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TAUBERIAN COMPARISON THEOREMS AND HYPERBOLIC
OPERATORS WITH CONSTANT COEFFICIENTS

YU.N. DROZHZHINOV, B.I. ZAVIALOV

Abstract. As Tauberian comparison theorems one usually means theorems which by a
prescribed asymptotic behavior of the ratio of some integral transforms of two (generalized)
functions make a conclusion on asymptotic behavior of other integral transformations of
these functions. In the work we prove the comparison Tauberian function for the generalized
functions whose Laplace transform have a bounded argument. In particular, examples of
these functions are the kernels and the fundamental solutions of differential operators with
constant coefficients hyperbolic w.r.t. a cone.

Keywords: generalized functions, Tauberian theorems, quasi-asymptotics, operators
hyperbolic w.r.t. a cone.

1. Introduction

Theorems of Tauberian type are the theorems relating asymptotic behavior of a function
(generally speaking, a generalized one) at infinity (or at zero) with the asymptotic behavior of
their Laplace transform, Fourier transform or other integral transforms, of generating functions,
etc., in the vicinity of zero (or of infinity). Theorems inverse to Tauberian theorems are called
Abelian.

By Tauberian comparison theorems one means the theorems in which by a prescribed
asymptotic behavior of quotient of integral transform for two (generalized) functions an
asymptotic behavior of quotient of two other integral transforms is described. As one of the
comparison function, in such theorems a so-called “admissible” generalized function is used.
A typical one-dimensional Tauberian comparison theorem for the measures is the Tauberian
theorem by M.V. Keldysh. We provide it in the formulation of work [1].

Theorem 1.1 (M.V. Keldysh (1951)). Let 𝜇(𝜉) and 𝜈(𝜉) be positive increasing functions
defined on the half-line (0,+∞) vanishing in the vicinity of zero. Suppose that 𝜇 is differentiable
and satisfies the conditinos

lim
𝜉→∞

𝜇(𝜉) = ∞, 𝛼 <
𝜉𝜇′(𝜉)

𝜇(𝜉)
< 𝛽, (1.1)

where 0 < 𝛽 < 𝛼 + 1. If
∞∫︁
0

𝑑𝜇(𝑡)

(𝑡+ 𝜉)[𝛽]
∼

∞∫︁
0

𝑑𝜈(𝑡)

(𝑡+ 𝜉)[𝛽]
, 𝜉 → +∞,

then 𝜇(𝜉) ∼ 𝜈(𝜉) as 𝜉 → +∞. Here [𝛽] is the integer part of 𝛽.
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Condition (1.1) called “M.V. Keldysh Tauberian condition” belongs to admissible conditions
to be satisfied by one of the functions involving in a Tauberian comparison theorem. In
monograph [2] a Tauberian comparison theorem was proven for generalized functions whose
Laplace transform have a non-negative real part.

On basis of a multi-dimensional generalization of a notion of regularly varying function,
in works [2], [3], [4] there was proven a series of multi-dimensional Tauberian theorems in the
asymptotic scale of regularly varying functions; it included also comparison theorems. The scale
of regularly varying functions was expounded in [7]. These theorems had numerous applications
in spectral theory, probability theory and various models of mathematical physics [2], [8], [9].
The present paper is the continuation of work [5]. We show that a generalized function whose
Laplace transform has a bounded argument is admissible. In particular, such functions are
the kernels of operators hyperbolic w.r.t. a cone. We prove a Tauberian comparison theorem,
in which as compared generalized functions we choose kernels and fundamental solutions of
operators hyperbolic w.r.t. homogeneous cones.

2. Basic notations and some definitions

Let Γ be a closed acute regular bodily homogeneous cone in R𝑛 with the vertex at 0,

Γ* = [𝑦 ∈ R𝑛 : (𝑦, 𝑡) ≥ 0, 𝑡 ∈ Γ], 𝐶 = intΓ*

be the dual cone. Among such cones there is, for instance, the light cone of future

Γ = 𝑉 +
𝑛 = [𝑡 = (𝑡0, 𝑡) ∈ R𝑛+1 : 𝑡0 > |𝑡|]

and the positive quadrantal cone

R̄𝑛
+ = {𝑡 ∈ R𝑛 : 𝑡𝑗 > 0, 𝑗 = 1, . . . , 𝑛}.

These two cones are self-adjoint.
By 𝑆 ′(Γ) we denote the space of tempered functions with supports in cone Γ. The Laplace

transform of generalized functions 𝑓(𝑡) ∈ 𝑆 ′(Γ) defined by the formula

𝐿[𝑓(𝑡)] ≡ 𝑓(𝑧) = (𝑓(𝑡), 𝑒𝑖(𝑧,𝑡)), 𝑧 = 𝑥+ 𝑖𝑦, 𝑥 ∈ R𝑛, 𝑦 ∈ 𝐶,

makes an isomorphism of convolution algebra 𝑆 ′(Γ) onto algebra 𝐻(𝑇𝐶) of functions
holomorphic in the tubular domain 𝑇𝐶 = R𝑛 + 𝑖𝐶 with the polynomial rate of growth at
the boundary:

| ̃︀𝑓(𝑧)| 6𝑀
(1 + |𝑧|)𝑎

∆𝑏
𝐶(𝑦)

, 𝑧 = 𝑥+ 𝑖𝑦 ∈ 𝑇𝐶 ,

for some 𝑀 , 𝑎, 𝑏 depending on ̃︀𝑓 . Here ∆𝐶(𝑦) is the distance from 𝑦 to the boundary of cone
𝐶. Generalized function 𝑓(𝑡) ∈ 𝑆 ′(Γ) is called spectral function for ̃︀𝑓(𝑧).

The Cauchy kernel of tubular domain 𝑇𝐶 is introduced by the formula

𝒦𝐶(𝑧) = 𝐿[ΘΓ(𝑡)](𝑧) for 𝑧 ∈ 𝑇𝐶 ,

where ΘΓ(𝑡) is the characteristic function of cone Γ. By the regularity of Γ, Cauchy kernel is
the divisor of unity in algebra 𝐻(𝑇𝐶). This is why generalized functions Θ𝛼

Γ(𝑡) defined by the
formula

𝒦𝛼
𝐶(𝑧) = 𝐿[Θ𝛼

Γ(𝑡)], −∞ < 𝛼 <∞,

form convolution Abelian group: Θ𝛼
Γ ⋆Θ𝛽

Γ = Θ𝛼+𝛽
Γ . Generalized function 𝑓 (−𝛼) = Θ𝛼

Γ ⋆𝑓 is called
primitive (or derivative for 𝛼 < 0) of a generalized function 𝑓 ∈ 𝑆 ′(Γ) of order 𝛼 w.r.t. cone Γ.
In particular, 𝜇(𝑡) =

∫︀
(𝑡−Γ)∩Γ 𝑑𝜇(𝑡) is the primitive of measure 𝑑𝜇(𝑡) w.r.t. cone Γ. And the half

derivative 𝛼 = −1
2

w.r.t. the cone of future is the D’Alambert operator

Θ
− 1

2

𝑉 3
+

(𝑡) = 𝑐𝑜𝑛𝑠𝑡(𝜕20 − ∆)𝛿(𝑡), 𝑡 = (𝑡0, 𝑡1, 𝑡2, 𝑡3),
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By 𝒜(Γ) we denote the set of proper linear automorphisms of cone Γ so that

𝑈 ∈ 𝒜(Γ) : 𝑈Γ ⊂ Γ, det𝑈 = 𝐽 > 0.

Respectively, operator 𝑉 = (𝑈𝑇 )−1 defines an automorphism of cone Γ* and hence 𝑉 ⊂ 𝒜(Γ*).
We note that

Θ𝛼
Γ(𝑈𝑡) = 𝐽𝛼−1Θ𝛼

Γ(𝑡).

It is easy to see for the light cone of future 𝑉 +
𝑛 we have Θ𝜎

𝑉 +
𝑛

(𝑡) ∈ 𝐿𝑙𝑜𝑐
2 as 𝜎 > 1− 1

𝑛+1
. Similarly,

for the positive octant R𝑛
+ as 𝜎 > 1

2
we have Θ𝜎

R𝑛
+

∈ 𝐿𝑙𝑜𝑐
2 . Suppose we are given a family

{𝑈𝑘 ∈ 𝒜(Γ), 𝑘 ∈ 𝐼}, where the +∞ is the accumulation potin for the set of indices 𝐼.
Definition. A complex-valued generalized function 𝑢(𝑡) ∈ 𝑆 ′(Γ) is called q-completely

admissible for family {𝑈𝑘 ∈ 𝒜(Γ), 𝑘 ∈ 𝐼} if
1. 𝑢(−𝑞)(𝑡) is locally integrable function;
2. There exists 𝑡0 ∈ intΓ such that

Φ𝑘(𝑡) =
𝑢(−𝑞)(𝑈𝑘𝑡)

𝑢(−𝑞)(𝑈𝑘𝑡0)

𝑡∈𝐾
⇒ 𝛾𝑞(𝑡), 𝑘 → +∞, (2.1)

where 𝐾 is an arbitrary compact in int Γ, and function 𝛾𝑞(𝑡) ̸= 0 is continuous in int Γ;
3. There exists 𝑘0 such that |Φ𝑘(𝑡)| 6 𝜓(𝑡) as 𝑘 > 𝑘0 and 𝑡 ∈ int Γ, where 𝜓(𝑡) is a tempered

function in Γ.

Definition 2.1. A generalized function 𝑢(𝑡) ∈ 𝑆 ′(Γ) is called 𝑞-admissible for cone Γ if for
each family {𝑈𝑘 ∈ 𝒜(Γ), 𝑘 ∈ 𝐼} there exists a subsequence {𝑈𝑘𝑚 ,𝑚→ ∞, 𝑘𝑚 ∈ 𝐼}, w.r.t. which
generalized function 𝑢(𝑡) is 𝑞-completely admissible.

We observe that if function 𝑢(𝑡) is 𝑞-admissible, it is also (𝑞 + 𝑛)-admissible 𝑛 = 1, 2, . . . .
In works [2],[3], [4], [5] admissible and completely admissible functions were introduced,

the examples were given, and some sufficient condition for 𝑞-admissibility were provided.
Such functions cover an important class of functions whose Laplace transform has a bounded
argument. In particular, the kernels of passive operators (their Laplace transform have a non-
negative real part) belong to this class.

Definition 2.2. We shall say that a complex-valued continuously differentiable function
𝑢(𝑡) ∈ 𝑆 ′(Γ) satisfies generalized Keldysh condition if there exists a set of vectors 𝒪 ⊂ Γ

𝑈𝒪 ⊂ 𝒪, ∀𝑈 ∈ 𝒜(Γ); Lin(𝒪) = R𝑛

such that the set

𝐷 =

{︂
𝜉 ∈ C : 𝜉 =

(ℓ, 𝑡)(ℓ, grad𝑢(𝑡))

𝑢(𝑡)
, 𝑡 ∈ int Γ, |ℓ| = 1, ℓ ∈ 𝒪

}︂
is bounded and �̄� ⊂ {𝜉 ∈ C : Re 𝜉 > −1}.

It was shown in work [5] that functions satisfying generalized Keldysh condition are zero-
admissible for cone Γ if Γ is a positive quadrantal angle or the light cone of future. The following
theorem was proven.

Theorem 2.1. Let 𝑢(𝑡) ∈ 𝑆 ′(Γ) be real and

|arg ̃︀𝑢(𝑧)| 6 𝜋

2
𝑚, 𝑧 ∈ 𝑇𝐶 ,

where 𝑚 is an integer. If
Θ𝜎

Γ(𝑡) ∈ 𝐿𝑙𝑜𝑐
2 ,

then 𝑢(𝑡) is [(2 + 𝜎)𝑚]-admissible for Γ.
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3. Tauberian comparison theorems

In work [5], a rather general Tauberian theorem for holomorphic functions of bounded
argument was proven.

Theorem 3.1. Let 𝑓(𝑡) ∈ 𝑆 ′(Γ) and |arg ̃︀𝑓(𝑧)| 6 𝜋
2
𝑚, 𝑧 ∈ 𝑇𝐶 . Suppose also that we are

given a sequence of numbers {𝜌𝑘, 𝑟 ∈ 𝐼} and a family {𝑈𝑘 ∈ 𝒜(Γ), 𝑘 ∈ 𝐼}. If there exists a
domain Ω ⊂ 𝐶 such that

1

𝐽𝑘𝜌𝑘
̃︀𝑓(𝑉𝑘𝑦) −→ ̃︀ℎ(𝑦), 𝑘 → ∞, 𝑦 ∈ Ω,

then for each 𝑞 > (2 + 𝜎)𝑚, where 𝜎 is such that Θ𝜎
Γ ∈ 𝐿𝑙𝑜𝑐

2 ,

1

𝐽𝑞
𝑘𝜌𝑘

𝑓 (−𝑞)(𝑈𝑘𝑡)
𝑡∈𝐾
⇒ 𝛾𝑞(𝑡), 𝑘 → ∞, (3.1)

where 𝛾𝑞 is continuous, and 𝐾 is an arbitrary compact set in int Γ. Moreover, ̃︀𝛾𝑞(𝑖𝑦) =̃︀ℎ(𝑖𝑦)𝒦𝑞
𝐶(𝑖𝑦) and the estimate⃒⃒ 1

𝐽𝑞
𝑘𝜌𝑘

𝑓 (−𝑞)(𝑈𝑘𝑡)
⃒⃒
6 𝜓(𝑡), 𝑘 > 𝑘0,

holds true for some 𝑘0, where 𝜓(𝑡) has a polynomial growth in Γ.

We note that in accordance with Theorem 2.1, function 𝛾𝑞(𝑡) coincides with the function
determined by the condition of 𝑞-complete admissibility, see (2.1). The proof employs essentially
the general Tauberian theorem of work [2] and a special estimate of Cauchy kernel for an acute
regular cone [6]. We note that in the application it is usually assumed that family {𝑈𝑘, 𝑘 > 0} is a
real continuous multiplicative group of linear automorphisms of cone Γ such that {𝑈𝑘(𝑡), 𝑘 > 0}
defines phase trajectories of a simplest dynamical system, the real parts of all the eigenvalues
of the generator for this group are of the same sign [10, 11].

The main aim of this work is to prove Tauberian comparison theorem for holomorphic
functions of bounded argument.

Theorem 3.2. Let 𝑓(𝑡) ∈ 𝑆 ′(Γ), |arg ̃︀𝑓(𝑧)| 6 𝜋
2
𝑚 as 𝑧 ∈ 𝑇𝐶, and function 𝑢(𝑡) is 𝑞-

admissible for Γ, at that, 𝑞 > (2 + 𝜎)𝑚 and Θ𝜎
Γ ∈ 𝐿𝑙𝑜𝑐

2 , while {𝑈𝑘, 𝑘 ∈ 𝐼} is a given family of
linear automorphisms of cone Γ. If there exists a domain Ω ⊂ 𝐶 such that̃︀𝑓(𝑉𝑘𝑦)̃︀𝑢(𝑉𝑘𝑦)

−→ ̃︀𝑝(𝑦), 𝑘 → ∞, 𝑘 ∈ 𝐼, 𝑦 ∈ Ω, (3.2)

then
𝑓 (−𝑞)(𝑈𝑘𝑡)

𝑢(−𝑞)(𝑈𝑘𝑡)

𝑡∈𝐾
⇒

𝛾𝑞(𝑡) * 𝑝(𝑡)
𝛾𝑞(𝑡)

, 𝑘 → ∞, (3.3)

where 𝐾 is arbitrary compact set in int,Γ, ̃︀𝑝(𝑧) = 𝐿[𝑝(𝑡)], and function 𝛾𝑞(𝑡) is defined by
formula (3.1).

Доказательство. Suppose that condition (3.2) is satisfied, while (3.3) is not, i.e., for some
numbers 𝑚0, 𝜀0 > 0 there exists a subsequence

{𝑈𝑘𝑚 ⊂ 𝒜(Γ), 𝑘𝑚 ∈ 𝐼, 𝑚→ ∞}

and a sequence of points {𝑡𝑚 ∈ 𝐾} such that⃒⃒⃒⃒
⃒𝑓 (−𝑞)(𝑈𝑘𝑚𝑡𝑚)

𝑢(−𝑞)(𝑈𝑘𝑚𝑡𝑚)
− 𝛾𝑞(𝑡) * 𝑝(𝑡)

𝛾𝑞(𝑡)

⃒⃒⃒⃒
𝑡=𝑡𝑚

⃒⃒⃒⃒
⃒ > 𝜀0, 𝑚 > 𝑚0. (3.4)
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Letting 𝜌𝑘 = 1
𝐽𝑞
𝑘
𝑢(−𝑞)(𝑈𝑘𝑡0), in view of 𝑞-admissibility of function 𝑢(𝑡) for some subsequence

{𝑈𝑘′𝑚 ,𝑚
′ → ∞} we have

1

𝐽𝑞
𝑘𝑚
𝜌𝑘𝑚

𝑢(−𝑞)(𝑈𝑘𝑚𝑡) =
𝑢(−𝑞)(𝑈𝑘𝑚𝑡)

𝑢(−𝑞)(𝑈𝑘𝑚𝑡0)

𝑡∈𝐾
⇒ 𝛾𝑞(𝑡), 𝑚→ ∞. (3.5)

Here we have omitted primes for 𝑚 that does not spoils the generality in the proof. Moreover,
for 𝑦 ∈ Ω we have ̃︀𝑓(𝑉𝑘𝑚𝑦)

𝐽𝑘𝑚𝜌𝑘𝑚
=

̃︀𝑓(𝑉𝑘𝑦)̃︀𝑢(𝑉𝑘𝑦)

𝐽𝑞−1
𝑘𝑚

̃︀𝑢(𝑉𝑘𝑚𝑦)

𝑢(𝑈𝑘𝑚𝑡0)
→ ̃︀𝑝(𝑦)𝒦(−𝑞)

𝐶 (𝑖𝑦)̃︀𝛾𝑞(𝑖𝑦). (3.6)

Here we have taken into consideration that by (3.2) the first fact in the left hand side tends tõ︀𝑝(𝑖𝑦), while, by Lemma 1 in [2, Sect. 5.2], the second tends to 𝒦(−𝑞)
𝐶 (𝑖𝑦)̃︀𝛾𝑞(𝑖𝑦). In accordance

with Tauberian theorem 3.1 for 𝑚→ ∞ we have
1

𝐽𝑞
𝑘𝑚
𝜌𝑘𝑚

𝑓 (−𝑞)(𝑈𝑘𝑚𝑡) =
𝑓 (−𝑞)(𝑈𝑘𝑡)

𝑢(−𝑞)(𝑈𝑘𝑡)

𝑢(−𝑞)(𝑈𝑘𝑚𝑡)

𝑢(−𝑞)(𝑈𝑘𝑚𝑡0)

𝑡∈𝐾
⇒ 𝑝(𝑡)𝛾𝑞(𝑡). (3.7)

Comparing relations (3.5), (3.7), and (3.4), we arrive at the contradiction that completes the
proof.

Theorem 3.1 and Theorem 3.2 allow us to study the quasi-asymptotic of the kernels
of differential operators with constant coefficients hyperbolic w.r.t. cone 𝐶 and of their
fundamental solutions.

Let 𝑈 = {𝑈𝑘, 𝑘 > 0} be a multiplicative one-parametric group of linear automorphisms of
cone Γ so that 𝑈𝑘 ∈ 𝒜(Γ). At that, we assume that {𝑈𝑘𝑡, 𝑘 > 0, 𝑡 ∈ Γ} define phase trajectories
of the dynamical system

𝑑𝑡(𝜏)

𝑑𝜏
= 𝐴𝑡, 𝜏 = ln 𝑘,

in which all the eigenvalues of matrix 𝐴 being the generator of this group are positive. We recall
the definition of quasi-asymptotics of a generalized function in the scale of regularly varying
functions.

Let 𝑓(𝑡) ∈ 𝑆 ′(Γ) and 𝜌(𝑘) be a regularly varying function. We shall say that 𝑓 possesses a
quasi-asymptotics at zero (at infinity) w.r.t. 𝜌(𝑘) by group 𝑈𝑘 ∈ 𝒜(Γ) if for each test function
𝜓(𝑡) ∈ 𝑆(Γ) and some 𝑔 ∈ 𝑆 ′(Γ), 𝑔 ̸≡ 0,

1

𝜌(𝑘)
(𝑓(𝑈 1

𝑘
𝑡), 𝜓(𝑡)) −−−→

𝑘→∞
(𝑔(𝑡), 𝜓(𝑡))

(︂
1

𝜌(𝑘)
(𝑓(𝑈𝑘𝑡), 𝜓(𝑡)) −−−→

𝑘→∞
(𝑔(𝑡), 𝜓(𝑡))

)︂
, (3.8)

for details see [11].
We consider a differential operator with constant coefficients of 𝑚-th order

𝑄(𝜕) =
∑︁
|𝛼|6𝑚

𝑎𝛼𝜕
𝛼,

∑︁
|𝛼|=𝑚

|𝑎𝛼| ≠ 0.

Operator 𝑄(𝜕) is called hyperbolic w.r.t. cone 𝐶 if there exists a point 𝑦0 ∈ R𝑛 such that
𝑄(𝑦0 − 𝑖𝑧) ̸= 0, 𝑧 ∈ 𝑇𝐶 . We let 𝑃 (𝜕) = 𝑄(𝑦0 + 𝜕) so that 𝑃 (−𝑖𝑧) = 𝑄(𝑦0 − 𝑖𝑧) ̸= 0 and
therefore, it is a hyperbolic polynomial.

Lemma 3.1. A hyperbolic polynomial 𝑃 (−𝑖𝑧) non-zero in 𝑇𝐶 has a bounded argument there.

The proof was provided in [2].
Let 𝑃𝑖(𝜕), 𝑖 = 1, 2, by operators hyperbolic w.r.t. 𝐶 and ℰ𝑖(𝑡) ∈ 𝑆 ′(Γ) be their fundamental

solutions so that for the Laplace transform we have

𝑃𝑖(−𝑖𝑧)̃︀ℰ𝑖(−𝑖𝑧) = 1, 𝑖 = 1, 2, 𝑧 ∈ 𝑇𝐶 . (3.9)
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In particular, it implies that the Laplace transform of fundamental solutions for hyperbolic
operators have a bounded argument in 𝑇𝐶 and moreover, for the group {𝑉𝑘 ∈ 𝒜(𝐶), 𝑘 > 0}
(more precisely, for the phase trajectories defined by this group),̃︀ℰ1(𝑉𝑘𝑦)̃︀ℰ2(𝑉𝑘𝑦)

=
𝑃2(𝑉𝑘𝑦)

𝑃1(𝑉𝑘𝑦)
, 𝑦 ∈ 𝐶. (3.10)

Employing now Theorem 3.2, we obtain the following Tauberian comparison theorem for the
fundamental solutions of hyperbolic operators.

Theorem 3.3. Let 𝑃𝑖(𝜕), 𝑖 = 1, 2, by operators hyperbolic w.r.t. cone 𝐶 = int Γ* and ℰ𝑖(𝑡) ∈
𝑆 ′(Γ) be their fundamental solutions. Let also 𝜎 be such that Θ𝜎

Γ(𝑡) ∈ 𝐿𝑙𝑜𝑐
2 . If for some domain

Ω ∈ 𝐶 and group {𝑉𝑘 ∈ 𝒜(𝐶), 𝑘 > 0}
𝑃2(𝑉𝑘𝑦)

𝑃1(𝑉𝑘𝑦)

𝑦∈Ω
⇒ ̃︀𝑝(𝑦), 𝑘 → ∞, (3.11)

then for some 𝑞
ℰ (−𝑞)
1 (𝑈𝑘𝑡)

ℰ (−𝑞)
2 (𝑈𝑘𝑡)

𝑡∈𝐾
⇒

𝛾𝑞(𝑡) * 𝑝(𝑡)
𝛾𝑞(𝑡)

, 𝑘 → ∞. (3.12)

Here 𝐾 is an arbitrary compact set in int Γ, ̃︀𝑝(𝑧) = 𝐿[𝑝(𝑡)], and function 𝛾𝑞(𝑡) is defined by
formula (3.1), in which 𝑢(𝑡) should be replaced by 𝑃1(𝑡). At that, 𝑞 > (2 + 𝜎)𝑚, where 𝑚 is
determined by Theorem 2.1.

Example. We consider differential operators hyperbolic w.r.t. cone R̄2
+

𝑃1(𝜕) =
𝜕2

𝜕𝑡1𝜕𝑡2
𝛿(𝑡1, 𝑡2)*, 𝑃2(𝜕) =

(︂
𝜕2

𝜕𝑡21
+ 2

𝜕2

𝜕𝑡1𝜕𝑡2
+
𝜕2

𝜕𝑡22

)︂
𝛿(𝑡1, 𝑡2) * .

In 𝑇𝐶 = R2 + 𝑖R2
+, the Laplace transform of their kernels reads as ̃︀𝑃1(−𝑖𝑧) = −𝑧1𝑧2 and̃︀𝑃2(−𝑖𝑧) = −(𝑧21 + 2𝑧1𝑧2 + 𝑧22) does not vanish (here 𝑚 = 4). We havẽ︀𝑃1(𝑦) = 𝑦1𝑦2, 𝛾1(𝑡) = ΘR2

+
(𝑡), ̃︀𝑃2(𝑦) = 𝑦21 + 2𝑦1𝑦2 + 𝑦22,

where ΘR2
+

(𝑡) is a fundamental solution of operator 𝑃1 up to a multiplicative constant. As phase
trajectories we use the rays leaving the origin,

𝑈𝑘𝑡 = 𝑘𝑡, 𝑉𝑘𝑦 =
1

𝑘
𝑦,

𝑑𝑡

𝑑𝜏
= 𝐸𝑡, 𝜏 = ln 𝑘,

i.e., the generator of the group is the unit matrix. By relation (3.12) (up to a constant) we have

1 = 𝑐ℰ2(𝑡)[𝑡2𝛿(𝑡1) + 2𝛿(𝑡1, 𝑡2) + 𝑡1𝛿(𝑡2)].

We observe that this relation is formal since one can not to divide the unit by the factor
from the left, one first should take appropriate primitive w.r.t. cone R̄2

+. In accordance with
the theorem, it is sufficient to take the ninth primitive (in fact, the third is enough). Other
numerous applications of Tauberian theorems can be found in Chapter IV of monograph [2].
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