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ASYMPTOTIC APPROACH TO
THE PERFECT CUBOID PROBLEM

R.A. SHARIPOV

Abstract. The problem of perfect cuboids is one of the old unsolved problems in number
theory. By means of various methods it can be reduced to finding a solution of some single
Diophantine equation of high degree obeying certain restrictions in the form of inequalities.
Each such Diophantine equation is called a characteristic equation of a perfect cuboid. In
this paper we present the results obtained by applying asymptotic metods to one of the
characteristic equations of a perfect cuboid in the case of the second cuboid conjecture.
This results shrink the domain of the integer parameters of the considered characteristic
equation and thus make more effective the computer search of perfect cuboids based on this
equation.
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1. Introduction

A perfect cuboid is a rectangular parallelepiped whose edges, the diagonals on the faces,
as well as the spatial diagonal are of integer length. The search of perfect cuboids has a long
history [1–50]. The problem was first mentioned in 1719, but none of cuboids is found yet. The
number 1719 by itself is probably not so impressive. It is interesting to compare it with some
prominent historical dates: Foundation of Saint-Petersburg (1703), Battle of Poltava (1709),
Rebellions of Bashkirs (1735–1740 and 1755), the Celsius scale (1742), births of Mozart (1756)
and Beethoven (1770), Pugachev’s Rebellion (1773), United States Declaration of Independence
(1776), World First Steamship (1783), Great French Revolution (1789), World First Steamship
Locomotive (1804), Napoleon Invasion of Russia (1812), Decembrist revolt (1825), opening of
the first railway in Russia (1837). In mathematics these are the births of Euler (1707), Lagrange
(1736), Fourier (1768), Gauss (1777), Cauchy (1789), Lobachevskii (1792), Abel (1802), Galois
(1811). As we see, a lot of events happened in the world which changed essentially our life ,
but the problem of perfect cuboid was and still remains unsolved. Here we consider one of the
approaches to this difficult problem that probably will change the situation.

In paper [51] the problem of constructing a perfect cuboid was reduced to a Diophantine
equation of 12-th degree in variables 𝑎, 𝑏, 𝑢 and 𝑡:

𝑢4 𝑎4 𝑏4 + 6 𝑎4 𝑢2 𝑏4 𝑡2 − 2𝑢4 𝑎4 𝑏2 𝑡2 − 2𝑢4 𝑎2 𝑏4 𝑡2 + 4𝑢2 𝑏4 𝑎2 𝑡4+

+4 𝑎4 𝑢2 𝑏2 𝑡4 − 12𝑢4 𝑎2 𝑏2 𝑡4 + 𝑢4 𝑎4 𝑡4 + 𝑢4 𝑏4 𝑡4 + 𝑎4 𝑏4 𝑡4+

+6 𝑎4 𝑢2 𝑡6 + 6𝑢2 𝑏4 𝑡6 − 8 𝑎2 𝑏2 𝑢2 𝑡6 − 2𝑢4 𝑎2 𝑡6 − 2𝑢4 𝑏2 𝑡6−
− 2 𝑎4 𝑏2 𝑡6 − 2 𝑏4 𝑎2 𝑡6 + 𝑢4 𝑡8 + 𝑏4 𝑡8 + 𝑎4 𝑡8 + 4 𝑎2 𝑢2 𝑡8+

+4 𝑏2 𝑢2 𝑡8 − 12 𝑏2 𝑎2 𝑡8 + 6𝑢2 𝑡10 − 2 𝑎2 𝑡10 − 2 𝑏2 𝑡10 + 𝑡12 = 0.

(1.1)

The precise result of paper [51] is formulated in the next theorem.
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Theorem 1.1. A perfect cuboid does exist if and only if Diophantine equation (1.1) has a
solution such that 𝑎, 𝑏, 𝑢, 𝑡 are positive numbers satisfying the inequalities 𝑎 < 𝑡, 𝑏 < 𝑡, 𝑢 < 𝑡,
(𝑎+ 𝑡) (𝑏+ 𝑡) > 2 𝑡2.

The analysis of equation (1.1) in [52] showed that there are two cases where the polynomial in
the left hand side of equation (1.1) is reducible and we can remove inessential factors producing
no perfect cuboids. In these cases the degree of equation (1.1) reduces to 8-th and 10-th,
respectively. For these cases in [52] the first and the second cuboid conjectures were formulated.
For the general case, where no reduction of equation (1.1) does happen, the third cuboid
conjecture was formulated.

The first cuboid conjecture 𝑎 = 𝑏 ̸= 𝑢. This case turned out to be the simplest one. Despite
the first cuboid conjecture remained unproved, in paper [53] it was established that in this case
there are no perfect cuboids.

The cases of the second and third cuboid conjectures turned out to be more complicated. For
these cases in [54] and [55] only certain structural theorems on integer solutions of equation
(1.1) were obtained while the question on whether such solutions do exist and produce perfect
cuboids remained open. The second and third conjectures on cuboid also remain neither proved
no disproved.

In the present work we consider only the case of the second cuboid conjecture and we
summarize the results obtained by the author for this case in eletronic publications [56–59]. On
May 19, 2015, the most part of these results was presented at the city seminar on differential
equations of mathematical physics named after A.M. Il’in. The author is grateful to the head
of the seminar L.A. Kalyakin for the opportuinity to present a talk. The author is grateful
to the other head of the seminr V.Yu. Novokshenov and to all participants for the attention
and valuable remarks during the talk. The author is also greatefull to B.I. Suleimanov who
mentioned the works by A.D. Bruno on Newton polygons and their application in asymptotic
analysis.

Papers [60–72] made in the time period between papers [51–55] and [56–59] develop an
absolutely different approach based on the discrete 𝑆3-symmetry in the perfect cuboid equations
and employing the technique of multi-symmetric polynomials. This approach is planned to be
reviewed in a separated publication.

2. The case of second conjecture of cuboid

The case of the second cuboid conjecture arises when parameters 𝑎, 𝑏, 𝑢 in equation (1.1)
are related to each other by one of the following two identities:

𝑏 𝑢 = 𝑎2. (2.1)

The first of identities (2.1) is resolved by substituting

𝑎 = 𝑝 𝑞, 𝑏 = 𝑝2, 𝑢 = 𝑞2. (2.2)

The second identity in (2.1) is resolved by substituting

𝑎 = 𝑝2, 𝑏 = 𝑝 𝑞, 𝑢 = 𝑞2. (2.3)

Applying each of substitutions (2.2) and (2.3) to equation (1.1), we remove an inessential
factor and the degree of the equation reduces from 12-th to 10-th. As a result of each of these
substitutions the same equation of 10-th degree w.r.t. 𝑝, 𝑞 and 𝑡 arises:

𝑡10 + (2 𝑞2 + 𝑝2) (3 𝑞2 − 2 𝑝2) 𝑡8 + (𝑞8 + 10 𝑝2 𝑞6 + 4 𝑝4 𝑞4

− 14 𝑝6 𝑞2 + 𝑝8) 𝑡6 − 𝑝2 𝑞2 (𝑞8 − 14 𝑝2 𝑞6 + 4 𝑝4 𝑞4 + 10 𝑝6 𝑞2

+ 𝑝8) 𝑡4 − 𝑝6 𝑞6 (𝑞2 + 2 𝑝2) (3 𝑝2 − 2 𝑞2) 𝑡2 − 𝑞10 𝑝10 = 0.

(2.4)

Theorem 1.1 implies the following theorem.
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Theorem 2.1. In the case of second cuboid conjecture, a perfect cuboid does exist if and only
if Diophantine equation (2.4) has a solution such that 𝑝, 𝑞, 𝑡 are positive numbers satisfying
the inequalities 𝑝 𝑞 < 𝑡, 𝑝2 < 𝑡, 𝑞2 < 𝑡, (𝑝 𝑞 + 𝑡) (𝑝2 + 𝑡) > 2 𝑡2.

The second conjecture itself is formulated as follows (see [52]).

Conjecture 2.1 (Second cuboid conjecture). For each two coprime positive integers 𝑝 ̸= 𝑞,
the polynomial of 10-th degree in the left hand side of equation (2.4) is irreducible over the field
of raional numbers Q.

Conjecture 2.1 is provided here just to inform the reader and it is not considered in what
follows. The main efforts are aimed at the study of equation (2.4).

3. Motivation of the asymptotic approach

A computer search of perfect cuboids via equation (2.4) is performed iteratively. For instance,
like this: for each fixed 𝑝 we iterate over 𝑞 and for each 𝑞 we solve equation (2.4) w.r.t. 𝑡.
Theoretically, for the complete search, for each 𝑝 we should iterate over all integer values of 𝑞
from 1 to +∞. In practice, one has to replace +∞ by a fixed large number 𝑞max(𝑝). Equation
(2.4) is nice since the choice of the upper bound 𝑞max(𝑝) can be made reasonable and equivalent
to the infinite iteration. Roots of polynomial equations of two variables w.r.t. one of the variables
demonstrate a rather simple and easily calculable asymptotics as the second variable tend to
infinity. Using such asymptotics, in certain cases one can show that for 𝑞 greater than a certain
value 𝑞max(𝑝) equation (2.4) has no integer roots or its integer roots do not satisfy inequalities
in Theorem 2.1.

4. Asymptotics of roots 𝑡𝑖 as 𝑞 → +∞

We denote by 𝑄𝑝𝑞(𝑡) the polynomial in the left hand side of equation (2.4). By this notation
we choose variable 𝑡 as the main one, while variables 𝑝 and 𝑞 are regarded as parameters.
Polynomial 𝑄𝑝𝑞(𝑡) is even w.r.t. 𝑡. This is why together with each root 𝑡, it has the opposite
root −𝑡. The condition {︃

𝑡 > 0, if 𝑡 is a real root,
Im(𝑡) > 0, if 𝑡 is a complex root,

(4.1)

selects a group of five roots 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 of polynomial 𝑄𝑝𝑞(𝑡). The other five roots are
obtained by the changing their signs:

𝑡6 = −𝑡1, 𝑡7 = −𝑡2, 𝑡8 = −𝑡3, 𝑡9 = −𝑡4, 𝑡10 = −𝑡5.

The asymptotics of roots of polynomial equations are power [73]. For a fixed 𝑝 = const they
are written as the series

𝑡𝑖(𝑝, 𝑞) = 𝐶𝑖 𝑞
𝛼𝑖

(︂
1 +

∞∑︁
𝑠=1

𝛽𝑖𝑠 𝑞
−𝑠

)︂
при 𝑞 → +∞. (4.2)

Coefficients 𝐶𝑖 in (4.2) must be non-zero 𝐶𝑖 ̸= 0. These coefficients and the exponents 𝛼𝑖 can
be calculated graphically by means of Newton polygon related with the polynomial 𝑄𝑝𝑞(𝑡)
(Fig. 4.1). We write polynomial 𝑄𝑝𝑞(𝑡) formally as

𝑄𝑝𝑞(𝑡) =
10∑︁

𝑚=0

10∑︁
𝑟=0

𝐴𝑚𝑟(𝑝) 𝑞
𝑟 𝑡𝑚. (4.3)

The number of terms in formal sum (4.3) is 121. The actual number of terms in polynomial
𝑄𝑝𝑞(𝑡) is much less. Drawing the Newton polygon, one chooses non-zero terms in (4.3) and they
are marked as the points with coordinates (𝑚, 𝑟) on the coordinate plane. Since coordinates
(𝑚, 𝑟) are integer, these points are the sites of the integer lattice (Fig. 4.1).
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Definition 4.1. For each polynomial of two variables 𝑃 (𝑡, 𝑞), the convex hull of all sites of
the integer lattice associated with its monomials is called the Newton polygon of this polynomial
𝑃 (𝑡, 𝑞).

The boundary of the Newton polygon shown in Figure 4.1 consists of two parts, the upper
one and the lower one. The upper part of the boundary contains the sites 𝐴0 10, 𝐴2 10 𝐴4 10, 𝐴6 8

𝐴8 4 and 𝐴10 0. The associated coefficients of polynomial 𝑄𝑝𝑞(𝑡) are given by the formulae

𝐴0 10 = −𝑝10, 𝐴2 10 = 2 𝑝6, 𝐴4 10 = −𝑝2,

𝐴6 8 = 1, 𝐴8 4 = 6, 𝐴10 0 = 1.
(4.4)

The following theorem expresses a well-known fact. Its proof can be found in [56].

Theorem 4.1. Exponents 𝛼𝑖 in asymptotic expansions (4.2) are calculated by the formula
𝛼𝑖 = −𝑘, where 𝑘 is the slope of the segments of the polyline being the upper boundary of the
Newton polygon in Figure 4.1.

In our case Theorem 4.1 gives the following possible values for exponents 𝛼𝑖 in asymptotic
expansions (4.2):

𝛼𝑖 = 0, 𝛼𝑖 = 1, 𝛼𝑖 = 2. (4.5)

The number of the roots satisfying condition (4.1) exceeds three. This is why some of roots 𝑡1,
𝑡2, 𝑡3, 𝑡4, 𝑡5 have the same growth rate as 𝑞 → +∞.

Besides 𝛼𝑖, each of roots 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 is characterized by its coefficient 𝐶𝑖 in expansions
(4.2). These coefficients are also calculated by means of the Newton polygon.
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The case 𝛼𝑖 = 0 in (4.5) corresponds to the horizontal segment on the upper boundary of
the Newton polygon. On this segment there three sites 𝐴4 10, 𝐴2 10, and 𝐴0 10. This is why the
corresponding equation for 𝐶𝑖 reads as

𝐴4 10 𝐶𝑖
4 + 𝐴2 10 𝐶𝑖

2 + 𝐴0 10 = 0. (4.6)

In view of (4.4), equation (4.6) has two real roots

𝐶𝑖 = 𝑝2, 𝐶𝑖 = −𝑝2, (4.7)

each being of multiplicity 2. Condition (4.1) excludes the root 𝐶𝑖 = −𝑝2 in (4.7), keeping only
one double root. The associated expansion is

𝑡𝑖(𝑝, 𝑞) = 𝑝2

(︂
1 +

∞∑︁
𝑠=1

𝛽𝑖𝑠 𝑞
−𝑠

)︂
. (4.8)

Case 𝛼𝑖 = 1 in (4.5) corresponds to the short sloping segment on the uppoer boundary of
Newton polygon. This segment contains two sites 𝐴4 10 and 𝐴6 8. The associated coefficient 𝐶𝑖

in (4.2) is determined by the equation

𝐴6 8 𝐶𝑖
6 + 𝐴4 10 𝐶𝑖

4 = 0. (4.9)

In view of (4.4) and 𝐶𝑖 ̸= 0, equation (4.9) has two simple real roots:

𝐶𝑖 = 𝑝, 𝐶𝑖 = −𝑝. (4.10)

Condition (4.1) excludes the root 𝐶𝑖 = −𝑝 in (4.10) keeping only one root 𝐶𝑖 = 𝑝. The expansion
associated with this root reads as

𝑡𝑖(𝑝, 𝑞) = 𝑝 𝑞

(︂
1 +

∞∑︁
𝑠=1

𝛽𝑖𝑠 𝑞
−𝑠

)︂
. (4.11)

Case 𝛼𝑖 = 2 in (4.5) corresponds to a long sloping segment on the upper boundary of Newton
polygon. This segment contains three sites 𝐴6 8, 𝐴8 4 and 𝐴10 0. This is why the corresponding
equation for 𝐶𝑖 reads as

𝐴10 0 𝐶𝑖
10 + 𝐴8 4 𝐶𝑖

8 + 𝐴6 8 𝐶𝑖
6 = 0. (4.12)

In view of (4.4) and 𝐶𝑖 ̸= 0, equation (4.12) has four complex roots:

𝐶𝑖 = (
√
2 + 1) i, 𝐶𝑖 = (

√
2− 1) i, (4.13)

𝐶𝑖 = −(
√
2 + 1) i, 𝐶𝑖 = −(

√
2− 1) i. (4.14)

Here i =
√
−1. Roots (4.14) are excluded by condition (4.1). Only two roots (4.13) are kept

and they give the asymptotic expansions:

𝑡𝑖(𝑝, 𝑞) = (
√
2 + 1) i 𝑞2

(︂
1 +

∞∑︁
𝑠=1

𝛽𝑖𝑠 𝑞
−𝑠

)︂
, 𝑡𝑖(𝑝, 𝑞) = (

√
2− 1) i 𝑞2

(︂
1 +

∞∑︁
𝑠=1

𝛽𝑖𝑠 𝑞
−𝑠

)︂
. (4.15)

Formulae (4.8), (4.11), (4.15) are summarized by the following theorem.

Theorem 4.2. For sufficiently large 𝑞, i.e., as 𝑞 > 𝑞min, equation (2.4) of 10-th degree has
five simple roots satisfying condition (4.1). Three of them 𝑡1, 𝑡2, 𝑡3 are real. Their asymptotics
as 𝑞 → +∞ are given by the formulae

𝑡1 ∼ 𝑝2, 𝑡2 ∼ 𝑝2, 𝑡3 ∼ 𝑝 𝑞. (4.16)

Other two roots of equation (2.4) are complex-valued. The asymptotics of these roots as 𝑞 → +∞
are described by the formulae

𝑡4 ∼ (
√
2 + 1) i 𝑞2, 𝑡5 ∼ (

√
2− 1) i 𝑞2. (4.17)
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5. Asymptotic estimate for real roots

Asymptotic expansions (4.8), (4.11), (4.15) and formulae (4.16), (4.17) describe the limiting
behavior of the roots to equation (2.4) as 𝑞 → +∞. They give no precise information on location
of roots for finite 𝑞. In order to have such information, we need asymptotic estimates, namely,
the estimates for the error terms for finite sums of asymptotic series.

In accordance with formulae (4.16), roots 𝑡1 and 𝑡2 do not grow as 𝑞 → +∞. This is why
their asymptotic series (4.8) can be truncated right after the leading term and we can write
formula (4.8) as the following sums:

𝑡1 = 𝑝2 +𝑅1(𝑝, 𝑞), 𝑡2 = 𝑝2 +𝑅2(𝑝, 𝑞). (5.1)

Our next aim is to obtain the estimates

|𝑅𝑖(𝑝, 𝑞)| <
𝐶(𝑝)

𝑞
, where 𝑖 = 1, 2. (5.2)

To achieve this aim, we substitute

𝑡 = 𝑝2 +
𝑐

𝑞
(5.3)

into equation (2.4). In the obtained equation we make one more substitution

𝑞 =
1

𝑧
. (5.4)

After two substitutions (5.3) and (5.4) and after removing the denominators equation (2.4)
becomes a new polynomial equation in new variables 𝑐 and 𝑧. A feature of this equation is that
it is written as

16 𝑝12 + 𝑓(𝑐, 𝑝, 𝑧) = 4 𝑝6 𝑐2. (5.5)

Here 𝑓(𝑐, 𝑝, 𝑧) is a polynomial given by an explicit formula. But the formula for 𝑓(𝑐, 𝑝, 𝑧)
is bulky. It is written in a machine-readable formate and is provided in the ancillary file
strategy_formulas.txt attached to electronic publication [56]. The link for downloading this
file is provided on the site http://arXiv.org/abs/1504.07161.

Polynomial 𝑓(𝑐, 𝑝, 𝑧) vanishes at 𝑧 = 0. This is why its values are sufficiently small for small
𝑧. Let 𝑞 > 59 𝑝 and parameter 𝑐 range the interval

− 5 𝑝3 < 𝑐 < 0. (5.6)

By 𝑞 > 59 𝑝 and (5.4) we obtain the estimate |𝑧| 6 1/59 𝑝−1. Employing this estimate and
inequalities (5.6), by straightforward calculations we can get the following estimate:

|𝑓(𝑐, 𝑝, 𝑧)| < 15 𝑝12. (5.7)

For fixed 𝑝 and 𝑧 estimate (5.7) means that the left hand side of equation (5.5) is a continuous
function of 𝑐 ranging from 𝑝12 to 31 𝑝12 as 𝑐 ranges in interval (5.6). The right hand side of
equation (5.5) is also a continuous function of 𝑐. It decreases monotonically from 100 𝑝12 to 0
on interval (5.6). Hence, interval (5.6) contains at least one root of equation (5.5).

Parameter 𝑐 is related with variable 𝑡 by formula (5.3). Inequalities (5.5) for 𝑐 imply the
following inequalities for 𝑡:

𝑝2 − 5 𝑝3

𝑞
< 𝑡 < 𝑝2. (5.8)

Inequalities (5.8) and the above arguments give the following theorem.

Theorem 5.1. For each 𝑞 > 59 𝑝 equation (2.4) has at least one real root satisfying
inequalities (5.8).
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The above arguments can be reproduced for the case when parameter 𝑐 ranges the interval
mirror-symmetric to interval (5.6):

0 < 𝑐 < 5 𝑝3. (5.9)
In this case (5.9) and (5.3) imply the inequalities

𝑝2 < 𝑡 < 𝑝2 +
5 𝑝3

𝑞
(5.10)

for variable 𝑡 and we obtain the following theorem.

Theorem 5.2. For each 𝑞 > 59 𝑝 equation (2.4) has at least one real root satisfying
inequalities (5.10).

Theorems 5.1 and 5.2 provide asymptotic estimates (5.2) with 𝐶(𝑝) = 5 𝑝3 for error terms
𝑅1(𝑝, 𝑞) and 𝑅2(𝑝, 𝑞) in formulae (5.1).

In accordance with formulae (4.16), root 𝑡3 grows as 𝑞 → +∞. We write the asymptotic
formula with an error term for this root:

𝑡3 = 𝑝 𝑞 − 16 𝑝3

𝑞
+𝑅3(𝑝, 𝑞) (5.11)

and seek an estimate for error term 𝑅3(𝑝, 𝑞) as

|𝑅3(𝑝, 𝑞)| <
𝐶(𝑝)

𝑞2
. (5.12)

We then write inequalities

𝑝 𝑞 − 16 𝑝3

𝑞
− 5 𝑝4

𝑞2
< 𝑡 < 𝑝 𝑞 − 16 𝑝3

𝑞
+

5 𝑝4

𝑞2
(5.13)

and formulate the following theorem.

Theorem 5.3. For each 𝑞 > 59 𝑝 equation (2.4) has at least one real root satisfying
inequalities (5.13).

The proof of Theorem 5.3 can be found in [56]. It is almost the same as the proof of
Theorems 5.1 and 5.2 given above.

Inequalities (5.13) prove estimate (5.12) with 𝐶(𝑝) = 5 𝑝4 for error term 𝑅3(𝑝, 𝑞) in
asymptotic formula (5.11).

6. Asymptotic estimates for complex roots

The complexity of roots 𝑡4 and 𝑡5 is implied by formulae (4.15). For complex root 𝑡4 we write
the asymptotic formula

𝑡4 = (
√
2 + 1) i 𝑞2 + (

√
2− 2) i 𝑝2 +𝑅4(𝑝, 𝑞), where i =

√
−1. (6.1)

For error term 𝑅4(𝑝, 𝑞) we seek an estimate

|𝑅4(𝑝, 𝑞)| <
𝐶(𝑝)

𝑞
. (6.2)

We write the inequalities

(
√
2 + 1) 𝑞2 + (

√
2− 2) 𝑝2 − 5 𝑝3

𝑞
< Im 𝑡 < (

√
2 + 1) 𝑞2 + (

√
2− 2) 𝑝2 +

5 𝑝3

𝑞
(6.3)

and formulate the following theorem.

Theorem 6.1. For each 𝑞 > 59 𝑝 equation (2.4) has at least one pure imaginary root
satisfying inequalities (6.3).
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Inequalities (6.3) prove estimate (6.2) with 𝐶(𝑝) = 5 𝑝3 for the error term in asymptotic
formula (6.1).

Theorem 6.1 is similar to Theorems 5.1, 5.2, 5.3. Its proof is provided in [56].
Complex root 𝑡5 of equation (2.4) is similar to root 𝑡4. For complex root 𝑡5 we write asymptotic

formula
𝑡4 = (

√
2− 1) i 𝑞2 + (

√
2 + 2) i 𝑝2 +𝑅5(𝑝, 𝑞), where i =

√
−1. (6.4)

For error term 𝑅5(𝑝, 𝑞) we seek estimate

|𝑅5(𝑝, 𝑞)| <
𝐶(𝑝)

𝑞
. (6.5)

We write the inequalities

(
√
2− 1) 𝑞2 + (

√
2 + 2) 𝑝2 − 5 𝑝3

𝑞
< Im 𝑡 < (

√
2− 1) 𝑞2 + (

√
2 + 2) 𝑝2 +

5 𝑝3

𝑞
(6.6)

and formulate the following theorem.

Theorem 6.2. For each 𝑞 > 59 𝑝 equation (2.4) has at least one pure imaginary root
satisfying inequalities (6.6).

Inequalities (6.6) prove estimate (6.5) with 𝐶(𝑝) = 5 𝑝3 for error term in asymptotic formula
(6.4). The proofs of inequality (6.6) and Theorem 6.2 can be found in work [56].

7. Asymptotic intervals

Inequalities (5.8), (5.10), (5.13), (6.3), (6.6) define five open intervals. The first three of them
are on the real axis. The other two are on the imaginary axis. Several pure technical results on
asymptotic intervals (5.8), (5.10), (5.13), (6.3), (6.6) were proven in [56]. The essence of these
technical results is that as 𝑞 > 59 𝑝, the asymptotic intervals are mutually disjoint. The first
three of them are on the positive part of the real axis, and the other two are on the positive part
of the imaginary axis. Along with Theorems 5.1, 5.2, 5.3, 6.1, 6.2 it leads us to the following
result.

Theorem 7.1. For 𝑞 > 59 𝑝, five roots 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 of equation (2.4) satisfying conditions
(4.1) are simple. They are located in five mutually disjoint intervals (5.8), (5.10), (5.13), (6.3),
(6.6) so that each interval contains exactly one root.

8. Integer points of asymptotic intervals

In view of formulae (5.8), (5.10), (5.13), (6.3), (6.6) it is easy to see that the lengths of
asymptotic intervals tend to zero as 𝑞 → +∞. It naturally lowers the chance of integer points
to be in these intervals. The following theorems were proven in work [56].

Theorem 8.1. For 𝑞 > 59 𝑝 and 𝑞 > 5 𝑝3 asymptotic intervals (5.8) and (5.10) contain no
integer points.

Theorem 8.2. For 𝑞 > 59 𝑝 and 𝑞2 > 10 𝑝4 asymptotic interval (5.13) contains at most one
integer point.

Theorem 8.3. For 𝑞 > 59 𝑝 and 𝑞 > 16 𝑝3 + 5 𝑝/16 asymptotic interval (5.13) contains no
integer points.

We note that in accordance with Theorem 2.1, not each integer solution to equation (2.4)
produces a perfect cuboid. In addition, the inequalities

𝑝 𝑞 < 𝑡, 𝑝2 < 𝑡, 𝑞2 < 𝑡, (𝑝 𝑞 + 𝑡) (𝑝2 + 𝑡) > 2 𝑡2. (8.1)

should be satisfied.
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Belonging of the roots to equation (2.4) to asymptotic intervals (5.8), (5.10), (5.13), (6.3),
(6.6) as 𝑞 > 59 𝑝 produces new inequalities for them. By comparing inequalities (8.1) with
inequalities (5.8), (5.10), (5.13), it was shown in [56] that for 𝑞 > 59 𝑝 the integer points in
the real asymptotic intervals did not satisfy inequalities (8.1). It implied the main result of
work [56].

Theorem 8.4. For 𝑞 > 59 𝑝 Diophantine equation (2.4) has no solutions producing perfect
cuboids.

For each fixed 𝑝 Theorem 8.4 provides the upper bound 𝑞max(𝑝) = 59 𝑝, up to which one
should perform a numerical search of perfect cuboids in the case of second cuboid conjecture.

9. Reverse asymptotics

In [57], parameters 𝑝 and 𝑞 of equation (2.4) switch their roles. In this paper parameter 𝑞 is
kept fixed, while parameter 𝑝 tends to infinity. The asymptotics obtained under these conditions
were called reverse. A substantial part of the results of [56] was extendedto the case of reverse
asymptotics. Namely, the asymptotic expansions with asymptotic estimates were found, as well
as asymptotic intervals for roots 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 of equation (2.4) satisfying conditions (4.1).
These asymptotic intervals are defined by the following inequalities:

𝑝 𝑞 +
16 𝑞3

𝑝
− 5 𝑞4

𝑝2
< 𝑡 < 𝑝 𝑞 +

16 𝑞3

𝑝
+

5 𝑞4

𝑝2
, (9.1)

𝑝2 − 2 𝑞 𝑝− 2 𝑞2 − 9 𝑞3

𝑝
< 𝑡 < 𝑝2 − 2 𝑞 𝑝− 2 𝑞2, (9.2)

𝑝2 + 2 𝑞 𝑝− 2 𝑞2 < 𝑡 < 𝑝2 + 2 𝑞 𝑝− 2 𝑞2 +
9 𝑞3

𝑝
, (9.3)

(
√
2 + 1) 𝑞2 − 5 𝑞3

𝑝2
< Im 𝑡 < (

√
2 + 1) 𝑞2 +

5 𝑞3

𝑝2
, (9.4)

(
√
2− 1) 𝑞2 − 5 𝑞3

𝑝2
< Im 𝑡 < (

√
2− 1) 𝑞2 +

5 𝑞3

𝑝2
. (9.5)

An analogue of Theorem 7.1 is the following theorem proven in [57].

Theorem 9.1. For 𝑝 > 59 𝑞 five roots 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 to equation (2.4) satisfying conditions
(4.1) are simple. They are located in five mutually disjoint intervals (9.1), (9.2), (9.3), (9.4),
(9.5) such that each interval contains one root.

It is easy to see that the lengths of asymptotic intervals tend to zero as 𝑝 → +∞. Employing
this fact, in [57] the following three theorems were formulated.

Theorem 9.2. For 𝑝 > 59 𝑞 and 𝑝 > 9 𝑞3 asymptotic intervals (9.2) and (9.3) contain no
integer points.

Theorem 9.3. For 𝑝 > 59 𝑞 and 𝑝2 > 10 𝑞4 asymptotic interval (9.1) contains at most one
integer point.

Theorem 9.4. For 𝑝 > 59 𝑞 and 𝑝 > 16 𝑞3 + 5 𝑞/16 asymptotic interval (9.1) contains no
integer points.

Theorems 9.2, 9.3, 9.4 are analogues of Theorems 8.1, 8.2, 8.3. Their proofs reproduce almost
literally the proof of Theorems 8.1, 8.2, 8.3 provided in [56]. This is why it was not given in [57]
and is not provided here.

Despite of essential likeness, the parallel between papers [56] and [57] is not complete. We
did not succeed to prove an analogue of Theorem 8.4 in [57]. Instead of this, a weaker result is
obtained. It is provided in the following theorem.
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Theorem 9.5. Under the condition 𝑝 > 59 𝑞 and the condition 𝑝 > 9 𝑞3 Diophanite equation
(2.4) has no solutions producing perfect cuboids.

Summarizing the results of Theorems 8.4 and 9.5, in [57] three regions in the positive quadrant
of the coordinate 𝑝 𝑞-plane were defined:

1. Linear region defined by linear inequalities
𝑞

59
< 𝑝, 𝑝 < 59 𝑞; (9.6)

2. Nonlinear region defined by nonlinear inequalities

59 𝑞 6 𝑝, 𝑝 6 9 𝑞3; (9.7)

3. No cuboids region, which includes all points outside the first two regions.

10. Asymptotics as both 𝑝 and 𝑞 simultaneously tend to infinity

In [58] and [59], the asymptotics for the roots to equation (2.4) were considered as both
parameters 𝑝 and 𝑞 simultaneously tend to infinity. The main result of [58] is based on the
asymptotics where

𝑝− 𝑞 = const .

This result can be formulated as the following theorem.

Theorem 10.1. If positive integer parameters 𝑝 and 𝑞 of equation (2.4) satisfy the
inequalities

𝑞 − 𝑞

97
6 𝑝, 𝑝 6 𝑞 +min

(︁ 𝑞

97
, 3

√︂
𝑞

74

)︁
, (10.1)

then equation (2.4) has no solutions producing perfect cuboids.

The main result of [59] is based on the asymptotics as

𝑝−𝐵 𝑞3 = const and 𝐵 = 1, 2, . . . , 9.

Here, instead of (10.1), the inequalities

𝐵 𝑞3 − 𝑞3

36003
6 𝑝 6 𝐵 𝑞3 +

𝑞3

36003
, (10.2)

𝐵 𝑞3 − 2 𝑞 < 𝑝 < 𝐵 𝑞3 + 2 𝑞, (10.3)

arise and the following theorems are formulated.

Theorem 10.2. For each 𝐵 = 1, 2, . . . , 9 except 𝐵 = 5, if inequalities (10.2) are satisfied,
then equation (2.4) has no solutions producing perfect cuboids.

Theorem 10.3. As 𝐵 = 5, if both inequalities (10.2) and (10.3) are satisfied, then
Dipohantine equation (2.4) has no solutions producing perfect cuboids.

The results stated in Theorem 10.1 and Theorems 10.2, 10.3 are of a restricted nature. By
means of (10.1), (10.2) and (10.3) they specify small subdomains in the linear and nonlinear
regions defined by inequalities (9.6) and (9.7) above and ensure the absence of perfect cuboids
in the specified subdomains.
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11. Further perspectives

Until the problem of perfect cuboids is solved, nobody can say in which way its solution will
be found. Concerning the asymptotic approach to the problem in the case of the second cuboid
conjecture, the author believes that it is promising to consider invertible transformations of
parameters

𝑝 = 𝑝(𝑝, 𝑞), 𝑞 = 𝑞(𝑝, 𝑞),

see [74], and then to study the asymptotics as 𝑞 → +∞ and 𝑝 = const. It is also possible to study
the asymptotics as 𝑝 and 𝑞 tend independently to infinity by employing the techniques of Newton
polyhedra developed in numerous works by Bruno, Arnold, Bernstein, Varchenko, Volevich,
Gindikin, Kushnerenko, Khovansky, Soleev and other. This approach is more complicated since
it will take some time to learn the above mentioned technique.
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