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ON LEFSCHETZ FORMULAS FOR FLOWS

ON FOLIATED MANIFOLDS

Y.A. KORDYUKOV, V.A. PAVLENKO

Abstract. The paper is devoted to the Lefschetz formulas for flows on compact manifolds,
preserving a codimension one foliation and having fixed points. We develop an approach
to the Lefschetz formulae based on the notion of the regularized trace on some algebra
of singular integral operators introduced in a previous paper. The Lefschetz formula is
proved in the case when the flow preserves a foliation given by the fibers of a fiber bundle
over a circle. For a particular example of a flow on a two-dimensional torus, preserving
a Reeb type foliation, we prove an analogue of the McKean-Singer formula for smoothed
regularized Lefschetz functions.
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1. Introduction

The paper is devoted to the Lefschetz formulas for flows on compact manifolds, preserving a codi-
mension one foliation. Here, by Lefschetz formulas for a flow, we mean such quantitative relations,
which relate some global invariants of the flow with its closed orbits (for a general information on
Lefschetz formulas for flows, see, for instance, [6, 7, 2] and references therein). A recent interest in
Lefschetz type formulas for flows preserving a foliation is connected with the approach to a proof
of the Riemann hypothesis suggested by Deninger in a plenary talk at the International Congress of
Mathematicians in Berlin in [3]. This approach is based on an analogy of some Lefschetz formulas for
flows, preserving a foliation with explicit trace formulas in number theory (for a more detailed infor-
mation see also [4, 5, 11] and references therein). In particular, Deninger suggested as a conjectures a
Lefschetz formula for flows preserving a foliation. In the case when the flow has no fixed points, such
a formula was proved by the first author jointly with J. Alvarez Lopez in [1]. Let us describe briefly
this formula.

Let 𝑋 be a compact manifold of dimension 𝑛 and ℱ be a smooth codimension one foliation on 𝑋.
Suppose that 𝑇 = {𝑇𝑡 : 𝑋 → 𝑋 : 𝑡 ∈ R} is a flow on 𝑋 satisfying the following conditions:

(P1) For every 𝑡 ∈ R, diffeomorphism 𝑇𝑡 maps each leaf of ℱ to a (possibly, another) leaf.
(P2) Orbits of 𝑇 are transverse to the leaves of ℱ : i.e., for each 𝑥 ∈𝑀 ,

𝑇𝑥𝑋 = R𝑉 (𝑥)⊕ 𝑇𝑥ℱ ,

where 𝑉 ∈ 𝐶∞(𝑋,𝑇𝑋) is the infinitesimal generator of the flow.

In particular, flow 𝑇 has no fixed points.
Let us consider the leafwise de Rham complex (Ω(ℱ), 𝑑ℱ ) given by the space Ω(ℱ) = 𝐶∞(𝑋,Λ𝑇 *ℱ)

of smooth leafwise differential forms on 𝑋 and by the leafwise de Rham differential 𝑑ℱ : Ω(ℱ) → Ω(ℱ).
Let 𝑔 be a Riemannian metric on 𝑋. Denote by 𝛿ℱ = 𝑑*ℱ the corresponding leafwise de Rham
codifferential and by Δℱ = 𝑑ℱ𝛿ℱ + 𝛿ℱ𝑑ℱ the leafwise Laplace operator. For each 𝑢 = 0, . . . , 𝑛− 1, we
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denote by 𝑃ℋ𝑢(ℱ) the orthogonal projection in 𝐿2Ω𝑢(ℱ) on the subspace ℋ𝑢(ℱ) = kerΔ𝑢
ℱ of leafwise

harmonic 𝑢-forms.
For every 𝑓 ∈ 𝐶∞

0 (R), we define the operator 𝑇𝑓 in Ω(ℱ) by

𝑇𝑓 =

∫︁
R

𝑇 *
𝑡 · 𝑓(𝑡) 𝑑𝑡 ,

where 𝑇 *
𝑡 is the operator in Ω(ℱ) induced by the action of flow 𝑇𝑡.

The Lefschetz function of 𝑇 is defined as a distribution 𝐿(𝑇 ) on the real line by the identity

⟨𝐿(𝑇 ), 𝑓⟩ =
𝑛−1∑︁
𝑢=0

(−1)𝑢Tr(𝑇𝑓 ∘ 𝑃ℋ𝑢(ℱ)), 𝑓 ∈ 𝐶∞
0 (R). (1)

Theorem 1 ([1]). In a neighborhood of 0 in R, the identity

𝐿(𝑇 ) = 𝜒Λ(ℱ) · 𝛿0

holds true.

Here 𝛿0 ∈ 𝒟′(R) is the delta-function at 0 and 𝜒Λ(ℱ) ∈ R is the 𝐿2-Euler characteristic of ℱ intro-
duced by Connes. Note that in [1], function 𝐿(𝑇 ) is denoted by 𝜒dis(ℱ) and is called the distributional
Euler characteristic of ℱ .

Recall that the set 𝑂𝑥 = {𝑇𝑡(𝑥) ∈ 𝑋 : 𝑡 ∈ R} ⊂ 𝑋 is called the trajectory or the orbit of 𝑇 , passing
through 𝑥 ∈ 𝑋. A point 𝑥 is called a fixed point of flow 𝑇 , if 𝑇𝑡(𝑥) = 𝑥 for every 𝑡 ∈ R. In this
case, 𝑂𝑥 = {𝑥}. An orbit 𝑂𝑥 is called closed (or periodic), if there exists 𝜏 ∈ R (a period) such that
𝑇𝜏 (𝑥) = 𝑥, and 𝑂𝑥 ̸= {𝑥}. The least positive period of a closed orbit is called a primitive period.

A closed orbit 𝑂𝑥 of the flow 𝑇 is called simple if

det(𝑖𝑑− 𝑑𝑇𝜏 (𝑥) : 𝑇𝑥ℱ* → 𝑇𝑥ℱ*) ̸= 0

for each period 𝜏 . We let

𝜀(𝜏) = sgn det (𝑖𝑑− 𝑑𝑇𝜏 (𝑥) : 𝑇𝑥ℱ* → 𝑇𝑥ℱ*) .

Theorem 2 ([1]). Suppose that all closed orbits of the flow 𝑇 are simple. Then

𝐿(𝑇 ) =
∑︁
𝑐

𝜏(𝑐)
∑︁
𝑘 ̸=0

𝜀(𝑘𝜏(𝑐)) · 𝛿𝑘𝜏(𝑐)

on R ∖ {0}, where 𝑐 runs over the set of all closed orbits of the flow 𝑇 , 𝜏(𝑐) denotes the primitive
period of 𝑐, and 𝑥 is an arbitrary point in 𝑐.

The Lefschetz formula of [1] can be considered as an index theorem for a certain differential operator,
transversally elliptic with respect to the flow (see [9] for relations with transverse index theory on
foliated manifolds). The following analytic result plays an essential role in [1]. Let 𝐾 be a leafwise
smoothing operator on 𝑋, that is, an operator in 𝐶∞(𝑋) given by a family of proper integral operators
with smooth kernel acting along the leaves of the foliation. Then, for each function 𝑓 ∈ 𝐶∞

0 (R),
operator 𝑇𝑓 ∘𝐾 is an integral operator with smooth kernel. This fact allows us to define a distribution
𝑓 ∈ 𝐶∞

0 (R) ↦→ Tr𝑇𝑓 ∘ 𝐾 on R, where Tr denotes the trace of 𝑇𝑓 ∘ 𝐾 as a trace class operator in
Hilbert space 𝐿2(𝑋).

The arguments adduced in [3, 4] show that, if we want to treat the explicit trace formula for the
Riemann zeta function as a Lefschetz formula for a certain flow preserving a foliation, then the flow
necessarily must have fixed points. In this paper we are interested in generalizations of the Lefschetz
formula for a flow on a compact manifold with codimension one foliation to the case when the flow has
fixed points. More precisely, we consider a flow 𝑇 on a compact manifold 𝑋 of dimension 𝑛 equipped
with a codimension one foliation ℱ satisfying Condition (P1) as well as the following conditions:

(P3) The flow 𝑇 has finitely many fixed points being simple.
(P4) The orbits of 𝑇 are transverse to all leaves of the foliations, except the leaves containing the

fixed points of the flow.
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Recall that a fixed point 𝑥 of the flow 𝑇 is called simple if for each 𝑡 > 0

det(𝐼𝑑− 𝑑𝑇𝑡(𝑥) : 𝑇𝑥𝑋 → 𝑇𝑥𝑋) ̸= 0.

The present work is a part of a joint project with J. Alvarez Lopez and E. Leichtnam, in which
there was proposed a new approach to Lefschetz formulas for the flows satisfying Conditions (P1),
(P3), (P4). This approach is as follows. First of all, we observe that, under Conditions (P1), (P3),
(P4), an operator of the form 𝑇𝑓 ∘𝐾, where 𝐾 is a leafwise smoothing operator, is not, in general,
an operator with smooth kernel, because its kernel may have singularities near the leaves containing
fixed points of the flow. The idea consists in extending the trace functional defined on operators with
smooth kernel to a functional r-Tr, called the regularized trace, defined on a wider class of integral
operators, which includes operators of the form 𝑇𝑓 ∘ 𝐾. Unfortunately, projections 𝑃ℋ𝑢(ℱ) are not
always nice leafwise smoothing operators. However, if this is the case and the regularized trace of
an operator of the form 𝑇𝑓 ∘ 𝑃ℋ𝑢(ℱ) is well defined, then we can define an analogue of the Lefschetz
function of flow 𝑇 , the regularized Lefschetz function 𝐿(𝑇 ) ∈ 𝒟′(R), as

⟨𝐿(𝑇 ), 𝑓⟩ =
𝑛−1∑︁
𝑢=0

(−1)𝑢 r-Tr(𝑇𝑓 ∘ 𝑃ℋ𝑢(ℱ)), 𝑓 ∈ 𝐶∞
0 (R). (2)

In the general case, one can try to use well elaborated methods of the index theory, replacing 𝑃ℋ𝑢(ℱ)

with an operator of the form 𝜓(𝑡Δℱ ), where 𝜓 is a sufficiently nice function on the real line and 𝑡 > 0;
for instance, with the operator 𝑒−𝑡Δℱ .

Regularized trace functional r-Tr and the corresponding algebra of singular integral operators
𝒦(𝑋,𝑋0) on an arbitrary compact manifold 𝑋 having singularities at some smooth codimension
one submanifold 𝑋0 were constructed in [10] by using ideas of the papers by Melrose [12, 13, 14], in
particular, a geometric approach to constructing and studying algebras of singular integral operators
suggested in these papers. It should be noted that functional r-Tr does not have the trace property,
but there is a formula for the regularized trace of the commutator of operators in terms of some
integral operators with smooth kernel on 𝑋0.

The purpose of this paper is a realization of the approach mentioned above for a flow 𝑇 satisfying
Conditions (P1), (P3), (P4) in two cases.

First of all, we consider the case when foliation ℱ is given by the fibers of a fibration over the
circle 𝑆1. It is shown in this case that, for each 𝑓 ∈ 𝐶∞

0 (R) and for each leafwise smoothing operator
𝐾, operator 𝑇𝑓 ∘𝐾 belongs to the algebra 𝒦(𝑋,𝑋0), where 𝑋0 is the union of all leaves containing
fixed points of the flow. Moreover, operator 𝑃ℋ𝑢(ℱ) is a leafwise smoothing operator. These facts
allow us to define regularized Lefschetz function 𝐿(𝑇 ) ∈ 𝒟′(R) by (2). By an explicit computation of
the regularized trace of 𝑇𝑓 ∘𝐾, we obtain the following Lefschetz formula (see Theorem 7 for a more
detailed formulation).

Theorem 3. We have the formula

𝐿(𝑇 ) = 𝐶𝜒(𝐹 )𝛿0,

where 𝜒(𝐹 ) is the Euler characteristic of a fiber 𝐹 and 𝐶 is some constant, depending only on the
flow.

Then we consider the simplest particular example of a foliation ℱ , which is not given by the fibers of a
fiber bundle. Namely, we consider the foliation ℱ on the two-dimensional torus𝑋 = T2 = R2/(2Z×Z),
whose lift on R2 under the natural map R2 → Z2, a foliation ̃︀ℱ on R2, is given by the level sets of the
map 𝑝 : R2 → R, 𝑝(𝑦, 𝑧) = 𝑒𝑧 cos

(︀
𝜋
2 𝑦
)︀
. This foliation has one compact leaf 𝑋0 = {(𝑦, 𝑧) ∈ T2 : 𝑦 = 1},

all other leaves are non-compact and wrap it. Note that ℱ is not transversely orientable. One can
explicitly construct a class of flows on 𝑋 satisfying Conditions (P1), (P3), (P4). Fixed points of each
such flow belong to 𝑋0.

In this case, one can also prove that, for each 𝑓 ∈ 𝐶∞
0 (R) and for each leafwise smoothing operator

𝐾, operator 𝑇𝑓 ∘𝐾 belongs to the algebra 𝒦(𝑋,𝑋0), where 𝑋0 is the union of all leaves, containing
fixed points of the flow, and, therefore, its regularized trace is well defined. Nevertheless, an explicit
computation of the regularized trace of 𝑇𝑓 ∘𝐾 seems to be a quite complicated problem.
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Another problem is that, in this case, projection 𝑃ℋ𝑢(ℱ) is not, in general, a leafwise smoothing

operator. This is why, instead of it, we consider operator 𝜓(𝑡Δℱ )
2, where 𝜓 is a sufficiently nice

function on the real line and 𝑡 > 0, and the corresponding smoothed regularized Lefschetz function
𝐿𝑡,𝜓 ∈ 𝒟′(R) given by (in the case under consideration 𝑛 = 2)

⟨𝐿𝑡,𝜓, 𝑓⟩ =
𝑛−1∑︁
𝑢=0

(−1)𝑢 r-Tr(𝑇𝑓 ∘ 𝜓(𝑡Δ𝑢
ℱ )

2). (3)

An important fact in the proof of the Lefschetz formula in [1] is that the smoothed Lefschetz function
𝐿𝑡,𝜓 (defined by means of the usual trace) is independent of 𝑡 (an analogue of the well known McKean-
Singer formula). This fact makes an essential use of the trace property of Tr. Since r-Tr does not have
trace property, the smoothed regularized Lefschetz function 𝐶𝑡,𝜓,𝑓 , in general, depends on 𝑡. Using
the formula for the regularized trace of the commutator obtained in [10], in Proposition 6 we prove
a formula for the derivative of 𝐶𝑡,𝜓,𝑓 with respect to 𝑡 in terms of traces of some integral operators

on the circle. A more explicit formula for 𝑑
𝑑𝑡𝐶𝑡,𝜓,𝑓 is obtained in the case when 𝜓(𝑥) = 𝑒−

𝑥
2 , that is,

when 𝜓(𝑡Δ𝑢
ℱ )

2 = 𝑒−𝑡Δ
𝑢
ℱ (see Theorem 8 below). The next natural step is the study of the asymptotic

behavior of 𝐶𝑡,𝜓,𝑓 as 𝑡 → 0 and as 𝑡 → +∞, which is a rather difficult problem and it will not be
discussed in this paper.

The outline of the paper is as follows. In Section 2, we recall some necessary facts from [10]. In
Section 3, we treat the case when the foliation ℱ is given by the fibers of a fiber bundle over the circle
𝑆1. Section 4 is devoted to the study of a flow on the Reeb foliation. At the end of Section 4, we
discuss an analogue of the McKean-Singer formula for the example considered in Section 3.

The authors are grateful to J. Alvarez Lopez and E. Leichtnam for many useful discussions and
remarks.

2. Preliminaries

In this section, we remind necessary basic notions from [10].

2.1. Algebra 𝒦(𝑋,𝑋0;𝐸). Let 𝑋 be a smooth compact manifold of dimension 𝑛, 𝑋0 its smooth
codimension one submanifold, 𝐸 a Hermitian vector bundle on 𝑋. Suppose that there is given a
Riemannian metric 𝑔𝑋 on 𝑋 and 𝑁(𝑋0) is oriented.

We shall consider operator, acting on half-densities. Denote by Ω
1
2
𝑋 the half-density bundle on 𝑋.

Consider an operator 𝐴 : 𝐶∞
0 (𝑋 ∖𝑋0, 𝐸 ⊗ Ω

1
2
𝑋) → 𝐶∞(𝑋 ∖𝑋0, 𝐸 ⊗ Ω

1
2
𝑋) with the kernel

𝑘𝐴 ∈ 𝐶∞
(︂
(𝑋 ×𝑋) ∖ ({𝑋0 ×𝑋} ∪ {𝑋 ×𝑋0}),ℒ(𝐸)⊗ Ω

1
2
𝑋×𝑋

)︂
,

where ℒ(𝐸) is the vector bundle on 𝑋 ×𝑋, whose fiber at (𝑝1, 𝑝2) ∈ 𝑋 ×𝑋 consists of linear maps

from 𝐸𝑝2 to 𝐸𝑝1 . The action of 𝐴 on a half-density 𝜇 ∈ 𝐶∞
0 (𝑋 ∖𝑋0, 𝐸 ⊗ Ω

1
2
𝑋) is given by

𝐴𝜇 =

∫︁
𝑋

𝑘𝐴𝜇. (4)

From now on, |𝑑𝑥0| is a fixed smooth positive density on 𝑋0.
We shall need some special coordinates on 𝑋 defined near 𝑋0. Let exp : 𝑁(𝑋0) := 𝑇𝑋/𝑇𝑋0 ∼=

(𝑇𝑋0)⊥ → 𝑋 be the exponential map of the Riemannian metric 𝑔𝑋 for the submanifold 𝑋0. We shall
identify 𝑋0 with the zero section of the bundle 𝑁(𝑋0), that allows us to consider it as a submanifold of
𝑁(𝑋0). It is well known that there exists a neighborhood 𝑈 ⊃ 𝑋0 in 𝑁(𝑋0) such that the restriction
exp |𝑈 to 𝑈 is a diffeomorphism of 𝑈 on some neighborhood exp(𝑈) =: 𝑉 of 𝑋0 in 𝑋 called a tubular
neighborhood of 𝑋0. One can associate to every 𝑝 ∈ 𝑉 a pair (𝑥, 𝑥0) ∈ 𝑁(𝑋0), where 𝑥0 ∈ 𝑋0 and
𝑥 ∈ 𝑁𝑥0(𝑋

0), exp(𝑥) = 𝑝. Since the normal bundle 𝑁(𝑋0) is oriented, the Riemannian metric gives
rise to an isomorphism 𝑁𝑥0(𝑋

0) ∼= R and one can assume that 𝑥 ∈ R. Thus, the point 𝑝 is uniquely
determined by the pair (𝑥, 𝑥0), where 𝑥 ∈ R, 𝑥0 ∈ 𝑋0. Without loss of generality, one can assume that
𝑝 ∈ 𝑉 if and only if 𝑥 ∈ (−𝜀, 𝜀) for some 𝜀 > 0. We shall call the map 𝑉 → (−𝜀, 𝜀)×𝑋0, 𝑝 ↦→ (𝑥, 𝑥0)
a normal coordinate system near 𝑋0.
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If 𝐸 is a Hermitian vector bundle on 𝑋, then we can assume that there is an isomorphism 𝐸(𝑥,𝑥0)
∼=

𝐸(0,𝑥0) = 𝐸0
𝑥0 for each 𝑥 ∈ (−𝜀, 𝜀), where 𝐸0 is the restriction of 𝐸 to 𝑋0. In this case, we shall say

that exp(𝑈) is endowed with an adapted trivialization of the bundle 𝐸.
Let us take a normal coordinate system with coordinates (𝑥, 𝑥0) ∈ (−𝜀, 𝜀) × 𝑋0 and an adapted

trivialization of 𝐸 in a tubular neighborhood 𝑉 of 𝑋0. Let (𝑥1, 𝑥2, 𝑥
0
1, 𝑥

0
2) be the corresponding

coordinates on 𝑉 × 𝑉 . Kernel 𝑘𝐴 is written as

𝑘𝐴 = 𝐾𝐴(𝑥1, 𝑥2, 𝑥
0
1, 𝑥

0
2)

⃒⃒⃒⃒
𝑑𝑥1
𝑥1

𝑑𝑥2
𝑥2

𝑑𝑥01𝑑𝑥
0
2

⃒⃒⃒⃒ 1
2

,

where 𝐾𝐴(𝑥1, 𝑥2, 𝑥
0
1, 𝑥

0
2) is a linear map from 𝐸(𝑥2,𝑥02)

∼= 𝐸0
𝑥02

to 𝐸(𝑥1,𝑥01)
∼= 𝐸0

𝑥01
for each (𝑥1, 𝑥2, 𝑥

0
1, 𝑥

0
2).

Introduce a coordinate system (𝑥, 𝑠, 𝑥01, 𝑥
0
2) ∈ ((−𝜀, 𝜀)∖{0})×(R∖{0})×𝑋0×𝑋0 on (𝑉 ∖𝑋0)×(𝑉 ∖𝑋0)

by

𝑥 = 𝑥1, 𝑠 =
𝑥1
𝑥2
. (5)

In the local coordinate system (𝑥, 𝑠, 𝑥01, 𝑥
0
2), kernel 𝑘𝐴 is written as

𝑘𝐴 = ̃︀𝐾𝐴(𝑥, 𝑠, 𝑥
0
1, 𝑥

0
2)

⃒⃒⃒⃒
𝑑𝑥

𝑥

𝑑𝑠

𝑠
𝑑𝑥01𝑑𝑥

0
2

⃒⃒⃒⃒ 1
2

,

where, for each (𝑥, 𝑠, 𝑥01, 𝑥
0
2) ∈ (−𝜀, 𝜀)× (R ∖ {0})×𝑋0 ×𝑋0,̃︀𝐾𝐴(𝑥, 𝑠, 𝑥

0
1, 𝑥

0
2) = 𝐾𝐴(𝑥,

𝑥

𝑠
, 𝑥01, 𝑥

0
2) : 𝐸

0
𝑥02

→ 𝐸0
𝑥01
. (6)

Let 𝜇 ∈ 𝐶∞
0 (𝑋,𝐸 ⊗ Ω

1
2
𝑋), supp𝜇 ⊂ 𝑉 . Write 𝜇 = 𝑢(𝑥, 𝑥0)

⃒⃒
𝑑𝑥
𝑥 𝑑𝑥

0
⃒⃒ 1
2 , where 𝑢 ∈ 𝐶∞

0 (𝑉,𝐸) ∼=
𝐶∞
0 ((−𝜀, 𝜀)×𝑋0, 𝐸0). Then

𝐴𝜇

⃒⃒⃒⃒
𝑉

=

⎛⎝∫︁
𝑋0

+∞∫︁
−∞

̃︀𝐾𝐴(𝑥, 𝑠, 𝑥
0
1, 𝑥

0
2)𝑢
(︁𝑥
𝑠
, 𝑥02

)︁ 𝑑𝑠
𝑠
𝑑𝑥02

⎞⎠ ⃒⃒⃒⃒𝑑𝑥
𝑥
𝑑𝑥01

⃒⃒⃒⃒ 1
2

.

Definition 1. We say that 𝐴 ∈ 𝒦(𝑋,𝑋0, 𝐸), if the following conditions hold:

1. For each 𝜀 > 0, there exists 𝛿 > 0 such that, if 𝜚(𝑥,𝑋0) > 𝜀, 𝜚(𝑦,𝑋0) < 𝛿 or 𝜚(𝑦,𝑋0) > 𝜀,
𝜚(𝑥,𝑋0) < 𝛿, then 𝑘𝐴(𝑥, 𝑦) = 0 (here 𝜚 is the geodesic distance defined by 𝑔𝑋).

2. Function ̃︀𝐾𝐴(𝑥, 𝑠, 𝑥
0
1, 𝑥

0
2) defined by (6) is smooth on (−𝜀, 𝜀)× (R ∖ {0})×𝑋0 ×𝑋0.

3. There exist 𝑚, 𝑀 , 0 < 𝑚 < 𝑀 < ∞ such that function ̃︀𝐾𝐴 is supported in the set of all
(𝑥, 𝑠, 𝑥01, 𝑥

0
2) ∈ ((−𝜀, 𝜀) ∖ {0})× (R ∖ {0})×𝑋0 ×𝑋0 such that 𝑚 < |𝑠| < 𝑀 .

Set 𝒦(𝑋,𝑋0, 𝐸) is an algebra.

2.2. Regularized trace. Operators from 𝒦(𝑋,𝑋0, 𝐸), in general, are not trace class. In this sec-
tion we introduce a functional on 𝒦(𝑋,𝑋0, 𝐸), called the regularized trace functional, which coincides
with the trace functional on trace class operators.

Let 𝑋 be a compact manifold, 𝑋0 its smooth codimension one submanifold, 𝐸 a Hermitian vector
bundle on 𝑋, 𝑔𝑋 a Riemannian metric on 𝑋. A density 𝜇 on 𝑋 is called a smooth relative density, if,
in a normal coordinate system near 𝑋0, it is written as

𝜇 = 𝑢(𝑥, 𝑥0)

⃒⃒⃒⃒
𝑑𝑥

𝑥
𝑑𝑥0
⃒⃒⃒⃒
, (𝑥, 𝑥0) ∈ (−𝜀, 𝜀)×𝑋0, (7)

where
⃒⃒
𝑑𝑥0
⃒⃒
is a fixed smooth density on 𝑋0 and 𝑢 is a smooth function on (−𝜀, 𝜀)×𝑋0. For a smooth

relative density 𝜇, define a density 𝜇 |𝑋0 on 𝑋0 as follows. If 𝜇 is written in the form (7), then

𝜇 |𝑋0 = 𝑢(0, 𝑥0)|𝑑𝑥0|.

Define a continuous function 𝑟 on 𝑋 by the formula 𝑟(𝑝) = 𝜚(𝑝,𝑋0), where 𝜚 is the geodesic distance
from 𝑝 to 𝑋0.
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Definition 2. The regularized integral of a smooth relative density 𝜇 over 𝑋 is defined by

𝑟∫︁
𝑋

𝜇 = lim
𝜀→0

(︂ ∫︁
𝑋

𝑟(𝑝)>𝜀

𝜇+ 2 ln 𝜀

∫︁
𝑋0

𝜇 |𝑋0

)︂
. (8)

For kernel 𝑘𝐴 of an operator 𝐴 ∈ 𝒦(𝑋,𝑋0;𝐸), one can naturally define its restriction to the diagonal
Δ = {(𝑝, 𝑝) ∈ 𝑋 × 𝑋 : 𝑝 ∈ 𝑋} ∼= 𝑋 as a matrix-valued density 𝑘𝐴 |Δ ∈ 𝐶∞ (︀𝑋 ∖𝑋0,ℒ(𝐸)⊗ Ω𝑋

)︀
on 𝑋 ∖𝑋0. One can prove that its pointwise trace tr 𝑘𝐴 |Δ ∈ 𝐶∞ (︀𝑋 ∖𝑋0,Ω𝑋

)︀
is a smooth relative

density on 𝑋 that allows us to give the following definition.

Definition 3. The regularized trace of an operator 𝐴 ∈ 𝒦(𝑋,𝑋0;𝐸) with kernel 𝑘𝐴 is defined by

r-Tr(𝐴) =

𝑟∫︁
𝑋

tr 𝑘𝐴 |Δ .

As mentioned above, there is a formula for the regularized trace of the commutator of operators
𝐴,𝐵 ∈ 𝒦(𝑋,𝑋0;𝐸) in terms of certain families of integral operators with smooth kernel on 𝑋0

associated with 𝐴 and 𝐵.
Let 𝐴 ∈ 𝒦(𝑋,𝑋0;𝐸) and let ̃︀𝐾𝐴 be defined by (6). Then there exists the limit

lim
𝑥→0

̃︀𝐾𝐴(𝑥, 𝑠, 𝑥
0
1, 𝑥

0
2) =: ̃︀𝐾𝐴(0, 𝑠, 𝑥

0
1, 𝑥

0
2) : 𝐸

0
𝑥02

→ 𝐸0
𝑥01
. (9)

Definition 4. The indicial operator associated with an operator 𝐴 ∈ 𝒦(𝑋,𝑋0, 𝐸) is the op-

erator 𝐼(𝐴) acting on a half-density 𝜇 ∈ 𝐶∞
0 ((R ∖ {0}) × 𝑋0, 𝜋*2𝐸

0 ⊗ Ω
1
2

(𝑅∖{0})×𝑋0) of the form

𝜇 = 𝑢(𝑥, 𝑥0)
⃒⃒
𝑑𝑥
𝑥 𝑑𝑥

0
⃒⃒ 1
2 by the formula

𝐼(𝐴)𝜇 = 𝐼(𝐴)𝑢(𝑥, 𝑥0)

⃒⃒⃒⃒
𝑑𝑥

𝑥
𝑑𝑥0
⃒⃒⃒⃒ 1
2

∈ 𝐶∞
0 ((R ∖ {0})×𝑋0, 𝜋*2𝐸

0 ⊗ Ω
1
2

R∖{0}×𝑋0),

where

𝐼(𝐴)𝑢(𝑥, 𝑥0) =

∫︁
𝑋0

+∞∫︁
−∞

̃︀𝐾𝐴(0, 𝑠, 𝑥
0, 𝑥01)𝑢

(︁𝑥
𝑠
, 𝑥01

)︁ 𝑑𝑠
𝑠
𝑑𝑥01, 𝑥 ∈ R ∖ {0}, 𝑥0 ∈ 𝑋0.

Here 𝜋*2𝐸
0 denotes the bundle on (R ∖ {0}) × 𝑋0, which is the pull-back of the bundle 𝐸0 under

the projection 𝜋2 : (R ∖ {0})×𝑋0 → 𝑋0: (𝜋*2𝐸
0)(𝑥,𝑥0) = 𝐸0

𝑥0 .

Definition 5. The indicial families of an operator 𝐴 ∈ 𝒦(𝑋,𝑋0, 𝐸) are the families {𝐼±(𝐴, 𝜆) :
𝜆 ∈ C} of integral operators in the space 𝐶∞(𝑋0, 𝐸0) with smooth kernels given by

𝐾𝐼+(𝐴,𝜆)(𝑥
0
1, 𝑥

0
2) =

+∞∫︁
0

𝑠−𝑖𝜆 ̃︀𝐾𝐴(0, 𝑠, 𝑥
0
1, 𝑥

0
2)
𝑑𝑠

𝑠
: 𝐸0

𝑥02
→ 𝐸0

𝑥01
,

𝐾𝐼−(𝐴,𝜆)(𝑥
0
1, 𝑥

0
2) =

0∫︁
−∞

|𝑠|−𝑖𝜆 ̃︀𝐾𝐴(0, 𝑠, 𝑥
0
1, 𝑥

0
2)
𝑑𝑠

|𝑠|
: 𝐸0

𝑥02
→ 𝐸0

𝑥01
.

Using the Paley-Wiener theorem, it is easy to show that the functions 𝐾𝐼±(𝐴,𝜆) are well defined for
each 𝜆 ∈ C and are entire functions of 𝜆.

The following properties of the indicial operators hold:

1. 𝐼(𝐴 ∘𝐵) = 𝐼(𝐴) ∘ 𝐼(𝐵).
2. 𝐼±(𝐴 ∘𝐵, 𝜆) = 𝐼+(𝐴, 𝜆) ∘ 𝐼±(𝐵, 𝜆) + 𝐼−(𝐴, 𝜆) ∘ 𝐼∓(𝐵, 𝜆).
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Theorem 4. If 𝐴 ∈ 𝒦(𝑋,𝑋0, 𝐸) and 𝐵 ∈ 𝒦(𝑋,𝑋0, 𝐸), then

r-Tr([𝐴,𝐵]) = − 1

𝜋𝑖

+∞∫︁
−∞

Tr(𝜕𝜆𝐼
+(𝐴, 𝜆) ∘ 𝐼+(𝐵, 𝜆) + 𝜕𝜆𝐼

−(𝐴, 𝜆) ∘ 𝐼−(𝐵, 𝜆))𝑑𝜆,

where Tr denotes the trace of integral operator in 𝐶∞(𝑋0, 𝐸0).

Integrating by parts in 𝜆, one can rewrite the formula as

r-Tr([𝐴,𝐵]) =
1

𝜋𝑖

+∞∫︁
−∞

Tr(𝐼+(𝐴, 𝜆) ∘ 𝜕𝜆𝐼+(𝐵, 𝜆) + 𝐼−(𝐴, 𝜆) ∘ 𝜕𝜆𝐼−(𝐵, 𝜆))𝑑𝜆.

3. Flows on fiber bundles

3.1. A flow on a fiber bundle and operators associated with it. Suppose that a compact
manifold 𝑋 of dimension 𝑛 is a total space of a fiber bundle 𝜋 : 𝑋 → 𝑆1 over the circle 𝑆1 = R/2𝜋Z
with a compact manifold 𝐹 as fiber and a foliation ℱ is given by the fibers of 𝜋.

Suppose that a flow 𝑇 on 𝑋 satisfies Conditions (P1), (P3), (P4). Then there exists a flow 𝑇 on 𝑆1

such that 𝜋(𝑇𝑡(𝑥)) = 𝑇 𝑡(𝜋(𝑥)) for each 𝑥 ∈ 𝑋. We write the infinitesimal generator 𝑉 = 𝑑
𝑑𝑡𝑇 𝑡|𝑡=0 of

the flow 𝑇 as

𝑉 (𝑦) = 𝑎(𝑦)
𝜕

𝜕𝑦
, 𝑦 ∈ 𝑆1,

where 𝑎 ∈ 𝐶∞(𝑆1). By Condition (P3), flow 𝑇 has finitely many fixed points 𝛼1, . . . , 𝛼𝑘 ∈ 𝑆1, which
are non-degenerate, that is, 𝑎(𝛼𝑗) = 0 and 𝑎′(𝛼𝑗) ̸= 0 for each 𝑗 = 1, . . . , 𝑘. The points 𝛼𝑗 corresponds
to the leaves of ℱ containing fixed points of flow 𝑇 .

In a trivialization 𝜋−1(𝑈) ∼= 𝐹 × 𝑈 of the fiber bundle 𝜋, the infinitesimal generator 𝑉 = 𝑑
𝑑𝑡𝑇𝑡|𝑡=0

of 𝑇 reads as

𝑉 (𝑦) = 𝑣0(𝑦) + 𝑎(𝑦)
𝜕

𝜕𝑦
, 𝑦 ∈ 𝑈, (10)

where 𝑣0 is a vector field on 𝜋−1(𝑈) tangent to the fibers of 𝜋 (that is, a smooth family of vector fields
on 𝐹 parametrized by 𝑦 ∈ 𝑈). In other words, 𝑉 is a transversally projectable vector field on 𝑋.

Let 𝐸 be a complex vector bundle on 𝑋. Suppose that there is given a flow 𝑇𝐸 on 𝐸, which covers
the flow 𝑇 on 𝑋, and, in addition, the map 𝑇𝐸𝑡 (𝑥) : 𝐸𝑥 → 𝐸𝑇𝑡(𝑥) in the fibers of 𝐸 induced by the
flow is linear. Denote by 𝑇 *

𝑡 : 𝐶∞(𝑋,𝐸) → 𝐶∞(𝑋,𝐸) the operator induced by flow 𝑇 :

𝑇 *
𝑡 𝑢(𝑥) = 𝑟𝑡(𝑥)[𝑢(𝑇𝑡(𝑥))],

where 𝑟𝑡(𝑥) = 𝑇𝐸−𝑡(𝑇𝑡(𝑥)) : 𝐸𝑇𝑡(𝑥) → 𝐸𝑥.
Denote by 𝒱 ⊂ 𝑇𝑋 the subbundle of the tangent bundle 𝑇𝑋 consisting of vectors tangent to the

fibers of 𝜋. Let |𝒱|𝑠 be the 𝑠-density bundle associated with 𝒱 (the bundle of fiberwise 𝑠-densities).
Fix a smooth positive section 𝛼 of the bundle of fiberwise densities |𝒱|. It is given by a smooth family
{𝛼𝑦 : 𝑦 ∈ 𝑆1}, where 𝛼𝑦 is a smooth positive density on 𝐹𝑦. The product of 𝛼 with |𝑑𝑦| gives rise to
a well defined smooth positive density |𝑑𝜈| = |𝑑𝛼| ⊗ |𝑑𝑦| on 𝑋. We shall identify the space of smooth

half-densities 𝐶∞(𝑋,Ω
1
2
𝑋) with 𝐶

∞(𝑋) by using the fixed half-density |𝑑𝜈|1/2 = |𝑑𝛼|1/2 ⊗ |𝑑𝑦|1/2.
For a function 𝑓 ∈ 𝐶∞

0 (R), define a linear operator 𝑇𝑓 in 𝐶∞(𝑋,𝐸 ⊗ Ω
1
2
𝑋) by the formula: for

𝜇 = 𝑢|𝑑𝛼|1/2 ⊗ |𝑑𝑦|1/2 ∈ 𝐶∞(𝑋,𝐸 ⊗ Ω
1
2
𝑋)

𝑇𝑓𝜇 =

⎛⎝ +∞∫︁
−∞

𝑓(𝑡)𝑇 *
𝑡 𝑢𝑑𝑡

⎞⎠ |𝑑𝛼|1/2 ⊗ |𝑑𝑦|1/2. (11)
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3.2. Leafwise smoothing operators. By definition, a leafwise smoothing operator 𝐾 :

𝐶∞(𝑋,𝐸⊗Ω
1
2
𝑋) → 𝐶∞(𝑋,𝐸⊗Ω

1
2
𝑋) is given by an element 𝑘 of the space 𝐶∞(𝑋×𝜋𝑋,ℒ(𝐸)⊗|𝒱|

1
2⊗|𝒱|

1
2 )

by the formula:

𝐾𝜇 =

∫︁
𝐹

𝑘𝜇, (12)

where 𝑋×𝜋𝑋 = {(𝑝1, 𝑝2) ∈ 𝑋×𝑋 : 𝜋(𝑝1) = 𝜋(𝑝2)} and ℒ(𝐸) is the vector bundle on 𝑋×𝜋𝑋, whose

fiber at (𝑝1, 𝑝2) ∈ 𝑋 ×𝜋 𝑋 consists of linear maps from 𝐸𝑝2 to 𝐸𝑝1 , 𝜇 ∈ 𝐶∞(𝑋,𝐸 ⊗ Ω
1
2
𝑋), and the

integral should be understood as follows.
Let 𝜋−1(𝑈) ⊂ 𝑋 ∼= 𝐹 × 𝑈 be a trivialization of 𝜋 over some open set 𝑈 ⊂ 𝑆1. The choice of a

trivialization determines a diffeomorphism 𝜋−1(𝑈) ×𝜋 𝜋
−1(𝑈) ∼= 𝐹 × 𝐹 × 𝑈 . Namely, to each pair

(𝑝1, 𝑝2) ∈ 𝜋−1(𝑈)×𝜋 𝜋
−1(𝑈) we associate a triplet (𝑥01, 𝑥

0
2, 𝑦), where (𝑥01, 𝑦1) ∈ 𝐹 × 𝑈 corresponds to

𝑝1, and (𝑥02, 𝑦2) ∈ 𝐹 ×𝑈 to 𝑝2, moreover, 𝑦1 = 𝑦2 = 𝑦. Fix a smooth positive density |𝑑𝑥0| on 𝐹 . The
half-densities 𝑘 and 𝜇 can be written as

𝑘 = 𝑘(𝑥01, 𝑥
0
2, 𝑦)|𝑑𝑥01|

1
2 |𝑑𝑥02|

1
2 , 𝜇 = 𝑢(𝑥02, 𝑦)|𝑑𝑥0|

1
2 |𝑑𝑦|

1
2 , 𝑥01, 𝑥

0
2 ∈ 𝐹, 𝑦 ∈ 𝑈.

Let ∫︁
𝐹

𝑘𝜇 =

⎛⎝∫︁
𝐹

𝑘(𝑥01, 𝑥
0
2, 𝑦)𝑢(𝑥

0
2, 𝑦)|𝑑𝑥02|

⎞⎠ |𝑑𝑥01|
1
2 |𝑑𝑦|

1
2 , 𝑥01 ∈ 𝐹, 𝑦 ∈ 𝑈,

where the integral in the right-hand side of the equality should be understood as the integral of a
smooth density on 𝐹 with values in 𝐸(𝑥01,𝑦)

. It is easy to see that this definition is correct, that is,

independent of the choice of the trivialization and density |𝑑𝑥0|.

3.3. Operators 𝑇𝑓 ∘𝐾. Fix the standard Riemannian metric 𝑔𝑆1 = 𝑑𝑦2 on 𝑆1. Choose a Riemann-
ian metric 𝑔𝑋 on 𝑋 such that the map 𝜋 : (𝑋, 𝑔𝑋) → (𝑆1, 𝑔𝑆1) is a Riemannian submersion, that is,
for each tangent vector 𝑉 ∈ 𝑇𝑝𝑋 orthogonal to the fiber of 𝜋 and passing through 𝑝, we have the

identity ‖𝑉 ‖𝑔𝑋 = ‖𝑑𝜋𝑝(𝑉 )‖𝑔𝑆1 . Consider the smooth codimension one submanifold 𝑋0 =
𝑘⋃︀
𝑗=1

𝐹𝛼𝑗 .

The following statement holds.

Theorem 5. Suppose that flow 𝑇 satisfies Conditions (P1), (P3), (P4). Then, for each leafwise
smoothing operator 𝐾 and for each function 𝑓 ∈ 𝐶∞

0 (R), operator 𝑇𝑓 ∘𝐾 belongs to 𝒦(𝑋,𝑋0, 𝐸).

Proof. For each ℓ = 1, . . . , 𝑘, the set 𝑈ℓ = 𝑆1 ∖ 𝛼ℓ is contractible. Therefore, the restriction of 𝜋 to 𝑈ℓ
is trivial, that is, there exists a diffeomorphism 𝜋−1(𝑈ℓ) ∼= 𝐹 ×𝑈ℓ such that 𝐹𝛼 = 𝜋−1(𝛼) ∼= 𝐹 × {𝛼}.

To be definite, put ℓ = 1, 𝑈ℓ = 𝑈 and write the action of 𝑇𝑓 on a half-density 𝜇 in the trivialization.

For each 𝑡 ∈ R and for each 𝑦 ∈ (𝛼𝑗 , 𝛼𝑗+1), 𝑗 = 1, . . . , 𝑘 (𝛼𝑘+1 = 𝛼1), we have 𝑇 𝑡(𝑦) ∈ (𝛼𝑗 , 𝛼𝑗+1).
Therefore, diffeomorphism 𝑇𝑡 is written as

𝑇𝑡(𝑥
0, 𝑦) = (𝑆𝑡(𝑥

0, 𝑦), 𝑇 𝑡(𝑦)), (𝑥0, 𝑦) ∈ 𝐹 × 𝑈,

and the leafwise density 𝛼 as 𝑑𝛼 = 𝑤(𝑥0, 𝑦)|𝑑𝑥0|. Then, for each half-density 𝜇 = 𝑢(𝑥0, 𝑦)|𝑑𝑥0|
1
2 |𝑑𝑦|

1
2 ,

we have

(𝑇𝑓 ∘𝐾)𝜇 = [(𝑇𝑓 ∘𝐾)𝑢(𝑥0, 𝑦)]|𝑑𝑥0|
1
2 |𝑑𝑦|

1
2 ,

where

(𝑇𝑓 ∘𝐾)𝑢(𝑥0, 𝑦) =

+∞∫︁
−∞

𝑓(𝑡)

∫︁
𝐹

𝑟𝑡(𝑥
0, 𝑦)𝑘(𝑆𝑡(𝑥

0, 𝑦), 𝑥01, 𝑇 𝑡(𝑦))

· 𝑢(𝑥01, 𝑇 𝑡(𝑦))|𝑤(𝑥0, 𝑦)|1/2|𝑤(𝑥01, 𝑇 𝑡(𝑦))|
1
2𝑑𝑡|𝑑𝑥01|, (13)

where 𝑘 = 𝑘(𝑥0, 𝑥01, 𝑦)|𝑤(𝑥0, 𝑦)|
1
2 |𝑤(𝑥01, 𝑦)|

1
2 |𝑑𝑥0|

1
2 |𝑑𝑥01|

1
2 , (𝑥0, 𝑦) ∈ 𝐹 × 𝑈 , is the kernel of the leafwise

smoothing operator 𝐾. For a fixed 𝑦 ∈ 𝑆1 ∖ {𝛼1, . . . , 𝛼𝑘}, say, 𝑦 ∈ (𝛼1, 𝛼2), we make the change of
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variables 𝑡 ∈ (−∞,+∞) ↦→ 𝑦1 = 𝑇 𝑡(𝑦) ∈ (𝛼1, 𝛼2) in the integral in the right hand side of (13). Since
𝑑𝑦1
𝑑𝑡 = 𝑎(𝑇 𝑡(𝑦)) = 𝑎(𝑦1) ̸= 0, 𝑡 can be expressed in terms of 𝑦1:

𝑡 = Ψ(𝑦, 𝑦1) :=

𝑦1∫︁
𝑦

𝑑𝑧

𝑎(𝑧)
, 𝑦, 𝑦1 ∈ (𝛼1, 𝛼2). (14)

It is easy to see that Ψ ∈ 𝐶∞((𝛼1, 𝛼2)× (𝛼1, 𝛼2)). Therefore, we get:

(𝑇𝑓 ∘𝐾)𝑢(𝑥0, 𝑦) =

∫︁
[𝛼1,𝛼2]

𝑓(Ψ(𝑦, 𝑦1))

∫︁
𝐹

𝑟Ψ(𝑦,𝑦1)(𝑥
0, 𝑦)𝑘(𝑆Ψ(𝑦,𝑦1)(𝑥

0, 𝑦), 𝑥01, 𝑦1)

· 𝑢(𝑥01, 𝑦1)|𝑤(𝑥0, 𝑦)|1/2|𝑤(𝑥01, 𝑦1)|
1
2

1

|𝑎(𝑦1)|
|𝑑𝑥01||𝑑𝑦1|.

Thus, the kernel of 𝑇𝑓 ∘𝐾 reads as

𝑘𝑓 (𝑥
0, 𝑥01, 𝑦, 𝑦1) = 𝑓(Ψ(𝑦, 𝑦1))𝑟Ψ(𝑦,𝑦1)(𝑥

0, 𝑦)𝑘(𝑆Ψ(𝑦,𝑦1)(𝑥
0, 𝑦), 𝑥01, 𝑦1)

· |𝑤(𝑥0, 𝑦)|1/2|𝑤(𝑥01, 𝑦1)|
1
2

1

|𝑎(𝑦1)|
|𝑑𝑥01|

1
2 |𝑑𝑦1|

1
2 |𝑑𝑥0|

1
2 |𝑑𝑦|

1
2 , (15)

if 𝑥0, 𝑥01 ∈ 𝐹 , 𝑦, 𝑦1 ∈ (𝛼1, 𝛼2), and

𝑘𝑓 (𝑥
0, 𝑥01, 𝑦, 𝑦1) = 0,

if 𝑥0, 𝑥01 ∈ 𝐹 , 𝑦 ∈ (𝛼1, 𝛼2), 𝑦1 ̸∈ (𝛼1, 𝛼2). In particular, the kernel of 𝑇𝑓 ∘𝐾 is a smooth half-density
on 𝑋 ×𝑋 ∖ (𝑋0 ×𝑋) ∪ (𝑋 ×𝑋0).

In this case, Condition (1) of Definition 1 follows immediately from the fact that function 𝑓 is
compactly supported and, for each 𝑦 ∈ (𝛼𝑗 , 𝛼𝑗+1),

lim
𝑦1→𝛼𝑗

Ψ(𝑦, 𝑦1) :=

𝛼𝑗∫︁
𝑦

𝑑𝑧

𝑎(𝑧)
= ∞, lim

𝑦1→𝛼𝑗+1

Ψ(𝑦, 𝑦1) :=

𝛼𝑗+1∫︁
𝑦

𝑑𝑧

𝑎(𝑧)
= ∞.

Fix 𝑗 = 1, . . . , 𝑘. Since the map 𝜋 is a Riemannian submersion, the normal coordinates (𝑥, 𝑥0) ∈
(−𝜀, 𝜀)×𝐹𝛼𝑗 determine a trivialization of 𝜋 over the ball 𝐵(𝛼𝑗 , 𝜀) ⊂ 𝑆1 of radius 𝜀 centered in 𝛼𝑗 ∈ 𝑆1.

Namely, the trivialization 𝑉 = 𝜋−1(𝐵(𝛼𝑗 , 𝜀)) ∼= 𝐹𝛼𝑗 × 𝐵(𝛼𝑗 , 𝜀) maps a point 𝑝 ∈ 𝜋−1(𝐵(𝛼𝑗 , 𝜀)) with

normal coordinates (𝑥, 𝑥0) ∈ (−𝜀, 𝜀)×𝐹𝛼𝑗 into (𝑥0, 𝑥+𝛼𝑗) ∈ 𝐹𝛼𝑗 ×𝐵(𝛼𝑗 , 𝜀). It is easy to see that the

formula (15) holds in this trivialization for each 𝑥0, 𝑥01 ∈ 𝐹𝛼𝑗 and 𝑦, 𝑦1 ∈ 𝐵(𝛼𝑗 , 𝜀). We shall assume
that 𝐵(𝛼𝑗 , 𝜀) ⊂ (𝛼𝑗−1, 𝛼𝑗+1)

Let (𝑥1, 𝑥2, 𝑥
0
1, 𝑥

0
2) be the corresponding coordinates on 𝑉 × 𝑉 . Introduce a coordinate system

(𝑥, 𝑠, 𝑥01, 𝑥
0
2) ∈ ((−𝜀, 𝜀) ∖ {0})× (R ∖ {0})× 𝐹𝛼𝑗 × 𝐹𝛼𝑗 on (𝑉 ∖ 𝐹𝛼𝑗 )× (𝑉 ∖ 𝐹𝛼𝑗 ) by

𝑥 = 𝑥1 = 𝑦 − 𝛼𝑗 , 𝑠 =
𝑦 − 𝛼𝑗
𝑦1 − 𝛼𝑗

. (16)

We consider the function ̃︀𝐾𝑓 on (−𝜀, 𝜀)× (R ∖ {0})×𝑋0×𝑋0, defined by kernel 𝑘𝑓 via formula (6)

. Since 𝑘𝑓 is supported in
⨆︀
𝑗
𝜋−1(𝛼𝑗 , 𝛼𝑗+1)× 𝜋−1(𝛼𝑗 , 𝛼𝑗+1), ̃︀𝐾𝑓 (𝑥, 𝑠, 𝑥

0, 𝑥01) = 0 for 𝑠 < 0.

For 𝑠 > 0, function ̃︀𝐾𝑓 reads as

̃︀𝐾𝑓 (𝑥, 𝑠, 𝑥
0, 𝑥01) = 𝑓(Ψ(𝛼𝑗 + 𝑥, 𝛼𝑗 +

𝑥

𝑠
))𝑟Ψ(𝛼𝑗+𝑥,𝛼𝑗+

𝑥
𝑠
)(𝑥

0, 𝛼𝑗 + 𝑥)

· 𝑘(𝑆Ψ(𝛼𝑗+𝑥,𝛼𝑗+
𝑥
𝑠
)(𝑥

0, 𝛼𝑗 + 𝑥), 𝑥01, 𝛼𝑗 +
𝑥

𝑠
)|𝑤(𝑥0, 𝛼𝑗 + 𝑥)|1/2

· |𝑤(𝑥01, 𝛼𝑗 +
𝑥

𝑠
)|

1
2

|𝑥|
𝑠1/2

|𝑎(𝛼𝑗 + 𝑥
𝑠 )|
. (17)

Using formula (17), it is easy to check the validity of Conditions (2) and (3) of Definition 1.
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3.4. Regularized trace of 𝑇𝑓 ∘ 𝐾. Let 𝐾 be a leafwise smoothing operator with kernel 𝑘 ∈
𝐶∞(𝑋 ×𝜋 𝑋,ℒ(𝐸)⊗ |𝒱|

1
2 ⊗ |𝒱|

1
2 ). Let 𝜋−1(𝑈) ⊂ 𝑋 ∼= 𝐹 × 𝑈 be a trivialization of 𝜋 over some open

set 𝑈 ⊂ 𝑆1. Fix a smooth positive half-density |𝑑𝑥0| on 𝐹 . Then 𝑘 can be written as

𝑘 = 𝑘(𝑥01, 𝑥
0
2, 𝑦)|𝑑𝑥01|

1
2 |𝑑𝑥02|

1
2 , 𝑥01, 𝑥

0
2 ∈ 𝐹, 𝑦 ∈ 𝑈.

We define a smooth leafwise density 𝑘𝑋 on 𝜋−1(𝑈) ∼= 𝐹 × 𝑈 by

𝑘𝑋 = tr 𝑘(𝑥0, 𝑥0, 𝑦)|𝑑𝑥0|, 𝑥0 ∈ 𝐹, 𝑦 ∈ 𝑈.

It is easy to see that this definition determines a well defined smooth leafwise density 𝑘𝑋 ∈ 𝐶∞(𝑋, |𝒱|)
on 𝑋, that is, it is independent of the choice of density |𝑑𝑥0| and the trivialization of 𝜋.

Let 𝑉 * ∈ Ω1(𝑋 ∖𝑋0) be a differential 1-form on 𝑋 such that 𝑉 *(𝑉 ) = 1 and 𝑉 *(𝑊 ) = 0 for each
𝑊 ∈ 𝒱. It gives rise to a transverse density |𝑉 *| ∈ 𝐶∞(𝑋 ∖ 𝑋0, |𝑇𝑋/𝒱|). The product of leafwise
density 𝑘𝑋 ∈ 𝐶∞(𝑋, |𝒱|) and transverse density |𝑉 *| ∈ 𝐶∞(𝑋 ∖ 𝑋0, |𝑇𝑋/𝒱|) is well defined as a
density 𝑘𝑋 |𝑉 *| ∈ 𝐶∞(𝑋 ∖𝑋0, |𝑇𝑋|) on 𝑋 ∖𝑋0.

Theorem 6. Suppose that flow 𝑇 satisfies Conditions (P1), (P3), (P4). Then 𝑘𝑋 |𝑉 *| is a smooth
relative density on manifold 𝑋 with distinguished submanifold 𝑋0, and the following formula

r-Tr(𝑇𝑓 ∘𝐾) = 𝑓(0)

𝑟∫︁
𝑋

𝑘𝑋 |𝑉 *| (18)

holds true.

Proof. Let 𝑘 ∈ 𝐶∞(𝑋 ×𝜋 𝑋,ℒ(𝐸) ⊗ |𝒱|
1
2 ⊗ |𝒱|

1
2 ) be the kernel of leafwise smoothing operator 𝐾.

Using an appropriate cover of 𝑆1 and a partition of unity subordinate to it, one can reduce the proof
to the case when 𝑘 is supported in 𝜋−1(𝑈), where 𝑈 ⊂ 𝑆1 is an interval, containing a single point 𝛼𝑗
for some 𝑗. Choose a trivialization 𝜋−1(𝑈) ⊂ 𝑋 ∼= 𝐹 × 𝑈 of 𝜋 over 𝑈 . We write the vector field 𝑉 in
the form (10). Then 𝑉 * = 1

𝑎(𝑦)𝑑𝑦 and

𝑘𝑋 |𝑉 *| = tr 𝑘(𝑥0, 𝑥0, 𝑦)

|𝑎(𝑦)|
|𝑑𝑥0||𝑑𝑦|, 𝑥0 ∈ 𝐹, 𝑦 ∈ 𝑈.

By definition,

r-Tr(𝑇𝑓 ∘𝐾) =

𝑟∫︁
𝑋

tr 𝑘𝑓 |Δ ,

where 𝑘𝑓 is given by (15). From (15), using that Ψ(𝑦, 𝑦) = 0, we get:

𝑘𝑓 |Δ = 𝑓(0)𝑘(𝑥0, 𝑥0, 𝑦)|𝑤(𝑥0, 𝑦)| 1

|𝑎(𝑦)|
|𝑑𝑥0||𝑑𝑦| = 𝑓(0)𝑘𝑋 |𝑉 *|.

It is easy to see that 𝑘𝑋 |𝑉 *| is a smooth relative density on 𝑋. Therefore, the regularized integral
𝑟∫︀
𝑋

tr 𝑘𝑓 |Δ exists and formula (18) is valid.

3.5. The Lefschetz formula for a flow on a fiber bundle. In this section, we prove the Lefschetz
formula described in Theorem 3.

First of all, we give a description of various objects associated with the foliation ℱ given by the
fibers of the fiber bundle 𝜋 : 𝑋 → 𝑆1. We recall that fiber 𝑇𝑝ℱ of bundle 𝑇ℱ at 𝑝 ∈ 𝑋 is the tangent
bundle to the leaf passing through 𝑝. In the case under consideration, the bundle 𝑇ℱ coincides with
the vertical subbundle 𝒱 of the tangent bundle 𝑇𝑋.

An arbitary element of the space Ω𝑢(ℱ) of leafwise differential 𝑢-forms on 𝑋 can be represented
as a family 𝜔 = {𝜔(𝑦) ∈ Ω𝑢(𝐹𝑦) : 𝑦 ∈ 𝑆1}, where 𝜔(𝑦) is a differential form on fiber 𝐹𝑦 smoothly
depending on 𝑦. In other words, it can be said that 𝜔 ∈ 𝐶∞(𝑆1,Ω𝑢𝐹 ) is a smooth section of the
infinite-dimensional bundle Ω𝑢𝐹 , whose fiber at 𝑦 is the space Ω𝑢(𝐹𝑦) of smooth differential 𝑢-forms on
𝐹𝑦.
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The leafwise de Rham differential 𝑑ℱ : Ω𝑢(ℱ) → Ω𝑢+1(ℱ) is described as follows: for 𝜔 = {𝜔(𝑦) :
𝑦 ∈ 𝑆1} ∈ Ω𝑢(ℱ), we have

𝑑ℱ𝜔 = {𝑑[𝜔(𝑦)] : 𝑦 ∈ 𝑆1} ∈ Ω𝑢+1(ℱ),

where 𝑑 : Ω𝑢(𝐹𝑦) → Ω𝑢+1(𝐹𝑦) is the de Rham differential on fiber 𝐹𝑦.
Let 𝑔ℱ be a leafwise Riemannian metric on 𝑋. It is given by a family of Riemannian metrics 𝑔(𝑦)

on the fibers 𝐹𝑦, smoothly depending on 𝑦 ∈ 𝑆1. Metric 𝑔ℱ gives rise to an inner product on space
Ω𝑢(ℱ) ∼= 𝐶∞(𝑆1,Ω𝑢𝐹 ):

(𝜔′, 𝜔′′) =

∫︁
𝑆1

(𝜔′(𝑦), 𝜔′′(𝑦))𝑔(𝑦)𝑑𝑦.

It is easy to show that the adjoint operator 𝛿ℱ : Ω𝑢+1(ℱ) → Ω𝑢(ℱ) of 𝑑ℱ is given as follows:

𝛿ℱ𝜔(𝑦) = 𝑑*[𝜔(𝑦)], 𝜔 ∈ Ω𝑢+1(ℱ),

where 𝑑* : Ω𝑢+1(𝐹𝑦) → Ω𝑢(𝐹𝑦) is the adjoint operator of 𝑑 on 𝐹𝑦 with respect to the metric 𝑔(𝑦).
Leafwise Laplace operator Δ𝑢

ℱ reads as

Δ𝑢
ℱ𝜔(𝑦) = Δ𝑢

𝑔(𝑦)[𝜔(𝑦)], 𝜔 ∈ Ω𝑢(ℱ),

where Δ𝑢
𝑔(𝑦) is the Laplace operator on 𝐹𝑦 given by metric 𝑔(𝑦).

The space ℋ𝑢(ℱ) = kerΔ𝑢
ℱ of leafwise harmonic differential 𝑢-forms is described as follows:

ℋ𝑢(ℱ) = {𝜔 ∈ 𝐶∞(𝑆1,Ω𝑢𝐹 ) : (∀𝑦 ∈ 𝑆1)𝜔(𝑦) ∈ ℋ𝑢
𝑔(𝑦)},

where ℋ𝑢
𝑔(𝑦) = kerΔ𝑢

𝑔(𝑦) is the space of harmonic differential 𝑢-forms on 𝐹𝑦. Finally, projection 𝑃ℋ𝑢(ℱ)

on the space of leafwise harmonic 𝑢-forms is the operator 𝑃ℋ𝑢(ℱ) : 𝐿2(𝑆1, 𝐿2Ω𝑢𝐹 ) → 𝐿2(𝑆1, 𝐿2Ω𝑢𝐹 )

given, for each 𝜔 ∈ 𝐿2(𝑆1, 𝐿2Ω𝑢𝐹 ), by

𝑃ℋ𝑢(ℱ)𝜔(𝑦) = 𝑃ℋ𝑢
𝑔(𝑦)

[𝜔(𝑦)], 𝑦 ∈ 𝑆1,

where, for each 𝑦 ∈ 𝑆1, operator 𝑃ℋ𝑢
𝑔(𝑦)

is the orthogonal projection in the space 𝐿2Ω𝑢(𝐹𝑦) of 𝐿2

differential 𝑢-forms on 𝐹𝑦 on subspace ℋ𝑢
𝑔(𝑦). Operator 𝑃ℋ𝑢

𝑔(𝑦)
is an operator with smooth kernel

𝑘𝑢𝑦 ∈ 𝐶∞(Λ𝑢𝑇 *ℱ � (Λ𝑢𝑇 *ℱ)*). Hence, projection 𝑃ℋ𝑢(ℱ) is given by

𝑃ℋ𝑢(ℱ)𝜔(𝑥
0, 𝑦) =

∫︁
𝐹𝑦

𝑘𝑢𝑦 (𝑥
0, 𝑥01)𝜔(𝑥

0
1, 𝑦)𝑑𝑥

0
1.

It is well known that kernel 𝑘𝑢𝑦 (𝑥
0, 𝑥01) depends smoothly on 𝑦, and, therefore, operator 𝑃ℋ𝑢(ℱ) is a

leafwise smoothing operator.

Suppose that flow 𝑇 satisfies Conditions (P1), (P3), (P4). Consider 𝑋0 =
𝑘⋃︀
𝑗=1

𝐹𝛼𝑗 as a smooth

codimension one submanifold. We define the regularized Lefschetz function 𝐿(𝑇 ) ∈ 𝒟′(R):

⟨𝐿(𝑇 ), 𝑓⟩ =
𝑛−1∑︁
𝑢=0

(−1)𝑢 r-Tr(𝑇𝑓 ∘ 𝑃ℋ𝑢(ℱ)), 𝑓 ∈ 𝐶∞
0 (R).

By Theorem 5, the regularized Lefschetz function 𝐿(𝑇 ) ∈ 𝒟′(R) is well defined.
Recall that the Euler characteristic of a compact manifold 𝑀 of dimension 𝑑 is the number

𝜒(𝑀) =

𝑑∑︁
𝑢=0

(−1)𝑢 dim𝐻𝑢(𝑀),

where 𝐻𝑢(𝑀) is the de Rham cohomology of 𝑀 .

Theorem 7. Suppose that flow 𝑇 satisfies Conditions (P1), (P3), (P4). Then the formula

𝐿(𝑇 ) = 𝜒(𝐹 )

𝑟∫︁
𝑆1

𝑑𝑦

|𝑎(𝑦)|
𝛿0

holds true.
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Proof. By Theorem 6, we have

r-Tr(𝑇𝑓 ∘ 𝑃ℋ𝑢(ℱ)) = 𝑓(0)

𝑟∫︁
𝑋

(𝑘𝑃ℋ𝑢(ℱ)
)𝑋 |𝑉 *|.

For each leafwise smoothing operator 𝐾 with kernel 𝑘, the following formula of integration along
the fibers of 𝜋 holds:

𝑟∫︁
𝑋

𝑘𝑋 |𝑉 *| =
𝑟∫︁

𝑆1

(trℱ 𝐾)
1

|𝑎(𝑦)|
𝑑𝑦,

where 𝐾(𝑦) : 𝐶∞(𝐹𝑦) → 𝐶∞(𝐹𝑦) is the restriction of 𝐾 to fiber 𝐹𝑦, trℱ 𝐾 is the function on 𝑆1,
which maps each 𝑦 ∈ 𝑆1 to trace tr𝐾(𝑦) of 𝐾(𝑦) (the fiberwise trace of 𝐾). By this formula, we get

⟨𝐿(𝑇 ), 𝑓⟩ = 𝑓(0)
𝑛−1∑︁
𝑢=0

(−1)𝑢
𝑟∫︁

𝑆1

1

|𝑎(𝑦)|
tr𝑃ℋ𝑢

𝑔(𝑦)
𝑑𝑦 = 𝑓(0)

𝑛−1∑︁
𝑢=0

(−1)𝑢
𝑟∫︁

𝑆1

1

|𝑎(𝑦)|
dimℋ𝑢

𝑔(𝑦)𝑑𝑦.

For each 𝑦 ∈ 𝑆1, there is the Hodge isomorphism ℋ𝑢
𝑔(𝑦)

∼= 𝐻𝑢(𝐹𝑦). Therefore, we obtain

⟨𝐿(𝑇 ), 𝑓⟩ = 𝑓(0)
𝑛−1∑︁
𝑢=0

(−1)𝑢
𝑟∫︁

𝑆1

1

|𝑎(𝑦)|
dim𝐻𝑢(𝐹𝑦) = 𝑓(0)

𝑟∫︁
𝑆1

1

|𝑎(𝑦)|
𝜒(𝐹𝑦)𝑑𝑦.

Since all fibers 𝐹𝑦 are diffeomorphic to 𝐹 , 𝜒(𝐹𝑦) = 𝜒(𝐹 ) for each 𝑦 ∈ 𝑆1, it completes immediately
the proof of the theorem.

4. Reeb foliation

4.1. A foliation on the torus and flows on it. We consider the submersion 𝑝 : R2 → R given
by:

𝑝(𝑦, 𝑧) = 𝑒𝑧 cos
(︁𝜋
2
𝑦
)︁
, (𝑦, 𝑧) ∈ R2.

The level sets of 𝑝 determine a foliation ̃︀ℱ on R2 with leaves of the form 𝐿𝑣 = {𝑝(𝑦, 𝑧) = 𝑣} with
𝑣 ∈ R. For each (𝑘, ℓ) ∈ Z2, the map 𝑅(𝑘,ℓ) : R

2 → R2, (𝑦, 𝑧) ↦→ (𝑦+2𝑘, 𝑧+ ℓ) maps 𝐿𝑣 into 𝐿(−1)𝑘𝑣𝑒ℓ .

Therefore, foliation ̃︀ℱ defines a foliation ℱ on the two-dimensional torus 𝑋 = R2/(2Z × Z). Note
that all leaves of ℱ are non-compact except for the leaf 𝐿0 = {(𝑦, 𝑧) ∈ 𝑋 : 𝑦 = 1} corresponding to
𝑣 = 0. Fix the standard Riemannian metric 𝑔 = 𝑑𝑦2 + 𝑑𝑧2 on 𝑋.

As a rule, we shall work with the manifold ̂︀𝑋 = (R/2Z)×R, which is a covering over 𝑋, and with

the corresponding lift ̂︀ℱ of foliation ℱ to ̂︀𝑋. Let us define a foliated coordinate system on ( ̂︀𝑋, ̂︀ℱ)
with coordinates (𝑢, 𝑣):

𝑢 = 𝑧; 𝑣 = 𝑒𝑧 cos
(︁𝜋
2
𝑦
)︁
, (𝑦, 𝑧) ∈ (0, 2)×R ⊂ ̂︀𝑋, (19)

and also a foliated coordinate system on ( ̂︀𝑋, ̂︀ℱ) with coordinates (𝑢0, 𝑣0):

𝑢0 = 𝑦0; 𝑣0 = 𝑒𝑧0 cos
(︁𝜋
2
𝑦0

)︁
, (𝑦0, 𝑧0) ∈ (−1, 1)×R ⊂ ̂︀𝑋. (20)

The coordinate systems introduced in such a way give rise to an atlas of the foliation ( ̂︀𝑋, ̂︀ℱ).

We shall identify functions on 𝑋 with functions on ̂︀𝑋 satisfying the condition 𝑓(𝑦, 𝑧 + 1) = 𝑓(𝑦, 𝑧)

for each 𝑦 ∈ R/2Z, 𝑧 ∈ R. The formulas (19) define a diffeomorphism 𝜓 from ̃︀𝑋 = (0, 2) × R ⊂ ̂︀𝑋
onto 𝑆 = {(𝑢, 𝑣) ∈ R2 : −𝑒𝑢 < 𝑣 < 𝑒𝑢}. In coordinates (𝑢, 𝑣), the periodicity condition for 𝑓 is written
as 𝑓(𝑢+ 1, 𝑒𝑣) = 𝑓(𝑢, 𝑣) for each (𝑢, 𝑣) ∈ 𝑆.

By direct computation we get:

𝜕

𝜕𝑢
=

2

𝜋
cot
(︁𝜋
2
𝑦
)︁ 𝜕

𝜕𝑦
+

𝜕

𝜕𝑧
,

𝜕

𝜕𝑣
= − 2

𝜋
𝑒−𝑧 csc

(︁𝜋
2
𝑦
)︁ 𝜕

𝜕𝑦
. (21)
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Let 𝑇 be a flow on (𝑋,ℱ) satisfying Conditions (P1), (P3) and (P4). We shall denote also by 𝑇

the lifted flow on ( ̂︀𝑋, ̂︀ℱ). Then, by Condition (P1), infinitesimal generator 𝑉 of flow 𝑇 in coordinates
(19) reads as

𝑉 = 𝐴(𝑢, 𝑣)
𝜕

𝜕𝑢
+𝐵(𝑣)

𝜕

𝜕𝑣
, (𝑢, 𝑣) ∈ 𝑆, (22)

where 𝐴 and 𝐵 are smooth functions on 𝑆 satisfying the conditions:

𝐴(𝑢+ 1, 𝑒𝑣) = 𝐴(𝑢, 𝑣), 𝐵(𝑒𝑣) = 𝑒𝐵(𝑣).

Since 𝐵 is a smooth function at 0, it is easy to see that there exists 𝛼 ∈ R such that 𝐵(𝑣) = 𝛼𝑣 for
each 𝑣 ∈ R. It follows from here that the infinitesimal generator of a flow on 𝑋 satisfying Condition
(P1) is tangent to the compact leaf 𝐿0. Moreover, if flow 𝑇 satisfies Conditions (P1), (P3) and (P4),
then 𝛼 ̸= 0 and the flow has at least one fixed point, which necessarily belongs to 𝐿0.

Writing the vector field 𝑉 in the coordinates (𝑦, 𝑧), one can show that it is smooth on 𝑋 if and only
if the function

𝑓(𝑦, 𝑧) =

{︃
𝐴
(︀
𝑧,−𝑒𝑧 cos 𝜋2 𝑦

)︀
if (𝑦, 𝑧) ∈ (−1, 0)×R;

𝐴
(︀
𝑧, 𝑒𝑧 cos 𝜋2 𝑦

)︀
if (𝑦, 𝑧) ∈ (0, 1)×R

is smooth for 𝑦 = 0. As an example of the function 𝐴, one can take

𝐴(𝑢, 𝑣) = 𝑓0(𝑣
2𝑒−2𝑢) +

∞∑︁
𝑘=1

(𝑓𝑘(𝑣𝑒
−𝑢) cos 𝑘𝑢+ 𝑔𝑘(𝑣𝑒

−𝑢) sin 𝑘𝑢),

where 𝑓𝑘, 𝑔𝑘 ∈ 𝐶∞([0, 1]) are even functions, 𝑓0(1) = 𝛼, 𝑓𝑘(1) = 𝑔𝑘(1) = 0.
Flow 𝑇 of vector field 𝑉 can be written as

𝑇𝑡(𝑦, 𝑧) = (𝑌 (𝑡, 𝑦, 𝑧), 𝑍(𝑡, 𝑦, 𝑧)).

In (𝑢, 𝑣)-coordinates, flow 𝑇 is given by the system of differential equations �̇� = 𝐴(𝑢, 𝑣), �̇� = 𝛼𝑣.
Therefore, in (𝑢, 𝑣)-coordinates it reads as

𝑇𝑡(𝑢, 𝑣) = (𝑈(𝑡, 𝑢, 𝑣), 𝑒𝛼𝑡𝑣).

The restriction of 𝑇 to 𝐿0 is given by the equation �̇� = 𝐴(𝑧, 0). It is easy to see that the circle 𝑦 = 0
is a periodic orbit with a period 𝜏 = 1

𝛼 .
In the sequel, we shall consider a complex vector bundle 𝐸 on 𝑋. We shall assume that 𝐸 is trivial

as a vector bundle, that is, 𝐸 ∼= 𝑋 × C𝑁 for some 𝑁 . We shall also assume that 𝐸 is equipped with
a flow 𝑇𝐸 , which covers the flow 𝑇 on 𝑋, moreover, the map 𝑇𝐸𝑡 (𝑦, 𝑧) : 𝐸(𝑦,𝑧) → 𝐸𝑇𝑡(𝑦,𝑧) in the fibers
of 𝐸 induced by this flow is linear. We denote by 𝑇 *

𝑡 the operator in 𝐶∞(𝑋,𝐸) induced by flow 𝑇 :

𝑇 *
𝑡 𝑢(𝑦, 𝑧) = 𝑟𝑡(𝑦, 𝑧)[𝑢(𝑇𝑡(𝑦, 𝑧))],

where 𝑟𝑡(𝑦, 𝑧) = 𝑇𝐸−𝑡(𝑇𝑡(𝑦, 𝑧)) : 𝐸𝑇𝑡(𝑦,𝑧) → 𝐸(𝑦,𝑧).
We shall be interested, mainly, in two particular cases. The first case is related with the space of

smooth functions. In this case, 𝐸 = 𝑋 × C and 𝑟𝑡(𝑦, 𝑧) = 1. Another important case is related with
the space Ω1(ℱ) of leafwise differential 1-forms on 𝑋. In this case, 𝐸 = 𝑇 *ℱ ⊗ C.

The operator 𝑇𝑓 : 𝐶∞(𝑋,𝐸 ⊗Ω
1
2
𝑋) → 𝐶∞(𝑋,𝐸 ⊗Ω

1
2
𝑋), where 𝑓 ∈ 𝐶∞

0 (R), is given by the formula:

for 𝜇 = 𝑎(𝑦, 𝑧)|𝑑𝑦𝑑𝑧|1/2,

𝑇𝑓𝜇 =

⎛⎝ +∞∫︁
−∞

𝑓(𝜏)𝑟𝜏 (𝑦, 𝑧)[𝑎(𝑇𝜏 (𝑦, 𝑧))]𝑑𝜏

⎞⎠ |𝑑𝑦𝑑𝑧|1/2. (23)

4.2. Analogue of the McKean-Singer formula. In this subsection, we introduce the smoothed
regularized Lefschetz function and formulate the main results of Section 4.

We shall begin with a general setting. Let (𝑋,ℱ) be an arbitrary 𝑛-dimensional compact manifold
with codimension one foliation and 𝑇 be a flow on 𝑋 satisfying Conditions (P1), (P3) and (P4). We
denote by 𝑋0 the submanifold of 𝑋, which consists of the leaves containing fixed points of the flow.
Fix an arbitrary Riemannian metric on 𝑋.
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Denote by 𝒜 the set of functions 𝜑 : R → C, which can be extended to entire functions on the
complex plane, and moreover, for each compact subset 𝐾 ⊂ R, the set of functions 𝑥 ↦→ 𝜑(𝑥 + 𝑖𝑦),
𝑦 ∈ 𝐾, is bounded in Schwartz space 𝑆(R).

Fix an even function 𝜑 ∈ 𝒜 of the form 𝜑(𝑥) = 𝜓(𝑥2), 𝑥 ∈ R, where 𝜓 ∈ 𝐶∞(R). For each 𝑡 > 0
and 𝑓 ∈ 𝐶∞

0 (R), define operators 𝐶𝑢𝑡,𝜓,𝑓 : Ω𝑢(ℱ) → Ω𝑢(ℱ), 𝑢 = 0, . . . , 𝑛 and 𝐶𝑡,𝜓,𝑓 : Ω(ℱ) → Ω(ℱ) by

𝐶𝑢𝑡,𝜓,𝑓 = 𝑇𝑓 ∘ 𝜓(𝑡Δ𝑢
ℱ )

2, 𝐶𝑡,𝜓,𝑓 = 𝑇𝑓 ∘ 𝜓(𝑡Δℱ )
2.

Suppose that operator 𝜓(𝑡Δ𝑢
ℱ )

2 : Ω𝑢(ℱ) → Ω𝑢(ℱ) is a leafwise smoothing operator, operator
𝐶𝑢𝑡,𝜓,𝑓 : Ω𝑢(ℱ) → Ω𝑢(ℱ) belongs to 𝒦(𝑋,𝑋0,Λ𝑢(𝑇ℱ)), and, therefore, there exists the regularized

trace r-Tr(𝐶𝑢𝑡,𝜓,𝑓 ). Formula (3) defines the smoothed regularized Lefschetz function 𝐿𝑡,𝜓 ∈ 𝒟′(R). Let
us rewrite this formula as

⟨𝐿𝑡,𝜓, 𝑓⟩ = r-Tr𝑠(𝐶𝑡,𝜓,𝑓 ),

where r-Tr𝑠(𝐶𝑡,𝜓,𝑓 ) is the regularized supertrace of operator 𝐶𝑡,𝜓,𝑓 :

r-Tr𝑠(𝐶𝑡,𝜓,𝑓 ) =
𝑛−1∑︁
𝑢=0

(−1)𝑢 r-Tr
(︀
𝐶𝑢𝑡,𝜓,𝑓

)︀
.

An explicit computation of 𝐿𝑡,𝜓 seems to be a quite complicated problem even in the particular
example described in Section 4.1. In the present paper, we make only the first step in this computation,
namely, we prove existence of function 𝐿𝑡,𝜓 and compute its derivative with respect to 𝑡 in this case.
The results of the computation for an arbitrary function 𝜓 are given in Proposition 6. A more concrete
formula is obtained in the case when 𝜓(𝑥) = 𝑒−

𝑥
2 , that is, when operator 𝐶𝑡,𝜓,𝑓 reads as

𝐶𝑡,𝜓,𝑓 = 𝐵𝑡,𝑓 := 𝑇𝑓 ∘ 𝑒−𝑡Δℱ ,

and the corresponding smoothed regularized Lefschetz function 𝐿𝑡 is given by

⟨𝐿𝑡, 𝑓⟩ = r-Tr𝑠(𝑇𝑓 ∘ 𝑒−𝑡Δℱ ).

Theorem 8. Let (𝑋,ℱ , 𝑔) be a compact foliated Riemannian manifold described in Section 4.1 and
𝑇 be a flow on 𝑋 satisfying Conditions (P1), (P3) and (P4). Then, for each 𝑡 > 0, the formula

1

2
⟨ 𝑑
𝑑𝑡
𝐿𝑡, 𝑓⟩ =

∑︁
𝑛∈Z

𝑐𝑛(𝑡)𝑓
(︁𝑛
𝛼

)︁
, 𝑓 ∈ 𝐶∞

0 (R)

holds true, where

𝑐𝑛(𝑡) =

1∫︁
0

[︁
ℎ+

(︁
𝑡, 𝑧 − 𝑍

(︁𝑛
𝛼
, 1, 𝑧

)︁
+ 𝑛

)︁
+ ℎ−

(︁
𝑡, 𝑍

(︁
−𝑛
𝛼
, 1, 𝑧

)︁
− 𝑧 + 𝑛

)︁]︁
𝑑𝑧,

and functions ℎ+ and ℎ− are given by

ℎ+(𝑡, 𝑘) = − 1

𝛼

1

4
√
𝜋
√
𝑡

(︂
𝑘3

4𝑡2
+
𝑘

2𝑡
− 𝑘

4

)︂
𝑒−

(𝑘+𝑡)2

4𝑡 ,

ℎ−(𝑡, 𝑘) =
1

𝛼

1

4
√
𝜋
√
𝑡

(︂
𝑘3

4𝑡2
− 𝑘

2𝑡
− 𝑘

4
+ 1

)︂
𝑒−

(𝑘+𝑡)2

4𝑡 .

In particular, we have

𝑐0(𝑡) =

1∫︁
0

[ℎ+(𝑡, 0) + ℎ−(𝑡, 0)] 𝑑𝑧 =
1

𝛼

1

4
√
𝜋
√
𝑡
𝑒−

𝑡
4 .

The rest of this section is devoted to the proof of this theorem. We shall follow the lines of [1] with
some modifications related with the fact that the regularized trace functional does not have the trace
property.

We begin with a general formula for the derivative of the regularized supertrace of 𝐶𝑡,𝜓,𝑓 with
respect to 𝑡, which holds for an arbitrary 𝑛-dimensional compact Riemannian manifold (𝑋,ℱ , 𝑔) with
codimension 1 foliation and a flow 𝑇 on 𝑋 satisfying Conditions (P1), (P3) and (P4) (cf. [1, Lemma
3.3]).
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Proposition 1. The formula

𝑑

𝑑𝑡
r-Tr𝑠𝐶𝑡,𝜓,𝑓 =2 r-Tr

[︀
𝑇𝑓 ∘ 𝑑−ℱ ∘ 𝜓′(𝑡Δ−

ℱ ), 𝜓(𝑡Δ
−
ℱ ) ∘ 𝛿

+
ℱ
]︀

+ 2 r-Tr
[︀
𝜓(𝑡Δ−

ℱ ) ∘ 𝛿
+
ℱ𝑑

−
ℱ , 𝑇𝑓 ∘ 𝜓

′(𝑡Δ−
ℱ )
]︀

− 2 r-Tr
[︀
𝑇𝑓 ∘ 𝑑+ℱ ∘ 𝜓′(𝑡Δ+

ℱ ), 𝜓(𝑡Δ
+
ℱ ) ∘ 𝛿

−
ℱ
]︀

− 2 r-Tr
[︀
𝜓(𝑡Δ+

ℱ ) ∘ 𝛿
−
ℱ𝑑

+
ℱ , 𝑇𝑓 ∘ 𝜓

′(𝑡Δ+
ℱ )
]︀

(24)

holds true.

Proof. Space Ω(ℱ) can be represented as a direct sum Ω(ℱ) = Ω+(ℱ)⊕ Ω−(ℱ), where

Ω+(ℱ) =
⨁︁
𝑢 even

Ω𝑢(ℱ), Ω−(ℱ) =
⨁︁
𝑢 odd

Ω𝑢(ℱ).

With respect to this decomposition, operators 𝑑ℱ , 𝛿ℱ , Δℱ can be written as 2× 2 block matrices:

𝑑ℱ =

(︂
0 𝑑−ℱ
𝑑+ℱ 0

)︂
, 𝛿ℱ =

(︂
0 𝛿−ℱ
𝛿+ℱ 0

)︂
, Δℱ =

(︂
Δ+

ℱ 0
0 Δ−

ℱ

)︂
.

We write 𝜓(𝑡Δℱ ) in the block form:

𝜓(𝑡Δℱ ) =

(︂
𝜓(𝑡Δ+

ℱ ) 0
0 𝜓(𝑡Δ−

ℱ )

)︂
.

Multiplying operators 𝑑ℱ and 𝛿ℱ in the block form, it is easy to show that

Δ+
ℱ = 𝑑−ℱ𝛿

+
ℱ + 𝛿−ℱ𝑑

+
ℱ ; Δ−

ℱ = 𝑑+ℱ𝛿
−
ℱ + 𝛿+ℱ𝑑

−
ℱ .

We get

𝑑

𝑑𝑡
r-Tr𝑠𝐶𝑡,𝜓,𝑓 =2 r-Tr𝑠

(︀
𝑇𝑓 ∘Δℱ ∘ 𝜓′(𝑡Δℱ ) ∘ 𝜓(𝑡Δℱ )

)︀
=2 r-Tr

(︀
𝑇𝑓 ∘ (𝑑−ℱ𝛿

+
ℱ + 𝛿−ℱ𝑑

+
ℱ ) ∘ 𝜓

′(𝑡Δ+
ℱ ) ∘ 𝜓(𝑡Δ

+
ℱ )
)︀

− 2 r-Tr
(︀
𝑇𝑓 ∘ (𝑑+ℱ𝛿

−
ℱ + 𝛿+ℱ𝑑

−
ℱ ) ∘ 𝜓

′(𝑡Δ−
ℱ ) ∘ 𝜓(𝑡Δ

−
ℱ )
)︀
.

Since operators 𝑑−ℱ and 𝑇 *
𝑠 commute, we have the identity:

𝐼1 := r-Tr
(︀
𝑇𝑓 ∘ 𝑑−ℱ𝛿

+
ℱ ∘ 𝜓′(𝑡Δ+

ℱ ) ∘ 𝜓(𝑡Δ
+
ℱ )
)︀
= r-Tr

(︀
𝑑−ℱ ∘ 𝑇𝑓 ∘ 𝛿+ℱ ∘ 𝜓′(𝑡Δ+

ℱ ) ∘ 𝜓(𝑡Δ
+
ℱ )
)︀
.

Since 𝛿+ℱ ∘Δ+
ℱ = Δ−

ℱ ∘ 𝛿+ℱ and 𝑑−ℱ ∘Δ−
ℱ = Δ+

ℱ ∘ 𝑑−ℱ , we get

𝐼1 =r-Tr
(︀
𝑑−ℱ ∘ 𝑇𝑓 ∘ 𝜓′(𝑡Δ−

ℱ ) ∘ 𝜓(𝑡Δ
−
ℱ ) ∘ 𝛿

+
ℱ
)︀

=r-Tr
[︀
𝑇𝑓 ∘ 𝑑−ℱ ∘ 𝜓′(𝑡Δ−

ℱ ), 𝜓(𝑡Δ
−
ℱ ) ∘ 𝛿

+
ℱ
]︀

+ r-Tr
[︀
𝜓(𝑡Δ−

ℱ ) ∘ 𝛿
+
ℱ𝑑

−
ℱ , 𝑇𝑓 ∘ 𝜓

′(𝑡Δ−
ℱ )
]︀
+ r-Tr

(︀
𝑇𝑓 ∘ 𝛿+ℱ𝑑

−
ℱ ∘ 𝜓′(𝑡Δ−

ℱ ) ∘ 𝜓(𝑡Δ
−
ℱ )
)︀
.

Similarly, one can show that

𝐼2 := r-Tr
(︀
𝑇𝑓 ∘ 𝑑+ℱ𝛿

−
ℱ ∘ 𝜓′(𝑡Δ−

ℱ ) ∘ 𝜓(𝑡Δ
−
ℱ )
)︀
= r-Tr

(︀
𝑑+ℱ ∘ 𝑇𝑓 ∘ 𝛿−ℱ ∘ 𝜓′(𝑡Δ−

ℱ ) ∘ 𝜓(𝑡Δ
−
ℱ )
)︀
.

Since 𝛿−ℱ ∘Δ−
ℱ = Δ+

ℱ ∘ 𝛿−ℱ and 𝑑+ℱ ∘Δ+
ℱ = Δ−

ℱ ∘ 𝑑+ℱ , we get

𝐼2 = r-Tr
(︀
𝑑+ℱ ∘ 𝑇𝑓 ∘ 𝜓′(𝑡Δ+

ℱ ) ∘ 𝜓(𝑡Δ
+
ℱ ) ∘ 𝛿

−
ℱ
)︀

= r-Tr
[︀
𝑇𝑓 ∘ 𝑑+ℱ ∘ 𝜓′(𝑡Δ+

ℱ ), 𝜓(𝑡Δ
+
ℱ ) ∘ 𝛿

−
ℱ
]︀

+ r-Tr
[︀
𝜓(𝑡Δ+

ℱ ) ∘ 𝛿
−
ℱ𝑑

+
ℱ , 𝑇𝑓 ∘ 𝜓

′(𝑡Δ+
ℱ )
]︀
+ r-Tr

(︀
𝑇𝑓 ∘ 𝛿−ℱ𝑑

+
ℱ ∘ 𝜓′(𝑡Δ+

ℱ ) ∘ 𝜓(𝑡Δ
+
ℱ )
)︀
.

In the situation described in Theorem 8, the leafwise de Rham complex reads as

0 −→ Ω0(ℱ)
𝑑ℱ−→ Ω1(ℱ) −→ 0.

Therefore, we have

𝑑+ℱ = 𝑑ℱ : Ω0(ℱ) −→ Ω1(ℱ), 𝑑−ℱ = 0, 𝛿−ℱ = 𝑑*ℱ : Ω1(ℱ) −→ Ω0(ℱ), 𝛿+ℱ = 0.

Δ+
ℱ = 𝑑*ℱ𝑑ℱ : Ω0(ℱ) −→ Ω0(ℱ), Δ−

ℱ = 𝑑ℱ𝑑
*
ℱ : Ω1(ℱ) −→ Ω1(ℱ).



86 Y.A. KORDYUKOV, V.A. PAVLENKO

Formula (24) becomes

𝑑

𝑑𝑡
r-Tr𝑠𝐶𝑡,𝜓,𝑓 =2 r-Tr

[︀
𝑇𝑓 ∘ 𝜓′(𝑡Δ+

ℱ ), 𝜓(𝑡Δ
+
ℱ ) ∘Δ

+
ℱ
]︀

− 2 r-Tr
[︀
𝑇𝑓 ∘ 𝑑+ℱ ∘ 𝜓′(𝑡Δ+

ℱ ), 𝜓(𝑡Δ
+
ℱ ) ∘ 𝛿

−
ℱ
]︀
.

(25)

From now on, we shall consider the compact foliated Riemannian manifold (𝑋,ℱ , 𝑔) and flow 𝑇 on
𝑋 satisfying Conditions (P1), (P3) and (P4) described in Section 4.1.

4.3. Leafwise smoothing operators. To describe leafwise smoothing operators on foliated mani-

fold (𝑋,ℱ), we shall use the representation 𝑋 = ̂︀𝑋/Z and the corresponding representation of leafwise

smoothing operators on (𝑋,ℱ) as Z-invariant leafwise smoothing operators on ( ̂︀𝑋, ̂︀ℱ).
Consider the set ̂︀ℛ = {(𝑦1, 𝑧1, 𝑦2, 𝑧2) ∈ ̂︀𝑋 × ̂︀𝑋 : (𝑦1, 𝑧1) ∼ℱ (𝑦2, 𝑧2)}.

A topology on ̂︀ℛ is defined as follows. Set ̂︀ℛ is represented as a disjoint union ̂︀ℛ = ̂︀ℛ1
⨆︀ ̂︀ℛ2,

where ̂︀ℛ1 = {(𝑦1, 𝑧1, 𝑦2, 𝑧2) ∈ ̂︀ℛ : 𝑦1 ̸= 1, 𝑦2 ̸= 1} is homeomorphic to (−1, 1) × (−1, 1) × (0,+∞),̂︀ℛ2 = {(1, 𝑧1, 1, 𝑧2) : 𝑧1, 𝑧2 ∈ R} ∼= R2, and a sequence (𝑦
(𝑛)
1 , 𝑧

(𝑛)
1 , 𝑦

(𝑛)
2 , 𝑧

(𝑛)
2 ) ∈ ̂︀ℛ1 converges to

(1, 𝑧1, 1, 𝑧2) ∈ ̂︀ℛ2 if and only if it converges in ̂︀𝑋 × ̂︀𝑋 and for sufficiently large 𝑛 the points (𝑦
(𝑛)
1 , 𝑧

(𝑛)
1 )

and (𝑦
(𝑛)
2 , 𝑧

(𝑛)
2 ) are in the same (depending on 𝑛) component of the set ̂︀𝑋 ∖ ({0} ×R ∪ {1} ×R) (the

last condition is also equivalent to that the distance between these points along the leaves of ̂︀ℱ is
uniformly bounded in 𝑛).

Proposition 2. Set ̂︀ℛ can be endowed with a structure of a smooth manifold.

Proof. An atlas on ̂︀ℛ consists of two charts. The first chart associates to a point (𝑦1, 𝑧1, 𝑦2, 𝑧2) ∈ 𝑈1 =̂︀ℛ∩(−1, 1)×R×(−1, 1)×R its coordinates 𝑋1(𝑦1, 𝑧1, 𝑦2, 𝑧2) = (𝑦1, 𝑦2, 𝑣) ∈ (−1, 1)×(−1, 1)×(0,+∞),

where 𝑣 = 𝑝(𝑦1, 𝑧1) = 𝑝(𝑦2, 𝑧2). The second chart associates to a point (𝑦1, 𝑧1, 𝑦2, 𝑧2) ∈ 𝑈2 = ( ̂︀ℛ ∩
(0, 1]×R× (0, 1]×R) ∪ ( ̂︀ℛ∩ (1, 2)×R× (1, 2)×R) its coordinates

𝑋2(𝑦1, 𝑧1, 𝑦2, 𝑧2) = (𝑧1, 𝑧2, 𝑣) ∈ {(𝑧1, 𝑧2, 𝑣) ∈ R3 : |𝑣| < 𝑒𝑧1 , |𝑣| < 𝑒𝑧2},

where 𝑣 = 𝑝(𝑦1, 𝑧1) = 𝑝(𝑦2, 𝑧2).

Denote by ̂︀𝐿(𝑦1,𝑧1) the leaf passing through (𝑦1, 𝑧1). On each leaf of ̂︀ℱ , we fix the positive density

|𝑑𝑧|, which is the lift of the density |𝑑𝑧| on the real line R by the map ̂︀𝐿→ R, (𝑦, 𝑧) ↦→ 𝑧. This density

is smooth everywhere on ̂︀𝐿 except 𝑦 = 0.

A leafwise smoothing operator ̂︀𝐾 : 𝐶∞( ̂︀𝑋) → 𝐶∞( ̂︀𝑋) is given by the formula

̂︀𝐾𝑢(𝑦1, 𝑧1) = ∫︁
̂︀𝐿(𝑦1,𝑧1)

𝑘(𝑦1, 𝑧1, 𝑦2, 𝑧2)𝑢(𝑦2, 𝑧2)|𝑑𝑧2|.

The kernel of leafwise smoothing operator ̂︀𝐾 is given by a function 𝑘 on ̂︀ℛ satisfying the conditions:

∙ 𝑘(𝑦1, 𝑧1 + 1, 𝑦2, 𝑧2 + 1) = 𝑘(𝑦1, 𝑧1, 𝑦2, 𝑧2).

∙ There exists a constant 𝐶 such that 𝑘(𝑦1, 𝑧1, 𝑦2, 𝑧2) = 0 for each (𝑦1, 𝑧1, 𝑦2, 𝑧2) ∈ ̂︀ℛ with
𝑑((𝑦1, 𝑧1), (𝑦2, 𝑧2)) > 𝐶, where 𝑑 is the leafwise distance between (𝑦1, 𝑧1) and (𝑦2, 𝑧2).

∙ Density 𝑘(𝑦1, 𝑧1, 𝑦2, 𝑧2)|𝑑𝑧2| is a smooth density on ̂︀𝐿(𝑦1,𝑧1) smoothly depending on (𝑦2, 𝑧2) ∈ ̂︀𝑋:

for each 𝑢 ∈ 𝐶∞( ̂︀𝑋), the function

(𝑦1, 𝑧1) ∈ ̂︀𝑋 ↦→
∫︁

̂︀𝐿(𝑦1,𝑧1)

𝑘(𝑦1, 𝑧1, 𝑦2, 𝑧2)𝑢(𝑦2, 𝑧2)|𝑑𝑧2|

is a smooth function on ̂︀𝑋.
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For each (𝑦1, 𝑧1, 𝑧2) ∈ (0, 2)×R×R such that 𝑧2 > ln |𝑝(𝑦1, 𝑧1)|, we let

𝑌2(𝑦1, 𝑧1, 𝑧2) =
2

𝜋
arccos

(︀
𝑝(𝑦1, 𝑧1)𝑒

−𝑧2)︀ . (26)

We observe that 𝑌2(𝑦1, 𝑧1, 𝑧2) is the unique solution to the equation 𝑝(𝑦1, 𝑧1) = 𝑝(𝑦2, 𝑧2), belonging to
the interval (0, 2), and 2 − 𝑌2(𝑦1, 𝑧1, 𝑧2) is the unique solution to the equation 𝑝(𝑦1, 𝑧1) = −𝑝(𝑦2, 𝑧2)
belonging to the interval (0, 2). The intersection of the leaf ̂︀𝐿(𝑦1,𝑧1) with the coordinate neighborhood
(0, 2)×R reads as

̂︀𝐿(𝑦1,𝑧1) ∩ (0, 2)×R = {(𝑌2(𝑦1, 𝑧1, 𝑧2), 𝑧2) : 𝑧2 ∈ (ln |𝑝(𝑦1, 𝑧1)|,+∞)}⋃︁
{(𝑌2(𝑦1, 𝑧1, 𝑧2), 𝑧2) : 𝑧2 ∈ (ln |𝑝(𝑦1, 𝑧1)|,+∞)}.

Therefore, in coordinates on (0, 2)×R, operator ̂︀𝐾 can be written as follows:

𝐾𝑏(𝑦1, 𝑧1) =

+∞∫︁
ln |𝑝(𝑦1,𝑧1)|

𝐾+(𝑧1, 𝑧2, 𝑝(𝑦1, 𝑧1))𝑏(𝑌2(𝑦1, 𝑧1, 𝑧2), 𝑧2)|𝑑𝑧2|

+

+∞∫︁
ln |𝑝(𝑦1,𝑧1)|

𝐾−(𝑧1, 𝑧2, 𝑝(𝑦1, 𝑧1))𝑏(2− 𝑌2(𝑦1, 𝑧1, 𝑧2), 𝑧2)|𝑑𝑧2|,

(27)

where functions 𝐾±(𝑧1, 𝑧2, 𝑣) are defined for |𝑣| < 𝑒𝑧1 , |𝑣| < 𝑒𝑧2 : for 𝑣 ̸= 0

𝐾±(𝑧1, 𝑧2, 𝑣) = 𝑘(𝑦1, 𝑧1, 𝑦2, 𝑧2),

and 𝑦1, 𝑦2 ∈ (0, 2) are such that 𝑝(𝑦1, 𝑧1) = 𝑣, 𝑝(𝑦2, 𝑧2) = ±𝑣,

𝐾+(𝑧1, 𝑧2, 0) = 𝑘(1, 𝑧1, 1, 𝑧2), 𝐾−(𝑧1, 𝑧2, 0) = 0.

The leafwise distance 𝑑((𝑦1, 𝑧1), (𝑦2, 𝑧2)) between the points (𝑦1, 𝑧1) and (𝑦2, 𝑧2) in the same leaf̂︀𝐿𝑣 = {(𝑦, 𝑧) ∈ (0, 2)×R : 𝑝(𝑦, 𝑧) = 𝑣} of ̂︀ℱ is given by

𝑑((𝑦1, 𝑧1), (𝑦2, 𝑧2)) = 𝑑(𝑧1, 𝑧2) =

∫︁ 𝑧2

ln |𝑣|

√︂
1 +

4

𝜋2
𝑣2𝑒−2𝑧

1− 𝑣2𝑒−2𝑧
𝑑𝑧 ∓

∫︁ 𝑧1

ln |𝑣|

√︂
1 +

4

𝜋2
𝑣2𝑒−2𝑧

1− 𝑣2𝑒−2𝑧
𝑑𝑧,

where we take the sign ‘+’ if the points are in the same component of the intersection of the leaf
with the coordinate neighborhood (𝑝(𝑦1, 𝑧1)𝑝(𝑦2, 𝑧2) > 0), and the sign ‘-’ if the points are in different
components of the intersection of the leaf with the coordinate neighborhood (𝑝(𝑦1, 𝑧1)𝑝(𝑦2, 𝑧2) < 0).

The conditions on 𝑘 are rewritten as follows:

∙ 𝐾±(𝑧1 + 1, 𝑧2 + 1, 𝑣) = 𝐾±(𝑧1, 𝑧2, 𝑣).
∙ There exists a constant 𝐶 such that 𝐾±(𝑧1, 𝑧2, 𝑣) = 0 for all (𝑧1, 𝑧2, 𝑣) with 𝑑(𝑧1, 𝑧2) > 𝐶.
∙ Functions 𝐾±(𝑧1, 𝑧2, 𝑣) are smooth for |𝑣| < 𝑒𝑧1 , |𝑣| < 𝑒𝑧2 .

Note that Condition 2) implies

lim
𝑣→0

𝐾−(𝑧1, 𝑧2, 𝑣) = 0.

The corresponding operator on half-densities is written as follows: for 𝜇 = 𝑏(𝑦, 𝑧)|𝑑𝑦|1/2|𝑑𝑧|1/2,

𝐾𝜇 = 𝐾𝑏(𝑦, 𝑧)|𝑑𝑦|1/2|𝑑𝑧|1/2, (28)

where 𝐾𝑏 is given by (27).

4.4. Operator 𝑇𝑓 ∘𝐾. Consider the smooth codimension one submanifold 𝑋0 = {(𝑦, 𝑧) ∈ 𝑋 : 𝑦 =
1}.

Theorem 9. For each leafwise smoothing operator 𝐾 and for each function 𝑓 ∈ 𝐶∞
0 (R), operator

𝑇𝑓 ∘𝐾 belongs to 𝒦(𝑋,𝑋0, 𝐸).
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To prove this theorem, we compute the kernel of 𝑇𝑓 ∘ 𝐾 in the coordinates on (0, 2) × R. For

𝜇 = 𝑎(𝑦, 𝑧)|𝑑𝑦𝑑𝑧|1/2, denoting (𝑇𝑓 ∘𝐾)𝜇 = (𝑇𝑓 ∘𝐾)𝑎(𝑦, 𝑧)|𝑑𝑦𝑑𝑧|1/2, we obtain:

(𝑇𝑓 ∘𝐾)𝑎(𝑦, 𝑧) =

+∞∫︁
−∞

𝑓(𝜏)

+∞∫︁
ln |𝑝(𝑦,𝑧)|

𝑟𝜏 (𝑦, 𝑧)[𝐾+(𝑍(𝜏, 𝑦, 𝑧), 𝑧2, 𝑝(𝑌 (𝜏, 𝑦, 𝑧), 𝑍(𝜏, 𝑦, 𝑧)))]

· 𝑎(𝑌2(𝑌 (𝜏, 𝑦, 𝑧), 𝑍(𝜏, 𝑦, 𝑧), 𝑧2), 𝑧2)|𝑑𝑧2|𝑑𝜏

+

+∞∫︁
−∞

𝑓(𝜏)

+∞∫︁
ln |𝑝(𝑦,𝑧)|

𝑟𝜏 (𝑦, 𝑧)[𝐾−(𝑍(𝜏, 𝑦, 𝑧), 𝑧2, 𝑝(𝑌 (𝜏, 𝑦, 𝑧), 𝑍(𝜏, 𝑦, 𝑧))))]

· 𝑎(2− 𝑌2(𝑌 (𝜏, 𝑦, 𝑧), 𝑍(𝜏, 𝑦, 𝑧), 𝑧2), 𝑧2)|𝑑𝑧2|𝑑𝜏.

Let us make a change of variables (𝜏, 𝑧2) → (𝑦2, 𝑧2), which, for the integral in the first term, reads
as

𝑦2 = 𝑌2(𝑌 (𝜏, 𝑦, 𝑧), 𝑍(𝜏, 𝑦, 𝑧), 𝑧2) = 𝑌2(𝑦, 𝑧 + 𝛼𝜏, 𝑧2)

⇔ 𝜏(𝑦, 𝑧, 𝑦2, 𝑧2) =

𝑝(𝑦2,𝑧2)∫︁
𝑝(𝑦,𝑧)

𝑑𝑤

𝐵(𝑤)
=

1

𝛼

(︁
𝑧2 − 𝑧 + ln

⃒⃒⃒
cos
(︁𝜋
2
𝑦2

)︁⃒⃒⃒
− ln

⃒⃒⃒
cos
(︁𝜋
2
𝑦
)︁⃒⃒⃒)︁

,

and, for the integral in the second term, reads as

𝑦2 = 2− 𝑌2(𝑌 (𝜏, 𝑦, 𝑧), 𝑍(𝜏, 𝑦, 𝑧), 𝑧2)

⇔ 𝜏(𝑦, 𝑧, 𝑦2, 𝑧2) =

−𝑝(𝑦2,𝑧2)∫︁
𝑝(𝑦,𝑧)

𝑑𝑤

𝐵(𝑤)
=

1

𝛼

(︁
𝑧2 − 𝑧 + ln

⃒⃒⃒
cos
(︁𝜋
2
𝑦2

)︁⃒⃒⃒
− ln

⃒⃒⃒
cos
(︁𝜋
2
𝑦
)︁⃒⃒⃒)︁

.

Taking into account that

𝜕𝑌2(𝑌 (𝜏, 𝑦, 𝑧), 𝑍(𝜏, 𝑦, 𝑧), 𝑧2)

𝜕𝜏
= − 2

𝜋
𝛼 cot

(︁𝜋
2
𝑌2(𝑌 (𝜏, 𝑦, 𝑧), 𝑍(𝜏, 𝑦, 𝑧), 𝑧2)

)︁
,

we obtain:

(𝑇𝑓 ∘𝐾)𝑎(𝑦, 𝑧) =
𝜋

2|𝛼|

∫︁
(0,1)×R

𝑓(𝜏)𝑟𝜏 (𝑦, 𝑧)[𝐾+(𝑍(𝜏, 𝑦, 𝑧), 𝑧2, 𝑝(𝑦2, 𝑧2))]𝑎(𝑦2, 𝑧2)
⃒⃒⃒
tan

(︁𝜋
2
𝑦2

)︁⃒⃒⃒
|𝑑𝑦2||𝑑𝑧2|

+
𝜋

2|𝛼|

∫︁
(1,2)×R

𝑓(𝜏)𝑟𝜏 (𝑦, 𝑧)[𝐾−(𝑍(𝜏, 𝑦, 𝑧), 𝑧2,−𝑝(𝑦2, 𝑧2))]𝑎(𝑦2, 𝑧2)
⃒⃒⃒
tan

(︁𝜋
2
𝑦2

)︁⃒⃒⃒
|𝑑𝑦2||𝑑𝑧2|,

where

𝜏(𝑦, 𝑧, 𝑦2, 𝑧2) =
1

𝛼

(︁
𝑧2 − 𝑧 + ln

⃒⃒⃒
cos
(︁𝜋
2
𝑦2

)︁⃒⃒⃒
− ln

⃒⃒⃒
cos
(︁𝜋
2
𝑦
)︁⃒⃒⃒)︁

.

Kernel 𝑘𝑓 of 𝑇𝑓 ∘𝐾, as an operator on 𝑋, is given by

𝑘𝑓 (𝑦, 𝑧, 𝑦2, 𝑧2) =
∑︁
𝑛∈Z

𝑓(𝜏 +
𝑛

𝛼
)𝑟𝜏+𝑛

𝛼
(𝑦, 𝑧)[𝐾𝑝𝑚(𝑍(𝜏 +

𝑛

𝛼
, 𝑦, 𝑧), 𝑧2 + 𝑛, 𝑝(𝑦2, 𝑧2 + 𝑛))]

· 𝜋
2|𝛼|

⃒⃒⃒
tan

(︁𝜋
2
𝑦2

)︁⃒⃒⃒
|𝑑𝑦|1/2|𝑑𝑧|1/2|𝑑𝑦2|1/2|𝑑𝑧2|1/2,

(29)

where 𝜏 = 𝜏(𝑦, 𝑧, 𝑦2, 𝑧2), the sign ‘+’ is taken if 𝑝(𝑦, 𝑧)𝑝(𝑦2, 𝑧2) > 0 and the sign ‘-’ corresponds to the
case 𝑝(𝑦, 𝑧)𝑝(𝑦2, 𝑧2) < 0. Using this formula, one can easily complete the proof of Theorem 9.
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4.5. Indicial family associated with 𝑇𝑓 ∘ 𝐾. To compute the indicial family associated with
operator 𝑇𝑓 ∘𝐾, we make the change of variables 𝑦 = 1+𝑥, 𝑦2 = 1+𝑥2 in (29). Since 𝑝(𝑦, 𝑧)𝑝(𝑦2, 𝑧2) =
𝑒𝑧+𝑧2 sin 𝜋

2𝑥 · sin 𝜋
2𝑥2, the sign of 𝑝(𝑦, 𝑧)𝑝(𝑦2, 𝑧2) coincides with the sign of 𝑥𝑥2. We obtain that

𝑘𝑓 =
∑︁
𝑛∈Z

𝑓(𝜏(1 + 𝑥, 𝑧, 1 + 𝑥2, 𝑧2 + 𝑛))𝑟𝜏 (1 + 𝑥, 𝑧)

· [𝐾±(𝑍(𝜏, 1 + 𝑥, 𝑧), 𝑧2 + 𝑛, 𝑝(𝑌 (𝜏, 1 + 𝑥, 𝑧), 𝑍(𝜏, 1 + 𝑥, 𝑧)))]

· 𝜋

2|𝛼|
|𝑥|1/2|𝑥2|1/2

⃒⃒⃒
cot
(︁𝜋
2
𝑥2

)︁⃒⃒⃒ ⃒⃒⃒⃒𝑑𝑥
𝑥

⃒⃒⃒⃒1/2
|𝑑𝑧|1/2

⃒⃒⃒⃒
𝑑𝑥2
𝑥2

⃒⃒⃒⃒1/2
|𝑑𝑧2|1/2,

where, if 𝑥𝑥2 > 0, we take the sign ‘+’and, if 𝑥𝑥2 < 0, the sign is ‘-’.

We make the change of variables 𝑥 = 𝑥, 𝑥2 =
𝑥
𝑠 . Since 𝑥𝑥2 =

𝑥2

𝑠 , the sign of 𝑥𝑥2 coincides with the

sign of 𝑠. Function ̃︀𝐾𝑓 defined by function 𝑘𝑓 via formula (6) is given bỹ︀𝐾𝑓 (𝑥, 𝑠, 𝑧, 𝑧2) =
∑︁
𝑛∈Z

𝑓(𝜏(1 + 𝑥, 𝑧, 1 +
𝑥

𝑠
, 𝑧2 + 𝑛))𝑟𝜏 (1 + 𝑥, 𝑧)

· [𝐾±(𝑍(𝜏, 1 + 𝑥, 𝑧), 𝑧2 + 𝑛, 𝑝(𝑌 (𝜏, 1 + 𝑥, 𝑧), 𝑍(𝜏, 1 + 𝑥, 𝑧)))]
𝜋

2|𝛼|
|𝑥||𝑠|−1/2

⃒⃒⃒
cot
(︁𝜋𝑥
2𝑠

)︁⃒⃒⃒
,

where, for 𝑠 > 0, we take the sign + and, for 𝑠 < 0, the sign −.
In the limit 𝑥→ 0, we get

𝐾+(𝑍(𝜏, 1 + 𝑥, 𝑧), 𝑧2 + 𝑛, 𝑝(𝑌 (𝜏, 1 + 𝑥, 𝑧), 𝑍(𝜏, 1 + 𝑥, 𝑧))) → 𝐾(𝑧1, 𝑧2 + 𝑛, 0),

and

𝐾−(𝑍(𝜏, 1 + 𝑥, 𝑧), 𝑧2 + 𝑛, 𝑝(𝑌 (𝜏, 1 + 𝑥, 𝑧), 𝑍(𝜏, 1 + 𝑥, 𝑧))) → 0.

Moreover, for 𝑠 > 0, we get

lim
𝑥→0

𝜏(1 + 𝑥, 𝑧, 1 +
𝑥

𝑠
, 𝑧2 + 𝑛) =

1

𝛼
(𝑧2 + 𝑛− 𝑧 − ln 𝑠).

Therefore, for 𝑠 > 0

̃︀𝐾𝑓 (0, 𝑠, 𝑧, 𝑧2) = lim
𝑥→0

̃︀𝐾𝑓 (𝑥, 𝑠, 𝑧, 𝑧2) =
∑︁
𝑛∈Z

𝑓(𝜏0)𝑟𝜏0(1, 𝑧)[𝐾(𝑍(𝜏0, 1, 𝑧), 𝑧2 + 𝑛, 0)]
𝑠1/2

|𝛼|
,

where 𝜏0 =
1
𝛼(𝑧2 + 𝑛− 𝑧 − ln 𝑠), and for 𝑠 < 0̃︀𝐾𝑓 (0, 𝑠, 𝑧, 𝑧2) = 0. (30)

Denote by 𝐸0 the restriction of 𝐸 to 𝑋0 ∼= R. The bundle 𝐸0 is trivial, 𝐸0 ∼= 𝑋0 ×C𝑁 , moreover,
the flow 𝑇𝐸 on 𝐸 induces a flow on 𝐸0 with the corresponding map 𝑟𝑡(1, 𝑧) : 𝐸

0
𝑍(𝑡,1,𝑧) → 𝐸0

𝑧 .

By (30), the indicial operator 𝐼−(𝑇𝑓 ∘𝐾,𝜆) equals zero.
The kernel of indicial operator 𝐼+(𝑇𝑓 ∘𝐾,𝜆) acting on 𝐶∞(𝑆1, 𝐸0 ⊗ Ω

1
2

𝑆1) reads as

𝐾𝐼+(𝑇𝑓∘𝐾,𝜆)(𝑧, 𝑧2) =

∞∫︁
0

𝑠−𝑖𝜆 ̃︀𝐾𝑓 (0, 𝑠, 𝑧, 𝑧2)
𝑑𝑠

𝑠
=
∑︁
𝑛∈Z

∞∫︁
0

𝑠−𝑖𝜆𝑓(𝜏0)𝑟𝜏0(1, 𝑧)[𝐾(𝑍(𝜏0, 1, 𝑧), 𝑧2+𝑛, 0)]
𝑠1/2

|𝛼|
𝑑𝑠

𝑠
.

Making the change of variables 𝑡 = 𝜏0(𝑧, 𝑧2, 𝑠) =
1
𝛼(𝑧2 + 𝑛− 𝑧 − ln 𝑠), we get:

𝐾𝐼+(𝑇𝑓∘𝐾,𝜆)(𝑧, 𝑧2) =
∑︁
𝑛∈Z

∞∫︁
−∞

𝑒(𝑖𝜆−
1
2
)(𝑧−𝑧2+𝛼𝑡)𝑓(𝑡)𝑟𝑡(1, 𝑧)[𝐾(𝑍(𝑡, 1, 𝑧), 𝑧2+𝑛, 0)]𝑑𝑡|𝑑𝑧|1/2|𝑑𝑧2|1/2. (31)

For each 𝜆 ∈ C, we define a one-parameter group {𝑇𝑆
1,𝜆

𝑡 : 𝑡 ∈ R} of bounded operators in

𝐿2(𝑆1, 𝐸0 ⊗ Ω
1
2

𝑆1) by

𝑇𝑆
1,𝜆

𝑡 [𝑢(𝑧)|𝑑𝑧|1/2] = 𝑒(𝑖𝜆−
1
2
)(𝑧−𝑍(𝑡,1,𝑧)+𝛼𝑡)𝑟𝑡(1, 𝑧)[𝑢(𝑍(𝑡, 1, 𝑧))]|𝑑𝑧|1/2.
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In the scalar case, we have 𝐸0 = R × C, 𝑟𝑡(1, 𝑧) = 1. We denote by 𝑇
(0),𝑆1,𝜆
𝑡 the corresponding

group of operators:

𝑇
(0),𝑆1,𝜆
𝑡 𝑢(𝑧) = 𝑒(𝑖𝜆−

1
2
)(𝑧−𝑍(𝑡,1,𝑧)+𝛼𝑡)𝑢(𝑍(𝑡, 1, 𝑧)). (32)

In the case of the space of leafwise differential one forms 𝐸0 = R × C, but the action of the flow is
given by the formula

𝑟𝑡(1, 𝑧) =
𝜕𝑍

𝜕𝑧
(𝑡, 1, 𝑧) = 𝑒

𝑡∫︀
0

𝐴𝑈 (𝑍(𝜏1,1,𝑧),0)𝑑𝜏1
.

We denote by 𝑇
(0),𝑆1,𝜆
𝑡 the corresponding group of operators acting on space Ω1(𝑆1) of smooth differ-

ential 1-forms on 𝑆1:

𝑇
(1),𝑆1,𝜆
𝑡 (𝑢(𝑧)𝑑𝑧) = 𝑒(𝑖𝜆−

1
2
)(𝑧−𝑍(𝑡,1,𝑧)+𝛼𝑡)𝜕𝑍

𝜕𝑧
(𝑡, 1, 𝑧)𝑢(𝑍(𝑡, 1, 𝑧))𝑑𝑧. (33)

For each 𝑓 ∈ 𝐶∞
0 (R), we let

𝑇𝑆
1,𝜆

𝑓 =

∫︁ +∞

−∞
𝑓(𝑡)𝑇𝑆

1,𝜆
𝑡 𝑑𝑡. (34)

The restriction of operator 𝐾 to 𝐿0 = {(𝑦, 𝑧) : 𝑦 = 1} ∼= 𝑆1 is integral operator 𝐾𝑆1 in space

𝐿2(𝑆1, 𝐸 ⊗ Ω
1
2

𝑆1) with kernel

𝑘𝑆1(𝑧, 𝑧2) =
∑︁
𝑛∈Z

𝐾(𝑧, 𝑧2 + 𝑛, 0)|𝑑𝑧|1/2|𝑑𝑧2|1/2.

For each 𝜆 ∈ C, we introduce integral operator 𝐾𝑆1(𝜆) in 𝐿2(𝑆1, 𝐸0 ⊗ Ω
1
2

𝑆1) with kernel

𝑘𝑆1,𝜆(𝑧, 𝑧2) =
∑︁
𝑛∈Z

𝑒(𝑖𝜆−
1
2
)(𝑧−𝑧2−𝑛)𝐾(𝑧, 𝑧2 + 𝑛, 0)|𝑑𝑧|1/2|𝑑𝑧2|1/2.

Proposition 3. For each leafwise smoothing operator 𝐾, indicial family 𝐼+(𝑇𝑓 ∘ 𝐾,𝜆) :

𝐶∞(𝑆1, 𝐸0 ⊗ Ω
1
2

𝑆1) → 𝐶∞(𝑆1, 𝐸0 ⊗ Ω
1
2

𝑆1) is given by

𝐼+(𝑇𝑓 ∘𝐾,𝜆) = 𝑇𝑆
1,𝜆

𝑓 ∘𝐾𝑆1(𝜆). (35)

4.6. Indicial family associated with 𝐾. In this section, we introduce a notion of the indicial
family associated with a leafwise smoothing operator 𝐾 in such a way that an analogue of Theorem
4 holds true (see Proposition 4 below).

Definition 6. The indicial family 𝐼+(𝐾,𝜆) : 𝐶∞(𝑆1, 𝐸0 ⊗ Ω
1
2

𝑆1) → 𝐶∞(𝑆1, 𝐸0 ⊗ Ω
1
2

𝑆1) associated
with a leafwise smoothing operator 𝐾 is defined by the formula

𝐼+(𝐾,𝜆) = 𝐾𝑆1(𝜆). (36)

The kernel of operator 𝐼+(𝐾,𝜆) is given by the formula

𝐾𝐼+(𝐾,𝜆)(𝑧, 𝑧2) =
∑︁
𝑛∈Z

𝑒(𝑖𝜆−
1
2
)(𝑧−𝑧2−𝑛)𝐾(𝑧, 𝑧2 + 𝑛, 0)|𝑑𝑧|1/2|𝑑𝑧2|1/2. (37)

Proposition 4. Let 𝐾1,𝐾2 be leafwise smoothing operators. Then the formula

r-Tr[𝑇𝑓 ∘𝐾1,𝐾2] = − 1

𝜋𝑖

+∞∫︁
−∞

tr(𝜕𝜆𝐼+(𝑇𝑓 ∘𝐾1, 𝜆) ∘ 𝐼+(𝐾2, 𝜆))𝑑𝜆 (38)

holds true.
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The proof of Proposition 4 is given in Appendix A.

We denote by 𝑇
(0)
𝑓 (resp. 𝑇

(1)
𝑓 ) the operator acting on Ω0(ℱ) (resp. Ω1(ℱ)), by formula (23). By

Proposition 4, formula (25) becomes

1

2

𝑑

𝑑𝑡
r-Tr𝑠𝐶𝑡,𝜓,𝑓 =

1

𝜋𝑖

+∞∫︁
−∞

Tr(𝐼+(𝑇
(0)
𝑓 ∘ 𝜓′(𝑡Δ+

ℱ ), 𝜆) ∘ 𝜕𝜆𝐼+(𝜓(𝑡Δ
+
ℱ ) ∘Δ

+
ℱ , 𝜆))𝑑𝜆

− 1

𝜋𝑖

+∞∫︁
−∞

Tr(𝐼+(𝑇
(1)
𝑓 ∘ 𝑑+ℱ ∘ 𝜓′(𝑡Δ+

ℱ ), 𝜆) ∘ 𝜕𝜆𝐼+(𝜓(𝑡Δ
+
ℱ ) ∘ 𝛿

−
ℱ , 𝜆))𝑑𝜆.

(39)

The next problem is the computation of the indicial families in formula (39).

4.7. Operator 𝜓(𝑡Δ+
ℱ ) and its indicial family. In this section, we give a description of operator

𝜓(𝑡Δ+
ℱ ) as a leafwise smoothing operator and compute the indicial family associated with this operator.

First of all, we shall give a description of various objects associated with ℱ . Consider the coordinate

neighborhood ̃︀𝑋 = (0, 2)×R with coordinates (𝑦, 𝑧) or with foliated coordinates (𝑢, 𝑣) given by (19).
Then the tangent space 𝑇ℱ of ℱ is generated by vector 𝜕

𝜕𝑢 defined by (21). The leafwise de Rham

differential 𝑑ℱ : Ω0(ℱ) → Ω1(ℱ) reads as

𝑑ℱ𝑓 =
𝜕𝑓

𝜕𝑢
(𝑦, 𝑧)𝑑𝑢 =

(︂
2

𝜋
cot
(︁𝜋
2
𝑦
)︁ 𝜕

𝜕𝑧
+

𝜕

𝜕𝑧

)︂
𝑓(𝑦, 𝑧)𝑑𝑢,

where 𝑑𝑢 ∈ Ω1(ℱ) is determined by the condition ⟨𝑑𝑢, 𝜕𝜕𝑢⟩ = 1.

The leafwise Riemannian metric 𝑔ℱ induced by the standard Riemannian metric 𝑔 = 𝑑𝑦2 + 𝑑𝑧2 is
given by

𝑔ℱ (𝑦, 𝑧) = 𝐺(𝑦, 𝑧)𝑑𝑢2, 𝐺(𝑦, 𝑧) =
4 cot2(𝜋2 𝑦) + 𝜋2

𝜋2
.

It is easy to see that the leafwise de Rham codifferential 𝑑*ℱ : Ω1(ℱ) → Ω0(ℱ) is given by

𝑑*ℱ (𝑔𝑑𝑢) = −𝐺(𝑦, 𝑧)−1 𝜕𝑔

𝜕𝑢
+ ℎ(𝑦)𝑔, (40)

where

ℎ(𝑦) = − 𝑑

𝑑𝑦

(︃
2𝜋 cot

(︀
𝜋
2 𝑦
)︀

4 cot2(𝜋2 𝑦) + 𝜋2

)︃
= − 𝜋2

sin2 𝜋2 𝑦

4 cot2 𝜋2 𝑦 − 𝜋2

(4 cot2 𝜋2 𝑦 + 𝜋2)2
.

It follows from here that the leafwise Laplacian Δ+
ℱ : Ω0(ℱ) −→ Ω0(ℱ) reads as

Δ+
ℱ = −𝐺(𝑦, 𝑧)−1 𝜕

2

𝜕𝑢2
+ ℎ(𝑦)

𝜕

𝜕𝑢
.

The leaves of ̃︀ℱ can be parameterized by 𝑣 ∈ [0,∞). The leaf ̂︀𝐿𝑣, corresponding to 𝑣 ∈ [0,∞), in

the coordinate neighborhood �̃� reads aŝ︀𝐿𝑣 = {(𝑦, 𝑧) ∈ (0, 2)×R : |𝑝(𝑦, 𝑧)| = 𝑣}.

The projection (𝑦, 𝑧) ↦→ 𝑧 identifies the intersection of ̂︀𝐿𝑣 with the coordinate neighborhood (0, 2)×R
with the disjoint union of two copies of the semi-axis (ln |𝑣|,+∞). Therefore, we have the decompo-
sition

𝐿2(̂︀𝐿𝑣) ∼= 𝐿2(R,
√︀
𝐺(𝑢, 𝑣)𝑑𝑢)⊕ 𝐿2(R,

√︀
𝐺(𝑢, 𝑣)𝑑𝑢).

As above, let 𝜓 be a smooth function on R such that the function 𝜑(𝑥) = 𝜓(𝑥2) belongs to 𝒜.

Then one can define the operator 𝜓(𝑡Δ𝑣) as a bounded operator in 𝐿2(̂︀𝐿𝑣) for each 𝑣 ∈ [0,∞) and

the operator 𝜓(𝑡Δ+
ℱ ) as a bounded operator in 𝐿2( ̂︀𝑋) (see [8, 15]).

Operator 𝜓(𝑡Δ𝑣) is written as follows: for 𝑓 = 𝑓+⊕ 𝑓− ∈ 𝐿2(R,
√︀
𝐺(𝑢, 𝑣)𝑑𝑢)⊕𝐿2(R,

√︀
𝐺(𝑢, 𝑣)𝑑𝑢),

we have

𝜓(𝑡Δ𝑣)𝑓±(𝑢1) =

+∞∫︁
ln |𝑣|

(𝐾+
𝜓 (𝑡, 𝑢1, 𝑢2, 𝑣)𝑓±(𝑢2) +𝐾−

𝜓 (𝑡, 𝑢1, 𝑢2, 𝑣)𝑓∓(𝑢2))
√︀
𝐺(𝑢2, 𝑣)𝑑𝑢2.
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The following proposition is a straightforward consequence of general results proved in [8, 15].

Proposition 5. (1) The action of 𝜓(𝑡Δ+
ℱ ) on 𝑏 ∈ 𝐶∞((0, 2)×R) is given by

𝜓(𝑡Δ+
ℱ )𝑏(𝑦1, 𝑧1) =

+∞∫︁
ln |𝑝(𝑦1,𝑧1)|

(︃
𝐾+
𝜓 (𝑡, 𝑧1, 𝑧2, 𝑝(𝑦1, 𝑧1))𝑏(𝑌2(𝑦1, 𝑧1, 𝑧2), 𝑧2)

+𝐾−
𝜓 (𝑡, 𝑧1, 𝑧2, 𝑝(𝑦1, 𝑧1))𝑏(2− 𝑌2(𝑦1, 𝑧1, 𝑧2), 𝑧2)

)︃√︀
𝐺(𝑧2, 𝑝(𝑦1, 𝑧1))|𝑑𝑧2|.

(2) Kernel 𝐾𝜓 of 𝜓(𝑡Δ+
ℱ ) is a smooth function on ̂︀ℛ.

As it was shown in [15], if the Fourier transform of the function 𝜑(𝑥) = 𝜓(𝑥2) is compactly supported
(note that, by Paley-Wiener theorem, such function 𝜑 belongs to 𝒜), then, for each 𝑡 > 0, there exists
a constant 𝐶 such that 𝐾±

𝜓 (𝑡, 𝑧1, 𝑧2, 𝑣) = 0 for all (𝑧1, 𝑧2, 𝑣) such that 𝑑(𝑧1, 𝑧2) > 𝐶. Therefore, in this

case, operator 𝜓(𝑡Δ+
ℱ ) is a leafwise smoothing operator with the kernel

𝐾±(𝑡, 𝑧1, 𝑧2, 𝑣) = 𝐾±
𝜓 (𝑡, 𝑧1, 𝑧2, 𝑣)

√︀
𝐺(𝑌2(𝑦1, 𝑧1, 𝑧2), 𝑧2).

By definition, operator 𝜓(𝑡Δ+
ℱ )𝑆1(𝜆) is the integral operator on 𝑆1 with the kernel

𝑘𝑆1,𝜆(𝑧1, 𝑧2) =
∑︁
𝑛∈Z

𝑒(𝑖𝜆−
1
2
)(𝑧1−𝑧2−𝑛)𝐾𝜓(𝑡, 𝑧1, 𝑧2 + 𝑛, 0)|𝑑𝑧1|1/2|𝑑𝑧2|1/2. (41)

It is easy to check that ℎ(1) = 1. Hence, for 𝑣 = 0 (or 𝑦 = 1)

𝑑*ℱ (𝑔𝑑𝑢) = −𝜕𝑔
𝜕𝑧

+ 𝑔, Δ+
0 = − 𝜕2

𝜕𝑧2
+

𝜕

𝜕𝑧
.

Therefore, 𝜓(𝑡Δ+
0 ) is a pseudodifferential operator with complete symbol 𝜓(𝑡(𝜉2 + 𝑖𝜉)):

𝜓(𝑡Δ+
0 )𝑓(𝑧) =

1

2𝜋

∫︁
𝑒𝑖(𝑧−𝑧1)𝜉𝜓(𝑡(𝜉2 + 𝑖𝜉))𝑓(𝑧1)𝑑𝑧1𝑑𝜉.

Kernel 𝐾𝜓(𝑡, 𝑧1, 𝑧2, 0) of 𝜓(𝑡Δ
+
0 ) is given by

𝐾𝜓(𝑡, 𝑧1, 𝑧2, 0) =
1

2𝜋

∫︁
𝑒𝑖(𝑧1−𝑧2)𝜉𝜓(𝑡(𝜉2 + 𝑖𝜉))𝑑𝜉.

Since 𝜓(𝑡(𝜉2 + 𝑖𝜉)) = 𝜓(𝑡[(𝜉 + 𝑖
2)

2 + 1
4 ]), the function 𝜉 ↦→ 𝜓(𝑡(𝜉2 + 𝑖𝜉)) belongs to Schwartz space 𝑆,

and, therefore, the integral in the right hand side of the last identity converges absolutely. By (41),
we get

𝐼+(𝜓(𝑡Δ
+
ℱ ), 𝜆) = (𝜓(𝑡Δ+

ℱ ))𝑆1(𝜆) = 𝜓

(︂
𝑡

(︂
(𝐷𝑧 − 𝜆)2 +

1

4

)︂)︂
. (42)

By a straightforward computation, one can show that, for each leafwise smoothing operator 𝐾 :
𝐶∞(𝑋) → 𝐶∞(𝑋)

𝐼+(𝑇
(1)
𝑓 ∘ 𝑑ℱ ∘𝐾,𝜆) =

(︂
𝑖𝐷𝑧 − 𝑖𝜆+

1

2

)︂
∘ 𝐼+(𝑇𝑓 ∘𝐾,𝜆),

and, for each leafwise smoothing operator 𝐾 : Ω1(ℱ) → Ω1(ℱ)

𝐼+(𝑇𝑓 ∘𝐾 ∘ 𝑑*ℱ , 𝜆) = 𝐼+(𝑇𝑓 ∘𝐾,𝜆) ∘
(︂
−𝑖𝐷𝑧 + 𝑖𝜆+

1

2

)︂
.

Using the above computations of indicial families, by (39) we arrive at the following statement.



ON LEFSCHETZ FORMULAS FOR FLOWS ON FOLIATED MANIFOLDS 93

Proposition 6. If the Fourier transform of the function 𝜑(𝑥) = 𝜓(𝑥2) is compactly supported,
then, for each 𝑡 > 0 and 𝑓 ∈ 𝐶∞

0 (R), function r-Tr𝑠𝐶𝑡,𝜓,𝑓 is well-defined and formula

1

2

𝑑

𝑑𝑡
r-Tr𝑠𝐶𝑡,𝜓,𝑓 =− 1

𝜋𝑖

+∞∫︁
−∞

tr

(︂
𝑇
(0),𝑆1,𝜆
𝑓 ∘ 𝜓′

(︂
𝑡

(︂
(𝐷𝑧 − 𝜆)2 +

1

4

)︂)︂

∘ 2𝑡𝜓′
(︂
𝑡

(︂
(𝐷𝑧 − 𝜆)2 +

1

4

)︂)︂
(𝐷𝑧 − 𝜆)

(︂
(𝐷𝑧 − 𝜆)2 +

1

4

)︂)︂
𝑑𝜆

− 1

𝜋𝑖

+∞∫︁
−∞

tr

(︂
𝑇
(0),𝑆1,𝜆
𝑓 ∘ 𝜓′

(︂
𝑡

(︂
(𝐷𝑧 − 𝜆)2 +

1

4

)︂)︂

∘ 2𝜓
(︂
𝑡

(︂
(𝐷𝑧 − 𝜆)2 +

1

4

)︂)︂
(𝐷𝑧 − 𝜆)

)︂
𝑑𝜆

+
1

𝜋𝑖

+∞∫︁
−∞

tr

(︂
𝑇
(1),𝑆1,𝜆
𝑓 ∘

(︂
𝑖𝐷𝑧 − 𝑖𝜆+

1

2

)︂
𝜓′
(︂
𝑡

(︂
(𝐷𝑧 − 𝜆)2 +

1

4

)︂)︂

∘ 2𝑡𝜓′
(︂
𝑡

(︂
(𝐷𝑧 − 𝜆)2 +

1

4

)︂)︂
(𝐷𝑧 − 𝜆)

(︂
−𝑖𝐷𝑧 + 𝑖𝜆+

1

2

)︂)︂
𝑑𝜆

− 1

𝜋𝑖

+∞∫︁
−∞

tr

(︂
𝑇
(1),𝑆1,𝜆
𝑓 ∘

(︂
𝑖𝐷𝑧 − 𝑖𝜆+

1

2

)︂
𝜓′
(︂
𝑡

(︂
(𝐷𝑧 − 𝜆)2 +

1

4

)︂)︂

∘ 𝑖𝜓
(︂
𝑡

(︂
(𝐷𝑧 − 𝜆)2 +

1

4

)︂)︂)︂
𝑑𝜆

(43)

holds true.

In the particular case when 𝜓(𝑥) = 𝑒−
𝑥
2 , formula (43) becomes

1

2

𝑑

𝑑𝑡
r-Tr𝑠𝐵𝑡,𝑓 =− 𝑡

2𝜋𝑖

+∞∫︁
−∞

tr

(︂
𝑇
(0),𝑆1,𝜆
𝑓 ∘ 𝑒−𝑡((𝐷𝑧−𝜆)2+ 1

4)(𝐷𝑧 − 𝜆)

(︂
(𝐷𝑧 − 𝜆)2 +

1

4

)︂)︂
𝑑𝜆

+
1

𝜋𝑖

+∞∫︁
−∞

tr
(︁
𝑇
(0),𝑆1,𝜆
𝑓 ∘ 𝑒−𝑡((𝐷𝑧−𝜆)2+ 1

4)
)︁
(𝐷𝑧 − 𝜆)𝑑𝜆

+
𝑡

2𝜋𝑖

+∞∫︁
−∞

tr

(︂
𝑇
(1),𝑆1,𝜆
𝑓 ∘ 𝑒−𝑡((𝐷𝑧−𝜆)2+ 1

4)(𝐷𝑧 − 𝜆)

(︂
(𝐷𝑧 − 𝜆)2 +

1

4

)︂)︂
𝑑𝜆

+
1

2𝜋𝑖

+∞∫︁
−∞

tr

(︂
𝑇
(1),𝑆1,𝜆
𝑓 ∘

(︂
−(𝐷𝑧 − 𝜆) +

𝑖

2

)︂
𝑒−𝑡((𝐷𝑧−𝜆)2+ 1

4)
)︂
𝑑𝜆.

(44)

Observe that in this case, the Fourier transform of the function 𝜑(𝑥) = 𝑒−
𝑥2

2 is not compactly sup-
ported, and, therefore, Proposition 6 can not be directly applied. The expression in the right hand
side of (43) depends continuously on 𝜓 in the topology of the Schwartz space and can be considered
as a definition of function r-Tr𝑠𝐶𝑡,𝜓,𝑓 in the case when 𝜓 does not satisfy the assumptions of Propo-

sition 6, in particular, when 𝜓(𝑥) = 𝑒−
𝑥
2 . In other words, as in [1, 15], we can take an arbitrary

sequence 𝜓𝑛 ∈ 𝐶∞(R) such that, for each 𝑛, the Fourier transform of 𝜑𝑛(𝑥) = 𝜓𝑛(𝑥
2) is compactly

supported and 𝜓𝑛 converges to 𝑒−
𝑥2

2 in the topology of the Schwartz space and put, by definition,
r-Tr𝑠𝐵𝑡,𝑓 = lim𝑛→∞ r-Tr𝑠𝐶𝑡,𝜓,𝑓 .
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Thus, the proof of Theorem 8 is reduced to the computation of integrals of the form
+∞∫︀
−∞

tr(𝑇𝑆
1,𝜆

𝑓 ∘

𝜑(𝐷𝑧 − 𝜆))𝑑𝜆 given in Appendix B. The use of the results of Appendix B immediately allows us to
compute the expression in the right hand side of (44) and complete the proof of Theorem 8.

4.8. Flows on fiber bundles. In this section, as an illustration, we describe analogues of the
notions introduced above for the example of the flows on fiber bundles considered in Section 3. We
shall use notation introduced in Section 3.

Let 𝐾 be a leafwise smoothing operator in 𝐶∞(𝑋,𝐸⊗Ω
1
2
𝑋) given by kernel 𝑘 ∈ 𝐶∞(𝑋×𝜋𝑋,ℒ(𝐸)⊗

|𝒱|
1
2 ⊗ |𝒱|

1
2 ). First of all, by (17), we have: for 𝑠 > 0

̃︀𝐾𝑓 (0, 𝑠, 𝑥
0, 𝑥01) = lim

𝑥→0
̃︀𝐾𝑓 (𝑥, 𝑠, 𝑥

0, 𝑥01) = 𝑓(− 1

𝑎′(𝛼𝑗)
ln 𝑠)𝑟− 1

𝑎′(𝛼𝑗)
ln 𝑠(𝑥

0, 𝛼𝑗)

· 𝑘(𝑆− 1
𝑎′(𝛼𝑗)

ln 𝑠(𝑥
0, 𝛼𝑗), 𝑥

0
1, 𝛼𝑗)|𝑤(𝑥0, 𝛼𝑗)|1/2|𝑤(𝑥01, 𝛼𝑗)|

1
2

𝑠1/2

|𝑎′(𝛼𝑗)|
,

and, for 𝑠 < 0, ̃︀𝐾𝑓 (0, 𝑠, 𝑥
0, 𝑥01) = 0, 𝑥0, 𝑥01 ∈ 𝐹𝛼𝑗 .

Therefore, the kernel of indicial operator 𝐼+(𝑇𝑓 ∘𝐾,𝜆) is given by

𝐾𝐼+(𝑇𝑓∘𝐾,𝜆)(𝑥
0, 𝑥01) =

∞∫︁
0

𝑠−𝑖𝜆 ̃︀𝐾𝑓 (0, 𝑠, 𝑥
0, 𝑥01)

𝑑𝑠

𝑠

=

+∞∫︁
0

𝑠−𝑖𝜆𝑓

(︂
− 1

𝑎′(𝛼𝑗)
ln 𝑠

)︂
𝑟− 1

𝑎′(𝛼𝑗)
ln 𝑠(𝑥

0, 𝛼𝑗)𝑘

(︂
𝑆− 1

𝑎′(𝛼𝑗)
ln 𝑠(𝑥

0, 𝛼𝑗), 𝑥
0
1, 𝛼𝑗

)︂

· |𝑤(𝑥0, 𝛼𝑗)|1/2|𝑤(𝑥01, 𝛼𝑗)|
1
2

𝑠1/2

|𝑎′(𝛼𝑗)|
𝑑𝑠

𝑠
|𝑑𝑥0|

1
2 |𝑑𝑥01|

1
2 , 𝑥0, 𝑥01 ∈ 𝐹𝛼𝑗 .

Making the change of variables 𝑡 = − 1
𝑎′(𝛼𝑗)

ln 𝑠 in the last integral, we get

𝐾𝐼+(𝑇𝑓∘𝐾,𝜆)(𝑥
0, 𝑥01) =

+∞∫︁
−∞

𝑒𝑖𝑎
′(𝛼𝑗)𝜆𝑡𝑒−

1
2
𝑎′(𝛼𝑗)𝑡𝑓(𝑡)𝑟𝑡(𝑥

0, 𝛼𝑗)

· 𝑘[𝑆𝑡(𝑥0, 𝛼𝑗), 𝑥01, 𝛼𝑗 ]|𝑤(𝑥0, 𝛼𝑗)|1/2|𝑤(𝑥01, 𝛼𝑗)|
1
2𝑑𝑡|𝑑𝑥0|

1
2 |𝑑𝑥01|

1
2 .

(45)

Since ̃︀𝐾𝑓 (0, 𝑠, 𝑥
0, 𝑥01) = 0 for 𝑠 < 0, we obtain 𝐼−(𝑇𝑓 ∘𝐾,𝜆) = 0.

Let us describe operator 𝐼+(𝑇𝑓 ∘𝐾,𝜆). Since each 𝛼𝑗 is a fixed point of flow 𝑇 , flow 𝑇 maps the

fiber 𝐹𝛼𝑗 into itself. Denote by 𝐸(𝛼𝑗) the restriction of 𝐸 to 𝐹𝛼𝑗 , by 𝑇
(𝛼𝑗) the restriction of 𝑇 to 𝐹𝛼𝑗

and by 𝑟
(𝛼𝑗)
𝑡 : 𝐸

(𝛼𝑗)

𝑇
(𝛼𝑗)

𝑡 (𝑥)
→ 𝐸

(𝛼𝑗)
𝑥 the map given by 𝑟𝑡. Let (𝑇

(𝛼𝑗)
𝑡 )* be the operator on 𝐶∞(𝐹𝛼𝑗 , 𝐸

(𝛼𝑗)),

induced by 𝑇 :

(𝑇
(𝛼𝑗)
𝑡 )*𝑢(𝑥) = 𝑟

(𝛼𝑗)
𝑡 (𝑥)[𝑢(𝑇

(𝛼𝑗)
𝑡 (𝑥))].

For each 𝑔 ∈ 𝐶∞
0 (R), we define operator 𝑇

(𝛼𝑗)
𝑔 in 𝐶∞(𝐹𝛼𝑗 , 𝐸

(𝛼𝑗)⊗Ω
1
2
𝐹𝛼𝑗

) by the following formula: for

𝜇 = 𝑢|𝑑𝛼𝛼𝑗 |1/2

𝑇
(𝛼𝑗)
𝑔 =

⎛⎝ +∞∫︁
−∞

𝑔(𝑡)(𝑇
(𝛼𝑗)
𝑡 )*𝑢𝑑𝑡

⎞⎠ |𝑑𝛼𝛼𝑗 |1/2.

For each 𝛼 ∈ 𝑆1, one can naturally define the restriction of 𝐾 to 𝐹𝛼 as an integral operator 𝐾(𝛼)

in 𝐶∞(𝐹𝛼, 𝐸
(𝛼) ⊗ Ω

1
2
𝐹𝛼

).
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We have:

𝐶∞(𝑋0, 𝐸𝑋0 ⊗ Ω
1
2

𝑋0) =

𝑘⨁︁
𝑗=1

𝐶∞(𝐹𝛼𝑗 , 𝐸
(𝛼𝑗) ⊗ Ω

1
2
𝐹𝛼𝑗

).

Using formulas (13) and (45), it is easy to show that the operator 𝐼+(𝑇𝑓 ∘𝐾,𝜆) maps each subspace

𝐶∞(𝐹𝛼𝑗 , 𝐸
(𝛼𝑗) ⊗ Ω

1
2
𝐹𝛼𝑗

) into itself, and its restriction to 𝐶∞(𝐹𝛼𝑗 , 𝐸
(𝛼𝑗) ⊗ Ω

1
2
𝐹𝛼𝑗

) reads as

𝐼+(𝑇𝑓 ∘𝐾,𝜆)

⃒⃒⃒⃒
⃒𝐶∞(𝐹𝛼𝑗 ,𝐸

(𝛼𝑗)⊗Ω
1
2
𝐹𝛼𝑗

)
= 𝑇

(𝛼𝑗)

𝑓
(𝛼𝑗)

𝜆

∘𝐾(𝛼𝑗), (46)

where 𝑓
(𝛼𝑗)
𝜆 (𝑡) = 𝑒𝑖𝑎

′(𝛼𝑗)𝜆𝑡𝑒−
1
2
𝑎′(𝛼𝑗)𝑡𝑓(𝑡).

In this case, one can prove an analogue of Proposition 4 by the same method as was used in the
proof of this proposition above in this section. In particular, indicial family 𝐼+(𝐾,𝜆) associated with

a leafwise smoothing operator 𝐾 : 𝐶∞(𝑋,𝐸 ⊗ Ω
1
2
𝑋) → 𝐶∞(𝑋,𝐸 ⊗ Ω

1
2
𝑋) is defined as

𝐼+(𝐾,𝜆) = 𝐾𝑋0 .

Here 𝐾𝑋0 is the restriction of 𝐾 to 𝑋0. This operator maps each subspace 𝐶∞(𝐹𝛼𝑗 , 𝐸
(𝛼𝑗) ⊗ Ω

1
2
𝐹𝛼𝑗

)

into itself, and its restriction to this subspace coincides with 𝐾(𝛼𝑗).
Thus, in the case under consideration, indicial family 𝐼(𝐾,𝜆) is independent of 𝜆. Therefore, thanks

to an analogue of Proposition 4 for this case, we get for each leafwise smoothing operators 𝐾1 and 𝐾2

r-Tr[𝑇𝑓 ∘𝐾1,𝐾2] = 0.

By this fact, it follows from (24) that r-Tr𝑠𝐶𝑡,𝜓,𝑓 is independent of 𝑡:

𝑑

𝑑𝑡
r-Tr𝑠𝐶𝑡,𝜓,𝑓 = 0.

A. Proof of Proposition 4

Suppose that a function 𝑔 ∈ 𝐶∞
0 (R) satisfies the following conditions: 𝑔 is an even function, 𝑔(𝑠) > 0

for each 𝑠, supp 𝑔 ⊂ (−1, 1) and
+∞∫︀
−∞

𝑔(𝑠)𝑑𝑠 = 1. For each natural 𝑚, we let 𝑔𝑚(𝑡) = 𝑚𝑔(𝑚𝑡). The

operator 𝑇𝑔𝑚 ∘𝐾2 belongs to 𝒦(𝑋,𝑋0), therefore, the following formula

r-Tr[𝑇𝑓 ∘𝐾1, 𝑇𝑔𝑚 ∘𝐾2] = − 1

𝜋𝑖

+∞∫︁
−∞

tr(𝜕𝜆𝐼+(𝑇𝑓 ∘𝐾1, 𝜆) ∘ 𝐼+(𝑇𝑔𝑚 ∘𝐾2, 𝜆))𝑑𝜆 (47)

holds true.
Let us show that, as 𝑚 → ∞, the left and right hand sides of (47) converge to the left and right

hand sides of (38), respectively. The difference 𝑅𝑚 of the right hand sides of (47) and (38) is written
as:

𝑅𝑚 = − 1

𝜋𝑖

+∞∫︁
−∞

tr(𝜕𝜆𝐼+(𝑇𝑓 ∘𝐾1, 𝜆) ∘ (𝐼+(𝑇𝑔𝑚 ∘𝐾2, 𝜆)− 𝐼+(𝐾2, 𝜆))𝑑𝜆.

Using properties of trace class operators, we get

|𝑅𝑚| 6
1

𝜋

+∞∫︁
−∞

‖𝜕𝜆𝐼+(𝑇𝑓 ∘𝐾1, 𝜆)‖2 · ‖𝐼+(𝑇𝑔𝑚 ∘𝐾2, 𝜆)− 𝐼+(𝐾2, 𝜆)‖2𝑑𝜆, (48)

where ‖𝐴‖2 = tr(𝐴*𝐴) is the Hilbert-Schmidt norm of the operator 𝐴.
Using (31) and (37), it is easy to prove the following estimate:

sup
𝑧,𝑧2

|𝐾𝐼+(𝑇𝑔𝑚∘𝐾2,𝜆)(𝑧, 𝑧2)−𝐾𝐼+(𝐾2,𝜆)(𝑧, 𝑧2)| 6 𝐶1
|𝜆|
𝑚
.
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It implies that

‖𝐼+(𝑇𝑔𝑚 ∘𝐾2, 𝜆)− 𝐼+(𝐾2, 𝜆)‖2

=

(︂∫︁ 1

0

∫︁ 1

0
|𝐾𝐼+(𝑇𝑔𝑚∘𝐾2,𝜆)(𝑧, 𝑧2)−𝐾𝐼+(𝐾2,𝜆)(𝑧, 𝑧2)|

2𝑑𝑧𝑑𝑧2

)︂1/2

6 𝐶1
|𝜆|
𝑚
.

Therefore, by (48), we get

|𝑅𝑚| 6
𝐶2

𝑚

+∞∫︁
−∞

‖𝜕𝜆𝐼+(𝑇𝑓 ∘𝐾1, 𝜆)‖2|𝜆|𝑑𝜆. (49)

The kernel of 𝜕𝜆𝐼+(𝑇𝑓 ∘𝐾1, 𝜆) as an operator in R reads as

𝐾𝜕𝜆𝐼+(𝑇𝑓∘𝐾1,𝜆)(𝑧, 𝑧2) =

∞∫︁
−∞

𝑒(𝑖𝜆−
1
2
)(𝑧−𝑧2+𝛼𝑡)𝑖(𝑧 − 𝑧2 + 𝛼𝑡)𝑓(𝑡)𝑟𝑡(1, 𝑧)[𝐾(𝑍(𝑡, 1, 𝑧), 𝑧2, 0)]𝑑𝑡.

Consider the function ℎ ∈ 𝐶∞
0 (R3) given by

ℎ(𝑧, 𝑧2, 𝑡) = 𝑒−
1
2
𝛼𝑡𝑖(𝑧 − 𝑧2 + 𝛼𝑡)𝑓(𝑡)𝑟𝑡(1, 𝑧)[𝐾(𝑍(𝑡, 1, 𝑧), 𝑧2, 0)].

Note that

𝐾𝜕𝜆𝐼+(𝑇𝑓∘𝐾1,𝜆)(𝑧, 𝑧2) = 𝑒(𝑖𝜆−
1
2
)(𝑧−𝑧2)ℎ̂(𝑧, 𝑧2, 𝛼𝜆),

where ℎ̂ ∈ 𝒮(R) is the Fourier transform of ℎ with respect to 𝑡. It is easy to see that there exists a
constant 𝑑 > 0 such that ℎ(𝑧, 𝑧2, 𝑡) = 0 for |𝑧 − 𝑧2| > 𝑑 or |𝑡| > 𝑑, and ℎ(𝑧 + 1, 𝑧2 + 1, 𝑡) = ℎ(𝑧, 𝑧2, 𝑡)
for each 𝑧, 𝑧2, 𝑡. Therefore, 𝐾𝜕𝜆𝐼+(𝑇𝑓∘𝐾1,𝜆)(𝑧, 𝑧2) = 0 for |𝑧 − 𝑧2| > 𝑑, 𝐾𝜕𝜆𝐼+(𝑇𝑓∘𝐾1,𝜆)(𝑧 + 1, 𝑧2 + 1) =

𝐾𝜕𝜆𝐼+(𝑇𝑓∘𝐾1,𝜆)(𝑧, 𝑧2) for each 𝑧, 𝑧2, 𝜆 and, as 𝜆 → ∞, kernel 𝐾𝜕𝜆𝐼+(𝑇𝑓∘𝐾1,𝜆)(𝑧, 𝑧2) converges to zero
faster than any power of 𝜆 uniformly on 𝑧, 𝑧2: for each 𝑁

sup
𝑧,𝑧2,𝜆

(1 + 𝜆2)𝑁
⃒⃒⃒
𝐾𝜕𝜆𝐼+(𝑇𝑓∘𝐾1,𝜆)(𝑧, 𝑧2)

⃒⃒⃒
<∞

Hence, as 𝜆→ ∞, the Hilbert-Schmidt norm of operator 𝜕𝜆𝐼+(𝑇𝑓 ∘𝐾1, 𝜆) in 𝐿
2(𝑆1) converges to zero

faster than any power of 𝜆: for each 𝑁

sup
𝑥,𝑦,𝜆

(1 + 𝜆2)𝑁‖𝜕𝜆𝐼+(𝑇𝑓 ∘𝐾1, 𝜆)‖2 <∞.

Therefore, the integral in the right hand side of inequality (49) converges, and, by (49), we obtain
that |𝑅𝑚| → 0 as 𝑚→ ∞.

Consider the left hand side of (47). Let us show that r-Tr(𝑇𝑓∘𝐾1∘𝑇𝑔𝑚∘𝐾2) tends to r-Tr(𝑇𝑓∘𝐾1∘𝐾2)
and r-Tr(𝑇𝑔𝑚 ∘𝐾2 ∘ 𝑇𝑓 ∘𝐾1) tends to r-Tr(𝐾2 ∘ 𝑇𝑓 ∘𝐾1) as 𝑚 → ∞. Formula (29) implies that the
restriction of the kernel of 𝑇𝑓 ∘𝐾1 ∘ 𝑇𝑔𝑚 ∘𝐾2 to the diagonal is represented as (for 𝑝(𝑦, 𝑧) > 0 ⇔ 𝑦 ∈
(0, 1)):

𝑘𝑇𝑓∘𝐾1∘𝑇𝑔𝑚∘𝐾2 |Δ (𝑦, 𝑧, 𝑦, 𝑧)

=
𝜋2

4𝛼2

∑︁
𝑛,𝑛2∈Z

(︃ 1∫︁
0

1∫︁
0

𝑓(𝜏 +
𝑛

𝛼
)𝑟𝜏+𝑛

𝛼
(𝑦, 𝑧)[𝐾1+(𝑍(𝜏 +

𝑛

𝛼
, 𝑦, 𝑧), 𝑧2 + 𝑛, 𝑝(𝑦2, 𝑧2 + 𝑛))]

·
⃒⃒⃒
tan

(︁𝜋
2
𝑦2

)︁⃒⃒⃒
𝑔𝑚(𝜏1 +

𝑛2
𝛼
)𝑟𝜏1+𝑛2

𝛼
(𝑦2, 𝑧2)[𝐾2+(𝑍(𝜏1 +

𝑛2
𝛼
, 𝑦2, 𝑧2), 𝑧 + 𝑛2, 𝑝(𝑦, 𝑧 + 𝑛2))]

·
⃒⃒⃒
tan

(︁𝜋
2
𝑦
)︁⃒⃒⃒
𝑑𝑦2𝑑𝑧2

)︃
|𝑑𝑦||𝑑𝑧|

+
𝜋2

4𝛼2

∑︁
𝑛,𝑛2∈Z

(︃ 1∫︁
0

0∫︁
−1

𝑓(𝜏 +
𝑛

𝛼
)𝑟𝜏+𝑛

𝛼
(𝑦, 𝑧)[𝐾1−(𝑍(𝜏 +

𝑛

𝛼
, 𝑦, 𝑧), 𝑧2 + 𝑛, 𝑝(𝑦2, 𝑧2 + 𝑛))]

·
⃒⃒⃒
tan

(︁𝜋
2
𝑦2

)︁⃒⃒⃒
𝑔𝑚(𝜏1 +

𝑛2
𝛼
)𝑟𝜏1+𝑛2

𝛼
(𝑦2, 𝑧2)[𝐾2−(𝑍(𝜏1 +

𝑛2
𝛼
, 𝑦2, 𝑧2), 𝑧 + 𝑛2,−𝑝(𝑦, 𝑧 + 𝑛2))]
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·
⃒⃒⃒
tan

(︁𝜋
2
𝑦
)︁⃒⃒⃒
𝑑𝑦2𝑑𝑧2

)︃
|𝑑𝑦||𝑑𝑧|,

where 𝜏 = 𝜏(𝑦, 𝑧, 𝑦2, 𝑧2) and 𝜏1 = 𝜏(𝑦2, 𝑧2, 𝑦, 𝑧) = −𝜏(𝑦, 𝑧, 𝑦2, 𝑧2). Note that, in the first term, 𝑝(𝑦, 𝑧)
and 𝑝(𝑦2, 𝑧2) are of the same sign, and, in the second one, are of different signs. By means of some
simple transformations, this formula can be rewritten as follows:

𝑘𝑇𝑓∘𝐾1∘𝑇𝑔𝑚∘𝐾2 |Δ (𝑦, 𝑧, 𝑦, 𝑧) =
⃒⃒⃒
tan

(︁𝜋
2
𝑦
)︁⃒⃒⃒⎛⎝ +∞∫︁

−∞

𝑔𝑚(𝑡)𝑣(𝑡, 𝑦, 𝑧)𝑑𝑡

⎞⎠ |𝑑𝑦||𝑑𝑧|,

where

𝑣(𝑡, 𝑦, 𝑧) =
𝜋

2|𝛼|
∑︁
𝑁∈Z

+∞∫︁
𝛼𝑡′+𝑁+ln |𝑝(𝑦,𝑧)|

𝑑𝑧′2𝑓

(︂
𝑡′ +

𝑁

𝛼

)︂

·

[︃
𝑟𝑡′+𝑁

𝛼
(𝑦, 𝑧)

[︂
𝐾1+

(︂
𝑍

(︂
𝑡′ +

𝑁

𝛼
, 𝑦, 𝑧), 𝑧′2, 𝑝(𝑌

′
3 , 𝑧

′
2

)︂)︂]︂
· 𝑟−𝑡′(𝑌 ′

3 , 𝑧
′
2)
[︀
𝐾2+(𝑍(−𝑡′, 𝑌 ′

3 , 𝑧
′
2), 𝑧 +𝑁, 𝑝(𝑦, 𝑧 +𝑁))

]︀
+ 𝑟𝑡′+𝑁

𝛼
(𝑦, 𝑧)

[︂
𝐾1−(𝑍(𝑡

′ +
𝑁

𝛼
, 𝑦, 𝑧), 𝑧′2, 𝑝(𝑌

′
3 , 𝑧

′
2))

]︂
· 𝑟−𝑡′(𝑌 ′

3 , 𝑧
′
2)[𝐾2−(𝑍(−𝑡′, 𝑌 ′

3 , 𝑧
′
2), 𝑧 +𝑁,−𝑝(𝑦, 𝑧 +𝑁))]

]︃
.

By (29), the kernel of 𝑇𝑓 ∘𝐾1 ∘𝐾2 is given by:

𝑘𝑇𝑓∘𝐾1∘𝐾2(𝑦, 𝑧, 𝑦2, 𝑧2)

=
𝜋

2|𝛼|
∑︁
𝑛∈Z

𝑓
(︁
𝜏 +

𝑛

𝛼

)︁
𝑟𝜏+𝑛

𝛼
(𝑦, 𝑧)

[︁
𝐾+

(︁
𝑍
(︁
𝜏 +

𝑛

𝛼
, 𝑦, 𝑧

)︁
, 𝑧2 + 𝑛, 𝑝(𝑦2, 𝑧2 + 𝑛)

)︁]︁
·
⃒⃒⃒
tan

(︁𝜋
2
𝑦2

)︁⃒⃒⃒
|𝑑𝑦|1/2|𝑑𝑧|1/2|𝑑𝑦2|1/2|𝑑𝑧2|1/2

+
𝜋

2|𝛼|
∑︁
𝑛∈Z

𝑓
(︁
𝜏 +

𝑛

𝛼

)︁
𝑟𝜏+𝑛

𝛼
(𝑦, 𝑧)

[︁
𝐾−

(︁
𝑍
(︁
𝜏 +

𝑛

𝛼
, 𝑦, 𝑧

)︁
, 𝑧2 + 𝑛, 𝑝(𝑦2, 𝑧2 + 𝑛)

)︁]︁
·
⃒⃒⃒
tan

(︁𝜋
2
𝑦2

)︁⃒⃒⃒
|𝑑𝑦|1/2|𝑑𝑧|1/2|𝑑𝑦2|1/2|𝑑𝑧2|1/2,

where 𝐾+ and 𝐾− define the kernel of 𝐾1 ∘𝐾2:

𝐾±(𝑧1, 𝑧2, 𝑣) =

+∞∫︁
ln |𝑣|

𝐾1+(𝑧1, 𝑧3, 𝑣)𝐾2±(𝑧3, 𝑧2, 𝑣)|𝑑𝑧3|+
+∞∫︁

ln |𝑣|

𝐾1−(𝑧1, 𝑧3, 𝑣)𝐾2∓(𝑧3, 𝑧2,−𝑣)|𝑑𝑧3|.

It is easy to see that, for 𝑝(𝑦, 𝑧) > 0, one can write:

𝑘𝑇𝑓∘𝐾1∘𝐾2 |Δ (𝑦, 𝑧, 𝑦, 𝑧) =
⃒⃒⃒
tan

(︁𝜋
2
𝑦
)︁⃒⃒⃒⎛⎝ +∞∫︁

−∞

𝑔𝑚(𝑡)𝑣(0, 𝑦, 𝑧)𝑑𝑡

⎞⎠ |𝑑𝑦||𝑑𝑧|.

Therefore, we get

𝑘𝑇𝑓∘𝐾1∘𝑇𝑔𝑚∘𝐾2 |Δ (𝑦, 𝑧, 𝑦, 𝑧)− 𝑘𝑇𝑓∘𝐾1∘𝐾2 |Δ (𝑦, 𝑧, 𝑦, 𝑧) = ℎ𝑚(𝑦, 𝑧)

⃒⃒⃒⃒
𝑑𝑦

𝑦 − 1

⃒⃒⃒⃒
|𝑑𝑧|,

where

ℎ𝑚(𝑦, 𝑧) = (1− 𝑦) tan
(︁𝜋
2
𝑦
)︁ +∞∫︁
−∞

𝑔𝑚(𝑡)(𝑣(𝑡, 𝑦, 𝑧)− 𝑣(0, 𝑦, 𝑧))𝑑𝑡.
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Function ℎ𝑚 is a smooth, 1-periodic in 𝑧 function on (0, 2)×R, moreover

ℎ𝑚(1, 𝑧) =
2

𝜋

+∞∫︁
−∞

𝑔𝑚(𝑡)(𝑣(𝑡, 1, 𝑧)− 𝑣(0, 1, 𝑧))𝑑𝑡.

Therefore, by definition, we have(︀
𝑘𝑇𝑓∘𝐾1∘𝑇𝑔𝑚∘𝐾2 |Δ − 𝑘𝑇𝑓∘𝐾1∘𝐾2 |Δ

)︀
|𝑦=1 = ℎ𝑚(1, 𝑧)|𝑑𝑧|

and

𝑇𝑚 := r-Tr(𝑇𝑓 ∘𝐾1 ∘ 𝑇𝑔𝑚 ∘𝐾2)− r-Tr(𝑇𝑓 ∘𝐾1 ∘𝐾2)

= lim
𝜀→0

(︃ ∫︁
1>|𝑦−1|>𝜀

2∫︁
0

trℎ𝑚(𝑦, 𝑧)|𝑑𝑧|
⃒⃒⃒⃒
𝑑𝑦

𝑦 − 1

⃒⃒⃒⃒
+ 2 ln 𝜀

2∫︁
0

trℎ𝑚(1, 𝑧)|𝑑𝑧|

)︃
.

There exists a constant 𝐶 such that, for each 𝑡 ∈ (−1, 1), 𝑧 ∈ R and 𝑦 ∈ (0, 2), we have the inequality
|𝑣(𝑡, 𝑦, 𝑧)− 𝑣(0, 𝑦, 𝑧)| 6 𝐶𝑡. Hence, we obtain that, for each 𝑧 ∈ R and 𝑦 ∈ (0, 2), the estimate

|ℎ𝑚(𝑦, 𝑧)| 6 𝐶
+∞∫︁

−∞

𝑔𝑚(𝑡)|𝑣(𝑡, 𝑦, 𝑧)− 𝑣(0, 𝑦, 𝑧)|𝑑𝑡 6 𝐶3

𝑚
(50)

holds true with some constant 𝐶3 > 0.
A similar estimate can be proved for the partial derivative with respect to 𝑦:⃒⃒⃒⃒

𝜕ℎ𝑚(𝑦, 𝑧)

𝜕𝑦

⃒⃒⃒⃒
6
𝐶4

𝑚
, 𝑧 ∈ R, 𝑦 ∈ (0, 2). (51)

Since ∫︁
1>|𝑦−1|>𝜀

𝑑𝑦

|𝑦 − 1|
= −2 ln 𝜀,

the formula for 𝑇𝑚 can be rewritten as follows:

𝑇𝑚 =

2∫︁
0

1∫︁
0

trℎ𝑚(𝑦, 𝑧)− trℎ𝑚(1, 𝑧)

|𝑦 − 1|
|𝑑𝑧||𝑑𝑦|. (52)

In view of estimates (50) and (51), it follows immediately from (52) that

|𝑇𝑚| 6
𝐶5

𝑚
.

Therefore, lim𝑚→∞ r-Tr(𝑇𝑓 ∘ 𝐾1 ∘ 𝑇𝑔𝑚 ∘ 𝐾2 − 𝑇𝑓 ∘ 𝐾1 ∘ 𝐾2) = lim𝑚→∞ 𝑇𝑚 = 0. Similarly, one can
show that r-Tr(𝑇𝑔𝑚 ∘𝐾2 ∘ 𝑇𝑓 ∘𝐾1) → r-Tr(𝐾2 ∘ 𝑇𝑓 ∘𝐾1). Hence, as 𝑚 → ∞, the left hand side of
(47) tends to the left hand side of (38). Thus, formula (38) is proved.

B. Computation of integrals

In this section, we consider an arbitrary vector bundle 𝐸0 = R× C𝑁 equipped with the flow given

by a map 𝑟𝑡(1, 𝑧) : 𝐸0
𝑍(𝑡,1,𝑧) → 𝐸0

1,𝑧. For each 𝑓 ∈ 𝐶∞
0 (R), operator 𝑇𝑆

1,𝜆
𝑓 in 𝐿2(𝑆1, 𝐸0 ⊗ Ω

1
2

𝑆1) is

defined by (34).

Proposition 7. For each 𝜑 ∈ 𝒜, the formula

+∞∫︁
−∞

tr(𝑇𝑆
1,𝜆

𝑓 ∘ 𝜑(𝐷𝑧 − 𝜆))𝑑𝜆 =
1

𝛼

∑︁
𝑛∈Z

𝑓
(︁𝑛
𝛼

)︁ 1∫︁
0

𝑒−
1
2
(𝑧−𝑍(𝑛

𝛼
,1,𝑧)+𝑛)𝜑

(︁
𝑧 − 𝑍(

𝑛

𝛼
, 1, 𝑧) + 𝑛

)︁
tr 𝑟𝑛

𝛼
(1, 𝑧)𝑑𝑧

holds true.
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Proof. Operator 𝜑(𝐷𝑧 − 𝜆) reads as

𝜑(𝐷𝑧 − 𝜆)𝑣(𝑧) =
1

2𝜋

∫︁∫︁
R2

𝑒𝑖(𝑧−𝑧1)𝜉𝜑(𝜉 − 𝜆)𝑣(𝑧1)𝑑𝑧1𝑑𝜉.

Therefore, we have

𝑇𝑆
1,𝜆

𝑓 ∘ 𝜑(𝐷𝑧 − 𝜆)𝑣(𝑧)

=
1

2𝜋

∫︁∫︁∫︁
𝑓(𝜏)𝑒(𝑖𝜆−

1
2
)(𝑧−𝑍(𝜏,1,𝑧)+𝛼𝜏)𝑒𝑖(𝑍(𝜏,1,𝑧)−𝑧1)𝜉𝜑(𝜉 − 𝜆)𝑟𝜏 (1, 𝑧1)𝑣(𝑧1)𝑑𝑧1𝑑𝜉𝑑𝜏.

The kernel of this operator as an operator on 𝑆1 reads as

𝐾𝜆(𝑧, 𝑧1) =
1

2𝜋

∑︁
𝑛∈Z

∫︁∫︁
R2

𝑓(𝜏)𝑒(𝑖𝜆−
1
2
)(𝑧−𝑍(𝜏,1,𝑧)+𝛼𝜏) · 𝑒𝑖(𝑍(𝜏,1,𝑧)−𝑧1−𝑛)𝜉𝜑(𝜉 − 𝜆)𝑟𝜏 (1, 𝑧1)𝑑𝜉𝑑𝜏. (53)

The integral can be understood as an absolutely convergent double integral. The restriction of 𝐾𝜆 to
the diagonal reads as

𝐾𝜆(𝑧, 𝑧) =
1

2𝜋

∑︁
𝑛∈Z

∫︁∫︁
R2

𝑓(𝜏)𝑒(𝑖𝜆−
1
2
)(𝑧−𝑍(𝜏,1,𝑧)+𝛼𝜏)𝑒𝑖(𝑍(𝜏,1,𝑧)−𝑧−𝑛)𝜉𝜑(𝜉 − 𝜆)𝑟𝜏 (1, 𝑧)𝑑𝜉𝑑𝜏. (54)

For a function 𝑓 ∈ 𝒮(R), we denote by 𝑓 ∈ 𝒮(R) its Fourier transform:

𝑓(𝑘) =

+∞∫︁
−∞

𝑒−𝑖𝑘𝑥𝑓(𝑥)𝑑𝑥.

Making the change of variables 𝜉1 = 𝜉 − 𝜆, 𝜏1 = 𝛼𝜏 − 𝑛 in the integral, formula (54) can be rewritten
as follows:

𝐾𝜆(𝑧, 𝑧) =
1

2𝜋𝛼

∑︁
𝑛∈Z

+∞∫︁
−∞

𝑓

(︂
𝜏1 + 𝑛

𝛼

)︂
𝑒(𝑖𝜆−

1
2
)𝜏1𝑒

− 1
2
(𝑧−𝑍

(︁
𝜏1+𝑛

𝛼
,1,𝑧

)︁
+𝑛)

· 𝜑
(︂
𝑧 − 𝑍

(︂
𝜏1 + 𝑛

𝛼
, 1, 𝑧

)︂
+ 𝑛

)︂
𝑟 𝜏1+𝑛

𝛼

(1, 𝑧)𝑑𝜏1.

(55)

One can show that, for each 𝛽 > 0, there exists a constant 𝐶 > 0 such that for each 𝜏1 ∈ R, 𝑛 ∈ Z
and 𝑧 ∈ R, the estimate⃒⃒⃒⃒

𝑓

(︂
𝜏1 + 𝑛

𝛼

)︂
𝑒
− 1

2
(𝑧−𝑍

(︁
𝜏1+𝑛

𝛼
,1,𝑧

)︁
+𝑛)

𝜑

(︂
𝑧 − 𝑍

(︂
𝜏1 + 𝑛

𝛼
, 1, 𝑧

)︂
+ 𝑛

)︂⃒⃒⃒⃒
< 𝐶𝑒−𝛽(|𝜏1|+|𝑛|) (56)

holds true. Indeed, since 𝑓 is compactly supported, there exists a constant 𝐾 > 0 such that supp 𝑓 ⊂
[−𝐾,𝐾]. Therefore, we can assume that ⃒⃒⃒⃒

𝜏1 + 𝑛

𝛼

⃒⃒⃒⃒
< 𝐾. (57)

By the Paley-Wiener theorem, for each 𝛽 > 0, there exists 𝐶 > 0 such that

|𝜑(𝑧)| < 𝐶𝑒−𝛽|𝑧|, 𝑧 ∈ R. (58)

Since the function 𝑧 − 𝑍(𝜏, 1, 𝑧) is periodic with period 1, there exists a constant 𝑟 > 0 such that,
for each 𝜏1 and 𝑛, satisfying (57), and for each 𝑧, the estimate⃒⃒⃒⃒

𝑧 − 𝑍

(︂
𝜏1 + 𝑛

𝛼
, 1, 𝑧

)︂⃒⃒⃒⃒
< 𝑟 (59)

holds true. Estimates (58) and (59) imply the existence of a constant 𝐶1 > 0 such that, for each 𝜏1
and 𝑛 satisfying (57), and for each 𝑧, the estimate⃒⃒⃒⃒

𝜑

(︂
𝑧 − 𝑍

(︂
𝜏1 + 𝑛

𝛼
, 1, 𝑧

)︂
+ 𝑛

)︂⃒⃒⃒⃒
< 𝐶1𝑒

−𝛽(|𝜏1|+|𝑛|)
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holds true. It implies immediately estimate (56). This estimate yields that the series in the right hand
side of (53) converges.

Estimate (56) allows us to change the order of integration in the formula:

tr(𝑇𝑆
1,𝜆

𝑓 ∘ 𝜑(𝐷𝑧 − 𝜆)) =

1∫︁
0

𝐾𝜆(𝑧, 𝑧)𝑑𝑧

=
1

2𝜋𝛼

+∞∫︁
−∞

𝑒(𝑖𝜆−
1
2
)𝜏1

(︃ 1∫︁
0

∑︁
𝑛∈Z

𝑓

(︂
𝜏1 + 𝑛

𝛼

)︂
𝑒
− 1

2
(𝑧−𝑍

(︁
𝜏1+𝑛

𝛼
,1,𝑧

)︁
+𝑛)

· 𝜑
(︂
𝑧 − 𝑍

(︂
𝜏1 + 𝑛

𝛼
, 1, 𝑧

)︂
+ 𝑛

)︂
tr 𝑟 𝜏1+𝑛

𝛼

(1, 𝑧)𝑑𝑧

)︃
𝑑𝜏1.

(60)

Observe that the sum over 𝑛 in the right hand side of (60) consists of finitely many non-vanishing
terms, because 𝑓 is compactly supported.

Let us consider the function

𝐹 (𝜏1) =𝑒
− 1

2
𝜏1

1∫︁
0

∑︁
𝑛∈Z

𝑓

(︂
𝜏1 + 𝑛

𝛼

)︂
𝑒
− 1

2
(𝑧−𝑍

(︁
𝜏1+𝑛

𝛼
,1,𝑧

)︁
+𝑛)

· 𝜑
(︂
𝑧 − 𝑍

(︂
𝜏1 + 𝑛

𝛼
, 1, 𝑧

)︂
+ 𝑛

)︂
tr 𝑟 𝜏1+𝑛

𝛼

(1, 𝑧)𝑑𝑧.

Formula (60) can be rewritten as:

tr(𝑇𝑆
1,𝜆

𝑓 ∘ 𝜑(𝐷𝑧 − 𝜆)) =
1

2𝜋𝛼

+∞∫︁
−∞

𝑒𝑖𝜆𝜏1𝐹 (𝜏1)𝑑𝜏1 =
1

2𝜋𝛼
𝐹 (−𝜆).

Using the inversion formula for the Fourier transform, we obtain that:

+∞∫︁
−∞

tr(𝑇𝑆
1,𝜆

𝑓 ∘ 𝜑(𝐷𝑧 − 𝜆))𝑑𝜆 =
1

2𝜋𝛼

+∞∫︁
−∞

𝐹 (−𝜆)𝑑𝜆 =
1

𝛼
𝐹 (0)

=
1

𝛼

∑︁
𝑛∈Z

𝑓
(︁𝑛
𝛼

)︁ 1∫︁
0

𝑒−
1
2(𝑧−𝑍(

𝑛
𝛼
,1,𝑧)+𝑛)𝜑

(︁
𝑧 − 𝑍

(︁𝑛
𝛼
, 1, 𝑧

)︁
+ 𝑛

)︁
tr 𝑟𝑛

𝛼
(1, 𝑧)𝑑𝑧.

Corollary 1. In the scalar case, we have

+∞∫︁
−∞

tr(𝑇
(0),𝑆1,𝜆
𝑓 ∘ 𝜑(𝐷𝑧 − 𝜆))𝑑𝜆 =

1

𝛼

∑︁
𝑛∈Z

𝑓(
𝑛

𝛼
)

1∫︁
0

𝑒−
1
2
(𝑧−𝑍(𝑛

𝛼
,1,𝑧)+𝑛)𝜑(𝑧 − 𝑍(

𝑛

𝛼
, 1, 𝑧) + 𝑛)𝑑𝑧.

Proof. In this case, we have 𝑟𝑡(1, 𝑧) = 1.

Corollary 2. In the case 𝐸0 = 𝑇 *ℱ ⊗ C |𝑆1
∼= 𝑇 *R, we have

+∞∫︁
−∞

tr(𝑇
(1),𝑆1,𝜆
𝑓 ∘𝜑(𝐷𝑧−𝜆))𝑑𝜆 =

1

𝛼

∑︁
𝑛∈Z

𝑓
(︁𝑛
𝛼

)︁ 1∫︁
0

𝑒−
1
2
(𝑍(−𝑛

𝛼
,1,𝑧1)−𝑧1+𝑛)𝜑

(︁
𝑍
(︁
−𝑛
𝛼
, 1, 𝑧1

)︁
− 𝑧1 + 𝑛

)︁
𝑑𝑧1.

Proof. In this case, we have 𝑟𝑡(1, 𝑧) =
𝜕𝑍
𝜕𝑧 (𝑡, 1, 𝑧). Therefore, the formula becomes

+∞∫︁
−∞

tr(𝑇𝑆
1,𝜆

𝑓 ∘ 𝜑(𝐷𝑧 − 𝜆))𝑑𝜆
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=
1

𝛼

∑︁
𝑛∈Z

𝑓
(︁𝑛
𝛼

)︁ 1∫︁
0

𝑒−
1
2(𝑧−𝑍(

𝑛
𝛼
,1,𝑧)+𝑛)𝜑

(︁
𝑧 − 𝑍

(︁𝑛
𝛼
, 1, 𝑧

)︁
+ 𝑛

)︁ 𝜕𝑍
𝜕𝑧

(︁𝑛
𝛼
, 1, 𝑧

)︁
𝑑𝑧.

The change of variable 𝑧1 = 𝑍
(︀
𝑛
𝛼 , 1, 𝑧

)︀
in the integral in the right hand side of the last identity

completes the proof.
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