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MODIFIED RIEMANN-LIOUVILLE INTEGRO-DIFFERENTIAL

OPERATORS IN THE CLASS OF HARMONIC FUNCTIONS

AND THEIR APPLICATIONS

B.T. TOREBEK

Abstract. In this work we study the properties of some modified Riemann-Liouville
integro-differential operators. As an application of the properties of these operators, we
consider some local and nonlocal boundary value problems for Laplace equation in a ball.
We prove existence and uniqueness for the studied problems. These problems generalize
known Dirichlet and Bitsadze-Samarski problems.
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1. Introduction

Let Ω = {𝑥 ∈ 𝑅𝑛 : |𝑥| < 1} be the unit ball, 𝑛 > 2, 𝜕Ω = {𝑥 ∈ 𝑅𝑛 : |𝑥| = 1} be the unit
sphere. Let 𝑢(𝑥) be a harmonic function in domain Ω, 𝑟 = |𝑥|, 𝜃 = 𝑥

|𝑥| . The operators

𝐼𝛼[𝑢](𝑥) =
1

Γ(𝛼)

𝑟∫︁
0

(𝑟 − 𝜏)𝛼−1 𝑢 (𝜏𝜃) 𝑑𝜏 ,

𝐷𝛼[𝑢](𝑥) =
𝑑

𝑑𝑟
𝐼1−𝛼 [𝑢] (𝑥), 0 < 𝛼 < 1,

where 𝜕
𝜕𝑟

= 1
|𝑥|

𝑛∑︀
𝑗=1

𝑥𝑗
𝜕

𝜕𝑥𝑗
are called the operators of integration and differentiation of order 𝛼 > 0

in the sense of Riemann-Liouville [1]. Since 𝐼𝛼[𝑢](𝑥) → 𝑢(𝑥) a.e. as 𝛼 → 0 (see [1]), we can let
𝐼0[𝑢](𝑥) = 𝑢(𝑥). Then 𝐷1[𝑢](𝑥) = 𝑑𝑢

𝑑𝑟
(𝑥).

In work [2], there were introduced the following operators

𝐵𝛼 [𝑢] (𝑥) = 𝑟𝛼𝐷𝛼 [𝑢] (𝑥), 0 < 𝛼 < 1, (1)

in the class of harmonic functions. In works by I.I. Bavrin [4], there were studied the properties
of operators

𝛿𝜇1 = 𝑟
𝑑

𝑑𝑟
+ 𝜇1,

𝛿𝑚𝜇1
=

(︂
𝑟
𝑑

𝑑𝑟
+ 𝜇1

)︂(︂
𝑟
𝑑

𝑑𝑟
+ 𝜇2

)︂
· . . . ·

(︂
𝑟
𝑑

𝑑𝑟
+ 𝜇𝑚

)︂
,
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𝛿−1
𝜇1

[𝑢] (𝑥) =

1∫︁
0

𝑡𝜇1−1𝑢 (𝑡𝑥) 𝑑𝑡,

𝛿−𝑚
𝜇1

[𝑢] (𝑥) =
1

(𝑚− 1)!

1∫︁
0

𝑡𝜇1−1 (1 − 𝑡)𝑚−1 𝑢 (𝑡𝑥) 𝑑𝑡

in the class of functions harmonic in a ball, where 𝜇𝑗 > 0, 𝜇𝑗 = 𝜇1 + 𝑚− 1, 𝑗 = 1, 2, . . . ,𝑚.
Since (𝑚− 1)! = Γ (𝑚), in view of the construction of operator 𝛿−𝑚

𝜇 we see that this operator
is defined also for the fractional values of parameter 𝑚. Then a natural question appear on
defining the inverse operator for 𝛿−𝑚

�̄� in the case of fractional values of parameter 𝑚. Following
work [3], we introduce the modification of operator (1)

𝛿𝛼𝜇 [𝑢] (𝑥) = 𝑟−𝜇𝐵𝛼 [𝑟𝜇𝑢] (𝑥), 𝜇 > 0, 0 < 𝛼 < 1.

In the present work we construct fractional analogues of operators 𝛿−𝑚
�̄� , 𝛿𝑚�̄� and we show that

the results of work [4] are valid for the general case as well.
Let 𝑢(𝑥) be a function harmonic in domain Ω, 𝛼 and 𝜇 be nonnegative real numbers and

𝜇 + 1 = 𝜇1.
We consider the operators

𝐵−𝛼
𝜇 [𝑢] (𝑥) =

⎧⎨⎩
𝑢(𝑥), 𝛼 = 0

1
Γ(𝛼)

1∫︀
0

(1 − 𝑠)𝛼−1 𝑠𝑚+𝜇−𝛼𝑢(𝑠𝑥)𝑑𝑠, 𝛼 > 0,

𝐵𝛼
𝜇 [𝑢] (𝑥) =

⎧⎨⎩
𝑢(𝑥), 𝛼 = 0,
𝛿𝛼𝜇 [𝑢] (𝑥), 0 < 𝛼 < 1,
𝛿𝑚𝜇1

[︀
𝛿𝛼−𝑚
𝜇 [𝑢]

]︀
(𝑥), 𝑚 6 𝛼 < 𝑚 + 1, 𝑚 = 1, 2, . . .

(2)

If 𝛼 = 𝑚 and 𝜇 > 0, for (2) we obtain Bavrin operator 𝐵𝑚
𝜇1

= 𝛿𝑚𝜇1
, while if 𝜇 = 0 and

0 < 𝛼 < 1, then 𝐵𝛼
0 coincides with operator (1).

2. Properties of operators 𝐵𝛼
𝜇 and 𝐵−𝛼

𝜇

Let 𝐻𝑘(𝑥) be a homogeneous harmonic polynomial of degree 𝑘 ∈ 𝑁0 = {0, 1, . . .}. Then
employing the identities 𝐻𝑘(𝑥) = 𝐻𝑘 (𝑟𝜃) = 𝑟𝑘𝐻𝑘(𝜃), one can prove easily the following lemma.

Lemma 1. Let 𝛼 > 0 , 𝜇 > 0 and 𝐻𝑘(𝑥) be a homogeneous harmonic polynomial of degree
𝑘 ∈ 𝑁0 = {0, 1, . . .} . Then the identities

𝐵𝛼
𝜇 [𝐻𝑘] (𝑥) =

Γ (𝑘 + 𝑚 + 𝜇 + 1)

Γ (𝑘 + 𝑚− 𝛼 + 𝜇 + 1)
𝐻𝑘(𝑥), (3)

𝐵−𝛼
𝜇 [𝐻𝑘] (𝑥) =

Γ (𝑘 + 𝑚− 𝛼 + 𝜇 + 1)

Γ (𝑘 + 𝑚 + 𝜇 + 1)
𝐻𝑘(𝑥) (4)

hold true.

Theorem 1. Let 𝑚 6 𝛼 < 𝑚 + 1 , 𝜇 > 0 and a function 𝑢(𝑥) be harmonic in Ω. Then the
functions 𝐵𝛼

𝜇 [𝑢](𝑥) and 𝐵−𝛼
𝜇 [𝑢](𝑥) are harmonic in domain Ω.

Proof. Since function 𝑢(𝑥) is harmonic in ball Ω, as |𝑥| 6 𝜌 < 1 it is expanded into the series
[5]

𝑢(𝑥) =
∞∑︁
𝑘=0

ℎ𝑘∑︁
𝑖=1

𝑢
(𝑖)
𝑘 𝐻

(𝑖)
𝑘 (𝑥), (5)
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where {𝐻(𝑖)
𝑘 (𝑥), 𝑖 = 1, . . . , ℎ𝑘} is the complete system of homogeneous harmonic polynomials

of degree 𝑘 and 𝑢
(𝑖)
𝑘 are coefficients of expansion (5). Applying formally operator 𝐵𝛼

𝜇 to series
(5) and taking into consideration identity (3), we obtain

𝐵𝛼
𝜇 [𝑢](𝑥) =

∞∑︁
𝑘=0

ℎ𝑘∑︁
𝑖=1

Γ (𝑘 + 𝑚 + 𝜇 + 1)

Γ (𝑘 + 𝑚− 𝛼 + 𝜇 + 1)
𝑢
(𝑖)
𝑘 𝐻

(𝑖)
𝑘 (𝑥). (6)

By the asymptotic estimate for Gamma function it is easy to show that

lim
𝑘→∞

𝑘

√︃
Γ (𝑘 + 𝑚 + 𝜇 + 1)

Γ (𝑘 + 𝑚− 𝛼 + 𝜇 + 1)
= 1.

Then the convergence radius of series (6) coincides with the convergence radius of series (5)
and thus, its sum is a function harmonic in Ω.

Similarly, employing (4), one can prove that the function 𝐵−𝛼
𝜇 [𝑢](𝑥) is harmonic. The proof

is complete.

Theorem 2. Let a function 𝑢(𝑥) be harmonic in ball Ω. Then for each 𝑥 ∈ Ω the identities

𝑢(𝑥) =
1

Γ (𝛼)

1∫︁
0

(1 − 𝑠)𝛼−1 𝑠𝜇+𝑚−𝛼𝐵𝛼
𝜇 [𝑢] (𝑠𝑥) 𝑑𝑠 (7)

hold true.

Proof. We represent function 𝑢(𝑥) harmonic in ball Ω as series (5) and transform it as follows:

𝑢(𝑥) =
∞∑︁
𝑘=0

ℎ𝑘∑︁
𝑖=1

Γ (𝑘 + 𝑚− 𝛼 + 𝜇 + 1)

Γ (𝑘 + 𝑚 + 𝜇 + 1)

Γ (𝑘 + 𝑚 + 𝜇 + 1)

Γ (𝑘 + 𝑚− 𝛼 + 𝜇 + 1)
𝑢
(𝑖)
𝑘 𝐻

(𝑖)
𝑘 (𝑥). (8)

Taking into consideration identities (3), (4) and the uniform convergence of series (8) in 𝑥 as
|𝑥| 6 𝜌 < 1, we obtain

𝑢(𝑥) =
∞∑︁
𝑘=0

ℎ𝑘∑︁
𝑖=1

𝑢
(𝑖)
𝑘

Γ (𝛼)

1∫︁
0

(1 − 𝑠)𝛼−1 𝑠𝜇+𝑚−𝛼𝐵𝛼
𝜇

[︀
𝐻

(𝑖)
𝑘

]︀
(𝑠𝑥) 𝑑𝑠

=

1∫︁
0

(1 − 𝑠)𝛼−1

Γ (𝛼)
𝑠𝜇+𝑚−𝛼𝐵𝛼

𝜇

[︃
∞∑︁
𝑘=0

ℎ𝑘∑︁
𝑖=1

𝑢
(𝑖)
𝑘 𝐻

(𝑖)
𝑘

]︃
(𝑠𝑥) 𝑑𝑠 =

1∫︁
0

(1 − 𝑠)𝛼−1

Γ (𝛼)
𝑠𝜇+𝑚−𝛼𝐵𝛼

𝜇 [𝑢] (𝑠𝑥) 𝑑𝑠.

The proof is complete.

Theorem 3. Let function 𝑢(𝑥) be harmonic in domain Ω and 𝐵𝛼
𝜇 [𝑢] (𝑥) ∈ 𝐶(Ω). Then for

each 𝑚 6 𝛽 < 𝛼, 𝜇 > 0 the derivative 𝐵𝛽
𝜇 [𝑢] (𝑥) exists and the formula

𝐵𝛽
𝜇 [𝑢] (𝑥) =

1

Γ(𝛼− 𝛽)

1∫︁
0

(1 − 𝑠)𝛼−𝛽−1𝑠𝜇+𝑚−𝛼𝐵𝛼
𝜇 [𝑢] (𝑠𝑥)𝑑𝑠 (9)

holds true.

Proof. Employing representation (6), we rewrite function 𝐵𝛽
𝜇 [𝑢] (𝑥) as follows:

𝐵𝛽
𝜇 [𝑢](𝑥) =

∞∑︁
𝑘=0

ℎ𝑘∑︁
𝑖=1

Γ (𝑘 + 𝑚 + 𝜇 + 1)

Γ (𝑘 + 𝑚− 𝛽 + 𝜇 + 1)
𝑢
(𝑖)
𝑘 𝐻

(𝑖)
𝑘 (𝑥)
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=
∞∑︁
𝑘=0

ℎ𝑘∑︁
𝑖=1

Γ (𝑘 + 𝑚 + 𝜇 + 1)

Γ (𝑘 + 𝑚− 𝛼 + 𝜇 + 1)

Γ (𝑘 + 𝑚− 𝛼 + 𝜇 + 1)

Γ (𝑘 + 𝑚− 𝛽 + 𝜇 + 1)
𝑢
(𝑖)
𝑘 𝐻

(𝑖)
𝑘 (𝑥)

=
∞∑︁
𝑘=0

ℎ𝑘∑︁
𝑖=1

𝑢
(𝑖)
𝑘

Γ(𝛼− 𝛽)

1∫︁
0

(1 − 𝑠)𝛼−𝛽−1𝑠𝜇+𝑚−𝛼𝐵𝛼
𝜇

[︁
𝐻

(𝑖)
𝑘

]︁
(𝑠𝑥) 𝑑𝑠

=
1

Γ(𝛼− 𝛽)

1∫︁
0

(1 − 𝑠)𝛼−𝛽−1𝑠𝜇+𝑚−𝛼𝐵𝛼
𝜇 [𝑢] (𝑠𝑥)𝑑𝑠.

The proof is complete.

Theorem 4. Let function 𝑢(𝑥) be harmonic in domain Ω. Then for each 𝑥 ∈ Ω the identities

𝐵−𝛼
𝜇

[︀
𝐵𝛼

𝜇 [𝑢]
]︀

(𝑥) = 𝐵𝛼
𝜇

[︀
𝐵−𝛼

𝜇 [𝑢]
]︀

(𝑥) = 𝑢(𝑥) (10)

hold true.

Proof. We apply operator 𝐵−𝛼
𝜇 to the function 𝐵𝛼

𝜇 [𝑢](𝑥). By the definition of operator 𝐵−𝛼
𝜇 we

have

𝐵−𝛼
𝜇

[︀
𝐵𝛼

𝜇 [𝑢]
]︀

(𝑥) =
1

Γ (𝛼)

1∫︁
0

(1 − 𝑠)𝛼−1 𝑠𝜇+𝑚−𝛼𝐵𝛼
𝜇 [𝑢] (𝑠𝑥) 𝑑𝑠.

By identity (7) the latter expression is equal to 𝑢(𝑥). The first identity in (10) is proven. To
the prover the other, we apply operator 𝐵𝛼

𝜇 to the function 𝐵−𝛼
𝜇 [𝑢](𝑥):

𝐵−𝛼
𝜇

[︀
𝐵𝛼

𝜇 [𝑢]
]︀

(𝑥) =
1

Γ (𝛼)
𝐵𝛼

𝜇

⎡⎣ 1∫︁
0

(1 − 𝑠)𝛼−1 𝑠𝜇+𝑚−𝛼𝑢 (𝑠𝑥) 𝑑𝑠

⎤⎦
=𝛿𝑚𝜇1

1∫︁
0

(1 − 𝑠)𝛼−1

Γ (𝛼)

𝑠𝜇+𝑚−𝛼𝑟𝛼−𝑚−𝜇

Γ (𝑚 + 1 − 𝛼)

𝑑

𝑑𝑟

𝑟∫︁
0

(𝑟 − 𝜏)𝑚−𝛼 𝜏𝜇𝑢 (𝑠𝜏𝜃) 𝑑𝜏𝑑𝑠.

It is easy to make sure that the identities

𝑟𝛼−𝑚−𝜇

Γ (𝑚 + 1 − 𝛼)

𝑑

𝑑𝑟

𝑟∫︁
0

(𝑟 − 𝜏)𝑚−𝛼 𝜏𝜇𝑢 (𝑠𝜏𝜃) 𝑑𝜏

=
𝑠𝜏=𝑡

𝑟𝛼−𝑚−𝜇

Γ (𝑚 + 1 − 𝛼)

𝑑

𝑑𝑟

𝑟𝑡∫︁
0

(︂
𝑟 − 𝑡

𝑠

)︂𝑚−𝛼(︂
𝑡

𝑠

)︂𝜇

𝑢 (𝑡𝜃)
𝑑𝑡

𝑠

=
(𝑟𝑠)𝛼−𝑚−𝜇

Γ (𝑚 + 1 − 𝛼)

𝑑

𝑑 (𝑟𝑠)

𝑟𝑠∫︁
0

(𝑟𝑠− 𝑡)𝑚−𝛼 𝑡𝜇𝑢 (𝑡𝜃) 𝑑𝑡 = 𝐵𝛼
𝜇 [𝑢] (𝑠𝑥)

and 𝑟 𝑑
𝑑𝑟

= (𝑟𝑠) 𝑑
𝑑(𝑟𝑠)

hold true, where we have taken into consideration that 𝜃 = 𝑥
|𝑥| = 𝑡𝑥

|𝑡𝑥| .

Hence, we have

𝐵𝛼
𝜇

[︀
𝐵−𝛼

𝜇 [𝑢]
]︀

(𝑥) =
1

Γ (𝛼)

1∫︁
0

(1 − 𝑠)𝛼−1 𝑠𝜇+𝑚−𝛼𝐵𝛼
𝜇 [𝑢] (𝑠𝑥) 𝑑𝑠.

The proof is complete.

Thus, it follows from Theorem 4 that operators 𝐵𝛼
𝜇 and 𝐵−𝛼

𝜇 are mutually inverse in the class
of harmonic functions in ball Ω.
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3. Local problem

We consider the following problem.
Problem L. Find a function 𝑢(𝑥) harmonic in ball Ω such that function 𝐵𝛼

𝜇 [𝑢](𝑥) is contin-

uous in Ω and satisfies the identity 𝐵𝛼
𝜇 [𝑢](𝑥) = 𝑓(𝑥), 𝑥 ∈ 𝜕Ω, on sphere 𝜕Ω.

We note that similar problems with boundary operators of integer high order were considered
in works [4], [6]–[9], and fractional order operators were studied in works [2], [10]–[14].

Let 𝑣(𝑥) be a classical solution to the Dirichlet problem in ball Ω{︂
∆𝑣(𝑥) = 0, 𝑥 ∈ Ω

𝑣(𝑥) = 𝑓(𝑥), 𝑥 ∈ 𝜕Ω
. (11)

The following statements are true.

Theorem 5. Let 𝑓(𝑥) ∈ 𝐶 (𝜕Ω). Then problem L is uniquely solvable and is represented as

𝑢(𝑥) = 𝐵−𝛼
𝜇 [𝑣] (𝑥),

where 𝑣(𝑥) solves problem (11).

Proof. Suppose that Problem L is solvable and a solution is 𝑢(𝑥). We apply operator 𝐵𝛼
𝜇 to

𝑢(𝑥) and denote 𝐵𝛼
𝜇 [𝑢](𝑥) = 𝑣(𝑥). Since 𝐵𝛼

𝜇 [𝑢] (𝑥) ∈ 𝐶
(︀
Ω
)︀
, then 𝑣(𝑥) ∈ 𝐶

(︀
Ω
)︀
. Since 𝑢(𝑥) is

harmonic in Ω, in view of Theorem 1 function 𝑣(𝑥) is also harmonic in ball Ω and

𝑣(𝑥) |𝜕Ω = 𝐵𝛼
𝜇 [𝑢] (𝑥) |𝜕Ω = 𝑓(𝑥) .

Thus, function 𝑣(𝑥) solves Dirichlet problem (11). At that, if 𝑓(𝑥) ∈ 𝐶 (𝜕Ω), then this problem
is uniquely solvable and 𝑣(𝑥) ∈ 𝐶

(︀
Ω
)︀
. We apply operator 𝐵−𝛼

𝜇 to the identity 𝐵𝛼
𝜇 [𝑢](𝑥) = 𝑣(𝑥).

Since the integrals
1∫︁

0

(1 − 𝜏)𝛼−1𝜏𝜇+𝑚−𝛼𝑣(𝜏𝑥) 𝑑𝜏

have weak singularities at 𝜏 = 0 amd 𝜏 = 1 as 𝛼 ∈ [𝑚,𝑚 + 1), 𝜇 > 0, 𝜇 + 𝑚 − 𝛼 ̸= 0, such
functions are continuous in 𝑥 ∈ Ω once 𝑣(𝑥) ∈ 𝐶

(︀
Ω
)︀
. Hence, we can apply operator 𝐵−𝛼

𝜇 to

the functions in 𝐶
(︀
Ω
)︀
. By the first identity in (10) we obtain identity (12), i.e.,

𝐵−𝛼
𝜇 [𝑣](𝑥) = 𝐵−𝛼

𝜇

[︀
𝐵𝛼

𝜇 [𝑢]
]︀

(𝑥) = 𝑢(𝑥).

Vice versa, suppose that function 𝑣(𝑥) solves Dirichlet problem (11) for 𝑓(𝑥) ∈ 𝐶 (𝜕Ω). It
is clear that 𝑣(𝑥) ∈ 𝐶

(︀
Ω
)︀
. We consider function 𝑢(𝑥) = 𝐵−𝛼

𝜇 [𝑣](𝑥). By the second identity in
(10) we shall have

𝐵𝛼
𝜇 [𝑢](𝑥) = 𝐵𝛼

𝜇

[︀
𝐵−𝛼

𝜇 [𝑣]
]︀

(𝑥) = 𝑣(𝑥).

Therefore, function 𝑢(𝑥) is harmonic in Ω and

𝐵𝛼
𝜇 [𝑢] |𝜕Ω = 𝑣 |𝜕Ω = 𝑓(𝑥).

The proof is complete.

4. Nonlocal problem when the support of data
do not intersect the boundary of domain

In this section we study the solvability of a nonlocal problem with operator 𝐵𝛼
𝜇 , when the

supports of data do not intersect the boundary of domain. Suppose that we are given the
sequences of numbers 𝛿𝑗 and 𝑎𝑗, 𝑗 = 1, 2, . . ., satisfying the conditions

0 < 𝛿𝑗 6 𝑏 < 1,
∞∑︁
𝑗=1

|𝑗| < ∞.
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Consider the following problem.
Problem N. Find a function 𝑢(𝑥) ∈2 (Ω) ∩

(︀
Ω̄
)︀
harmonic in ball Ω, for which function

𝐵𝛼
𝜇 [𝑢] (𝑥) ∈

(︀
Ω̄
)︀
satisfies the condition

𝐵𝛼
𝜇 [𝑢] (𝑥) −

∞∑︁
𝑗=1

𝑎𝑗𝐵
𝛽
𝜇 [𝑢] (𝛿𝑗𝑥) = 𝑓(𝑥), 𝑥 ∈ 𝜕Ω. (12)

Nonlocal boundary value problems are rather interesting generalizations of classical prob-
lems appearing at the same time in mathematical models for real processes and phenomena in
physics, engineering, sociology, ecology, etc. During several last decades, in mathematical liter-
ature there appeared a series of works devoted to nonlocal problems for differential equations.
One of the first papers was by A.V. Bitsadze and A.A. Samarskii [15], in which new formula-
tions of problems for elliptic equations were proposed and which served as a starting point for
most part of studies in this direction. The considered problem is the simplest generalization
of Bitsadze-Samarskii problem for boundary operators of non-integer order. We note that in
the case 𝛼 = 𝛽 = 0, i.e., as 𝐵𝛼

𝜇 = 𝐵𝛽
𝜇 ≡ I is the identity mapping, in the one-dimensional case

similar problems were studied in work [16], while the case 𝑛 > 2 was considered in works [17],
[18], [19]. We note also that similar nonlocal problems for boundary operators of fractional
order were studied in works [2], [20], [21], [22].

To study problem N, we shall make use of the following auxiliary theorem.

Theorem 6. Suppose that 0 < 𝛿𝑗 6 𝑏 < 1, 𝑗 = 1, 2, . . . , 𝑓(𝑥) ∈ 𝐶(𝜕Ω) and the inequality

∞∑︁
𝑗=1

|𝑎𝑗| 6
Γ (𝑚− 𝛽 + 𝜇 + 1)

Γ (𝑚− 𝛼 + 𝜇 + 1)
(13)

holds true. Then
1) if the condition

∞∑︁
𝑗=1

𝑎𝑗 ̸=
Γ (𝑚− 𝛽 + 𝜇 + 1)

Γ (𝑚− 𝛼 + 𝜇 + 1)
(14)

is satisfied, then the problem⎧⎨⎩
∆𝑣(𝑥) = 0, 𝑥 ∈ Ω

𝑣(𝑥) −
∞∑︀
𝑗=1

𝑎𝑗𝐵
𝛽−𝛼
𝜇 [𝑣] (𝛿𝑗𝑥) = 𝑓(𝑥), 𝑥 ∈ 𝜕Ω (15)

is uniquely solvable;
2) if the condition

∞∑︁
𝑗=1

𝑎𝑗 ≡
Γ (𝑚− 𝛽 + 𝜇 + 1)

Γ (𝑚− 𝛼 + 𝜇 + 1)
, (16)

holds true, then problem (15) is solvable if and only if∫︁
𝜕Ω

𝑓(𝑥)𝑑𝑠𝑥 = 0; (17)

3) if the solution exists, then under condition (14) it is unique and under condition (16) it
is unique up an additive constant.

Proof. Let us study the uniqueness of solution to problem (15). Suppose that function 𝑣(𝑥)
solves problem (15) as 𝑓(𝑥) = 0. We denote

𝑀 = max
𝜕Ω

|v(𝑥)| = |v(𝑥0)|, 𝑥0 ∈ 𝜕Ω.
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If 𝑣(𝑥) ̸= 𝑐𝑜𝑛𝑠𝑡, then the maximum principle for harmonic functions we have |𝑣(𝑥)| < 𝑀
for each 𝑥 ∈ Ω. By the assumption of problem (15) and the definition of operator 𝐵𝛽−𝛼

𝜇 for
𝑓(𝑥) = 0 we obtain

𝑀 =

⃒⃒⃒⃒
⃒

∞∑︁
𝑗=1

𝑎𝑗𝐵
𝛽−𝛼
𝜇 [𝑣] (𝛿𝑗𝑥0)

⃒⃒⃒⃒
⃒ 6

∞∑︁
𝑗=1

|𝑎𝑗|
Γ (𝛼)

1∫︁
0

(1 − 𝑠)𝛼−1 𝑠𝜇+𝑚−𝛼 |𝑣 (𝑠𝛿𝑗𝑥0)| 𝑑𝑠.

Since 0 < 𝛿𝑗 6 𝑏 < 1, 𝑗 = 1, 2, . . . , then 𝛿𝑗𝑥0 ∈ Ω and for each 𝑠 ∈ [0, 1] the points 𝑠𝛿𝑗𝑥0 also
belong ball Ω. Hence, for each 𝑠𝛿𝑗𝑥0 ∈ Ω we have |𝑣 (𝑠𝛿𝑗𝑥0)| < 𝑀 and therefore,

𝑀 6
∞∑︁
𝑗=1

|𝑎𝑗|
⃒⃒
𝐵𝛽−𝛼

𝜇 [𝑣] (𝛿𝑗𝑥0)
⃒⃒
< 𝑀

Γ (𝑚− 𝛼 + 𝜇 + 1)

Γ (𝑚− 𝛽 + 𝜇 + 1)

∞∑︁
𝑗=1

|𝑎𝑗|.

If (13) holds true, we obtain the contradiction 𝑀 < 𝑀 . Hence, if condition (13) holds true,
we necessarily have 𝑣(𝑥) = 𝑐𝑜𝑛𝑠𝑡. Substituting in this case 𝑣(𝑥) ≡ 𝐶 into the formulation of
problem (15), we have 𝐶 = 0, or identity (16). Thus, under conditions (13) and (14) we get
𝑣(𝑥) ≡ 0. If (16) holds true, then an arbitrary constant also solves homogeneous problem (15).
Indeed, if 𝑣(𝑥) ≡ 𝐶, substituting in into the formulation of problem (15), we have 𝐶 − 𝐶 = 0.
The uniqueness is proven.

We proceed to studying the existence of solution to problem (15). We denote by 𝜇(𝑥) =
𝑣(𝑥)|𝜕Ω the trace of an unknown harmonic function 𝑣(𝑥) on 𝜕Ω. We seek a solution to problem
(15) as the Poisson integral

𝑣(𝑥) =

∫︁
𝜕Ω

𝑃 (𝑥, 𝑦)𝜇(𝑦)𝑑𝑆𝑦, (18)

where 𝑃 (𝑥, 𝑦) = 1
𝜔𝑛

1−|𝑥|2
|𝑥−𝑦|𝑛 is the Poisson kernel for Dirichlet problem (11). Substituting function

(18) into the formulation of problem (15), we obtain the following integral equation

𝜇(𝑥) −
∞∑︁
𝑗=1

𝑎𝑗

1∫︁
0

(1 − 𝑠)𝛼−𝛽−1

Γ(𝛼− 𝛽)
𝑠𝜇+𝑚−𝛼

⎡⎣∫︁
𝜕Ω

𝑃 (𝑠𝛿𝑗𝑥, 𝑦)𝜇 (𝑦) 𝑑𝑠𝑦

⎤⎦ 𝑑𝑠 = 𝑓(𝑥), 𝑥 ∈ 𝜕Ω, (19)

for unknown function 𝜇(𝑥).
Switching the integration order in the left hand side of identity (19), we obtain

𝜇(𝑥) −
∞∑︁
𝑗=1

𝑎𝑗

∫︁
𝜕Ω

𝑃𝛼,𝛽 (𝛿𝑗𝑥, 𝑦)𝜇(𝑦)𝑑𝑆𝑦 = 𝑓(𝑥), 𝑥 ∈ 𝜕Ω,

where

𝑃𝛼,𝛽 (𝛿𝑗𝑥, 𝑦) =

1∫︁
0

(1 − 𝑠)𝛼−𝛽−1

Γ(𝛼− 𝛽)
𝑠𝜇+𝑚−𝛼𝑃 (𝑠𝛿𝑗𝑥, 𝑦) 𝑑𝑠.

We denote

𝐾(𝑥, 𝑦) = −
∞∑︁
𝑗=1

𝑎𝑗𝑃𝛼,𝛽 (𝛿𝑗𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝜕Ω.

Then equation (19) is represented as

𝜇(𝑥) +

∫︁
𝜕Ω

𝐾(𝑥, 𝑦)𝜇(𝑦)𝑑𝑆𝑦 = 𝑓(𝑥), 𝑥 ∈ 𝜕Ω. (20)

We observe that for each 𝑥, 𝑦 ∈ 𝜕Ω and 0 < 𝛿𝑗 6 𝑏 < 1, 𝑗 = 1, 2, . . ., the conditions

|𝛿𝑗𝑥− 𝑦| = |𝑦 − 𝛿𝑗𝑥| > 1 − 𝛿𝑗 > 1 − 𝑏 > 0, (21)
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and
|𝛿𝑗𝑥− 𝑦|2 = |𝛿𝑗𝑦 − 𝑥|2 (22)

hold true. Then it is easy to show that by condition (21), kernel 𝐾(𝑥, 𝑦) is continuous on
𝜕Ω × 𝜕Ω, and by condition (22) it is symmetric, i.e., 𝐾(𝑥, 𝑦) = 𝐾(𝑦, 𝑥). Therefore, Fredholm
theorems [23] are applicable to integral equation (20). It implies easily the statement of the
theorem. Indeed, if conditions (13) and (14) are satisfied, homogeneous problem (15) and there-
fore, the homogeneous problem associated with (20) are uniquely solvable. Then by Fredholm
theorem [23] integral equation (20) is solvable for each 𝑓(𝑥) ∈ 𝐶(𝜕Ω) and therefore, function
(18) is the unique solution to problem (15). If conditions (13) and (16) are satisfied, then a
constant solves homogeneous problem (15). Therefore, in this case the homogeneous integral
equation corresponding to (20) has one linearly independent solution and this solution is the
function 𝜇(𝑥) = 𝐶, where 𝐶 is an arbitrary constant. Since 𝐾*(𝑥, 𝑦) = 𝐾(𝑦, 𝑥) = 𝐾(𝑥, 𝑦), the
dual equation corresponding to (20) also has the solution 𝜇*(𝑥) = 𝐶.

Then by Fredholm theorem, integral equation (20) is solvable if and only if conditions (17)
are satisfied. Thus, if condition (17) is satisfied, function (18) is also the solution to problem
(15). The proof is complete.

We proceed to the main problem. The following statement holds true.

Theorem 7. Suppose that 0 < 𝛿𝑗 6 𝑏 < 1, 𝑗 = 1, 2, . . . , 𝑓(𝑥) ∈ 𝐶(𝜕Ω) and inequality (13)
holds true. Then

if condition (14) is satisfied, then Problem N is uniquely solvable;
if condition (16) is satisfied, then Problem N is solvable if and only if condition (17) is

satisfied; at that, the solution to the problem is unique up an additive constant;
if Problem N is solvable, it is represented as

𝑢(𝑥) = 𝐵−𝛼
𝜇 [𝑣](𝑥),

where 𝑣(𝑥) solves problem (15).

Proof. Let 𝑢(𝑥) be a solution to Problem N. We apply operator 𝐵𝛼
𝜇 to function 𝑢(𝑥) and denote

𝐵𝛼
𝜇 [𝑢](𝑥) = 𝑣(𝑥). By Theorem 2 for each 𝑥 ∈ Ω identity (7) is true. Employing formula (9), we

have
𝐵𝛽

𝜇 [𝑢] (𝛿𝑗𝑥) = 𝐵𝛽−𝛼
𝜇 [𝑣] (𝛿𝑗𝑥) .

Since 𝑢(𝑥) is harmonic in Ω, by Theorem 1 function 𝑣(𝑥) is also harmonic in ball Ω and the
assumption of problem (15) are satisfied. Thus, if 𝑢(𝑥) solves Problem N, function 𝑣(𝑥) solves
problem (15). Suppose that conditions (13) and (14) are satisfied. Then by Theorem 6 for each
𝑓(𝑥) ∈ 𝐶 (𝜕Ω) problem (15) is uniquely solvable and 𝑣(𝑥) ∈ 𝐶

(︀
Ω
)︀
. If we apply operator 𝐵−𝛼

𝜇

to the identity 𝐵𝛼
𝜇 [𝑢](𝑥) = 𝑣(𝑥) by the first identity, Theorem 4 implies 𝑢(𝑥) = 𝐵−𝛼

𝜇 [𝑣] (𝑥) for
each 𝑥 ∈ Ω. The harmonicity of this function follows from Theorem 1, while the assumption
of problem (15) is checked straightforwardly:

𝐵𝛼
𝜇 [𝑢](𝑥) −

∞∑︁
𝑗=1

𝑎𝑗𝐵
𝛽
𝜇 [𝑢] (𝛿𝑗𝑥) = 𝑣(𝑥) −

∞∑︁
𝑗=1

𝑎𝑗𝐵
𝛽−𝛼
𝜇 [𝑣] (𝛿𝑗𝑥) =𝑓(𝑥), 𝑥 ∈ 𝜕Ω.

The first part of the theorem is proved.
Suppose now that condition (16) is satisfied. Then the identity 𝑢(0) = 𝐶 for the function

𝑤(𝑥) = 𝐵𝛼
𝜇 [𝑢] (𝑥) −

∞∑︁
𝑗=1

𝑎𝑗𝐵
𝛽
𝜇 [𝑢] (𝛿𝑗𝑥)

we obtain

𝑤 (0) = 𝐵𝛼
𝜇 [𝑢] (0) −

∞∑︁
𝑗=1

𝑎𝑗𝐵
𝛽
𝜇 [𝑢] (0) =0.
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And since function 𝑤(𝑥) solves Dirichlet problem (11), under the condition 𝑤(0) = 0 we arrive
at necessary condition (17). This, condition (17) is necessary for solvability of problem N under
condition (16). Let us show that condition (17) is necessary and sufficient for the solvability
of Problem N under condition (16). By Theorem 6, under conditions (17) and (16), problem
(15) is uniquely solvable up to an additive constant and 𝑣(𝑥) ∈ 𝐶

(︀
Ω
)︀
. Then the function

𝑢(𝑥) = 𝐵−𝛼
𝜇 [𝑣](𝑥) satisfies all the assumptions of the theorem. The proof is complete.

5. Nonlocal problem when the supports of data
intersect with the boundary of domain

We consider Problem N when the sequence of numbers 𝛿𝑗 satisfy the conditions: 0 < 𝛿𝑗 < 1,
𝑗 = 1, 2, . . . , and 𝛿𝑗 → 1 as 𝑗 → ∞. The following statement holds true.

Lemma 2. Let 𝑓(𝑥) ∈ 𝜕Ω and
∞∑︁
𝑗=1

|𝑎𝑗|
(1 − 𝛿𝑗)

𝑛−1 < ∞. (23)

Then
1) if conditions (13)–(14) are satisfied, then problem (15) is uniquely solvable;
2) if conditions (13), (16) are satisfied, then problem (15) is solvable up to an additive

constant if and only if condition (17) is satisfied.

Lemma 2 can be proven in the same way as Theorem 6. At that, by conditions (23), the
kernel of integral equation (20) is symmetric and bounded.

The main result of this section is the following statement.

Theorem 8. Suppose that 0 < 𝛿𝑗 < 1, 𝑗 = 1, 2, . . ., lim
𝑗→∞

𝛿𝑗 = 1, 𝑓(𝑥) ∈ 𝐶(𝜕Ω) and (23) is

true. Then
1) if conditions (13)–(14) are satisfied, then Problem N is uniquely solvable;
2) if conditions (13), (16) are satisfied, then Problem N is solvable if and only if condition

(17) is satisfied; at that, the solution to the problem is unique up to an additive constant;
3) if Problem N is solvable, then its solution is represented as

𝑢(𝑥) = 𝐵−𝛼
𝜇 [𝑣](𝑥),

where 𝑣(𝑥) solves problem (15).

Proof of Theorem 8 is almost literally reproduces the proof of Theorem 7, where one should
use Lemma 2 instead of Theorem 6.

6. Examples

Example 1. Let 𝑛 = 2, 0 < 𝛼 < 1 and 𝜇 = 0. By Theorem 5 the unique solution to Problem
L reads as

𝑢(𝑟, 𝜙) =𝐵−𝛼
𝜇 [𝑣] (𝑟, 𝜙) =

1

Γ(𝛼)

1∫︁
0

(1 − 𝑠)𝛼−1 𝑠−𝛼𝑢 (𝑟𝑠, 𝜙) 𝑑𝑠

=

1∫︁
0

(1 − 𝑠)𝛼−1

Γ(𝛼)

𝑠−𝛼

2𝜋

⎧⎨⎩
𝜋∫︁

−𝜋

1 − (𝑟𝑠)2

1 − 2𝑟𝑠 cos (𝜙− 𝜃) + (𝑟𝑠)2
𝑓 (𝜃) 𝑑𝜃

⎫⎬⎭ 𝑑𝑠

=
1

2𝜋

𝜋∫︁
−𝜋

⎧⎨⎩
1∫︁

0

(1 − 𝑠)𝛼−1

Γ (𝛼)

𝑠−𝛼
(︀
1 − (𝑟𝑠)2

)︀
1 − 2𝑟𝑠 cos (𝜙− 𝜃) + (𝑟𝑠)2

𝑑𝑠

⎫⎬⎭ 𝑓(𝜃)𝑑𝜃.
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The following identity

1∫︁
0

(1 − 𝑠)𝛼−1

Γ (𝛼)

𝑠−𝛼
(︀
1 − (𝑟𝑠)2

)︀
1 − 2𝑟𝑠 cos (𝜙− 𝜃) + (𝑟𝑠)2

𝑑𝑠 = 2Γ (1 − 𝛼)

⎛⎝cos
[︁
(1 − 𝛼) 𝑎𝑟𝑐𝑡𝑔 𝑟 sin(𝜙−𝜃)

1−𝑟 cos(𝜙−𝜃)

]︁
(1 − 2𝑟 cos (𝜙− 𝜃) + 𝑟2)

1−𝛼
2

− 1

2

⎞⎠
was proven in [24]. Then finally we obtain

𝑢(𝑥) =
Γ (1 − 𝛼)

𝜋

𝜋∫︁
−𝜋

⎧⎨⎩cos
[︁
(1 − 𝛼) 𝑎𝑟𝑐𝑡𝑔 𝑟 sin(𝜙−𝜃)

1−𝑟 cos(𝜙−𝜃)

]︁
(1 − 2𝑟 cos (𝜙− 𝜃) + 𝑟2)

1−𝛼
2

− 1

2

⎫⎬⎭ 𝑓 (𝜃) 𝑑𝜃.

Example 2. Let 𝑎1 ̸= 0 and 𝑎𝑗 = 0, 𝑗 = 2, 3, . . .
We consider a homogeneous harmonic polynomial of degree 𝑝

𝑢𝑝(𝑥) =
∑︁
|𝛽|=𝑝

𝑐𝛽𝑥
𝛽1

1 · 𝑥𝛽2

2 · . . . · 𝑥𝛽𝑛
𝑛 .

We consider the action of operator 𝐵𝛼
𝜇 on function 𝑢𝑝(𝑥). By identity (3),

𝐵𝛼
𝜇 [𝑢𝑝] (𝑥) =

Γ (𝑝 + 𝑚 + 𝜇 + 1)

Γ (𝑝 + 𝑚− 𝛼 + 𝜇 + 1)
𝑢𝑝(𝑥).

Since 𝑢𝑝(𝛿1𝑥) = 𝛿𝑝1𝑢𝑝(𝑥), then

𝐵𝛼
𝜇 [𝑢𝑝] (𝑥) − 𝑎1𝐵

𝛽
𝜇 [𝑢𝑝] (𝛿1𝑥) =

Γ (𝑝 + 𝑚 + 𝜇 + 1)

Γ (𝑝 + 𝑚− 𝛼 + 𝜇 + 1)
𝑢𝑝(𝑥) − 𝑎1

Γ (𝑝 + 𝑚 + 𝜇 + 1)

Γ (𝑝 + 𝑚− 𝛽 + 𝜇 + 1)
𝛿𝑝1𝑢𝑝(𝑥)

=

(︂
Γ (𝑝 + 𝑚 + 𝜇 + 1)

Γ (𝑝 + 𝑚− 𝛼 + 𝜇 + 1)
− 𝑎1

Γ (𝑝 + 𝑚 + 𝜇 + 1)

Γ (𝑝 + 𝑚− 𝛽 + 𝜇 + 1)
𝛿𝑝1

)︂
𝑢𝑝(𝑥).

Therefore, harmonic polynomial 𝑢𝑝(𝑥) is a solution to homogeneous Problem N corresponding
to

𝑎1 =
Γ (𝑝 + 𝑚− 𝛽 + 𝜇 + 1)

Γ (𝑝 + 𝑚− 𝛼 + 𝜇 + 1)
𝛿−𝑝
1 > 1.

We also note that for 𝑛 = 3, the number of homogeneous harmonic polynomials of degree 𝑝 is
equal to 2𝑝 + 1.
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