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BOUNDARY VALUE PROBLEM

FOR PARTIAL DIFFERENTIAL EQUATION

WITH FRACTIONAL RIEMANN-LIOUVILLE DERIVATIVE

O.A. REPIN

Abstract. For a differential equation involving a fractional order diffusion equations, we
study a non-local problem in an unbounded domain, where the boundary condition involves
a linear combination of generalized operators of a fractional integro-differentiation.

For various values of the parameters of these operators by Tricomi method we prove the
uniqueness of solution to the considered problem. The existence of solution is obtained
in the closed form as a solution to the appropriate equation with fractional derivative of
various order.
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1. Formulation of problem

We consider the second order partial differential equation{︂
𝑢𝑥𝑥 −𝐷𝛼

0+,𝑦𝑢 = 0, (𝑦 > 0, 0 < 𝛼 < 1),
(−𝑦)𝑚𝑢𝑥𝑥 − 𝑢𝑦𝑦 = 0, (𝑚 > 0, 𝑦 < 0),

(1)

where 𝐷𝛼
0+,𝑦 is the Riemann-Liouville fractional derivative of order 𝛼 of function 𝑢(𝑥, 𝑦) w.r.t.

the second variable [1]

(︀
𝐷𝛼

0+,𝑦𝑢
)︀

(𝑥, 𝑦) =
𝜕

𝜕𝑦

1

Γ(1 − 𝛼)

𝑦∫︁
0

𝑢(𝑥, 𝑡)𝑑𝑡

(𝑦 − 𝑡)𝛼
(0 < 𝛼 < 1, 𝑦 > 0)

in a domain Ω being the union of the upper half-plane Ω+ = {(𝑥, 𝑦) : −∞ < 𝑥 < +∞, 𝑦 > 0}
and domain Ω− lying in the lower half-plane (𝑦 < 0) and bounded by the characteristics

𝐴𝐶 : 𝜉 = 𝑥− 2

𝑚 + 2
(−𝑦)

𝑚+2
2 = 0, 𝐵𝐶 : 𝜂 = 𝑥 +

2

𝑚 + 2
(−𝑦)

𝑚+2
2 = 1

and the segment [0, 1] in the axis 𝑦 = 0.
We introduce the notation. Let 𝐼 = (0, 1) be the unit interval in the axis 𝑦 = 0,

Θ0(𝑥) = 𝑥
2
− 𝑖

[︁
(𝑚+2)𝑥

4

]︁ 2
𝑚+2

is the intersection of the characteristics of equation (1) leaving

points (𝑥, 0) (𝑥 ∈ 𝐼) with characteristics 𝐴𝐶.
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By 𝐼𝛼,𝛽,𝜂0+ we denote the operator of generalized fractional integro-differentiating with Gauss
hypergeometric function 𝐹 (𝑎, 𝑏; 𝑐; 𝑧) introduced in [2] (see also [1], [3], [4], [5]). For real 𝛼, 𝛽,
𝜂 and 𝑥 > 0 it reads as

(︁
𝐼𝛼,𝛽,𝜂0+ 𝑓

)︁
(𝑥) =

⎧⎪⎨⎪⎩
𝑥−𝛼−𝛽

Γ(𝛼)

𝑥∫︀
0

(𝑥− 𝑡)𝛼−1𝐹 (𝛼 + 𝛽,−𝜂;𝛼; 1 − 𝑡
𝑥
)𝑓(𝑡) 𝑑𝑡 (𝛼 > 0),

𝑑𝑛

𝑑𝑥𝑛

(︁
𝐼𝛼+𝑛,𝛽−𝑛,𝜂−𝑛
0+ 𝑓

)︁
(𝑥) (𝛼 6 0, 𝑛 = [−𝛼] + 1).

(2)

In particular,(︀
𝐼0,0,𝜂0+ 𝑓

)︀
(𝑥) = 𝑓(𝑥),

(︀
𝐼𝛼,−𝛼,𝜂
0+ 𝑓

)︀
(𝑥) =

(︀
𝐼𝛼0+𝑓

)︀
(𝑥),

(︀
𝐼−𝛼,𝛼,𝜂
0+ 𝑓

)︀
(𝑥) =

(︀
𝐷𝛼

0+𝑓
)︀

(𝑥), (3)

where 𝐼𝛼0+ and 𝐷𝛼
0+ are the operators of fractional integration and differentiation of order 𝛼 > 0

[1].
We study a boundary value problem for equation (1): find a solution 𝑢(𝑥, 𝑦) to equation (1)

in domain Ω satisfying the conditions:

𝑦1−𝛼𝑢|𝑦=0 = 0 (−∞ < 𝑥 6 0, 1 6 𝑥 < ∞), (4)

𝐴
(︁
𝐼𝑎,𝑏,𝛽−1−𝑎
0+ 𝑢[Θ0(𝑡)]

)︁
(𝑥) + 𝐵

(︁
𝐼𝑎+1,𝑏−1−𝛽,𝛽−1−𝑎
0+ 𝑢𝑦(𝑡, 0)

)︁
(𝑥) = 𝑔(𝑥), (𝑥 ∈ 𝐼) (5)

and the conjugation conditions

lim
𝑦→0+

𝑦1−𝛼𝑢(𝑥, 𝑦) = lim
𝑦→0−

𝑢(𝑥, 𝑦), (𝑥 ∈ 𝐼), (6)

lim
𝑦→0+

𝑦1−𝛼(𝑦1−𝛼𝑢(𝑥, 𝑦))𝑦 = lim
𝑦→0−

𝑢𝑦(𝑥, 𝑦), (𝑥 ∈ 𝐼). (7)

Here 𝛽 = 𝑚
2𝑚+4

, 𝑎 and 𝑏 are real numbers, at that, 𝑎 > max{−𝛽, 𝛽 − 1}, 𝐴 and 𝐵 are real

constants of opposite signs, 𝑔(𝑥) is a given function such that 𝑔(𝑥) ∈ 𝐶1(𝐼) ∩ 𝐶2(𝐼).
We shall seek solution 𝑢(𝑥, 𝑦) of the formulated problem in the class of twice differentiable

functions in domain Ω such that

𝑢(𝑥, 𝑦) tends to zero as (𝑥2 + 𝑦2) → ∞,

𝑦1−𝛼𝑢(𝑥, 𝑦) ∈ 𝐶(Ω+), 𝑢(𝑥, 𝑦) ∈ 𝐶(Ω−),

𝑦1−𝛼(𝑦1−𝛼𝑢)𝑦 ∈ 𝐶(Ω+ ∪ {(𝑥, 𝑦) : 0 < 𝑥 < 1, 𝑦 = 0}),

𝑢𝑥𝑥 ∈ 𝐶(Ω+ ∪ Ω−), 𝑢𝑦𝑦 ∈ 𝐶(Ω−).

We note that in papers [6], [7] we studied nonlocal boundary value problems for equation
(1). This work is a continuation of the mentioned study and is its generalization.

2. Uniqueness of solution to problem

Suppose that there exists a solution to the formulated problem.
We introduce the notations

lim
𝑦→0+

𝑦1−𝛼𝑢(𝑥, 𝑦) = 𝜏1(𝑥), lim
𝑦→0−

𝑢(𝑥, 𝑦) = 𝜏2(𝑥), (8)

lim
𝑦→0+

𝑦1−𝛼(𝑦1−𝛼𝑢(𝑥, 𝑦))𝑦 = 𝜈1(𝑥), lim
𝑦→0−

𝑢𝑦(𝑥, 𝑦) = 𝜈2(𝑥), (𝑥 ∈ 𝐼). (9)

It is known (see, for instance, [6]) that solutions to equation (1) in the half-plane 𝑦 > 0
satisfying condition (4) and

lim
𝑦→0+

𝑦1−𝛼𝑢(𝑥, 𝑦) = 𝜏1(𝑥), (𝑥 ∈ 𝐼), (10)
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are given by the formula

𝑢(𝑥, 𝑦) =

1∫︁
0

𝐺(𝑥, 𝑦, 𝑡)𝜏1(𝑡)𝑑𝑡, (11)

where

𝐺(𝑥, 𝑦, 𝑡) =
Γ(𝛼)

2
𝑦

𝛼
2
−1𝑒

1,𝛼
2

1,𝛼
2

(︀
−|𝑥− 𝑡|𝑦−

𝛼
2

)︀
and

𝑒𝜇,𝛿𝛼,𝛽(𝑧) =
∞∑︁
𝑛=0

𝑧𝑛

Γ(𝛼𝑛 + 𝜇)Γ(𝛿 − 𝛽𝑛)
, 𝛼 > 𝛽, 𝛼 > 0

is a Wright type function [8]. It is also known [9] that a functional relation between 𝜏1(𝑥) and
𝜈1(𝑥) moved from domain Ω+ on the line 𝑦 = 0 reads as

𝜈1(𝑥) =
1

Γ(1 + 𝛼)
𝜏 ′′1 (𝑥). (12)

Let us find a functional relation between 𝜏2(𝑥) and 𝜈2(𝑥) moved on the line 𝑦 = 0 from
hyperbolic part Ω− of domain Ω.

Employing the solution to the Cauchy problem for equation (1) as 𝑦 < 0, in work [10] there
was found 𝑢[Θ0(𝑥)]. It reads as

𝑢[Θ0(𝑥)] = 𝛾1Γ(𝛽)
(︁
𝐼𝛽,0,𝛽−1
0+ 𝜏2(𝑡)

)︁
(𝑥) − 𝛾2Γ(1 − 𝛽)

(︁
𝐼1−𝛽,2𝛽−1,𝛽−1
0+ 𝜈2(𝑡)

)︁
(𝑥), (13)

where

𝛾1 =
Γ(2𝛽)

Γ2(𝛽)
, 𝛾2 =

1

2

(︂
4

𝑚 + 2

)︂2𝛽
Γ(1 − 2𝛽)

Γ2(1 − 𝛽)
.

Substituting (13) into (5), taking into consideration (8)–(9) and applying the relation [1](︁
𝐼𝛼,𝛽,𝜂0+ 𝐼𝛾,𝛿,𝛼+𝜂

0+ 𝑓
)︁

(𝑥) =
(︁
𝐼𝛼+𝛾,𝛽+𝛿,𝜂
0+ 𝑓

)︁
(𝑥) (𝛾 > 0), (14)

we obtain
𝑘1

(︁
𝐼𝑎+𝛽,𝑏,𝛽−1−𝑎
0+ 𝜏2(𝑡)

)︁
(𝑥) + 𝑘2

(︁
𝐼𝑎+1−𝛽,𝑏+2𝛽−1,𝛽−𝑎−1
0+ 𝜈2(𝑡)

)︁
(𝑥)

+ 𝐵
(︁
𝐼𝑎+1,𝑏−1+𝛽,𝛽−𝑎−1
0+ 𝜈2(𝑡)

)︁
(𝑥) = 𝑔(𝑥),

(15)

where
𝑘1 = 𝐴𝛾1Γ(𝛽), 𝑘2 = −𝐴𝛾2Γ(1 − 𝛽).

We apply the operator 𝐼−𝑎−𝛽,−𝑏,2𝛽−1
0+ to the both sides of relation (15).

Straightforward calculating with employing formulae (14) and (3) show that

𝜏2(𝑥) = −𝑘3

(︁
𝐼1−2𝛽
0+ 𝜈2(𝑡)

)︁
(𝑥) − 𝑘4

(︁
𝐼1−𝛽
0+ 𝜈2(𝑡)

)︁
(𝑥) +

1

𝑘1

(︁
𝐼−𝑎−𝛽,−𝑏,2𝛽−1
0+ 𝑔(𝑡)

)︁
(𝑥), (16)

where

𝑘3 = −𝛾2(1 − 𝛽)

𝛾1Γ(𝛽)
, 𝑘4 =

𝐵

𝐴𝛾1Γ(𝛽)
. (17)

Let us estimate the integral

𝐼 =

1∫︁
0

𝜏2(𝑥)𝜈2(𝑥)𝑑𝑥.

By conjugation conditions (6), (7) and relation (12), we have

𝐼 =
1

Γ(1 + 𝛼)

1∫︁
0

𝜏1(𝑥)𝜏 ′′1 (𝑥)𝑑𝑥.
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Integrating by parts and taking into account that 𝜏1(0) = 𝜏1(1) = 0, we obtain

𝐼 = − 1

Γ(1 + 𝛼)

1∫︁
0

[𝜏 ′1(𝑥)]2𝑑𝑥 6 0. (18)

Let us find the lower estimate for integral 𝐼.
As 𝑔(𝑥) = 0, identity (16) becomes

𝜏2(𝑥) = − 𝑘3

(︁
𝐼1−2𝛽
0+ 𝜈2(𝑡)

)︁
(𝑥) − 𝑘4

(︁
𝐼1−𝛽
0+ 𝜈2(𝑡)

)︁
(𝑥)

= − 𝑘3
Γ(1 − 2𝛽)

𝑥∫︁
0

𝜈2(𝑡)(𝑥− 𝑡)−2𝛽𝑑𝑡− 𝑘4
Γ(1 − 𝛽)

𝑥∫︁
0

𝜈2(𝑡)(𝑥− 𝑡)−𝛽𝑑𝑡,

and therefore,

𝐼 = − 𝑘3
Γ(1 − 2𝛽)

1∫︁
0

𝜈2(𝑥)𝑑𝑥

𝑥∫︁
0

(𝑥− 𝑡)−2𝛽𝜈2(𝑡)𝑑𝑡−
𝑘4

Γ(1 − 𝛽)

1∫︁
0

𝜈2(𝑥)𝑑𝑥

𝑥∫︁
0

(𝑥− 𝑡)−𝛽𝜈2(𝑡)𝑑𝑡.

We employ the known formula for Gamma-function Γ(𝜇) [11]

∞∫︁
0

𝑠𝜇−1 cos(𝑘𝑠)𝑑𝑠 =
Γ(𝜇)

𝑘𝜇
cos

(︁𝜇𝜋
2

)︁
(𝑘 > 0, 0 < 𝜇 < 1).

Letting 𝑘 = |𝑥− 𝑡|, 𝜇 = 2𝛽, we obtain

|𝑥− 𝑡|−2𝛽 =
1

Γ(2𝛽) cos(𝜋𝛽)

∞∫︁
0

𝑠2𝛽−1 cos(𝑠|𝑥− 𝑡|)𝑑𝑠,
(︂

0 < 𝛽 <
1

2

)︂
.

As 𝑘 = |𝑥− 𝑡|, 𝜇 = 𝛽, we have

|𝑥− 𝑡|−𝛽 =
1

Γ(𝛽) cos
(︀
𝜋𝛽
2

)︀ ∞∫︁
0

𝑠𝛽−1 cos(𝑠|𝑥− 𝑡|)𝑑𝑠.

Applying these formulae and Dirichlet formula for switching the order of integration in an
iterated integral, we arrive at the identity

𝐼 = − 𝑘3 sin(𝜋𝛽)

𝜋

∞∫︁
0

𝑠2𝛽−1

⎡⎢⎣
⎛⎝ 1∫︁

0

𝜈2(𝑥) cos(𝑠𝑥)𝑑𝑥

⎞⎠2

+

⎛⎝ 1∫︁
0

𝜈2(𝑥) sin(𝑠𝑥)𝑑𝑥

⎞⎠2
⎤⎥⎦ 𝑑𝑠

−
𝑘4 sin

(︀
𝜋𝛽
2

)︀
𝜋

∞∫︁
0

𝑠𝛽−1

⎡⎢⎣
⎛⎝ 1∫︁

0

𝜈2(𝑥) cos(𝑠𝑥)𝑑𝑥

⎞⎠2

+

⎛⎝ 1∫︁
0

𝜈2(𝑥) sin(𝑠𝑥)𝑑𝑥

⎞⎠2
⎤⎥⎦ 𝑑𝑠 > 0.

(19)

It follows from (18) and (19) that 𝐼 = 0 and hence, in accordance with (18),

1∫︁
0

[𝜏1(𝑥)]2𝑑𝑥 = 0.

By the identities 𝜏1(0) = 𝜏1(1) = 0 it implies 𝜏1(𝑥) = 0 for each 𝑥 ∈ 𝐼.
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In accordance with formula (11),

𝑢(𝑥, 𝑦) =

1∫︁
0

𝐺(𝑥, 𝑦, 𝑡)𝜏1(𝑡)𝑑𝑡,

and it allows to state that 𝑢(𝑥, 𝑦) ≡ 0 in domain Ω+.
By conjugation conditions (8), 𝜏2(𝑥) = 𝜏1(𝑥), and hence, 𝜏2(𝑥) = 0. By (9) and (12) it yields

𝜈2(𝑥) = 0. And since 𝑢(𝑥, 𝑦) ≡ 0 also in domain Ω− as the solution to the Cauchy problem
with zero data, it proves the uniqueness of a solution to the original problem.

3. Existence of solution to problem

According to (11), to prove the existence of solution to the studied problem it is sufficient to
find 𝜈1(𝑥).

We differentiate twice (16) w.r.t. 𝑥:

𝑑2

𝑑𝑥2
𝜏2(𝑥) = −𝑘3

𝑑2

𝑑𝑥2

(︁
𝐼1−2𝛽
0+ 𝜈2(𝑡)

)︁
(𝑥) − 𝑘4

𝑑2

𝑑𝑥2

(︁
𝐼1−𝛽
0+ 𝜈2(𝑡)

)︁
(𝑥) +

+
1

𝑘1

𝑑2

𝑑𝑥2

(︁
𝐼−𝑎−𝛽,−𝑏,2𝛽−1
0+ 𝑔(𝑡)

)︁
(𝑥)

or, letting 𝜏1(𝑥) = 𝜏2(𝑥) = 𝜏(𝑥), 𝜈1(𝑥) = 𝜈2(𝑥) = 𝜈(𝑥),(︁
𝐷1+2𝛽

0+ 𝜈
)︁

(𝑥) − 𝜆
(︁
𝐷1+𝛽

0+ 𝜈
)︁

(𝑥) − 𝜇𝜈(𝑥) = 𝑔1(𝑥), (20)

where

𝜆 = −𝐵

𝑘2
=

𝐵

𝐴𝛾2Γ(1 − 𝛽)
, 𝜇 = −Γ(1 + 𝛼)

𝑘3
=

𝛾1Γ(1 + 𝛼)Γ(𝛽)

𝛾2Γ(1 − 𝛽)
,

𝑔1(𝑥) = − 1

𝐴𝛾2Γ(1 − 𝛽)

(︁
𝐼−𝑎−𝛽−2,2−𝑏,1+2𝛽
0+ 𝑔(𝑡)

)︁
(𝑥).

In monograph [12] there was considered the equation with fractional derivatives(︀
𝐷𝛼

0+𝑦
)︀

(𝑥) − 𝜆
(︁
𝐷𝛽

0+𝑦
)︁

(𝑥) − 𝜇𝑦(𝑥) = 𝑓(𝑥), (21)

where 𝑥 > 0, 𝛼 > 𝛽 > 0, 𝜆, 𝜇 ∈ 𝑅, 𝑓(𝑥) is defined on 𝑅+ = [0,∞). It solution was written as
follows:

𝑦(𝑥) =

𝑥∫︁
0

(𝑥− 𝑡)𝛼−1𝐺𝛼,𝛽,𝜆,𝜇(𝑥− 𝑡)𝑓(𝑡)𝑑𝑡.

Here

𝐺𝛼,𝛽,𝜆,𝜇(𝑧) =
∞∑︁
𝑛=0

𝜇𝑛

𝑛!
𝑧𝛼𝑛 1Ψ1

[︃
(𝑛 + 1, 1)
(𝛼𝑛 + 𝛼, 𝛼− 𝛽)

⃒⃒⃒⃒
⃒𝜆𝑧𝛼−𝛽

]︃
,

𝑝Ψ𝑞(𝑧) =
∞∑︁
𝑛=0

𝑐𝑘 𝑧
𝑘, 𝑐𝑘 =

Π𝑝
𝑖=1Γ(𝑎𝑖 + 𝛼𝑖𝑘)

Π𝑞
𝑗=1Γ(𝑏𝑗 + 𝛽𝑗𝑘)

1

𝑘!
(𝑘 ∈ 𝑁0 = {0, 1, . . .}),

𝑧, 𝑎𝑖, 𝑏𝑗 ∈ C, 𝛼𝑖, 𝛽𝑗 ∈ R, 𝑖 = 1, 𝑝, 𝑗 = 1, 𝑞.
Famous mathematicians Fox C. [13], [14] and Wright E.M. [15], [16], [17] devoted their works

to these functions.
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Equation (20) is a particular case of equation (21), and this is why its solution is given by
the formula

𝜈(𝑥) =

𝑥∫︁
0

(𝑥− 𝑡)2𝛽𝐺1+2𝛽,1+𝛽,𝜆,𝜇(𝑥− 𝑡)𝑔1(𝑡)𝑑𝑡,

𝐺1+2𝛽,1+𝛽,𝜆,𝜇(𝑥− 𝑡) =
∞∑︁
𝑛=0

𝜇𝑛

𝑛!
(𝑥− 𝑡)(1+2𝛽)𝑛

1Ψ1

[︃
(𝑛 + 1, 1)
((1 + 2𝛽)𝑛 + 1 + 2𝛽, 𝛽)

⃒⃒⃒⃒
⃒𝜆(𝑥− 𝑡)𝛽

]︃
,

that completes the proof of the existence of solution to the original problem.
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