐵𝑃 (Ω)‖2 6 𝒪(𝑘
− 1

2
0 ). The estimate for

the second norm is similar. The proof is complete.

In conclusion we mention that in work [1] the estimates for the spectral projectors (Theorems
1, 2) were not considered.

BIBLIOGRAPHY

1. O.A. Veliev. Non-self-adjoint sturm-liouville operators with matrix potentials // Matem. Zametki.
81:4, 496–506 (2007). [Math. Notes. 81:4, 440–448 (2007).]

2. N. Dunford, J.T. Schwartz. Linear operators. Part III: Spectral operators. Pure and Applied Math-
ematics. VII. Wiley- Interscience, New York (1971).

3. A.G. Baskakov. Methods of abstract harmonic analysis in the perturbation of linear operators //
Sibir. Matem. Zhurn. 24:1, 21–39 (1983). [Siber. Math. J. 24:1, 17–32 (1983).]

4. A.G. Baskakov. A theorem on splitting an operator, and some related questions in the analytic
theory of perturbations // Izv. AN SSSR. Ser. Matem. 50:4, 435–457 (1986). [Math. USSR. Izv.
28:3, 421–444 (1987).]

5. A.G. Baskakov. Spectral analysis of perturbed nonquasianalytic and spectral operators // Izv. RAN.
Ser. Matem. 58:4, 3–32 (1994). [Izv. Math. 45:1, 1–31 (1995).]

6. A.G. Baskakov, A.V. Derbushev, A.O. Shcherbakov. The method of similar operators in the spectral
analysis of non-self-adjoint Dirac operators with non-smooth potentials // Izv. RAN. Ser. Matem.
75:3, 3–28 (2011). [Izv. Math. 75:3, 445–469 (2011).]

7. A.G. Baskakov, I.A. Krishtal. On completeness of spectral subspaces of linear relations and ordered
pairs of linear operators // J. Math. Anal. and Appl. 407:1, 157–178 (2013).

8. N.B. Uskova. On estimates for spectral projections of perturbed selfadjoint operators // Sibir.
Matem. Zhurn. 41:3, 712–721 (2000). [Siber. Math. J. 41:3, 592–600 (2000).]

9. N.B. Uskova. On the spectrum of some classes of differential operators // Differ. Uravn. 30:2,
350–352 (1994). [Diff. Equat. 30:2, 328–330 (1994).]

10. D.M. Polyakov. Spectral analysis of a fourth-order nonselfadjoint operator with nonsmooth coeffi-
cients // Sibir. Matem. Zhurn. 56:1, 165–184 (2015). [Siber. Math. J. 56:1, 138–154 (2015).]

11. A.V. Karpikova. Asymptotics for eigenvalues of Sturm-Liouville operator with periodic boundary
conditions // Ufimskij Matem. Zhurn. 6:3, 28–34 (2014). [Ufa Math. J. 6:3, 28–34 (2014).]

12. T.V. Azarnova, N.B. Uskova. On similarity transformation of operators // Vestnik VGU. Ser. Fiz.
Matem. 2, 121–126 (2007). (in Russian).

13. Yu.L. Daletskii, M.G. Krein. Stability of solutions of differential equations in Banach space. Nauka,
Moscow (1970). (in Russian).

14. A.G. Baskakov, V.V. Yurgelas. Indefinite dissipaticity and invertibility of linear differential oper-
ators // Ukr. Matem. Zhurn. 41:12, 1613–1614 (1989). (in Russian).

15. R. Bhatia, P. Rosental. How and why to solve the operator equation 𝐴𝑋 − 𝑋𝐵 = 𝑌 // Bull.
London. Math. 29:1, 1–21 (1997).

16. A.G. Baskakov. Estimates for the Green’s function and parameters of exponential dichotomy of
a hyperbolic operator semigroup and linear relations // Matem. Sborn. 206:8, 23–62 (2015). [Sb.
Math. 206:8, 1049–1086 (2015).]

Natalia Borisovna Uskova,
Voronezh State Technical University,
Moskovskii av. 14,
394016, Voronezh, Russia
E-mail: nat-uskova@mail.ru


	to1. Introduction
	to2. On similar operators methods
	to3. Construction of admissible triple for an operator close to L0
	to4. Similarity transformation of operator L
	 References

