doi:10.13108/2015-7-2-102

EXISTENCE OF HYPERCYCLIC SUBSPACES FOR TOEPLITZ OPERATORS

A.A. LISHANSKII

In this work we construct a class of coanalytic Toeplitz operators, which have an infinitedimensional closed subspace, where any non-zero vector is hypercyclic. Namely, if for a function φ which is analytic in the open unit disc \mathbb{D} and continuous in its closure the conditions $\varphi(\mathbb{T}) \cap \mathbb{T} \neq \emptyset$ and $\varphi(\mathbb{D}) \cap \mathbb{T} \neq \emptyset$ are satisfied, then the operator $\varphi(S^*)$ (where S^* is the backward shift operator in the Hardy space) has the required property. The proof is based on an application of a theorem by Gonzalez, Leon-Saavedra and Montes-Rodriguez.

Keywords: Toeplitz operators, hypercyclic operators, essential spectrum, Hardy space.

1. Introduction

Let X be a separable Banach space (or a Frechet space), and let T be a bounded linear operator in X. If there exists $x \in X$ such that the set $\{T^n x, n \in \mathbb{N}_0\}$ is dense in X, then T is said to be a hypercyclic operator and x is called its hypercyclic vector. Here $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

The dynamics of linear operators and, as a special case, the theory of hypercyclic operators were actively developed for the last 20 years. A detailed review of the results up to the end of 1990-s is given in paper [1]. For a recent exposition of the theory, see monographs [2, 3].

However, first examples of hypercyclic operators appeared much earlier. In 1929, Birkhoff has shown that the translation operator $T_a: f(z) \mapsto f(z+a), a \in \mathbb{C}, a \neq 0$, is hypercyclic in the Frechet space of all entire functions $Hol(\mathbb{C})$ with topology of uniform convergence on the compact sets. Later, McLane proved hypercyclicity of the differentiation operator $D: f \mapsto f'$ on $Hol(\mathbb{C})$. The first example of a hypercyclic operator in the Banach setting was given in 1969 by Rolewicz [4] who showed that for each $\lambda \in \mathbb{C}$, $|\lambda| > 1$, the operator λS^* is hypercyclic on $\ell^p(\mathbb{N}_0), 1 \leq p < \infty$, where S^* is the backward shift on $\ell^p(\mathbb{N}_0)$ transforming a vector $x = (x_0, x_1, \ldots, x_n, \ldots) \in \ell^p(\mathbb{N}_0)$ to the vector $(x_1, x_2, \ldots, x_{n+1}, \ldots)$.

Given a hypercyclic operator T, what can be said about the set of its hypercyclic vectors? Clearly, if x is a hypercyclic vector for operator T, then Tx, T^2x, T^3x, \ldots are hypercyclic vectors for T as well. Hence, the set of hypercyclic vectors is dense when it is non-empty.

The following result was proved by Bourdon [5] (a special class of operators commuting with generalized backward shifts was previously considered by Godefroy and Shapiro in [6]).

Theorem (Bourdon, [5]). Let T be a hypercyclic operator acting on a Hilbert space H. Then there exists a dense linear subspace, where any non-zero vector is hypercyclic for T.

Definition. Given a hypercyclic operator T, an infinite-dimensional closed subspace, in which every non-zero vector is hypercyclic for T, is called a hypercyclic subspace.

Montes-Rodriguez [7, Theorem 3.4] proved that the operator λS^* , $|\lambda| > 1$, on $\ell^2(\mathbb{N}_0)$ has no hypercyclic subspaces. However, for some class of functions of the backward shift S^* on $\ell^2(\mathbb{N})$ there exists a hypercyclic subspace, and it is the main result of the present paper. To state

A.A. LISHANSKII, EXISTENCE OF HYPERCYCLIC SUBSPACES FOR TOEPLITZ OPERATORS.

[©] Lishanskii A.A. 2015.

The work was supported by the grant MD-5758.2015.1 and by JSC "Gazprom Neft". Submitted April 20, 2015.

it, we need to introduce some notations. Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disc and let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ be the unit circle. Recall that the *disc algebra* $A(\mathbb{D})$ is the space of all functions continuous in the closed disc $\overline{\mathbb{D}}$ and analytic in \mathbb{D} (with the norm $\max_{z \in \overline{\mathbb{D}}} |\varphi(z)|$).

Main Theorem. For each function $\varphi \in A(\mathbb{D})$ such that $\varphi(\mathbb{T}) \cap \mathbb{T} \neq \emptyset$ and $\varphi(\mathbb{D}) \cap \mathbb{T} \neq \emptyset$ the operator $\varphi(S^*)$ on $\ell^2(\mathbb{N}_0)$ has a hypercyclic subspace.

Note that the $\varphi(z) = \lambda z$, $|\lambda| > 1$, does not satisfy this condition.

The examples of applying the Main Theorem may be interpreted as certain Toeplitz operator on the Hardy space. The Hardy space $H^2 = H^2(\mathbb{D})$ is the space of all functions of the form $f(z) = \sum_{n \geq 0} c_n z^n$ with $\{c_n\} \in \ell^2(\mathbb{N}_0)$, and thus is naturally identified with $\ell^2(\mathbb{N}_0)$. Recall that for a function $\varphi \in L^{\infty}(\mathbb{T})$, the Toeplitz operator T_{φ} with the symbol φ is defined as $T_{\varphi}f = P_+(\varphi f)$, where P_+ stands for the orthogonal projection from $L^2(\mathbb{T})$ onto H^2 . Then the backward shift on S^* may be identified with the Toeplitz operator $T_{\overline{z}}$. It was shown in [6] that each coanalytic Toeplitz operator $T_{\overline{\varphi}}$ (i.e., φ is a bounded analytic function in \mathbb{D}) is hypercyclic whenever $\varphi(\mathbb{D})$ intersects \mathbb{T} . Our Main Theorem provides a class of coanalytic Toeplitz operators having a hypercyclic subspace.

A general sufficient condition for the existence of a hypercyclic subspace was given by Gonzalez, Leon-Saavedra and Montes-Rodriguez in [8]. To state it, we need the following stronger version of hypercyclicity:

Definition. An operator T acting on a separable Banach space \mathcal{B} is said to be hereditarily hypercyclic if there exists a sequence of non-negative integers $\{n_k\}$ such that for each subsequence $\{n_{k_i}\}$ there exists a vector x such that the sequence $\{T^{n_{k_i}}x\}$ is dense in \mathcal{B} .

We also need to recall the notion of the essential spectrum.

Definition. An operator U is called Fredholm if Ran U is closed and has a finite codimension and Ker U is finite-dimensional. The essential spectrum of an operator T is defined as

$$\sigma_e(T) = \{\lambda : T - \lambda I \text{ is non-Fredholm}\}.$$

Theorem (Gonzalez, Leon-Saavedra, Montes-Rodriguez, [8, Theorem 3.2]). Let T be a hereditary hypercyclic bounded linear operator on a separable Banach space \mathcal{B} . Let the essential spectrum of T intersect the closed unit disc. Then there exists a hypercyclic subspace for operator T.

We intend to use this result in the proof of the Main Theorem.

Let us mention some other results on this topic. In [9], Shkarin proved that the differentiation operator on the standard Frechet space $Hol(\mathbb{C})$ has a hypercyclic subspace. In [10, Corollary 5.5], Quentin Menet generalized this result: he proved that for each non-constant polynomial P the operator P(D) has a hypercyclic subspace. He also obtained some results concerning weighted shifts on ℓ^p .

2. On essential spectra of linear operators

The following lemma is well known. We give its proof for the convenience of the reader.

Lemma. Essential spectrum of the operator S^* is the unit circle.

Proof. Let us consider three cases:

Case 1: $|\lambda| > 1$. The operator $S^* - \lambda I = -\lambda (I - \frac{1}{\lambda} S^*)$ is invertible and, thus, it is Fredholm.

Case 2: $|\lambda| < 1$. We have $S^* - \lambda I = S^*(I - \lambda S)$. Since the operator S^* is Fredholm (its kernel is one-dimensional, its image is the whole space ℓ^2), and $I - \lambda S$ is invertible, their composition is also a Fredholm operator.

Case 3: $|\lambda| = 1$. The operator $S^* - \lambda I$ is not Fredholm because its image has an infinite codimension.

Indeed, the pre-image of the sequence $(\lambda y_1, \lambda^2 y_2, \lambda^3 y_3, \lambda^4 y_4, \ldots) \in \ell^2$ is given by $(a, \lambda (y_1 + a), \lambda^2 (y_1 + y_2 + a), \ldots)$ and the identity $a = -\sum_{i=1}^{+\infty} y_i$ is necessary for the inclusion of this sequence into ℓ^2 .

Then the pre-image of the sequence

$$\left(1, \frac{1}{2}, \underbrace{0, \dots, 0}_{\geqslant 2^2 - 1 \text{ times}}, \frac{1}{4}, \underbrace{0, \dots, 0}_{\geqslant 2^4 - 1 \text{ times}}, \dots, \frac{1}{2^n}, \underbrace{0, \dots, 0}_{\geqslant 2^{2^n} - 1 \text{ times}}, \dots\right),\tag{1}$$

multiplied componentwise by $(\lambda, \lambda^2, \lambda^3, ...)$, is given by

$$\left(-2,-1,\underbrace{-\frac{1}{2},\ldots,-\frac{1}{2}}_{\geqslant 2^2 \text{ times}},\underbrace{-\frac{1}{4},\ldots,-\frac{1}{4}}_{\geqslant 2^4 \text{ times}},\ldots,\underbrace{-\frac{1}{2^n},\ldots,-\frac{1}{2^n}}_{\geqslant 2^{2^n} \text{ times}},\ldots\right),$$

multiplied componentwise by $(1, \lambda, \lambda^2, ...)$, but such sequences do not belong to ℓ^2 . All sequences of the form (1), as is easily seen, form an infinite-dimensional subspace in ℓ^2 .

The following important theorem about the mapping of the essential spectra can be found, e.g., in [11, p. 107].

Essential Spectrum Mapping Theorem. For each bounded linear operator T in a Hilbert space H and for each polynomial P, one has $\sigma_e(P(T)) = P(\sigma_e(T))$.

3. Proof of the Main Theorem

In the proof of hereditary hypercyclicity of operator $\varphi(S^*)$ we will use the following well-known criterion due to Godefroy and Shapiro [6] (for the explicit statement see, e.g., [3, Theorem 3.1]):

Theorem (Godefroy-Shapiro criterion). Let T be a bounded linear operator in a separable Banach space. Suppose that the subspaces

$$X_0 = \operatorname{span}\{x \in X : Tx = \lambda x \text{ for some } \lambda \in \mathbb{C}, |\lambda| < 1\},\$$

 $Y_0 = \operatorname{span}\{x \in X : Tx = \lambda x \text{ for some } \lambda \in \mathbb{C}, |\lambda| > 1\},\$

are dense in X. Then T is hereditarily hypercyclic.

Proof of the Main Theorem. We should verify two conditions of the theorem of Gonzalez, Leon-Saavedra and Montes-Rodriguez.

Each function φ in the disc-algebra can be approximated uniformly in $\overline{\mathbb{D}}$ by a sequence of polynomials P_n . Thus, $P_n(S^*)$ tends to $\varphi(S^*)$ in the operator norm.

We need to show that $\sigma_e(\varphi(S^*))$ intersects the closed unit disc. Since $\varphi(\mathbb{T}) \cap \mathbb{T} \neq \emptyset$, there exist λ , $\mu \in \mathbb{T}$ such that $\varphi(\lambda) = \mu$. Then $\mu_n = P_n(\lambda)$ tends to μ . By the Essential Spectrum Mapping Theorem, for each polynomial P one has $\sigma_e(P(S^*)) = P(\sigma_e(S^*)) = P(\mathbb{T})$. In particular, $\mu_n = P_n(\lambda) \in \sigma_e(P_n(S^*))$ for each n, and therefore, $P_n(S^*) - \mu_n I$ is not Fredholm.

Since the set of Fredholm operators is open in the operator norm (see, e.g., [12, Theorem 4.3.11]), the set of non-Fredholm operators is closed. Hence, the limit of $P_n(S^*) - \mu_n I$, which is equal to $\varphi(S^*) - \mu I$, is not Fredholm, and μ belongs to the essential spectrum of $\varphi(S^*)$. The first condition of the theorem by Gonzalez, Leon-Saavedra and Montes-Rodriguez is verified.

It is well known that the condition $\varphi(\mathbb{D}) \cap \mathbb{T} \neq \emptyset$ implies that $\varphi(S^*)$ satisfies the Godefroy–Shapiro criterion. Let us briefly recall this argument.

Recall that the point spectrum of S^* equals $\sigma_p(S^*) = \{\lambda : |\lambda| < 1\}$ and an eigenvector is given by $(1, \lambda, \lambda^2, \dots) \in \ell^2(\mathbb{N}_0)$, or, if we pass to the Hardy space $H^2(\mathbb{D})$ using the natural

identification of H^2 with $\ell^2(\mathbb{N}_0)$, by

$$k_{\lambda}(z) = \frac{1}{1 - \overline{\lambda}z} = \sum_{n \geqslant 0} \lambda^n z^n.$$

These are the Cauchy kernels being reproducing kernels of H^2 . Clearly, k_{λ} , $\lambda \in \mathbb{D}$, are also eigenvectors of $\varphi(S^*)$ associated with the eigenvalues $\varphi(\lambda)$.

By the condition $\varphi(\mathbb{D}) \cap \mathbb{T} \neq \emptyset$, we know that $\varphi(\mathbb{D})$ is an open set intersecting both \mathbb{D} and $\mathbb{C} \setminus \overline{\mathbb{D}}$. Clearly, both of the sets $X_0 = \{k_\lambda, \lambda \in \mathbb{D} : |\varphi(\lambda)| > 1\}$ and $Y_0 = \{k_\lambda, \lambda \in \mathbb{D} : |\varphi(\lambda)| < 1\}$ are dense in H^2 . Indeed, $f \in H^2$ is orthogonal to k_λ if and only if $f(\lambda) = 0$ and both $\{\lambda \in \mathbb{D} : |\varphi(\lambda)| > 1\}$ and $\{\lambda \in \mathbb{D} : |\varphi(\lambda)| < 1\}$ are open sets. Thus the conditions of the Godefroy-Shapiro criterion are satisfied and the hereditarily hypercyclicity of operator $\varphi(S^*)$ follows.

Thus, by the theorem of Gonzalez, Leon-Saavedra and Montes-Rodriguez, the operator $\varphi(S^*)$ has a hypercyclic subspace.

In conclusion, we formulate one open question. It would be interesting to generalize the statement of Montes-Rodriguez that the operator λS^* , $|\lambda| > 1$, on $\ell^2(\mathbb{N}_0)$, has no hypercyclic subspaces. A natural conjecture is:

Conjecture. Let $B = p(S^*)$, where p is a polynomial such that $|p(\lambda)| > 1$ for $|\lambda| = 1$. Then operator B has no hypercyclic subspaces.

ACKNOWLEDGEMENTS

The author is grateful to Quentin Menet for helpful comments.

BIBLIOGRAPHY

- 1. K.-G. Grosse-Erdmann. *Universal families and hypercyclic operators* // Bull. Amer. Math. Soc. **36**:3, 345-381 (1999).
- 2. F. Bayart, E. Matheron. Dynamics of linear operators. Cambridge Univ., Cambridge (2009).
- 3. K.-G. Grosse-Erdmann, A. Peris Manguillot. *Linear chaos*. Springer, Berlin (2011).
- 4. S. Rolewicz. On orbits of elements // Studia Math. **32**:1, 17-22 (1969).
- 5. P.S. Bourdon. *Invariant manifolds of hypercyclic vectors* // Proc. Amer. Math. Soc. **118**:3, 845-847 (1993).
- G. Godefroy, J.H. Shapiro. Operators with dense, invariant, cyclic vector manifolds // J. Funct. Anal. 98:2, 229-269 (1991).
- A. Montes-Rodriguez. Banach spaces of hypercyclic vectors // Michigan Math. J. 43:3, 419-436 (1996).
- 8. M. Gonzalez, F. Leon-Saavedra, A. Montes-Rodriguez. Semi-Fredholm Theory: Hypercyclic and supercyclic subspaces // Proc. London Math. Soc. 81:3, 169-189 (2000).
- 9. S. Shkarin. On the set of hypercyclic vectors for the differentiation operator // Israel J. Math. 180:1, 271-283 (2010).
- 10. Q. Menet. Hypercyclic subspaces and weighted shifts //Adv. Math. 255, 305-337 (2014).
- 11. S. Goldberg. Unbounded linear operators. McGraw-Hill, New York (1966).
- 12. E.B. Davies. Linear operators and their spectra. Cambridge Univ. Press, Cambridge (2007).

Andrei Alexandrovich Lishanskii, SPbSU, Chebyshev laboratory, 14th Line 29B, Vasilyevsky Island, St.Petersburg 199178, RUSSIA E-mail: Lishanskiyaa@gmail.com