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Abstract. For a multidimensional generalized Cauchy-Riemann system we study the

Noether property in Hölder spaces of functions bounded on the whole plane. For the case

of constant coefficients we consider the solutions defined on the whole plane or on the half-

plane and having a polynomial growth at the infinity. For the two- and three-dimensional

cases we find appropriate conditions for the coefficients ensuring that the solutions to the

first problem is finite-dimensional or zero or infinite-dimensional, respectively.
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1. Introduction

Let 𝐶𝛼 be the Banach space of complex vector functions 𝑤(𝑧) = (𝑤1(𝑧), . . . , 𝑤𝑛(𝑧)) bounded
in the whole plane and Hölder uniformly continuous with exponent 𝛼. The norm in 𝐶𝛼 is
introduced by the formula

‖𝑤‖𝛼 = sup ‖𝑤(𝑧)‖ + sup
𝑧1 ̸=𝑧2

|𝑧1 − 𝑧2|−𝛼‖𝑤(𝑧1) − 𝑤(𝑧2)‖,

where ‖ · ‖ is the norm in 𝐶𝑛. Let 𝐶1
𝛼 be the Banach space of complex vector functions 𝑤 ∈ 𝐶𝛼

such that 𝑤𝑧, 𝑤𝑧 ∈ 𝐶𝛼. The norm in 𝐶1
𝛼 is introduced by the formula

‖𝑤‖𝛼,1 = ‖𝑤‖𝛼 + ‖𝑤𝑧‖𝛼 + ‖𝑤𝑧‖𝛼.

We consider the multi-dimensional generalized Cauchy-Riemann system

𝐿𝑤 ≡ 𝑤𝑧 + 𝐴(𝑧)𝑤̄ = 0, (1)

where 𝐴(𝑧) is a matrix with the columns belonging to space 𝐶𝛼. For system (1), many
properties of generalized one-dimensional Cauchy-Riemann system are not preserved [1], we
mention the properties like Liouville theorem, the finite dimension of space formed by so-

lutions of power growth, etc. For instance, as 𝑛 = 2 and 𝐴 =

(︂
1 2𝑖

−2𝑖 1

)︂
, system

(1) has infinitely many linearly independent bounded in the whole plane solutions 𝑤𝑎(𝑧) =(︂
1
0

)︂
𝑒𝑖(𝑎𝑧+𝑎𝑧) + 1

𝑎

(︂
2𝑖
−1

)︂
𝑒−𝑖(𝑎𝑧+𝑎𝑧), where 𝑎 =

√
3𝑒𝑖𝛼.
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2. Solutions in the whole plane

As 𝑛 = 2, in work [2] for particular cases of system (1) with a constant matrix 𝐴 there were
considered solutions in the whole plane with the at most power growth at infinity. In works
[3, 4] for arbitrary 𝑛, the issue on nontrivial solvability of system (1) with a constant matrix
𝐴 was considered in the class of functions growing at most as |𝑧|𝑁 as 𝑧 → ∞. In the case of
finite-dimensional space 𝑃𝑁 of such solutions there was obtained the formula for the dimension
of this space:

dim𝑃𝑁 = 2𝑛(𝑁 + 1) − 2
𝑁∑︁
𝑘=0

rank𝐵𝑘, (2)

where 𝐵2𝑗 = 𝐴(𝐴𝐴)𝑗, 𝐵2𝑗+1 = (𝐴𝐴)𝑗+1, 𝑗 = 0, 1, . . . , [𝑁/2]. In [5] for weakly oscillating at
infinity coefficients, i.e., satisfying the condition

lim
𝑧→∞

max
|𝑧−𝜁|61

‖𝐴(𝑧) − 𝐴(𝜁)‖ = 0,

there were found necessary and sufficient condition of Noether property for operator 𝐿 : 𝐶1
𝛼 →

𝐶𝛼. Under the weak oscillation of the coefficients at infinity, the sequence {𝐴(𝑧 + ℎ𝑘)}, where
ℎ𝑘 → ∞, contains a subsequence converging uniformly on each compact set, at that, the
limiting matrix is constant and depends on the choice of sequence ℎ𝑘. The set of all matrices
constructed by all possible sequences ℎ𝑘 → ∞ is denoted by 𝐻(𝐴).

The following theorem holds true.

Theorem 1. Operator 𝐿 : 𝐶1
𝛼 → 𝐶𝛼 is Noether if and only if for each 𝐴0 ∈ 𝐻(𝐴) the matrix

𝐴0𝐴0 has no eigenvalues on the semi-axis (−∞, 0].

In view of this theorem, it is important to find necessary and sufficient conditions for absence
of eigenvalues of matrix 𝐴0𝐴0 on semi-axis (−∞, 0].

As 𝑛 = 2, 3, the condition of absence of eigenvalues on semi-axis (−∞, 0] for matrix 𝐴0𝐴0

can be written in terms of the entries of matrix 𝐴0. As 𝑛 = 2, such conditions are provided in
[4] without proof.

Theorem 2. Let 𝐴 =

(︂
𝑎 𝑏
𝑐 𝑑

)︂
. Then the matrix 𝐴𝐴 has a negative eigenvalue if and only

if the following four conditions hold true simultaneously:

det𝐴 ̸= 0, |𝑎| = |𝑑|, |𝑎|2 + 𝑏𝑐 < 0, 𝑎𝑑𝑏𝑐 > 0. (3)

Proof. Necessity. Suppose that matrix 𝐴𝐴 has a negative eigenvalue. The characteristic equa-
tion for matrix 𝐴𝐴 reads as

𝜆2 − 𝛼𝜆 + ∆2 = 0, (4)

where

𝛼 = |𝑎|2 + |𝑑|2 + 2Re (𝑏𝑐),∆ = |det𝐴|. (5)

Let us show that

𝛼 + 2∆ > 0. (6)

Indeed, we have
𝛼 + 2∆ > |𝑎|2 + |𝑑|2 + 2Re (𝑏𝑐) + 2(|𝑏𝑐| − |𝑎𝑑|)

= (|𝑎| − |𝑑|)2 + 2(Re (𝑏𝑐) + |𝑏𝑐|) > 0.
(7)

Then ∆ > 0, otherwise inequality (6) follows that 𝛼 > 0 and the eigenvalues of matrix 𝐴𝐴 are
non-negative, 𝜆1 = 0, 𝜆2 = 𝛼.
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If 𝛼 > 0, then equation (4) has no negative root. Thus, 𝛼 < 0 and 𝛼 − 2∆ < 0. Since the
discriminant of equation (4) 𝐷 = (𝛼 − 2∆)(𝛼 + 2∆) is non-negative, the latter inequality and
(6) imply that 𝐷 = 0, i.e.,

𝛼 + 2∆ = 0. (8)

Then by inequality (7) we obtain:

|𝑎| = |𝑑|,Re (𝑏𝑐) + |𝑏𝑐| = 0. (9)

Hence, inequality 𝛼 < 0 means that |𝑎|2 + 𝑏𝑐 < 0.
It remains to check inequality 𝑎𝑑𝑏𝑐 > 0. Due to identities (9), we rewrite identity (8) as

|𝑎𝑑− 𝑏𝑐| = |𝑏𝑐| − |𝑎𝑑|. (10)

Squaring this identity and simplifying, we get

Re (𝑎𝑑𝑏𝑐) = |𝑎𝑑𝑏𝑐|. (11)

The latter identity is equivalent to the inequality 𝑎𝑑𝑏𝑐 > 0. All the relations in (3) are checked
and their necessity is proven.

Sufficiency. Assume that conditions (3) hold true. Let us show that the eigenvalues of the
matrix 𝐴𝐴 are negative. The fourth condition in (3) is equivalent to the identity (11), which,
in its turn, is equivalent to identity (10). Then in view of the second and third condition in (3)
we have

∆ = |𝑎𝑑− 𝑏𝑐| = |𝑏𝑐| − |𝑎𝑑| = −(|𝑎|2 + 𝑏𝑐).

Therefore,

𝛼 + 2∆ = 2|𝑎|2 + 2𝑏𝑐− 2(|𝑎|2 + 𝑏𝑐) = 0.

Thus, the discriminant of equation (4) 𝐷 = (𝛼 − 2∆)(𝛼 + 2∆) vanishes and this equation has
the double root

𝜆1,2 =
𝛼

2
= −∆,

which is negative. The sufficiency of conditions (3) is proven. The proof is complete.

For the matrix 3 × 3 the following theorem is true.

Theorem 3. Let 𝐴 be a constant 3×3 matrix, 𝑘1 = Sp (𝐴𝐴), 𝑘2 = 1
2
[Sp (𝐴𝐴)2 − (Sp (𝐴𝐴))2]

and 𝛾 be a curve formed by the left branch of the parabola 𝑦 = −𝑥2

3
, 𝑥 < 0, and the semi-axis

𝑦 = 0, 𝑥 > 0. Then the matrix 𝐴𝐴 has no eigenvalues on the semi-axis (−∞, 0] if and only if
det𝐴 ̸= 0 and one of the following conditions holds true:

a) the point (𝑘1, 𝑘2) is located above curve 𝛾 and

𝜇3 − 𝑘1𝜇
2 − 𝑘2𝜇− |det𝐴|2 < 0, (12)

where 𝜇 = 1
3
(𝑘1 −

√︀
𝑘2
1 + 3𝑘2);

b) the point (𝑘1, 𝑘2) is located on curve 𝛾 or below.

We observe that the trace of matrices (𝐴𝐴)𝑚, 𝑚 = 0, 1, 2, . . ., is a real number.

Proof. Necessity. Suppose that matrix 𝐴𝐴 has no negative eigenvalues on semi-axis (−∞, 0].
Let us show that ∆ = |det𝐴| ̸= 0 and either condition a) or condition b) holds true. The
characteristic equation for matrix 𝐴𝐴 reads as

𝑝(𝜆) ≡ −𝜆3 + 𝑘1𝜆
2 + 𝑘2𝜆 + ∆2 = 0. (13)

Let 𝜆1, 𝜆2, 𝜆3 be the roots of this equation. We can assume that either 𝜆𝑗 > 0, 𝑗 = 1, 2, 3, or

𝜆1 = 𝜆2 = 𝜀 + 𝑖𝛿, 𝜆3 > 0, and 𝛿 ̸= 0. It is obvious that ∆ ̸= 0.



6 S. BAIZAEV

By 𝐷+ we denote an open domain formed by the points (𝑥, 𝑦) above curve 𝛾, and 𝐷− stands
for the complement of this domain to the whole plane. Let 𝐾 be a point (𝑘1, 𝑘2). Two cases are
possible: 1) 𝐾 ∈ 𝐷+; 2) 𝐾 ∈ 𝐷−. In the first case either 𝑘2

1 + 3𝑘2 > 0 and 𝑘2 6 0 or 𝑘1 > 0 and
𝑘2 > 0. Then as 𝜆 < 0, function 𝑝(𝜆) has a minimum at the point 𝜆 = 𝜇 and since 𝑝(𝜆) → +∞
as 𝜆 → −∞, then 𝑝(𝜇) > 0, i.e., inequality (12) holds true. Hence, in the first case condition a)
is satisfied. In the second case condition b) holds true. The proof of the necessity is complete.

Sufficiency. Let det𝐴 ̸= 0 and one of conditions a) and b) is satisfied. Let us show that
matrix 𝐴𝐴 has no eigenvalues on semi-axis (−∞, 0]. It is obvious that 𝑝(0) > 0. If condition
a) is satisfied, then 𝐾 ∈ 𝐷+ and min 𝜆<0𝑝(𝜆) = 𝑝(𝜇) > 0. Hence, the roots of equation (13)
do not lie on semi-axis (−∞, 0]. If condition b) is satisfied, then for 𝑘1 > 0 we have 𝑝(𝜆) > 0
∀𝜆 6 0, while for 𝑘1 < 0 we have 𝑝′(𝜆) < 0 ∀𝜆 ∈ (−∞,+∞). Hence, 𝑝(𝜆) > 𝑝(0) > 0 ∀𝜆 6 0.
Therefore, equation (13) has no roots on semi-axis (−∞, 0]. The proof is complete.

Let 𝑀 = 𝜎(𝐴𝐴)
⋂︀

(−∞, 0], 𝑀1 = 𝜎(𝐴𝐴)
⋂︀

(−∞, 0), where 𝜎(𝐴𝐴) is the spectrum of matrix
𝐴𝐴. For the case 𝑛 = 3 and a degenerate matrix 𝐴 we have the following theorem on the
structure of sets 𝑀 and 𝑀1.

Theorem 4. Let 𝛿 = 𝑘2
1 + 4𝑘2. The following statements hold true:

a) if 𝛿 < 0, then 𝑀 = {0} and 𝑀1 = ∅;
b) if 𝛿 = 0, then
𝑀 = {0} as 𝑘1 > 0 and 𝑀 = {𝑘1

2
, 0} as 𝑘1 < 0;

𝑀1 = ∅ as 𝑘1 > 0 and 𝑀1 = {𝑘1
2
} as 𝑘1 < 0;

c) if 𝛿 > 0, then as 𝑘2 > 0,
𝑀 = {0}, if 𝑘1 > 0 and 𝑀 = {𝑘1

2
, 0}, if 𝑘1 < 0;

𝑀1 = ∅, if 𝑘1 > 0 and 𝑀1 = {𝑘1
2
}, if 𝑘1 < 0;

as 𝑘2 = 0,
𝑀 = {0}, if 𝑘1 > 0 and 𝑀 = {𝑘1, 0}, if 𝑘1 < 0;
𝑀1 = ∅, if 𝑘1 > 0 and 𝑀1 = {𝑘1}, if 𝑘1 < 0;
as 𝑘2 < 0,
𝑀 = {0}, if 𝑘1 > 0 and 𝑀 = {1

2
(𝑘1 ±

√
𝛿), 0}, if 𝑘1 < 0;

𝑀1 = ∅, if 𝑘1 > 0 and 𝑀1 = {1
2
(𝑘1 ±

√
𝛿)}, if 𝑘1 < 0.

3. Dimension of space 𝑃𝑁 for 𝑛 = 2 and 𝑛 = 3

Let 𝑛 = 2 and 𝐴 =

(︂
𝑎 𝑏
𝑐 𝑑

)︂
. If conditions (3) are satisfied, space 𝑃𝑁 is infinite-dimensional.

If det𝐴 ̸= 0 and other conditions (3) are not simultaneously satisfied, space 𝑃𝑁 is zero. If
det𝐴 = 0, space 𝑃𝑁 is non-trivial and finite-dimensional. In this case as 𝐴 = 0, by formula (2)
we have dim𝑃𝑁 = 4(𝑁 + 1), which is in accordance with Liouville formula. If 𝐴 ̸= 0, without

loss of generality we can assume that 𝐴 =

(︂
𝑎 𝑏
𝜆𝑎 𝜆𝑏

)︂
, |𝑎| + |𝑏| > 0, 𝜆 is a complex number,

and by (2) we obtain easily the formulae:
dim𝑃𝑁 = 4𝑁 + 2 as 𝑎 + 𝜆𝑏 = 0 and dim𝑃𝑁 = 2𝑁 + 2 as 𝑎 + 𝜆𝑏 ̸= 0.
Let 𝑛 = 3. If 𝐴 ̸= 0, then in view of Theorem 2 we obtain that in case a) space 𝑃𝑁 is

zero, while in case b) it is infinite-dimensional. If det𝐴 = 0, space 𝑃𝑁 is non-trivial and
finite-dimensional. In this case, as 𝐴 = 0, by formula (2) we have dim𝑃𝑁 = 4(𝑁 + 1), which
is in agreement with Liouville theorem. Assume now that det𝐴 = 0 and 𝐴 ̸= 0. Then
dim𝑃𝑁 = 2(𝑁 + 1) in the following cases: 1) as 𝛿 < 0; 2) as 𝛿 = 0 and 𝑘1 > 0; 3) as 𝛿 > 0,
𝑘1 > 0, and 𝑘2 < 0. We have
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dim𝑃𝑁 = 6𝑁 + 4 − 2[rank𝐴 + rank (𝐴𝐴𝐴)] as 𝛿 = 0, 𝑘1 = 0 and rank (𝐴𝐴) = 1,
dim𝑃𝑁 = 6𝑁 − 4 − 2[rank (𝐴𝐴𝐴) + rank (𝐴(𝐴𝐴)2] as 𝛿 = 0, 𝑘1 = 0 and rank (𝐴𝐴) = 2,
dim𝑃𝑁 = 4𝑁 + 6 − 2 rank𝐴 as 𝛿 > 0, 𝑘1 > 0 and rank (𝐴𝐴) = 1,
dim𝑃𝑁 = 4𝑁 + 2 − 2 rank (𝐴𝐴𝐴 as 𝛿 > 0, 𝑘1 > 0 and rank (𝐴𝐴) = 2.
Finally, space 𝑃𝑁 is infinite-dimensional in the following cases: 1) as 𝛿 = 0, 𝑘1 < 0; 2) as

𝑘1 < 0 and 𝑘2 = 0; 3) as 𝑘2 > 0; 4) as 𝛿 > 0, 𝑘1 < 0 and 𝑘2 < 0.

4. Problem in half-plane

For the system with constant coefficients

𝑤𝑧 + 𝐴𝑤̄ = 0, (14)

where 𝐴 is a complex 𝑛× 𝑛 matrix, we consider the following problem.
Problem P. Find a vector function 𝑤(𝑧) in the class 𝐶1(𝐺) ∩ 𝐶(𝐺̄), 𝐺 = {𝑧 : Im 𝑧 > 0},

solving system (14) in domain 𝐺 and satisfying the condition

‖𝑤(𝑧)‖ 6 𝐾(1 + |𝑧|)𝑁 , 𝑧 ∈ 𝐺, (15)

where 𝐾 is a constant depending on 𝑤(𝑧), 𝑁 ∈ {0, 1, . . .}.
If 𝑤(𝑧) solves problem P, then the vector function 𝑈(𝜉, 𝑦) = (𝜔, 𝑣)𝑇 , where 𝜔 = 𝐹𝑥𝑤,

𝑣 = 𝐹𝑥𝑤, 𝐹𝑥 is the Fourier transform w.r.t. variable 𝑥, belongs to space 𝑆 ′ = 𝑆 ′(𝑅) for each
𝑦 > 0 and solves the system of ordinary differential equations

𝑑𝑈

𝑑𝑦
+ 𝐵(𝜉)𝑈 = 0, (16)

where 𝐵(𝜉) =

(︂
𝜉𝐸𝑛 −2𝑖𝐴
2𝑖𝐴 −𝜉𝐸𝑛

)︂
, 𝐸𝑛 is the unit 𝑛×𝑛 matrix. We observe that vector functions

𝜔 and 𝑣 are related by the following identity

𝑣(𝜉, 𝑦) = 𝜔(−𝜉, 𝑦). (17)

And vice versa, if vector function 𝑈(𝜉, 𝑦) = (𝜔, 𝑣)𝑇 solves system (16) for each 𝜉 ∈ 𝑅, condition
(17) is satisfied and 𝜔 ∈ 𝑆 ′ ∀𝑦 ∈ (0,∞), then the vector function 𝑤 = 𝐹−1

𝜉 𝜔 is a solution
to equation (14) in domain 𝐺. Let 𝑆(𝜉) be a matrix transforming matrix 𝐵(𝜉) to the quasi-
diagonal form: Λ(𝜉) = 𝑆−1(𝜉)𝐵(𝜉)𝑆(𝜉). Assume that matrix 𝐴𝐴 has no eigenvalues on semi-
axis (−∞, 0]. Then matrix 𝐵(𝜉) is invertible for each 𝜉 ∈ 𝑅 and has pure imaginary eigenvalues.
Thus, matrix Λ(𝜉) can be represented in the block-diagonal form

Λ(𝜉) =

(︂
Λ+(𝜉) 𝑂
𝑂 Λ−(𝜉)

)︂
,

where Λ+(𝜉) (Λ−(𝜉)) is 𝑛× 𝑛 matrix formed by Jordan blocks of matrix 𝐵(𝜉) associated with
the eigenvalues with positive (negative) real part. Suppose that matrix 𝑆(𝜉) is represented in
the block form:

𝑆(𝜉) =

(︂
𝑆1(𝜉) 𝑆2(𝜉)
𝑆3(𝜉) 𝑆4(𝜉)

)︂
,

where 𝑆𝑗(𝜉), 𝑗 = 1, 2, 3, 4, are 𝑛 × 𝑛 matrices and let 𝑒𝑘(𝜉) ∈ 𝐶𝑛 ∀𝜉 ∈ 𝑅, 𝑘 = 1, 2. Then the
general solution to system (16) reads as

𝑈(𝜉, 𝑦) =

(︂
𝑆1(𝜉)𝑒−Λ+(𝜉)𝑦𝑒1(𝜉)+ 𝑆2(𝜉)𝑒−Λ−(𝜉)𝑦𝑒2(𝜉)
𝑆3(𝜉)𝑒−Λ+(𝜉)𝑦𝑒1(𝜉)+ 𝑆4(𝜉)𝑒−Λ−(𝜉)𝑦𝑒2(𝜉)

)︂
.
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The entries of matrix 𝑆𝑘(𝜉) and 𝑆−1
𝑘 (𝜉) have at most power growth |𝜉| → ∞. Hence, in order

to have 𝑈 ∈ 𝑆 ′ for each 𝑦 > 0, it is necessary to have 𝑒2(𝜉) = 0. Therefore,

𝑈(𝜉, 𝑦) =

(︂
𝑆1(𝜉)𝑒−Λ+(𝜉)𝑦𝑒1(𝜉)
𝑆3(𝜉)𝑒−Λ+(𝜉)𝑦𝑒1(𝜉)

)︂
,

i.e.,
𝜔(𝜉, 𝑦) = 𝑆1(𝜉)𝑒−Λ+(𝜉)𝑦𝑒1(𝜉)

and
𝑣(𝜉, 𝑦) = 𝑆3(𝜉)𝑒−Λ+(𝜉)𝑦𝑒1(𝜉).

To satisfy condition (17) and to find a solution to problem P, vector function 𝑒1(𝜉) ∈ 𝑆 ′ is to
be chosen to satisfy the identity

𝑆3(𝜉)𝑒−Λ+(𝜉)𝑦𝑒1(𝜉) = 𝑆1(−𝜉)𝑒−Λ+(𝜉)𝑦𝑒1(−𝜉)

and the vector function
𝑤 = 𝐹−1

𝜉 [𝑆1(𝜉)𝑒−Λ+(𝜉)𝑦𝑒1(𝜉)]

is to satisfy condition (15).
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