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ON ASYMPTOTIC FORMULA FOR ELECTRIC RESISTANCE

OF CONDUCTOR WITH SMALL CONTACTS
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Abstract. We construct and justify rigorously the complete asymptotic expansion for
the electric resistance of a three-dimensional resistance connected by two small contacts of

arbitrary shape. We obtain explicit formulae for the first two terms in the asymptotics gen-
eralizing the classical Holm formula of one-term asymptotics for two small round contacts
of same radius.
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Introduction

Work [1] is one of the first papers where the well-known Holm approximation of electric
resistance of an arbitrarily shaped pattern was mentioned:

R(ε) =
1

2εσ
+O(1), ε → 0, (1)

where ε is the radius of small round contacts on a flat part of a surface, σ is the conductivity of
a material. In the experimental test made in [2] the error of formula (1) did not exceed ±1, 5%.
In the monograph by R. Holm [3] an analytic justification of formula (1) was provided. Holm
approximation (1) is often employed in the modern problems, see, for instance, [4], [5].

In the present work we consider the case of arbitrarily shaped contacts not necessarily being
the same. We construct the complete asymptotics for the resistance. For the leading term
of the asymptotics we obtain an explicit formula, in which we reflect the dependence on the
geometry of the contacts, cf. formulae (2), (3) below. We also provide the formula for the
next-to-leading term in the asymptotics for the resistance.

In order to do it, in the present work we construct the complete asymptotic expansion for
the solution of the boundary value problem describing the electric potential of the conductor
connected by means of small or so-called “point” contacts (see, for instance, [6]). By this
expansion we find the asymptotic for the electric resistance.

In conclusion we mention that a two-dimensional analogue of similar studies was provided in
works [7–9].
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1. Formulation of problem and main results

Let x = (x1, x2, x3), a conductor Ω be a bounded simply-connected domain in R3 with
boundary ∂Ω ∈ C∞. We assume that this boundary has two flat parts to which we associate
two Cartesian coordinate systems O+x

+
1 x

+
2 x

+
3 and O−x

−
1 x

−
2 x

−
3 ; x± := (x±1 , x

±
2 , x

±
3 ). Let us

describe the shape of small contacts γε+ and γε− in these coordinates. Let sets γ+ and γ− are the
closures of bounded simply connected domains on the planes x+3 = 0 and x−3 = 0, respectively,
∂γ± ∈ C∞. As the cross-sections of the small contacts we choose γε± = {x± : ε−1x± ∈ γ±},
0 < ε ≪ 1 (Fig. 1).

O
−




O +

+


−

x
+

3

x
−

3

x
+

2x
+

1

x
−

1

x
−

2

Figure 1. Conductor Ω

The first coordinate system will be regarded as the main one. This is why sometimes we
shall omit the symbol “+” and we shall write it as Ox1x2x3; x := (x1, x2, x3).

In the work we obtain the following asymptotic formula for the electric resistance:

R(ε) =
R−1

ε
+R0 +

∞∑

j=1

εjRj , (2)

where

R−1 =
Cγ+ + Cγ−

2πσCγ+Cγ−

, R0 = − 1

2πσ

(
G+(O−) +G−(O+)

)
. (3)

Hereinafter Cγ± > 0 are the capacities of disks γ± (see, for instance, [10, Ch. 2, Sect. 1], [11, Ch

.2, Sect. 3]), G±(x) = r−1
± + g±(x), where r+ = |x|, r− = |x−|, while functions g±(x) ∈ C∞(Ω)

solve the boundary value problems




∆g± = 0, x ∈ Ω,
∂g±
∂n

= −2π − ∂

∂n

(
1

r±

)
, x ∈ ∂Ω\O±, g±(O±) = 0,

(4)

where n is the outward normal. The existence of such functions is well-known ( [12, Ch. 2,
Sect. 2, Subsect. 122], [13, Ch. 6, Sect. 7,8]).

If γ± are the unit circles, then Cγ± =
2

π
[11, Ch. 2, Sect .3], [14, Ch. 1, Sect. 4]. This is why

even for the particular case of small circular contacts γε± of radius ε considered in [1–3], by (2),
(3) we obtain the identity

R(ε) =
1

2σε
− 1

2πσ

(
G−(O+) +G+(O−)

)
+O(ε)
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specifying classical formula (1). We note that for certain shapes of disks γ their capacities Cγ

can be found explicitly [10, 11]. In particular, if γ± is the ellipse with axes a and b, then

Cγ± =
a

K(
√

|a2 − b2|/a)
,

where

K(z) =

π/2∫

0

dt√
1− z2 sin2 t

is the complete integral of the first kind [11, Ch. 2, Sect. 3].
We also observe that the flatting of the boundary at the place of connecting of contacts

is, first, natural from the technological point of view and, second, makes no influence on the
leading term in the asymptotics (cf. the remark in the next section).

2. Reducing of calculating resistance to solving boundary value problem

Since by the Ohm’s law

R =
∆U

I
, (5)

where ∆U is the difference of the potentials at the contacts, and I is the current strength
passing through the conductor, knowing electric potential u(x, ε) at each point of conductor Ω,
we can calculate the difference of potentials ∆U = |u(O+) − u(O−)| and the current strength
as the absolute value of the surface integral over any cross-section H of the conductor:

I =

∣∣∣∣σ
∫

H

∂u

∂nH

dS

∣∣∣∣, (6)

where nH is the normal to the cross-section H , and σ
∂u

∂nH

is the density of the current strength

passing through the cross-section H (cf., for instance, [14, Ch. 3, Sect. 21]).
Electric potential u(x, ε) is modeled by means of solution to the following boundary value

problem: 



∆u = 0, x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω\{γε+ ∪ γε−},

u = U±, x ∈ γε±,

(7)

where U+, U− are the potentials on contact surfaces, n is the outward normal [14, Ch. 3, Sect.
21], [3, Sect. 4].

Since the sought resistance of conductor is independent of the voltage, for simplicity we let
U+ = 1, U− = −1. That is, instead of (7) it is sufficient to consider the following main boundary
value problem 




∆u = 0, x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω\{γε+ ∪ γε−},

u = ±1, x ∈ γε±.

(8)

By [15] and smoothness improving theorems for solutions to elliptic equations [16, Ch. IV,
Sect. 2, Subsect. 3] we obtain the unique solvability of problem (8) in the class of functions
C∞(Ω\{∂γε+ ∪ ∂γε−}) ∩ C(Ω).
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Remark 1. If the boundary is not flat in the vicinity of contacts connection, it can be made
flat by a local change of variables. Of course, Laplace operator becomes an operator with variable
coefficients that makes no influence on calculating the leading terms of the asymptotics. At
the same time, it makes the procedure of constructing the complete asymptotics longer and
more complicated technically, see [17], where the eigenvalue problem for a second order elliptic
operator with variable coefficients and a change of the type of boundary condition on a small
piece of the boundary was considered. We observe that a similar situation appears also for other
singular perturbations contracting to a point (for small holes see [18], [19]).

3. Construction of leading terms of asymptotics for solution to boundary
value problem (8)

We construct the formal asymptotic for solution u(x, ε) to boundary value problem (8) as
ε → 0 by the method of matching asymptotic expansion [18], [20], [21].

Following this method, it is natural to construct the asymptotic expansion of function u(x, ε)
in the vicinity of the parts of the boundary γε± (i.e., in the vicinity of points O±) as

u(x, ε) =v±0

(x±
ε

)
+ εv±1

(x±
ε

)
+

∞∑

j=2

εjv±j

(x±
ε

)
. (9)

Substituting series (9) into (8) and passing to internal variables ξ± = x±

ε
, we obtain the bound-

ary value problems for internal expansions:




∆ξ±v
±
0 = 0, ξ±3 > 0,

v±0 = ±1, ξ± ∈ γ±,

∂v±0
∂ξ3

= 0, ξ± ∈ Γ± := {ξ± : ξ±3 = 0, ξ± 6∈ γ±},
(10)





∆ξ±v
±
j = 0, ξ±3 > 0,

v±j = 0, ξ± ∈ γ±,

∂v±j
∂ξ3

= 0, ξ± ∈ Γ±, j = 1, 2, ...

(11)

Hereinafter we employ the notation (ξ±1 , ξ
±
2 , ξ

±
3 ) = ξ±, while ∆ξ± stands for the Laplace operator

in variables ξ±.
We also denote ρ± = |ξ±|, R3,±

+ = {ξ± : ξ±3 > 0}. By X±
j (ξ±) and X±,i

j (ξ±) we denote

homogeneous harmonic polynomials of degree j satisfying the condition
∂X±

j

∂ξ±
3

=
∂X±,i

j

∂ξ±
3

= 0

as ξ±3 = 0. It follows from the definition that X±
j ρ

−2j−1
± , X±,i

j ρ−2j−1
± are harmonic functions

satisfying condition
∂X±

j ρ−2j−1

±

∂ξ±
3

(ξ±1 , ξ
±
2 , 0) =

∂X±,i
j ρ−2j−1

±

∂ξ±
3

(ξ±1 , ξ
±
2 , 0) = 0 as ξ± 6= 0. In [22, Lm. 3]

the following statement was proven.

Lemma 1. For each function Φ ∈ C∞(γ±) there exists a solution v ∈ C∞

(
R

3,±

+ \∂γ±
)
∩

C
(
R

3,±

+

)
to the boundary value problem





∆v = 0, ξ±3 > 0,

v = Φ, ξ± ∈ γ±,

∂v

∂ξ±3
= 0, ξ± ∈ Γ±,
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having the differentiable asymptotics

v(ξ±) =
C±(Φ)

ρ±
+

∞∑

j=1

X±
j (ξ±)ρ

−1−2j
± , ρ± → ∞.

We denote by E(ξ±; γ±) the function satisfying Lemma 1 for Φ ≡ 1. In terms of the notations
of this lemma we have

E(ξ±; γ±) =
Cγ±

ρ±
+

∞∑

j=1

X±
j (ξ±)ρ

−1−2j
± , ρ± → ∞,

where, we recall, Cγ± > 0 are the capacities of disks γ±. We observe that if γ± is the unit circle,
then

E(ξ±; γ±) =
2

π
arctan

√
2

ρ2± − 1 +
√

(ρ2± − 1)2 + 4(ξ±3 )
2
,

see, for instance, [14, Ch. 1, Sect. 4].
It follows from the definition of E(ξ±; γ±) that the functions

v±0 (ξ±) = ± B0

Cγ±

E(ξ±; γ±))±
(
1− B0

Cγ±

)
(12)

solve boundary value problems (11) for each constant B0 and have the asymptotics

v±0 (ξ±) = ±
(
1− B0

Cγ±

)
± B0

ρ±
+

∞∑

j=1

X±,0
j (ξ±)

ρ2j+1
±

, ρ± → ∞. (13)

Rewriting (13) in external variables x± = εξ±, we have

v±0

(
x±

ε

)
= ±

(
1− B0

Cγ±

)
± ε

B0

r±
+

∞∑

j=1

εj
X±,0

j (x±)

r2j+1
±

, εr± → ∞.

Hence, following the method of matching asymptotic expansions, we obtain that the external
expansion should read as

u(x, ε) =
∞∑

k=0

εkuk(x), (14)

where

u0(x) =A±
0 + o(1), r± → 0, (15)

u1(x) =± B0

r±
+O(1), r± → 0, (16)

uj(x) =
X±,0

j−1(x±)

r2j−1
±

+O(r−j+1
± ), r± → 0, j = 2, 3, . . . (17)

A±
0 =±

(
1− B0

Cγ±

)
. (18)

Substituting expansion (14) into (8) and equating the coefficients at the like powers of ε, we
obtain the following boundary value problems:

{
∆uk = 0, x ∈ Ω,
∂uk
∂n

= 0, x ∈ ∂Ω\{O+ ∪O−}, k = 0, 1, ...
(19)
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By (4), the function

u1(x) = B0

(
G+(x)−G−(x)

)
+A1 (20)

solves boundary value problem (19) and (16) for each constant A1.
It is obvious that if

A−
0 = A+

0 := A0, (21)

then function

u0(x) ≡ A0 (22)

satisfies (19) and (15).
Solving system of linear equations (18) and (21), we obtain that

A0 =
Cγ+ − Cγ−

Cγ+ + Cγ−

, B0 =
2Cγ+Cγ−

Cγ+ + Cγ−

. (23)

Thus, functions u0(x), v
±
0 (ξ±) are well-defined thanks to identities (22), (12) and (23), while

function u1(x) is defined by identity (20) up to an additive term A1.

In what follows by Y ±
j (ξ±) and Y ±,i

j (ξ±) we denote homogeneous harmonic polynomials of

degree j satisfying condition
∂Y ±

j

∂ξ±
3

=
∂Y ±,i

j

∂ξ±
3

= 0 as ξ±3 = 0. It follows from (20) that

u1(x) =± B0

r±
+A1 ∓ B0G∓(O±) +

∞∑

j=1

Y ±,1
j (x±), r± → 0. (24)

Employing identities (22) and (24), we rewrite the asymptotics of the sum u0(x) + εu1(x) as
r± → 0 in terms of internal variables ξ±:

u0(x) + εu1(x) = A0 ±
B0

ρ±
+ ε
(
A1 ∓ B0G∓(O±)

)
+ ε

∞∑

j=1

εjY ±,1
j (ξ±).

It yields the asymptotics at infinity of functions v±k (ξ±):

v±0 (ξ±) =A0 ±
B0

ρ±
+O(ρ−2

± ), ρ± → ∞, (25)

v±1 (ξ±) =A1 ∓ B0G∓(O±) +O(ρ−1
± ), ρ± → ∞, (26)

v±k (ξ±) =Y
±,1
k−1(ξ±) +O(ρk−2

± ), ρ± → ∞, k = 2, 3, . . .

We note that functions v±0 (ξ±) defined in (12) have asymptotics (25) (see (18), (21)).
The definition of functions E(ξ±; γ±) implies that for each constant B1, the functions

v±1 (ξ±) = ± B1

Cγ±

(E(ξ±; γ±)− 1) (27)

solve boundary value problems (11) and have the asymptotics

v±1 (ξ±) = ∓ B1

Cγ±

± B1

ρ±
+

∞∑

j=1

X±,1
j (ξ±)

ρ2j+1
±

, ρ± → ∞. (28)

Comparing the latter identity with (26), we get the following system of linear equations for A1

and B1:

∓ B1

Cγ±

= A1 ∓ B0G∓(O±).
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In view of (23) we obtain that, first,

A1 =
2Cγ+Cγ−

(Cγ+ + Cγ−)
2

(
Cγ+G−(O+)− Cγ−G+(O−)

)
,

B1 =2

(
Cγ+Cγ−

Cγ+ + Cγ−

)2

(G+(O−) +G−(O+)) ,

(29)

and, second, asymptotics (28) specify asymptotics (26).
By means of identities (13) and (28), we rewrite the asymptotics of the sums v±0 (ξ±)+εv

±
1 (ξ±)

as ρ± → ∞ in external variables x±:

v±0 (ξ±) + εv±1 (ξ±) =A0 + ε

(
±B0

r±
+A1 ∓ B0G∓(O±)

)
+ ε2

(
X±,0

1 (x±)

r3±
± B±

1

r±

)
+

+

∞∑

j=3

εj

(
X±,0

j−1(x±)

r2j−1
±

+
X±,1

j−2(x±)

r2j−3
±

)
.

Following the method of matching asymptotic expansions, we specify asymptotics (15), (16),
(17):

u0(x) =A0 + o(1), u1(x) = ±B0

r±
+A1 ∓ B0G∓(O±) +O(r±), r± → 0, (30)

u2(x) =
X±,0

1 (x±)

r3±
± B1

r±
+O(1), r± → 0, (31)

uj(x) =
X±,0

j−1(x±)

r2j−1
±

+
X±,1

j−2(x±)

r2j−3
±

+O(r−j+2
± ), r± → 0, j = 3, 4, . . .

Functions u0(x) and u1(x) defined by identities (22) and (20) satisfy (30)(cf. (24)).
Lemma 2 in [22] implies the following statement.

Lemma 2. Let n > 1. Then for each X±
n (x±) there exist functions U±(x) ∈ C∞(Ω\O±)

solving boundary value problems

{
∆U± = 0, x ∈ Ω,
∂U±

∂n
= 0, x ∈ ∂Ω\O±,

and having differentiable asymptotics

U±(x) =
X±

n (x±)

r2n+1
±

+
∞∑

j=1

Y ±
j (x±), r± → 0.

By (4) and Lemma 2, there exists a solution u2(x) ∈ C∞
(
Ω\{O+ ∪O−}

)
to boundary value

problem (19), (31), which can be represented as

u2(x) =
X+,0

1 (x+)

r3+
+
X−,0

1 (x−)

r3−
+

B1

r+
− B1

r−
+ ũ2(x) +A2, (32)

where ũ2 ∈ C∞(Ω),
∫
Ω
ũ2(x)dx = 0, and A2 is an arbitrary constant.
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In particular, it follows from (22), (20), (32), (12), (27), (23) and (29) that

u0(x) ≡
Cγ+ − Cγ−

Cγ+ + Cγ−

,

u1(x) =
2Cγ+Cγ−

Cγ+ + Cγ−

(
G+(x)−G−(x) +

1

Cγ+ + Cγ−

(
Cγ+G−(O+)− Cγ−G+(O−)

))
,

u2(x) =
X+,0

1 (x+)

r3+
+
X−,0

1 (x−)

r3−
+

+ 2

(
Cγ+Cγ−

Cγ+ + Cγ−

)2

(G+(O−) +G−(O+))

(
1

r+
− 1

r−

)
+ ũ2(x) +A2,

(33)

where ũ2 ∈ C∞(Ω), and A2 is an arbitrary constant,

v±0 (ξ±) =±
(
1 +

2Cγ∓

Cγ+ + Cγ−

(
E(ξ±; γ±)− 1

))
,

v±1 (ξ±) =± 2
Cγ∓C

2
γ±(

Cγ+ + Cγ−

)2
(
G+(O−) +G−(O+)

)(
E(ξ±; γ±)− 1

)
.

(34)

Thus, we have constructed leading terms u0(x), u1(x), u2(x) (up to an additive constant A2),
v±0 (ξ±), v

±
1 (ξ±) of formal expansions (14) and (9). The construction of complete asymptotic

expansions (14) and (9) and their rigorous justification will be provided in the next two sections.

4. Formal construction of complete asymptotics
for solution to boundary value problem (8)

This section is devoted to the proof of the following statement.

Theorem 1. There exist series (14), (9) such that
1) functions uk(x) ∈ C∞

(
Ω\{O+ ∪ O−}

)
solve boundary value problems (19);

2) functions u0(x), u1(x), u2(x) satisfy identities (33), where ũ2 ∈ C∞(Ω), and A2 is some
constant;

3) as k > 1, functions uk(x) have the following asymptotics:

uk(x) =

k−1∑

q=1

X±,k−q−1
q (x±)

r2q+1
±

± Bk−1

r±
+A±

k +

∞∑

j=1

Z±,k
j (x±), x± → 0; (35)

4) functions v±k (ξ±) ∈ C∞(R
3,±

+ \∂γ±) ∩ C(R
3,±

+ ) solve boundary value problems (10), (11);
5) functions v±0 (ξ±) and v

±
1 (ξ±) satisfy identities (34);

6) functions v±k (ξ±) have the following asymptotics:

v±k (ξ±) =
k−1∑

q=1

Z±,k−q
q (ξ±) +A±

k ± Bk

ρ±
+

∞∑

j=1

X±,k
j (ξ±)

ρ2j+1
±

, ρ± → ∞. (36)

Proof. Formulae (36) for v±0 are implied by (13) as ±
(
1− B0

Cγ±

)
:= A±

0 , while for v±1 they are

implied by (28) as ∓ B1

Cγ±
:= Ã±

1 . Identity (35) for u1 coincides with (24).

It follows from (32) that

u2(x) =
X±,0

1 (x±)

r3±
± B1

r±
+ Ã±

2 +A2 +
∞∑

j=1

Z±,2
j (x±), x± → 0, (37)

where Ã±
2 are fixed numbers, and A2 is an arbitrary constant.
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By Lemma 1, there exist solutions ṽ±2 ∈ C∞
(
R

3,±

+ \∂γ±
)
∩ C

(
R

3,±
+

)
to boundary value

problem (11) with the asymptotics

ṽ±2 (ξ±) =Z
±,1
1 (ξ±)±

B̃±
2

ρ±
+O(ρ−2

± ), ρ± → ∞,

where B̃±
2 are fixed numbers. Then for each numbers B±

2 , the functions

v±2 (ξ±) = ṽ±2 (ξ±)±
B±
2

Cγ±

(
E(ξ±; γ±)− 1

)
∈ C∞

(
R

3,±

+ \∂γ±
)
∩ C

(
R

3,±
+

)

are solutions to boundary value problems (11) with the following asymptotics

v±2 (ξ±) =Z
±,1
1 (ξ±)∓

B±
2

Cγ±

± B̃±
2 + B±

2

ρ±
+O(ρ−2

± ), ρ± → ∞. (38)

Comparing the latter identity with required identity (36) for k = 2, we obtain a linear equation
for B+

2 and B−
2 :

B̃+
2 + B+

2 = B̃−
2 + B−

2 := B2. (39)

Comparing (38) with (36), and (37) with (35), we obtain extra two linear equations for B+
2 , B−

2

and A2:

∓ B±
2

Cγ±

= Ã±
2 +A2 := A±

2 . (40)

Since the determinant of system of equations (39), (40) is equal to 1
Cγ+

+ 1
Cγ−

, it is uniquely

solvable. Calculating B+
2 , B−

2 and A2, we find B2, A±
2 by (39), (40) and therefore, we finally

determine v±2 (ξ±) and u2(x) achieving at that identities (35) and (36) for k = 2.
Moreover, by Lemma 2 there exists solution u3(x) ∈ C∞

(
Ω\{O+ ∪O−}

)
to boundary value

problem (19) with the asymptotics

u3(x) =
X±,0

2 (x±)

r5±
+
X±,1

1 (x±)

r3±
± B2

r±
+ Ã±

3 +A3 +

∞∑

j=1

Z±,3
j (x±), x± → 0,

where Ã±
3 are fixed numbers and A3 is an arbitrary constant. That is, we have obtained an

analogue of identity (37) for the next step.
Repeating the above described procedure, we find successively B3, A±

3 , A3, determine finally
v±3 (ξ±) and u3(x) and achieve identities (35) and (36) for k = 3, while by Lemma 2 we obtain
the existence of solution u4(x) ∈ C∞

(
Ω\{O+ ∪ O−}

)
to boundary value problem (19) with the

asymptotics

u4(x) =
X±,0

3 (x±)

r7±
+
X±,1

2 (x±)

r5±
+
X±,2

1 (x±)

r3±
± B3

r±
+ Ã±

4 +A4 +
∞∑

j=1

Z±,4
j (x±), x± → 0,

where Ã±
4 are fixed numbers and A4 is an arbitrary constant, and so forth. The proof is

complete.

5. Justification of constructed asymptotics for solution to boundary value
problem (8)

We denote by B±(t) the ball of radius t centered at point O±. This section is devoted to the
proof of the following section based on the approach employed in justifying the asymptotics for
the eigenvalues of boundary value problems with a change of type of boundary condition on a
small part of a boundary [23–26].
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Theorem 2. Suppose that functions uk(x) and v±k (ξ±) satisfy the hypothesis of The-
orem 1. Then the solution to boundary value problem (8) has asymptotics (14) in
Ω\ (B+(

√
ε) ∪ B−(

√
ε)) and asymptotics (9) in Ω ∩ B±(

√
ε) in the sense of W 1

2 -norm.

Proof. We denote by ûN(x, ε) and v̂
±
N (x, ε) partial sums of series (14), (9), respectively, up to

the powers εN . Statements 3) and 6) of Theorem 1 imply the following differentiable identity

ûN(x, ε)− v̂±N(x, ε) = O

(
εrN± + εNr± +

(
ε

r±

)N+1
)
, r± → 0,

r±
ε

→ ∞. (41)

Let χ(t) be an infinitely differentiable cut-off function vanishing as t < 1 and being equal to
one as t > 2. We denote

ũN,s(x, ε) =ûN(x, ε)χ

(
sr+√
ε

)
χ

(
sr−√
ε

)
+

+ v̂+N (x, ε)

(
1− χ

(
sr+√
ε

))
+ v̂−N(x, ε)

(
1− χ

(
sr−√
ε

))
.

(42)

Then function ũN,s(x, ε) solves boundary value problem




∆ũN,s = fN,s, x ∈ Ω,

∂ũN,s

∂n
= 0, x ∈ ∂Ω\{γε+ ∪ γε−},

ũN,s = ±1, x ∈ γε±,

(43)

where

fN,s(x, ε) =
(
ûN(x, ε)− v̂±N(x, ε)

)
∆χ

(
sr+√
ε

)
+
(
ûN(x, ε)− v̂±N(x, ε)

)
∆χ

(
sr−√
ε

)

+∇
(
ûN(x, ε)− v̂±N(x, ε)

)
∇χ

(
sr+√
ε

)
+
(
ûN(x, ε)− v̂±N (x, ε)

)
∇χ

(
sr−√
ε

)
.

By (41) it implies that

‖fN,s‖L2(Ω) = O
(
ε

N
2

)
. (44)

Denote

UN,s(x, ε) = ũN,s(x, ε)− u(x, ε). (45)

By (8) and (43) we obtain that function UN,s(x, ε) is a solution to the boundary value problem




∆UN,s = fN,s, x ∈ Ω,

∂UN,s

∂n
= 0, x ∈ ∂Ω\{γε+ ∪ γε−},

UN,s = 0, x ∈ γε±.

(46)

We multiply equation in (46) by UN,s(x, ε) and integrate the obtained identity over Ω. Inte-
grating by parts in the left hand side of the latter identity, by (44) we have

‖∇UN,s‖L2(Ω) = O
(
ε

N
2

)
. (47)

It was shown in [27] that the minimal eigenvalue of the boundary value problem




−∆ψε = λεψε, x ∈ Ω,

∂ψε

∂n
= 0, x ∈ ∂Ω\γε+,

ψε = 0, x ∈ γε+,
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has the asymptotics λε = ε2πCγ+|Ω| + O(ε2). Hence, variational properties of the eigenvalues
of boundary value problems imply (see, for instance, [16, Ch. IV, Sect. 1, Subsect. 4]) that for
the functions in W 1

2 (Ω) vanishing on γ+ the estimate

‖w‖2L2(Ω) 6
1

επCγ+|Ω|
‖∇w‖2L2(Ω)

holds true for sufficiently small ε. Together with (47) and (45) it yields the identity

‖ũN,s − u‖W 1
2
(Ω) = O

(
ε

N−1

2

)
.

Finally, this identity, definition (42) of function ũN,s(x, ε) and the arbitrary choice of N and s
complete the proof of the theorem.

6. Proof of formulae (2), (3)

Let H be an arbitrary cross-section of domain Ω not containing points O±, and Hµ be the
µ-neighborhood of H for sufficiently small µ. Then the solution to boundar value problem (46)
satisfies estimate [16, Ch. IV, Sect. 2]

‖UN,s‖W 2
2
(Hµ) 6 C‖fN,s‖L2(Ω). (48)

Since

‖w‖L2(H) 6 C1‖w‖W 1
2
(Hµ),

[16, Ch. III, Sect. 5], it follows from (48), (44) and the inequality ‖w‖L1(H) 6 |H|‖w‖L2(H)

that ∫

H

∣∣∣∣
∂UN,s

∂nH

∣∣∣∣ dS = O
(
ε

N
2

)
.

By definitions (45) and (42) of functions UN,s(x, ε) and ũN,s(x, ε) and arbitrary choice of N it
yields that

∫

H

∂u

∂nH
dS =

∫

H

∂ûN
∂nH

dS +O
(
εN+1

)
. (49)

Substituting (49) into (6), in view of identities (22) and (35) and [22, Lm. 2] we obtain that

I =σ

∣∣∣∣
N∑

k=1

εkBk−1

∫

H

∂

∂nH

( 1

r+
− 1

r−

)
dS

∣∣∣∣+O(εN+1) = 2πσ

∣∣∣∣∣

N∑

k=1

εkBk−1

∣∣∣∣∣+O(εN+1). (50)

Since B0 > 0 and B1 > 0 by (23) and (29), substituting (50) and ∆U = 2 into (5), by arbitrary
choice of N we arrive at formula (2) for R(ε), where

R−1 =
1

πσB0

, R0 = − B1

πσB2
0

.

And finally, the latter identities and values (23), (29) of constants B0, B1 we obtain formulae
(3) for R−1 and R0.
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// Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern. 9:2, 323–330 (1930).
3. R. Holm. Electric constacts. Springer-Verlag, Berlin (1958).

4. O.M. Pavleino, V.A. Pavlov, M.A. Pavleino. Effect of the spreading of the contact spot on the

pulsed heating of electrodes // Elektron. Obrabotka Mater. 47:4, 142–149 (2011). [Surf. Eng. Appl.
Electrochem. 47:4, 142–149 (2011).]

5. I.V. Plokhov. Model of dynamics of current transfer through sliding contact // Elektrotechnika. 2,
28–33 (2005). (in Russian).

6. V.V. Filippov, N.N. Polyakov. Potential distribution in anisotropic conductor cristalls and films in

measuring electric conductivity and Hall coefficient // Bull. Univ. Chernozem’e. 24:2, 6-10 (2011).
(in Russian).

7. A.A. Ershov. Asymptotics of the solution to the Neumann problem with a delta-function-like bound-

ary function // Zhurn. Vychisl. Matem. Matem. Fiz. 50:3, 479–485 (2010). [Comp. Math. Math.
Phys. 50:3, 457–463 (2010).]

8. A.A. Ershov. Asymptotics of the solution of Laplace’s equation with mixed boundary conditions //

Zhurn. Vychisl. Matem. Matem. Fiz. 51:7, 1064–1080 (2011). [Comp. Math. Math. Phys. 51:7,
994–1010 (2011).]

9. A.A. Ershov. On measurement of electrical conductivity // Zhurn. Vychisl. Matem. Matem. Fiz.

53:6, 1004–1007 (2013). [Comp. Math. Math. Phys. 53:6, 823–826 (2013).]
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