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EXISTENCE OF HYPERCYCLIC SUBSPACES
FOR TOEPLITZ OPERATORS

A.A. LISHANSKII

In this work we construct a class of coanalytic Toeplitz operators, which have an infinite-
dimensional closed subspace, where any non-zero vector is hypercyclic. Namely, if for a
function ¢ which is analytic in the open unit disc D and continuous in its closure the
conditions p(T)NT # () and p(ID)NT # () are satisfied, then the operator ¢(S*) (where S*
is the backward shift operator in the Hardy space) has the required property. The proof is
based on an application of a theorem by Gonzalez, Leon-Saavedra and Montes-Rodriguez.

Keywords: Toeplitz operators, hypercyclic operators, essential spectrum, Hardy space.

1. INTRODUCTION

Let X be a separable Banach space (or a Frechet space), and let T' be a bounded linear
operator in X. If there exists x € X such that the set {T™z,n € INo} is dense in X, then T is
said to be a hypercyclic operator and z is called its hypercyclic vector. Here Ng = IN U {0}.

The dynamics of linear operators and, as a special case, the theory of hypercyclic operators
were actively developed for the last 20 years. A detailed review of the results up to the end of
1990-s is given in paper [I]. For a recent exposition of the theory, see monographs [2] 3].

However, first examples of hypercyclic operators appeared much earlier. In 1929, Birkhoff
has shown that the translation operator T, : f(z) — f(z + a),a € C, a # 0, is hypercyclic in
the Frechet space of all entire functions Hol(C) with topology of uniform convergence on the
compact sets. Later, McLane proved hypercyclicity of the differentiation operator D : f +— f’
on Hol(C). The first example of a hypercyclic operator in the Banach setting was given in
1969 by Rolewicz [4] who showed that for each A € C, |A| > 1, the operator \S* is hypercyclic
on (P(INg),1 < p < oo, where S* is the backward shift on ¢#(INy) transforming a vector z =
(o, T1y ooy Ty, . ..) € P(INg) to the vector (1, z2, ..., Tpi1,...).

Given a hypercyclic operator T', what can be said about the set of its hypercyclic vectors?
Clearly, if = is a hypercyclic vector for operator T, then T, T?%x, T3z, . . . are hypercyclic vectors
for T" as well. Hence, the set of hypercyclic vectors is dense when it is non-empty.

The following result was proved by Bourdon [5] (a special class of operators commuting with
generalized backward shifts was previously considered by Godefroy and Shapiro in [6]).

Theorem (Bourdon, [5]). Let T be a hypercyclic operator acting on a Hilbert space H.
Then there exists a dense linear subspace, where any non-zero vector is hypercyclic for T'.

Definition. Given a hypercyclic operator T, an infinite-dimensional closed subspace, in
which every non-zero vector is hypercyclic for T, is called a hypercyclic subspace.

Montes-Rodriguez [7, Theorem 3.4] proved that the operator AS*, |A| > 1, on ¢*(INy) has no
hypercyclic subspaces. However, for some class of functions of the backward shift S* on ¢2(IN)
there exists a hypercyclic subspace, and it is the main result of the present paper. To state
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it, we need to introduce some notations. Let D = {z € C : |z| < 1} be the unit disc and let
T ={z € C: |z| = 1} be the unit circle. Recall that the disc algebra A(D) is the space of all
functions continuous in the closed disc D and analytic in D (with the norm max, g |¢(2)]).

Main Theorem. For each function ¢ € A(D) such that o(T) N'T # @ and (D) N'T # O
the operator o(S*) on (*(INg) has a hypercyclic subspace.

Note that the ¢(z) = Az, |A| > 1, does not satisfy this condition.

The examples of applying the Main Theorem may be interpreted as certain Toeplitz operator
on the Hardy space. The Hardy space H? = H?*(D) is the space of all functions of the form
f(z) = 2,50 cnz™ with {c,} € (*(INg), and thus is naturally identified with ¢*(INp). Recall
that for a function ¢ € L*(T), the Toeplitz operator T, with the symbol ¢ is defined as
T,f = P.(¢f), where P, stands for the orthogonal projection from L?*(T) onto H?. Then
the backward shift on S* may be identified with the Toeplitz operator T%. It was shown in
[6] that each coanalytic Toeplitz operator T (i.e., ¢ is a bounded analytic function in D) is
hypercyclic whenever (D) intersects T. Our Main Theorem provides a class of coanalytic
Toeplitz operators having a hypercyclic subspace.

A general sufficient condition for the existence of a hypercyclic subspace was given by Gon-
zalez, Leon-Saavedra and Montes-Rodriguez in [§]. To state it, we need the following stronger
version of hypercyclicity:

Definition. An operator T' acting on a separable Banach space B is said to be hereditarily
hypercyclic if there exists a sequence of non-negative integers {ny} such that for each subse-
quence {ny,} there ezists a vector x such that the sequence {T"ix} is dense in B.

We also need to recall the notion of the essential spectrum.

Definition. An operator U is called Fredholm if Ran U is closed and has a finite codimension
and Ker U is finite-dimensional. The essential spectrum of an operator T is defined as

0o(T) ={\: T — A\ is non-Fredholm}.

Theorem (Gonzalez, Leon-Saavedra, Montes-Rodriguez, [8, Theorem 3.2]). Let T
be a hereditary hypercyclic bounded linear operator on a separable Banach space B. Let the
essential spectrum of T intersect the closed unit disc. Then there exists a hypercyclic subspace
for operator T.

We intend to use this result in the proof of the Main Theorem.

Let us mention some other results on this topic. In [9], Shkarin proved that the differentiation
operator on the standard Frechet space Hol(C) has a hypercyclic subspace. In [10, Corollary
5.5], Quentin Menet generalized this result: he proved that for each non-constant polynomial
P the operator P(D) has a hypercyclic subspace. He also obtained some results concerning
weighted shifts on £7.

2.  ON ESSENTIAL SPECTRA OF LINEAR OPERATORS
The following lemma is well known. We give its proof for the convenience of the reader.
Lemma. Essential spectrum of the operator S* is the unit circle.

Proof. Let us consider three cases:
Case 1: [A| > 1. The operator S* — A = —A(I — 1+5%) is invertible and, thus, it is Fredholm.

Case 2: |A| < 1. We have S*—\I = S*(I —\S). Since the operator S* is Fredholm (its kernel
is one-dimensional, its image is the whole space £?), and I — A\S is invertible, their composition
is also a Fredholm operator.

Case 3: |\| = 1. The operator S* — Al is not Fredholm because its image has an infinite
codimension.
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Indeed, the pre-image of the sequence (Ayi, \2ya, ANys, Ay, ...) € 2 is given by (a, M(y1 +
+oo

a), \2(y1+y2+a),...) and the identity a = — >_ y; is necessary for the inclusion of this sequence
i=1

into ¢2.
Then the pre-image of the sequence
1 1 1
(1,—, 0,00 ,=,0,....0 ,....—. 0,....0 ) (1)
2 am— 4 - — 2N e —
>22_1 times >24_1 times >22" 1 times
multiplied componentwise by (X, A2, A3, ...), is given by
1 1 1 1 1 1
(T R S S S
2 2 4 4 2m 2"
222\trimes 224Emes 222"‘rtimes

multiplied componentwise by (1, A, A\%,...), but such sequences do not belong to ¢*. All se-
quences of the form , as is easily seen, form an infinite-dimensional subspace in ¢2. n

The following important theorem about the mapping of the essential spectra can be found,
e.g., in [LI], p. 107].

Essential Spectrum Mapping Theorem. For each bounded linear operator T in a Hilbert
space H and for each polynomial P, one has o.(P(T)) = P(c.(T)).

3. PROOF OF THE MAIN THEOREM

In the proof of hereditary hypercyclicity of operator ¢(S*) we will use the following well-
known criterion due to Godefroy and Shapiro [6] (for the explicit statement see, e.g., [3, Theorem
3.1]):

Theorem (Godefroy—Shapiro criterion). Let T' be a bounded linear operator in a sepa-
rable Banach space. Suppose that the subspaces

Xo =span{zx € X : Tz = Az for some A € C, || < 1},
Yy =span{z € X : Tz = Az for some X\ € C, |A| > 1},

are dense in X. Then T is hereditarily hypercyclic.

Proof of the Main Theorem. We should verify two conditions of the theorem of Gonzalez, Leon-
Saavedra and Montes-Rodriguez.

Each function ¢ in the disc-algebra can be approximated uniformly in D by a sequence of
polynomials P,. Thus, P,(S*) tends to ¢(S*) in the operator norm.

We need to show that o.(¢(S5*)) intersects the closed unit disc. Since o(T)NT # @, there exist
A, p € T such that p(A) = p. Then p,, = P,(\) tends to u. By the Essential Spectrum Mapping
Theorem, for each polynomial P one has o.(P(S*)) = P(0.(S*)) = P(T). In particular,
tn, = Po(X) € 0.(P,(5%)) for each n, and therefore, P,(S*) — u,I is not Fredholm.

Since the set of Fredholm operators is open in the operator norm (see, e.g., [12, Theorem
4.3.11]), the set of non-Fredholm operators is closed. Hence, the limit of P,(S*) — u, I, which
is equal to p(S*) — pl, is not Fredholm, and p belongs to the essential spectrum of ¢(S*). The
first condition of the theorem by Gonzalez, Leon-Saavedra and Montes-Rodriguez is verified.

It is well known that the condition (D) N'T # () implies that ¢(S*) satisfies the Godefroy—
Shapiro criterion. Let us briefly recall this argument.

Recall that the point spectrum of S* equals 0,(S*) = {\ : |[A\| < 1} and an eigenvector is
given by (1, \,\%,---) € £?(INy), or, if we pass to the Hardy space H?(D) using the natural
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identification of H? with ¢*(INy), by

1 n.n
k/\(Z):l—Xz:Z)\ 2",

n=0

These are the Cauchy kernels being reproducing kernels of H2. Clearly, kx, A € D, are also
eigenvectors of ¢(S*) associated with the eigenvalues p(\).

By the condition ¢(ID) N'T # (), we know that ¢(D) is an open set intersecting both D and
C\D. Clearly, both of the sets Xo = {kx, A € D : |p(A)| > 1} and Yy = {kx, A € D : |[p(\)] < 1}
are dense in H?. Indeed, f € H? is orthogonal to ky if and only if f(A\) = 0 and both
{AeD:|pA)] > 1} and {A € D : |p(N)] < 1} are open sets. Thus the conditions of the
Godefroy—Shapiro criterion are satisfied and the hereditarily hypercyclicity of operator ¢(S*)
follows.

Thus, by the theorem of Gonzalez, Leon-Saavedra and Montes-Rodriguez, the operator ¢(S*)
has a hypercyclic subspace. O

In conclusion, we formulate one open question. It would be interesting to generalize the
statement of Montes-Rodriguez that the operator AS*, [A\| > 1, on ¢?(INy), has no hypercyclic
subspaces. A natural conjecture is:

Conjecture. Let B = p(S*), where p is a polynomial such that |p(\)| > 1 for |A| = 1. Then
operator B has no hypercyclic subspaces.
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