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ON ASYMPTOTIC FORMULA FOR ELECTRIC RESISTANCE
OF CONDUCTOR WITH SMALL CONTACTS

R.R. GADYL’SHIN, A.A. ERSHOV, S.V. REPYEVSKY

Abstract. We construct and justify rigorously the complete asymptotic expansion for
the electric resistance of a three-dimensional resistance connected by two small contacts of
arbitrary shape. We obtain explicit formulae for the first two terms in the asymptotics gen-
eralizing the classical Holm formula of one-term asymptotics for two small round contacts
of same radius.
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INTRODUCTION

Work [I] is one of the first papers where the well-known Holm approximation of electric
resistance of an arbitrarily shaped pattern was mentioned:
1
R(e) = 50 +0(1), €—=0, (1)
where ¢ is the radius of small round contacts on a flat part of a surface, o is the conductivity of
a material. In the experimental test made in [2] the error of formula () did not exceed +1,5%.
In the monograph by R. Holm [3] an analytic justification of formula (I]) was provided. Holm
approximation ([I) is often employed in the modern problems, see, for instance, [4], [5].

In the present work we consider the case of arbitrarily shaped contacts not necessarily being
the same. We construct the complete asymptotics for the resistance. For the leading term
of the asymptotics we obtain an explicit formula, in which we reflect the dependence on the
geometry of the contacts, cf. formulae (2)), ([B) below. We also provide the formula for the
next-to-leading term in the asymptotics for the resistance.

In order to do it, in the present work we construct the complete asymptotic expansion for
the solution of the boundary value problem describing the electric potential of the conductor
connected by means of small or so-called “point” contacts (see, for instance, [6]). By this
expansion we find the asymptotic for the electric resistance.

In conclusion we mention that a two-dimensional analogue of similar studies was provided in
works [7HI].

R.R. GADYL'sHIN, A.A. ErRsHOV, S.V. REPYEVSKY, ON ASYMPTOTIC FORMULA FOR ELECTRIC RESIS-
TANCE OF CONDUCTOR WITH SMALL CONTACTS.

(© GaDpYL'SHIN R.R., ErsHov A.A., REP’EVSKIJ S.V. 2015.

The work of the first author is made in the framework of basic part of state task in the field of scientific
activity of Ministery of Education and Science of Russia. The work of the second author is supported by RFBR
project no. 14-31-50424-molnr and the Foundation for supporting young scientists “Moebius contest”. The
third author is partially supported by RFBR project no. 14-01-00322.

Submitted April 15, 2015.

15


http://dx.doi.org/10.13108/2015-7-3-15

16 R.R. GADYL’SHIN, A.A. ERSHOV, S.V. REPYEVSKY

1. FORMULATION OF PROBLEM AND MAIN RESULTS

Let z = (z1,72,73), a conductor 2 be a bounded simply-connected domain in R?® with
boundary 02 € C'*°. We assume that this boundary has two flat parts to which we associate
two Cartesian coordinate systems O,z zgx3 and O_zyzy25; zo = (of, 23, 25). Let us
describe the shape of small contacts 75 and 7° in these coordinates. Let sets v and «_ are the
closures of bounded simply connected domains on the planes z3 = 0 and x5 = 0, respectively,
v+ € C™. As the cross-sections of the small contacts we choose 75 = {z4 : e 'zy € 1},

0<e< 1 (Fig. ).

FiGurg 1. Conductor 2

The first coordinate system will be regarded as the main one. This is why sometimes we
shall omit the symbol “+” and we shall write it as Oz zox3; © = (21, T2, T3).
In the work we obtain the following asymptotic formula for the electric resistance:

R_
R(e) = — +R0+Z»s R;, (2)
7=1
where
_ Oy, + 0y _
R, = m, Ry = oo (G+(Of) + G*(OJr))' (3)

Hereinafter C.,, > 0 are the capacities of disks 4 (see, for instance, [10, Ch. 2, Sect. 1], [11, Ch
2, Sect. 3]), G(z) = ri' + g+ (x), where r, = |z|, r_ = |2~|, while functions g.(x) € C>(Q)
solve the boundary value problems

Ag:l: = 07 T e Qu
dgs o (1 (4)
= = o — — [ — Q\O O;) =
on ™ on (Tj:) , T E 0 \ =+ g:l:( :IZ) 07
where n is the outward normal. The existence of such functions is well-known ( [12, Ch. 2,
Sect. 2, Subsect. 122], [I3, Ch. 6, Sect. 7,8]).

2
If 4 are the unit circles, then C,, = — [1I, Ch. 2, Sect .3], [14, Ch. 1, Sect. 4]. This is why
77

even for the particular case of small circular contacts 75 of radius e considered in [IH3], by (),
@) we obtain the identity
1 1
Re)=— — — (G,(O+) + G+<0,)) +0(e)

20 2mo
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specifying classical formula ([II). We note that for certain shapes of disks 7 their capacities C,
can be found explicitly [10,[11]. In particular, if vy is the ellipse with axes a and b, then

C

a
K2 —1?]/a)’
w/2

dt
] v 1—22sin“t

is the complete integral of the first kind [T, Ch. 2, Sect. 3].

We also observe that the flatting of the boundary at the place of connecting of contacts
is, first, natural from the technological point of view and, second, makes no influence on the
leading term in the asymptotics (cf. the remark in the next section).

where

2. REDUCING OF CALCULATING RESISTANCE TO SOLVING BOUNDARY VALUE PROBLEM

Since by the Ohm’s law

AU
R = 7 (5)
where AU is the difference of the potentials at the contacts, and [ is the current strength
passing through the conductor, knowing electric potential u(x,¢) at each point of conductor €2,
we can calculate the difference of potentials AU = |u(O;) — u(O-)| and the current strength
as the absolute value of the surface integral over any cross-section H of the conductor:

ou '

I=|oc | —dS

anH

(6)

H

w
is the density of the current strength
Ny

passing through the cross-section H (cf., for instance, [14, Ch. 3, Sect. 21]).
Electric potential u(x,e) is modeled by means of solution to the following boundary value

problem:

where ny is the normal to the cross-section H, and o

Au=0, xz€f),
ou . .
o =0, zedN\{rTU~}, (7)

u:Uzl:a ZEG’Y:&b

where Uy, U_ are the potentials on contact surfaces, n is the outward normal [14, Ch. 3, Sect.
21], [3 Sect. 4].

Since the sought resistance of conductor is independent of the voltage, for simplicity we let
U, =1,U_ = —1. That is, instead of ([7]) it is sufficient to consider the following main boundary
value problem

Au=0, xz€f,
ou . .
o =0, zedN\{r7U~}, (8)

u==x1, x€5.

By [15] and smoothness improving theorems for solutions to elliptic equations [16, Ch. TV,
Sect. 2, Subsect. 3] we obtain the unique solvability of problem [®) in the class of functions
Co(N\{0L U }) NC(Q).
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Remark 1. If the boundary is not flat in the vicinity of contacts connection, it can be made
flat by a local change of variables. Of course, Laplace operator becomes an operator with variable
coefficients that makes no influence on calculating the leading terms of the asymptotics. At
the same time, it makes the procedure of constructing the complete asymptotics longer and
more complicated technically, see [17], where the eigenvalue problem for a second order elliptic
operator with variable coefficients and a change of the type of boundary condition on a small
piece of the boundary was considered. We observe that a similar situation appears also for other
singular perturbations contracting to a point (for small holes see [18], [19]).

3. CONSTRUCTION OF LEADING TERMS OF ASYMPTOTICS FOR SOLUTION TO BOUNDARY
VALUE PROBLEM ([8))

We construct the formal asymptotic for solution u(z,e) to boundary value problem (8) as
e — 0 by the method of matching asymptotic expansion [18], [20], [21].

Following this method, it is natural to construct the asymptotic expansion of function u(x, €)
in the vicinity of the parts of the boundary ~1 (i.e., in the vicinity of points O4) as

ol =0 () + v (22) + Do (), )

Substituting series () into (8) and passing to internal variables {1+ = ==, we obtain the bound-
ary value problems for internal expansions:

(A¢vy =0, & >0,
+
ov
6—0207 fiEFiI:{fiifgtzougi¢7i}v
\ §3
( Ag:l:v_;t = 07 fgl: > 0,
v;—L =0, §x € Vx, (11)
+
%:Q’ &L el 7=1,2,..
\ 03

Hereinafter we employ the notation (éli, &, £§E) = &4, while A, stands for the Laplace operator
in variables £.. A
We also denote ps = |&4|, R3® = {&4 : €& > 0}. By X]i(gi) and Xf”(fi) we denote

. . . C e .. ox+ ax*Hi
homogeneous harmonic polynomials of degree j satisfying the condition agﬁf = ﬁ =0
3 3

as & = 0. It follows from the definition that X jipfj X ]i "2 ~! are harmonic functions

. . .. 8X-ip;2j ! + + 8X-i’ip;2j_1 + +
satisfying condition ’T(fl ,65,0) = ’T(fl ,65,0) =0as & #0. In [22, Lm. 3]
3 3

the following statement was proven.

Lemma 1. For each function & € C™®(vyy) there exists a solution v € C* <Eii\8fyi> N
C <Ei’i> to the boundary value problem

Av=0, & >0,

U:(I)7 giefy:lm

ov
@:07 g:l:EF:lzu
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having the differentiable asymptotz’cs

v(€s) +2Xi oY, Py — 00.

We denote by FE(£+;7+) the function satisfying Lemma[Ilfor ® = 1. In terms of the notations
of this lemma we have

(S:I:v’y:l: +ZX:|: _1_2" P+ — 00,

where, we recall, C., > 0 are the capacntles of disks v.. We observe that if v is the unit circle,
then

2 2
E(&4;v4) = — arctan ;
i Pr—1+ (k- 12 +4(5)?

see, for instance, [14, Ch. 1, Sect. 4].
It follows from the definition of F({+;~+) that the functions

(€)= 25 Blesin)) £ (1- CB—) 12)

solve boundary value problems (1) for each constant By and have the asymptotics

B )y Bo, 3N ()
+ _ 0 0
Vo (S:I:)—:t (1— CVi) :tp—i+j1 Jp?gﬁ’ P+ — OO. (13)

Rewriting (I3]) in external variables x4 = £, we have
+ 00 X:I:O .T )
+ (X BO :I:
Uy <?) + (1 — C—%) + Z , ET4+ — OQ.

Hence, following the method of matching asymptotlc expansions, we obtain that the external
expansion should read as

= Z&tkuk(:c), (14)

where

uo(w) =AF +o(1), re—0, (15)
uy(z) = i?JrO( 1), rx—0, (16)

+

x+0 ‘

uy (@) :# +O(rIM), re—0,j=2,3,.. (17)

Ty

B
o (1-22). 1

A== (1-22) )

Substituting expansion (I4]) into (§) and equating the coefficients at the like powers of ¢, we
obtain the following boundary value problems:

{Auk—(), x €,

?;f =0, 2€dN{0,UO_}, k=0,1,..

(19)
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By (), the function
ui(z) = Bo <G+(x) - G_(x)) A (20)
solves boundary value problem (I9) and (I6) for each constant A;.
It is obvious that if
Ay = Af = Ay, (21)
then function
up(r) = Ao (22)
satisfies (I9) and (IH)).

Solving system of linear equations (&) and (2II), we obtain that
C“/+ — C’Y— By = QC’H C“/—

Cop + 0 Gy + 05
Thus, functions (), vi(£+) are well-defined thanks to identities (22), (I2) and (23), while

function u, () is defined by identity (20) up to an additive term A;.
In what follows by in(fi) and Y}i’l(gi) we denote homogeneous harmonic polynomials of

.A() = (23)

+ +,1
degree j satisfying condition E;% = 88% =0as & = 0. It follows from (20) that
3 3
B o
w(z) ==+ 7«_0 + A1 F BoG=(01) + > Y (zg), ra — 0. (24)
+ —

Employing identities (22) and ([24)), we rewrite the asymptotics of the sum wug(z) + cui(x) as
r+ — 0 in terms of internal variables &

() + e () = Ay + f—i + e(Al ¥ BOG¢(Oi)) I (N

j=1
It yields the asymptotics at infinity of functions v;f(£4):
B
vy (€x) Aoip—°+0<pi ), px— 00, (25)
vi (&) =A1 F BoGx(0+) + O(p'),  px — 0, (26)

Ui (€2) =V (62) +O(0E?), pe =00, k=23,

We note that functions v3 (£1) defined in (I2) have asymptotics (25) (see (I), ).
The definition of functions F({4;~v+) implies that for each constant Bj, the functions

o (E) = % 2 (BlEaia) — ) 27)

T+

solve boundary value problems (I1]) and have the asymptotics

[e'e) :I: 1 é:l:
vE(Ey) = 5 +Z P — 00. (28)

Comparing the latter identity with (26]), we get the following system of linear equations for A,
and By:

B
:FC—I = Ay T ByG+(02).

T+
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In view of (23) we obtain that, first,

265,05
A . +C, (C,G-(04) = C,_G4(0-)),
C..C 2 (29)
B, =2 (W) (G4(0.)+G(0,)),

and, second, asymptotics (28] specify asymptotics (26]).
By means of identities (I3]) and (28)), we rewrite the asymptotics of the sums v3 (£x) +evi(€4)
as p+ — 0o in external variables x:

X:I:,O +
VE (E2) + 2vE (€4) = Ay + = (i@ AT BOG¢(Oi)) 4e2 (% 4 lj—i) +
+

X (we) X (s)
+Z€J< j2]1 i =l

Ty

Following the method of matching asymptotic expansions, we specify asymptotics (I3]), (0],

(@D):

up(z) =Ap + o(1), uy(z) = i? + Ay F ByG+(01) + O(ry), 1L —0, (30)

+
Xio T B
us () % + L 1+0(1), ry—0, (31)
+ r+
Xifo €T Xl .
Uj(l’) = ’ 2§<—1i) + ’ 2§<3i) + O(T;]+2), r+ — Oa j - 3a47 s
Ty Ty

Functions wug(z) and u(x) defined by identities (22)) and (20) satisfy B0)(cf. ([24])).
Lemma 2 in [22] implies the following statement.

Lemma 2. Let n > 1. Then for each X*(x.) there exist functions Us(x) € C®(Q\O)
solving boundary value problems

s se OO\Oy,

{AUi—O, x €,
on

and having differentiable asymptotics

X:I:
Us(z) = (7+) ZYi Ty), ry — 0.

2n+1

By (@) and Lemma 2] there exists a solution us(z) € C* (2\{O4 U O_}) to boundary value
problem (9)), (1), which can be represented as

X0 X0 B B
ug(:c): 1T§E:€+)+ 1@(37 )+T_+1__1+u2< )+A2, (32)

where uy, € C*® fQ ts(z)dz = 0, and Ay is an arbitrary constant.
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In particular, it follows from (22)), 20), B2), (I2), 7), 23) and (29) that

_Cw B C%
UQ(ZL') _C'y+ + C»yf )
20,0, 1
(o) 5o (G+<x> ~Goe)+ g (€.600) - ¢, G.(0) ).
X+’O(l‘ ) ( ) (33)
up(z) =— 3 = + 3 +
e °
C“/+C'y— 1 1 ~
where @, € C*(Q), and A2 is an arbitrary constant,
20
+ _ gk . —
Yo (g:l:) =+ (]- + CAH_ + ny_ (E(§i77i) 1)) ’
e i [CES
v (e) = 22— (G4 (0-) + G_(04) )  B(Es372) — 1).
(Cy +C5)

Thus, we have constructed leading terms ug(x), ui(x), uz(x) (up to an additive constant A,),
vE(€x), vF(£x) of formal expansions (I4) and (@). The construction of complete asymptotic
expansions (I4) and (@) and their rigorous justification will be provided in the next two sections.

4. FORMAL CONSTRUCTION OF COMPLETE ASYMPTOTICS
FOR SOLUTION TO BOUNDARY VALUE PROBLEM ([§])

This section is devoted to the proof of the following statement.

Theorem 1. There exist series (1)), (9) such that

1) functions uy(z) € C* (Q\{O+ U O_}) solve boundary value problems (L9);

2) functions ug(z), uy(x), us(z) satisfy identities (33), where Uy € C®(Q), and A, is some
constant;

3) as k =1, functions ui(x) have the following asymptotics:

k-1 _

= X (s )i Bi_1 A Zik 0: 35

ug(z) = Z 2T r + A+ Z (x), Ty — 0; (35)
q=1 j=1

4) functions vk (éy) € Cm(ﬁi’i\avi) N C’(Ei’i) solve boundary value problems (1), (I1);
5) functions vo T (£1) and vif(€x) satisfy identities (34);
§+)

6) functions v;, £(€4) have the following asymptotics:

Ed

-1 0 X:I:k
vp(Ee) =) 27 )+v4ii Z QHI i — 00. (36)

q=1

Proof. Formulae (B6) for vF are implied by (I3) as + <1 cio ) .= A%, while for vi they are

c?li .= AT Identity (35) for u; coincides with (24).
It follows from (32) that
X:l: 0( ) Bl

S AT+ A+ 27 as),  wa 0, (37)
+ T+

us(x) = ‘

where A3 are fixed numbers, and A; is an arbitrary constant.
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By Lemma [I there exist solutions 75 € O <Eii\8'yi> nc (]Ri’i) to boundary value
problem (II]) with the asymptotics

() =226+ 2 00, pa o
where BF are fixed numbers. Then for each numbers BF, the functions
ﬁﬁozﬁ@gigi@wawﬁ—ﬂeC“@ﬁﬂmng@ﬁﬂ
are solutions to boundary value problems (III) with the following asymptotics
By N By + By
C’Yi P+

v (62) =217 (62) F +0(ps%). ps = o0, (38)
Comparing the latter identity with required identity (36]) for & = 2, we obtain a linear equation
for By and B, :
Bf + Bf =B, + B, = B.. (39)
Comparing (B8) with (36), and ([B37) with (35, we obtain extra two linear equations for By , By
and AQI
By

T2 = AF 4+ Ay = AL (40)
C’Yi

Since the determinant of system of equations (39), (@0) is equal to CL + CL, it is uniquely
T+ v

solvable. Calculating By, By and A, we find By, A3 by (89), (@) and therefore, we finally
determine vy (£1) and uy(x) achieving at that identities (B5) and (B6) for k = 2.

Moreover, by Lemma [ there exists solution us(z) € C* (2\{O; UO_}) to boundary value
problem (I9) with the asymptotics
_ X () N Xi(es) | By

+ 2 L A+ A+ 2% ay), e — 0,
rl ri T4 3 3 Z ;i (zx) +

uz(z)
j=1

where .Z:f are fixed numbers and Aj is an arbitrary constant. That is, we have obtained an
analogue of identity (37)) for the next step.

Repeating the above described procedure, we find successively Bs, Az, As, determine finally
vy (€+) and uz(z) and achieve identities (35) and (B8] for k& = 3, while by Lemma [2] we obtain
the existence of solution us(z) € C* (Q\{O4 UO_}) to boundary value problem (IJ) with the
asymptotics

£,0 +,1 +,2
_ X3 (z4) + X5 (w4) 4 X1 (zs)

7 5 3
Ty T3 Ty

B

. AT+ A+ Z5Naw), 10,

J=1

+

uy ()

where .Zf are fixed numbers and A, is an arbitrary constant, and so forth. The proof is
complete. 0

5.  JUSTIFICATION OF CONSTRUCTED ASYMPTOTICS FOR SOLUTION TO BOUNDARY VALUE
PROBLEM ([§])

We denote by By (t) the ball of radius ¢ centered at point O,. This section is devoted to the
proof of the following section based on the approach employed in justifying the asymptotics for
the eigenvalues of boundary value problems with a change of type of boundary condition on a
small part of a boundary [23H26].
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Theorem 2. Suppose that functions up(x) and vi(£x) satisfy the hypothesis of The-
orem [Q  Then the solution to boundary value problem (8) has asymptotics (Ij)) in
O\ (B, (e) U B_(y/¢)) and asymptotics {9) in QN Bx(\/€) in the sense of Wi-norm.

Proof. We denote by @iy (x,¢) and 0y (7, ¢) partial sums of series (I4)), (), respectively, up to
the powers . Statements 3) and 6) of Theorem [ imply the following differentiable identity

N+1
Un(z,e) — 0k (x,¢) = O(sri +e ri+<;) )7 ry — 0, %—>oo. (41)
-

Let x(t) be an infinitely differentiable cut-off function vanishing as ¢ < 1 and being equal to
one as t > 2. We denote

(42)
(- (3)) e (1 ()
Then function uy (z, ) solves boundary value problem
AaN,s = fN,sa S Qa
du,s
=0, wed\{1; Uy}, (43)
?jN,s = :l:l, xr € "}/i,

where

Ins(z,e) = (in(z,e) — U5 (x,€)) Ax (Sr\/f) (Un(z,€) = Un(2,2)) Ax (S%)

+V (in(z,8) — 55 (,2)) V ( )+uN:E5 i(xe))Vx(%).

). (44)

%\

By (41)) it implies that

w2

| Fxsllza@ = O (=
Denote
Uns(z,e) =uns(x, ) —u(z,e). (45)
By (®) and (43]) we obtain that function Uy s(z,€) is a solution to the boundary value problem
AUns = fns, T €1,
OUN,s

on
UN,s = 0, xr e ’yi.

=0, zcIN{T U}, (46)

We multiply equation in (€) by Uy s(z, ) and integrate the obtained identity over Q. Inte-
grating by parts in the left hand side of the latter identity, by (44]) we have

VUl = O (%) (47)
It was shown in [27] that the minimal eigenvalue of the boundary value problem
_Awa = )\E'QZJE, YIRS Qa

e .
on = 07 S aQ\fy-i—u

e =0, r €5,
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has the asymptotics A\. = e27C,, Q| + O(¢?). Hence, variational properties of the eigenvalues
of boundary value problems imply (see, for instance, [16, Ch. IV, Sect. 1, Subsect. 4]) that for
the functions in W3 () vanishing on v, the estimate

1

2 2
w7, < WHVMHLQ(Q)

holds true for sufficiently small e. Together with (47)) and (45) it yields the identity

~ N-1
[un,s — uHVVQl(Q) =0 (8 2 ) .

Finally, this identity, definition (42]) of function @y s(z, ) and the arbitrary choice of N and s
complete the proof of the theorem. O

6. PROOF OF FORMULAE (2]), (3]

Let H be an arbitrary cross-section of domain 2 not containing points O, and H, be the
p-neighborhood of H for sufficiently small . Then the solution to boundar value problem ({al)
satisfies estimate [16, Ch. IV, Sect. 2]

1UNsllwzm,) < Cllfnsllra@)- (48)
Since
[wllzeeny < Crllwllwy ).,

[16, Ch. III, Sect. 5], it follows from (4§), ([@4) and the inequality ||wl|z,m) < |H|||w]|Loca)

that
/ '%lﬁ; as =0 (=%).
H

By definitions ([45) and (42) of functions Uy s(z,¢) and uy s(z, €) and arbitrary choice of N it
yields that

Ou s = /m—NdS—i-O(NJrl). (49)

6nH 811]{

Substituting (49) into Gﬁl), in view of identities (22)) and (B3] and [22] Lm. 2] we obtain that

Z €kBk 1

k=1

4+ O(eN ). (50)

r_

k = N+1\ _
By 1/8nH )ds‘+0( ) = 21

Since By > 0 and B; > 0 by ([23) and (29]), substituting (B50) and AU = 2 into (@), by arbitrary
choice of N we arrive at formula (2)) for R(e), where

1 B
R{i=—— Ry =— .
! ’ 0 7TO'B§

And finally, the latter identities and values (23)), (29) of constants By, I3; we obtain formulae
@) for R_; and Ry.
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