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INITIAL LENGTH SCALE ESTIMATE FOR WAVEGUIDES
WITH SOME RANDOM SINGULAR POTENTIALS

D.I. BORISOV, R.KH. KARIMOV, T.F. SHARAPOV

Abstract. In this work we consider three examples of random singular perturbations in
multi-dimensional models of waveguides. These perturbations are described by a large
potential supported on a set of a small measure, by a compactly supported fast oscillating
potential, and by a delta-potential. In all cases we prove initial length scale estimate.
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1. Introduction

One of the approaches for describing wave processes in disordered media are random Hamil-
tonians, which are elliptic operators in unbounded domains depending on a countably many
independent identically distributed random variables. Such operators are quite intenstively
studied. One of issues in question is the spectral localization. The latter means that the whole
spectrum or a part of it are pure point with the probability one. There are many works where
such property of the spectrum was studied for numerous particular examples, see, for instance,
[11]–[39], and the references therein. One of the known ways for proving the spectral localiza-
tion is the multiscale analysis, [11], [12]. It is based on a certain induction whose basis is the
initial length scale estimate.

In paper [3], there was proposed a general approach for proving initial length scale estimate
for operators with small random perturbations. The perturbations were described by abstract
symmetric operators being small w.r.t. the original unperturbed one. Under minimal conditions
for the perturbations, the initial length scale estimate was proven at the bottom of the spectrum.
Such general approach allowed the authors to consider various examples both known and new.

The present paper is a continuation of work [3]. We consider three examples of random
perturbations. Each of them is not regular, i.e., small w.r.t. the original unperturbed operator.
Moreover, these perturbations are singular in some sense. At that same time, we show that the
results of [3] on initial length scale estimate can be extended for the considered perturbations.
This is the main result of the present paper.
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2. Formulation of problem and main results

Let 𝑥 = (𝑥′, 𝑥𝑛+1), 𝑥′ = (𝑥1, . . . , 𝑥𝑛) be Cartesian coordinates in R𝑛+1 and R𝑛, respectively,
𝑛 > 1. By Π we denote an infinite multi-dimensional layer of width 𝑑 > 0:

Π := {𝑥 : 0 < 𝑥𝑛+1 < 𝑑}.

In layer Π, we consider the operator

ℋ0 := −∆ + 𝑉0, (2.1)

where 𝑉0 = 𝑉0(𝑥𝑛+1) is a bounded measurable potential. As the boundary condition on 𝜕Π, we
choose the Dirichlet or Neumann condition:

ℬ𝑢 = 0 (2.2)

on 𝜕Π, where ℬ𝑢 = 𝑢 or ℬ𝑢 = 𝜕𝑢
𝜕𝑥𝑛+1

. We do not exclude the situation, when on the upper and
lower boundaries of 𝜕Π the boundary conditions of different types are imposed.

Operator ℋ0 is considered as unbounded in space 𝐿2(Π) on the domain D(ℋ0) := {𝑢 ∈
𝐻2(Π) : condition (2.2) is satisfied on 𝜕Π}.

Let us describe random perturbation. Let Γ be a periodic lattice in R𝑛 with the periodicity
cell �′ and � := {𝑥 : 𝑥′ ∈ �′, 0 < 𝑥𝑛+1 < 𝑑}. By 𝑊 l = 𝑊 l(𝑥′) we denote a continuous
compactly supported function R𝑛, and 𝑊 s = 𝑊 s(𝑥, 𝜉), 𝜉 = (𝜉1, . . . , 𝜉𝑛+1), stands for a function
in R2𝑛+2 1-periodic w.r.t. each of the variables 𝜉𝑖, 𝑖 = 1, . . . , 𝑛, having a zero mean∫︁

(0,1)𝑛+1

𝑊 s(𝑥, 𝜉) 𝑑𝜉 = 0 for each 𝑥 ∈ R𝑛+1, (2.3)

and compactly supported w.r.t. 𝑥:

supp𝑊 s(·, 𝜉) ⊆𝑀 ⊂ � для всех 𝜉 ∈ R𝑛+1, (2.4)

where 𝑀 is a some fixed set. We assume the following smoothness for function 𝑊 s:

𝜕|𝛼|+|𝛽|𝑊 s

𝜕𝑥𝛼𝜕𝜉𝛽
∈ 𝐶(R2𝑛+2), 𝛼, 𝛽 ∈ Z𝑛

+, |𝛼| 6 3, |𝛽| 6 1. (2.5)

By 𝑊 = 𝑊 (𝑥) we denote a continuous function compactly supported in �:

supp𝑊 b �.

Let 𝑆 b � be a closed 𝐶4-manifold of codimension 1, 𝜈 be the normal to 𝑆 outward w.r.t. the
domain enveloped by manifold 𝑆, 𝑊 dlt ∈ 𝐶3(𝑆) be a real non-negative function on 𝑆.

By 𝜀 we denote a small positivi parameter. We let:

𝑊 loc(𝑥′, 𝜀) := 𝜀−𝑎𝑊 l

(︂
𝑥′

𝜀

)︂
, 𝜀 > 0,

𝑊 osc(𝑥, 𝜀) := 𝜀−𝑎𝑊 s
(︁
𝑥,
𝑥

𝜀

)︁
+ 𝜀2−2𝑎𝑊 (𝑥), 𝜀 > 0,

𝑊 loc(𝑥′, 0) := 0, 𝑊 osc(𝑥′, 0) := 0,

(2.6)

where 0 6 𝑎 < 1 is a given number.
Let 𝜔 = (𝜔𝑘)𝑘∈Γ be a sequence of independent identically distributed random variables with

the values in segment [0, 1]; the associated distribution measure is denoted by 𝜇. We assume
that this measure is defined on [0, 1]. By P :=

⨂︀
𝑘∈Γ 𝜇 we denote the product of the measures

on space Ω := ×𝑘∈Γ[0, 1]. The elements of the latter space are sequences (𝜔𝑘)𝑘∈Γ. By E(·) we
denote the expectation value of a random variable w.r.t. probability P.
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The first two types of random perturbation are described by the operators:

ℋ𝜀,loc(𝜔) := ℋ0 +
∑︁
𝑘∈Γ

𝑊 loc(· − 𝑘, 𝜀𝜔𝑘), (2.7)

ℋ𝜀,osc(𝜔) := ℋ0 +
∑︁
𝑘∈Γ

𝑊 osc(· − 𝑘, 𝑥𝑛+1, 𝜀𝜔𝑘). (2.8)

The third type corresponds to an operator with a small delta-interaction:

ℋ𝜀,dlt(𝜔) := ℋ0 +
∑︁
𝑘∈Γ

𝜀𝜔𝑘𝑊
dlt(· − 𝑘)𝛿(· − 𝑆𝑘), (2.9)

where 𝑆𝑘 is a shift of manifold 𝑆 by 𝑘, namely, 𝑆𝑘 := {𝑥 : (𝑥′ − 𝑘, 𝑥𝑛+1) ∈ 𝑆}. In all three
cases the boundary condition on 𝜕Π is described by identity (2.2). Notion (2.9) is formal for
indicating the operator in 𝐿2(Π) associated with the sesquilinear form

hdlt(𝑢, 𝑣) := (∇𝑢,∇𝑣)𝐿2(Π) +
∑︁
𝑘∈Γ

𝜀𝜔𝑘

(︀
𝑊 dlt(· − 𝑘)𝑢, 𝑣

)︀
𝐿2(𝑆𝑘)

in 𝐿2(Π). (2.10)

The domain of this form is the set of functions in 𝐻1(Π) having zero trace on the Dirichlet part
of boundary 𝜕Π. One more equivalent description of operator ℋ𝜀,dlt(𝜔) is operator −∆ + 𝑉0 in
Π with boundary condition (2.2) on 𝜕Π and the boundary condition

[𝑢]𝑆𝑘
= 0,

[︂
𝜕𝑢

𝜕𝜈

]︂
𝑆𝑘

= 𝑏𝑢
⃒⃒
𝑆𝑘
, 𝑘 ∈ Γ, (2.11)

where [𝑣]𝑆𝑘
= 𝑣

⃒⃒
𝑆𝑘+0

− 𝑣
⃒⃒
𝑆𝑘−0

is the jump of function 𝑣 at 𝑆𝑘 being the difference of the values
on the external and internal sides of 𝑆𝑘.

The main aim of the present work is to obtain initial length scale estimate for operators
ℋ𝜀,loc(𝜔), ℋ𝜀,osc(𝜔), ℋ𝜀,dlt(𝜔).

To formulate the main results, we shall make use of additional auxiliary notations. Given
𝛼 ∈ Γ, 𝑁 ∈ N, the symbol Π𝛼,𝑁 stands for a piece of layer Π:

Π𝛼,𝑁 :=

{︂
𝑥 : 𝑥′ = 𝛼 +

𝑛∑︁
𝑖=1

𝑎𝑖𝑒𝑖, 𝑎𝑖 ∈ (0, 𝑁), 0 < 𝑥𝑛+1 < 𝑑

}︂
.

Here 𝑒𝑖, 𝑖 = 1, . . . , 𝑛 is the basis of lattice Γ, i.e.,

Γ :=

{︂
𝑥 : 𝑥′ =

𝑛∑︁
𝑖=1

𝑎𝑖𝑒𝑖, 𝑎𝑖 ∈ Z
}︂
.

We also denote

Γ𝛼,𝑁 :=

{︂
𝑥′ ∈ Γ : 𝑥′ = 𝛼 +

𝑛∑︁
𝑖=1

𝑎𝑖𝑒𝑖, 𝑎𝑖 = 0, 1, . . . , 𝑁 − 1

}︂
.

We observe that
Π𝛼,𝑁 :=

⋃︁
𝑘∈Γ𝛼,𝑁

�𝑘.

By ℋ𝜀,loc
𝛼,𝑁 (𝜔), ℋ𝜀,osc

𝛼,𝑁 (𝜔), ℋ𝜀,dlt
𝛼,𝑁 (𝜔) we denote operators which are introduced in the same way

as ℋ𝜀,loc(𝜔), ℋ𝜀,osc(𝜔), ℋ𝜀,dlt(𝜔), but on set Π𝛼,𝑁 with additional Neumann condition on the
lateral boundary. Namely, ℋ𝜀,loc

𝛼,𝑁 (𝜔), ℋ𝜀,osc
𝛼,𝑁 (𝜔) are the operators

−∆ + 𝑉0 +
∑︁

𝑘∈Γ𝛼,𝑁

𝑊 loc(· − 𝑘, 𝜀𝜔𝑘) и − ∆ + 𝑉0 +
∑︁

𝑘∈Γ𝛼,𝑁

𝑊 osc(· − 𝑘, 𝑥𝑛+1, 𝜀𝜔𝑘)
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in Π subject to boundary condition (2.2) on the upper and lower boundaries and subject to the
boundary condition

𝜕𝑢

𝜕𝜈
= 0 на 𝜕Π𝛼,𝑁 ∖ 𝜕Π, (2.12)

where 𝜈 is the outward norm to the boundary. Operator ℋ𝜀,dlt
𝛼,𝑁 (𝜔) is introduced by the (formal)

identity
ℋ𝜀,dlt

𝛼,𝑁 (𝜔) := −∆ + 𝑉0 +
∑︁

𝑘∈Γ𝛼,𝑁

𝜀𝜔𝑘𝑊
dlt(· − 𝑘)𝛿(· − 𝑆𝑘)

in Π𝛼,𝑁 subject to boundary condition (2.2) on upper and lower boundaries and subject to
boundary condition (2.12). One can define it rigorously by means of sesquilinear form similar
to (2.10) or by means of boundary conditions (2.11) for 𝑘 ∈ Γ𝛼,𝑁 .

Let 𝜆𝜀,♯𝛼,𝑁(𝜔), ♯ = loc, osc, dlt be the minimal eigenvalue of operators ℋ𝜀,loc
𝛼,𝑁 (𝜔), ℋ𝜀,osc

𝛼,𝑁 (𝜔),
ℋ𝜀,dlt

𝛼,𝑁 (𝜔), and Λ0 be the minimal eigenvalue of the operator

− 𝑑2

𝑑𝑥2𝑛+1

+ 𝑉0 на (0, 𝑑)

subject to boundary condition (2.2) at the end-points. The eigenfunction associated Λ0 is
denoted by 𝜓0 = 𝜓0(𝑥𝑛+1) and it is assumed to be normalized in 𝐿2(0, 𝑑).

Our first result provides an important lower deterministic estimate for the difference 𝜆𝜀,♯𝛼,𝑁(𝜔)−
Λ0.

Theorem 2.1. Suppose that 𝑛 = 1, the origin lies in �′ and∫︁
R

𝑊 l(𝜁) 𝑑𝜁 > 0. (2.13)

Then there exist positive constants 𝑐1, 𝑐2, 𝑁1 such that for

𝑁 > 𝑁1 and 0 < 𝜀 <
𝑐1

𝑁
8

1−𝑎

(2.14)

the estimate

𝜆𝜀,loc𝛼,𝑁 (𝜔) − Λ0 >
𝑐2𝜀

1−𝑎

𝑁

∑︁
𝑘∈Γ𝛼,𝑁

𝜔1−𝑎
𝑘 (2.15)

holds true.

By 𝑊 s
* = 𝑊 s

*(𝑥, 𝜉) we denote the solution to the equation

∆𝜉𝑊
s
*(𝑥, 𝜉) = 𝑊 s(𝑥, 𝜉), 𝜉 ∈ (0, 1)𝑛+1 (2.16)

subject to periodic boundary conditions obeying the orthogonality condition:∫︁
(0,1)𝑛+1

𝑊 s
*(𝑥, 𝜉) 𝑑𝜉 = 0, 𝑥 ∈ R𝑛+1. (2.17)

By identity (2.3), such problem for 𝑊 s
* is uniquely solvable. Moreover, it follows from (2.5)

that function 𝑊 s
* has at least the same smoothness as 𝑊 s.

Theorem 2.2. Suppose that 𝑛 > 1,∫︁
�

𝑊 (𝑥)𝜓2
0(𝑥𝑛+1) 𝑑𝑥−

∫︁
�

𝑑𝑥𝜓2
0(𝑥𝑛+1)

∫︁
(0,1)𝑛+1

|∇𝜉𝑊
s
*(𝑥, 𝜉)|2 𝑑𝜉 > 0. (2.18)
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Then there exist positive constants 𝑐1, 𝑐2, 𝑁1 such that for

𝑁 > 𝑁1 и 0 < 𝜀 <
𝑐1

𝑁
4

1−𝑎

(2.19)

the estimate

𝜆𝜀,osc𝛼,𝑁 (𝜔) − Λ0 >
𝑐2𝜀

2−2𝑎

𝑁𝑛

∑︁
𝑘∈Γ𝛼,𝑁

𝜔2−2𝑎
𝑘 (2.20)

holds true.

Theorem 2.3. Suppose that 𝑛 > 1,∫︁
𝑆

𝑊 dlt(𝑥)𝜓2
0(𝑥𝑛+1) 𝑑𝑆 > 0. (2.21)

Then there exist positive constants 𝑐1, 𝑐2, 𝑁1 such that for

𝑁 > 𝑁1 и 0 < 𝜀 <
𝑐1
𝑁8

(2.22)

the estimate
𝜆𝜀,dlt𝛼,𝑁 (𝜔) − Λ0 >

𝑐2𝜀

𝑁𝑛

∑︁
𝑘∈Γ𝛼,𝑁

𝜔𝑘 (2.23)

holds true.

Our next deterministic results describe Combes-Thomas estimates for the considered oper-
ators. We denote by 𝜒𝐵 = 𝜒𝐵(𝑥) the characteristic function of a set 𝐵 ⊆ Π, by ‖ · ‖𝑋→𝑌 we
denote the norm of an operator acting from a Banach space 𝑋 into a Banach space 𝑌 , 𝜎(·)
stands for the spectrum of an operator.

Theorem 2.4. Suppose that 𝛼, 𝛽1, 𝛽2 ∈ Γ, 𝑚1,𝑚2 ∈ N are such that 𝐵1 := Π𝛽1,𝑚1 ⊂ Π𝛼,𝑁 ,
𝐵2 := Π𝛽2,𝑚2 ⊂ Π𝛼,𝑁 and the assumption of Theorem 2.1 is satisfied. Then there exists 𝑁2 ∈ N
such that for 𝑁 > 𝑁2 the estimate

‖𝜒𝐵1(ℋ
𝜀,loc
𝛼,𝑁 (𝜔) − 𝜆)−1𝜒𝐵2‖𝐿2(Π𝛼,𝑁 )→𝐿2(Π𝛼,𝑁 ) 6

𝐶1

𝛿
e−𝐶2𝛿 dist(𝐵1,𝐵2)

holds true, where 𝛿 := dist(𝜆, 𝜎(ℋ𝜀,loc
𝛼,𝑁 (𝜔))) > 0, 𝐶1, 𝐶2 are positive constants independent of 𝜀,

𝛼, 𝑁 , 𝛿, 𝛽1, 𝛽2, 𝑚1, 𝑚2, 𝜆.

Theorem 2.5. Suppose that 𝛼, 𝛽1, 𝛽2 ∈ Γ, 𝑚1,𝑚2 ∈ N are such that 𝐵1 := Π𝛽1,𝑚1 ⊂ Π𝛼,𝑁 ,
𝐵2 := Π𝛽2,𝑚2 ⊂ Π𝛼,𝑁 and the assumption of Theorem 2.2 is satisfied. Then there exists 𝑁2 ∈ N
such that for 𝑁 > 𝑁2 the estimate

‖𝜒𝐵1(ℋ
𝜀,osc
𝛼,𝑁 (𝜔) − 𝜆)−1𝜒𝐵2‖𝐿2(Π𝛼,𝑁 )→𝐿2(Π𝛼,𝑁 ) 6

𝐶1

𝛿
e−𝐶2𝛿 dist(𝐵1,𝐵2),

holds true, where 𝛿 := dist(𝜆, 𝜎(ℋ𝜀,osc
𝛼,𝑁 (𝜔))) > 0, 𝐶1, 𝐶2 are positive constants independent of

𝜀, 𝛼, 𝑁 , 𝛿, 𝛽1, 𝛽2, 𝑚1, 𝑚2, 𝜆.

Theorem 2.6. Suppose that 𝛼, 𝛽1, 𝛽2 ∈ Γ, 𝑚1,𝑚2 ∈ N are such that 𝐵1 := Π𝛽1,𝑚1 ⊂ Π𝛼,𝑁 ,
𝐵2 := Π𝛽2,𝑚2 ⊂ Π𝛼,𝑁 , and the assumption of Theorem 2.3 is satisfied. Then there exists 𝑁2 ∈ N
such that for 𝑁 > 𝑁2 the estimate

‖𝜒𝐵1(ℋ
𝜀,dlt
𝛼,𝑁 (𝜔) − 𝜆)−1𝜒𝐵2‖𝐿2(Π𝛼,𝑁 )→𝐿2(Π𝛼,𝑁 ) 6

𝐶1

𝛿
e−𝐶2𝛿 dist(𝐵1,𝐵2),

holds true, where 𝛿 := dist(𝜆, 𝜎(ℋ𝜀,dlt
𝛼,𝑁 (𝜔))) > 0, 𝐶1, 𝐶2 are positive constants independent of 𝜀,

𝛼, 𝑁 , 𝛿, 𝛽1, 𝛽2, 𝑚1, 𝑚2, 𝜆.
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Our first probabilistic result is presented in the next three theorems.

Theorem 2.7. Suppose that 𝛾 ∈ N, 𝛾 > 17 and the assumption of Theorem 2.1 is satisfied.
Then the interval

𝐼𝑁 :=

⎡⎣ 𝑐3(︀
E(𝜔

1−𝑎
2

𝑘 )
)︀ 2

1−𝑎𝑁
8

1−𝑎

,
𝑐1

𝑁
8

𝛾(1−𝑎)

⎤⎦ , 𝑐3 :=
2

2
1−𝑎

𝑐
1

1−𝑎

2

,

is non-empty 𝑁 > 𝑁1, where 𝑁1, 𝑐1, 𝑐2 are from Theorem 2.1. For 𝑁 > 𝑁1 and 𝜀 ∈ 𝐼𝑁 the
estimate

P
(︁
𝜔 ∈ Ω : 𝜆𝜀,loc𝛼,𝑁 (𝜔) − Λ0 6 𝑁− 1

2

)︁
6 𝑁(1− 1

𝛾 )e−𝑐4𝑁
1
𝛾

holds true, where constant 𝑐4 > 0 depends only on distribution measure 𝜇.

Theorem 2.8. Suppose that 𝛾 ∈ N, 𝛾 > 17 and the assumption of Theorem 2.2 is satisfied.
Then the interval

𝐼𝑁 :=

⎡⎣ 𝑐3(︀
E(𝜔1−𝑎

𝑘 )
)︀ 1

1−𝑎𝑁
1

4(1−𝑎)

,
𝑐1

𝑁
4

𝛾(1−𝑎)

⎤⎦ , 𝑐3 :=
2

1
1−𝑎

𝑐
1

2(1−𝑎)

2

,

is non-empty 𝑁 > 𝑁1, where 𝑁1, 𝑐1, 𝑐2 are from Theorem 2.2. For 𝑁 > 𝑁1 and 𝜀 ∈ 𝐼𝑁 the
estimate

P
(︁
𝜔 ∈ Ω : 𝜆𝜀,osc𝛼,𝑁 (𝜔) − Λ0 6 𝑁− 1

2

)︁
6 𝑁𝑛(1− 1

𝛾 )e−𝑐4𝑁
𝑛
𝛾
,

holds true, where constant 𝑐4 > 0 depends only on distribution measure 𝜇.

Theorem 2.9. Suppose that 𝛾 ∈ N, 𝛾 > 17 and the assumption of Theorem 2.3 is satisfied.
Then the interval

𝐼𝑁 :=

⎡⎣ 𝑐3(︀
E(𝜔

1
2
𝑘 )
)︀2
𝑁

1
2

,
𝑐1

𝑁
8
𝛾

⎤⎦ , 𝑐3 :=
4

𝑐2
,

is non-empty 𝑁 > 𝑁1, where 𝑁1, 𝑐1, 𝑐2 are from Theorem 2.3. For 𝑁 > 𝑁1 and 𝜀 ∈ 𝐼𝑁 the
estimate

P
(︁
𝜔 ∈ Ω : 𝜆𝜀,dlt𝛼,𝑁 (𝜔) − Λ0 6 𝑁− 1

2

)︁
6 𝑁𝑛(1− 1

𝛾 )e−𝑐4𝑁
𝑛
𝛾
,

holds true, where constant 𝑐4 > 0 depends only on distribution measure 𝜇.

The next three theorems are initial length scale estimates for operators ℋ𝜀,loc
𝛼,𝑁 (𝜔), ℋ𝜀,osc

𝛼,𝑁 (𝜔),
ℋ𝜀,dlt

𝛼,𝑁 (𝜔).

Theorem 2.10. Suppose that 𝛼 ∈ Γ, 𝛾 ∈ N, 𝛾 > 17, 𝑁 ∈ N and 𝜀 ∈ 𝐼𝑁 , where 𝐼𝑁 is
from Theorem 2.7 and the assumption of Theorem 2.1 is satisfied. We choose 𝛽1, 𝛽2 ∈ Γ𝛼,𝑁 ,
𝑚1,𝑚2 > 0 so that 𝐵1 := Π𝛽1,𝑚1 ⊂ Π𝛼,𝑁 , 𝐵2 := Π𝛽2,𝑚2 ⊂ Π𝛼,𝑁 . Then there exists a constant
𝑐5 > 0 independent of 𝜀, 𝛼, 𝑁 , 𝛽1, 𝛽2, 𝑚1, 𝑚2 such that the inequality

P
(︂
𝜔 ∈ Ω : ‖𝜒𝐵1(ℋ

𝜀,loc
𝛼,𝑁 (𝜔) − 𝜆)−1𝜒𝐵2‖𝐿2(Π𝛼,𝑁 )→𝐿2(Π𝛼,𝑁 ) 6 2

√
𝑁e−

𝑐5 dist(𝐵1,𝐵2)√
𝑁

∀𝜆 6 Λ0 +
1

2
√
𝑁

)︂
> 1 −𝑁(1− 1

𝛾 )e−𝑐4𝑁
1
𝛾

holds true for 𝑁 > max{𝑁𝛾
1 , 𝑁2}, where 𝑁1 is from Theorem 2.1, 𝑁2 is from Theorem 2.4, 𝑐4

is from Theorem 2.7.
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Theorem 2.11. Suppose that 𝛼 ∈ Γ, 𝛾 ∈ N, 𝛾 > 17, 𝑁 ∈ N and 𝜀 ∈ 𝐼𝑁 , where 𝐼𝑁 is
from Theorem 2.8, and the assumption of Theorem 2.2 is satisfied. We choose 𝛽1, 𝛽2 ∈ Γ𝛼,𝑁 ,
𝑚1,𝑚2 > 0 so that 𝐵1 := Π𝛽1,𝑚1 ⊂ Π𝛼,𝑁 , 𝐵2 := Π𝛽2,𝑚2 ⊂ Π𝛼,𝑁 . Then there exists a constant
𝑐5 > 0 independent of 𝜀, 𝛼, 𝑁 , 𝛽1, 𝛽2, 𝑚1, 𝑚2 such that the inequality

P
(︂
𝜔 ∈ Ω : ‖𝜒𝐵1(ℋ

𝜀,osc
𝛼,𝑁 (𝜔) − 𝜆)−1𝜒𝐵2‖𝐿2(Π𝛼,𝑁 )→𝐿2(Π𝛼,𝑁 ) 6 2

√
𝑁e−

𝑐5 dist(𝐵1,𝐵2)√
𝑁

∀𝜆 6 Λ0 +
1

2
√
𝑁

)︂
> 1 −𝑁𝑛(1− 1

𝛾 )e−𝑐4𝑁
𝑛
𝛾

holds true for 𝑁 > max{𝑁𝛾
1 , 𝑁2}, where 𝑁1 is from Theorem 2.2, 𝑁2 is from Theorem 2.5, 𝑐4

is from Theorem 2.8.

Theorem 2.12. Suppose that 𝛼 ∈ Γ, 𝛾 ∈ N, 𝛾 > 17, 𝑁 ∈ N and 𝜀 ∈ 𝐼𝑁 , where 𝐼𝑁 is
from Theorem 2.9, and the assumption of Theorem 2.3 is satisfied. We choose 𝛽1, 𝛽2 ∈ Γ𝛼,𝑁 ,
𝑚1,𝑚2 > 0 so that 𝐵1 := Π𝛽1,𝑚1 ⊂ Π𝛼,𝑁 , 𝐵2 := Π𝛽2,𝑚2 ⊂ Π𝛼,𝑁 . Then there exists a constant
𝑐5 > 0 independent of 𝜀, 𝛼, 𝑁 , 𝛽1, 𝛽2, 𝑚1, 𝑚2 such that the inequality

P
(︂
𝜔 ∈ Ω : ‖𝜒𝐵1(ℋ

𝜀,dlt
𝛼,𝑁 (𝜔) − 𝜆)−1𝜒𝐵2‖𝐿2(Π𝛼,𝑁 )→𝐿2(Π𝛼,𝑁 ) 6 2

√
𝑁e−

𝑐5 dist(𝐵1,𝐵2)√
𝑁

∀𝜆 6 Λ0 +
1

2
√
𝑁

)︂
> 1 −𝑁𝑛(1− 1

𝛾 )e−𝑐4𝑁
𝑛
𝛾

holds true for 𝑁 > max{𝑁𝛾
1 , 𝑁2}, where 𝑁1 is from Theorem 2.3, 𝑁2 is from Theorem 2.6, 𝑐4

is from Theorem 2.9.

Theorems 2.1–2.12 are adaption of the main results in [3] to operators ℋ𝜀,♯
𝛼,𝑁 , ♯ = loc, osc, dlt.

They show how the general approach of work [3] can be extended for random perturbation not
small w.r.t. the original operator, i.e., for non-regular perturbations. In the first two examples
the presence of negative power of 𝜀 in the definition of potentials 𝑊 loc and 𝑊 osc make the
perturbation singular. In particular, potential 𝑊 osc is a classical example of perturbation in
the homogenization theory [6]. The presence of a delta-interaction change the domain of the
operator in comparison with the original one and it is singular in this sense. At the same
time, as it is shown in the present work, these perturbation can be reduced to regular ones
and then we can apply the approach of work [3]. The main idea is to use operators 𝒱𝜀,♯

𝛼,𝑁(𝜔),
♯ = loc, osc, dlt, see identities (4.7), (5.4), (6.1). Keeping the spectrum, this operator transforms
the original into a regular one, to which we can apply then the approach of work [3].

We note that in the deterministic case the operator with large potentials localized on a set
of a small measure were studied before, see, for instance, [9], [10]. It was the motivation of
considering random perturbation on the basis of such potentials.

It was shown in [3, Ex. 7] that instead of layer Π, random operators (3.4) with 𝑉0 = 0
can be considered in a multi-dimensional case; the main result remain true. The same is true
for our operators ℋ𝜀,𝛼,𝑁

♯ (𝜔), ♯ = loc, osc, dlt; for their analogues in multi-dimensional spaces
Theorems 2.1–2.12 are also true.

3. Preliminaries

The proofs of Theorem 2.1–2.12 are based on the general approach developed in work [3].
This is why let us described the main results and the methods of this work.

We begin with the formulation of the problem. Let ℒ(𝑡), 𝑡 ∈ [0, 𝑡0], be a family of linear
operators from 𝐻2(�) into 𝐿2(�) described by the formula

ℒ(𝑡) := 𝑡ℒ1 + 𝑡2ℒ2 + 𝑡3ℒ3(𝑡), (3.1)
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where ℒ𝑖 : 𝐻2(�) → 𝐿2(�), 𝑖 = 1, 2, 3, are bounded symmetric operators, and operator ℒ3(𝑡) is
assumed to be bounded uniformly in 𝑡. In [3] operators ℒ(𝑡), ℒ3(𝑡) were defined for 𝑡 ∈ [−𝑡0, 𝑡0].
In our case it is sufficient to assume that defined just for 𝑡 ∈ [0, 𝑡0]. In order to satisfy formally
the assumptions of work [3], as −𝑡0 6 𝑡 < 0 we let ℒ(𝑡) := ℒ(−𝑡), ℒ3(𝑡) := ℒ3(−𝑡), so that
ℒ(𝑡), ℒ3(𝑡) happen to be defined for 𝑡 ∈ [−𝑡0, 𝑡0].

Operators ℒ, ℒ1, ℒ2, ℒ3 can be extended to operators acting from 𝐻2(Π) into 𝐿2(Π) as
follows. For a function 𝑢 ∈ 𝐻2(Π), its restriction on � belongs to 𝐻2(�). This is why the
action of operators ℒ, ℒ1, ℒ2, ℒ3 is well-defined on this restriction and the result of the action
is an element of 𝐿2(�). We continue this element be zero in Π ∖ �. The obtained function
is the action of the required continuation of operators ℒ, ℒ1, ℒ2, ℒ3 on the given function 𝑢.
In what follows these operators are assumed to be continued in such a way. We observe that
operators ℒ, ℒ1, ℒ2, ℒ3 treated as operators in 𝐿2(Π) are generally speaking unbounded.

Let ℋ� be the operator −∆ + 𝑉0 in � subject to boundary condition (2.2) on 𝜕Π ∩ 𝜕� and
to the Neumann condition on 𝜕� ∖ 𝜕Π.

For operators ℒ1, ℒ2, in [3] there were made two main assumptions:
A1. The identity

(ℒ1𝜓0, 𝜓0)𝐿2(�) = 0

holds true.
A2. Let 𝑈 be the solution to the boundary value problem

(ℋ� − Λ0)𝑈 = ℒ1𝜓0 (3.2)

orthogonal to 𝜓0 in 𝐿2(�). Assume that

(ℒ2𝜓0, 𝜓0)𝐿2(�) − (𝑈,ℒ1𝜓0)𝐿2(�) > 0. (3.3)

By 𝒮(𝑘) we denote the shift operator acting by the rule:

(𝒮(𝑘)𝑢)(𝑥) = 𝑢(𝑥′ − 𝑘, 𝑥𝑛+1).

We introduce the operator

ℋ𝜀
𝛼,𝑁(𝜔) := −∆ + 𝑉0 +

∑︁
𝑘∈Γ𝛼,𝑁

𝒮(𝑘)ℒ(𝜀𝜔𝑘)𝒮(−𝑘) (3.4)

in 𝐿2(Π𝛼,𝑁) subject to boundary condition (2.2) on the upper and lower boundaries and to
boundary condition (2.12). By 𝜆𝜀𝛼,𝑁(𝜔) we denote the minimal eigenvalue of operator ℋ𝜀

𝛼,𝑁(𝜔).
Under assumptions (A1), (A2), in [3] there were proven the following four theorems.

Theorem 3.1. There exist positive constants 𝑐1, 𝑐2, 𝑁1 such that for

𝑁 > 𝑁1 и 0 < 𝜀 <
𝑐1
𝑁4

the estimate
𝜆𝜀𝛼,𝑁(𝜔) − Λ0 >

𝑐2𝜀
2

𝑁𝑛

∑︁
𝑘∈Γ𝛼,𝑁

𝜔2
𝑘

holds true.

Theorem 3.2. Suppose that 𝛼, 𝛽1, 𝛽2 ∈ Γ, 𝑚1,𝑚2 ∈ N are such that 𝐵1 := Π𝛽1,𝑚1 ⊂ Π𝛼,𝑁 ,
𝐵2 := Π𝛽2,𝑚2 ⊂ Π𝛼,𝑁 . Then there exists 𝑁2 ∈ N such that for 𝑁 > 𝑁2 the estimate

‖𝜒𝐵1(ℋ𝜀
𝛼,𝑁(𝜔) − 𝜆)−1𝜒𝐵2‖𝐿2(Π𝛼,𝑁 )→𝐿2(Π𝛼,𝑁 ) 6

𝐶1

𝛿
e−𝐶2𝛿 dist(𝐵1,𝐵2)

holds true, where 𝛿 := dist(𝜆, 𝜎(ℋ𝜀
𝛼,𝑁(𝜔))) > 0, 𝐶1, 𝐶2 are positive constants independent of 𝜀,

𝛼, 𝑁 , 𝛿, 𝛽1, 𝛽2, 𝑚1, 𝑚2, 𝜆.
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Theorem 3.3. Suppose that 𝛾 ∈ N, 𝛾 > 17. Then the interval

𝐼𝑁 :=

[︃
𝑐3

E(|𝜔𝑘|)𝑁
1
4

,
𝑐1

𝑁
4
𝛾

]︃
, 𝑐3 :=

2√
𝑐2
,

is non-empty 𝑁 > 𝑁1, where 𝑁1, 𝑐1, 𝑐2 are from Theorem 3.1. For 𝑁 > 𝑁1 and 𝜀 ∈ 𝐼𝑁 , the
estimate

P
(︁
𝜔 ∈ Ω : 𝜆𝜀𝛼,𝑁(𝜔) − Λ0 6 𝑁− 1

2

)︁
6 𝑁𝑛(1− 1

𝛾 )e−𝑐4𝑁
𝑛
𝛾

holds true, where constant 𝑐4 > 0 depends only on the distribution measure 𝜇.

Theorem 3.4. Suppose that 𝛼 ∈ Γ, 𝛾 ∈ N, 𝛾 > 17, 𝑁 ∈ N and 𝜀 ∈ 𝐼𝑁 . We choose
𝛽1, 𝛽2 ∈ Γ𝛼,𝑁 , 𝑚1,𝑚2 > 0 such that 𝐵1 := Π𝛽1,𝑚1 ⊂ Π𝛼,𝑁 , 𝐵2 := Π𝛽2,𝑚2 ⊂ Π𝛼,𝑁 . Then there
exists a constant 𝑐5 > 0 independent of 𝜀, 𝛼, 𝑁 , 𝛽1, 𝛽2, 𝑚1, 𝑚2 such that the inequality

P
(︂
𝜔 ∈ Ω : ‖𝜒𝐵1(ℋ𝜀

𝛼,𝑁(𝜔) − 𝜆)−1𝜒𝐵2‖𝐿2(Π𝛼,𝑁 )→𝐿2(Π𝛼,𝑁 ) 6 2
√
𝑁e−

𝑐5 dist(𝐵1,𝐵2)√
𝑁

∀𝜆 6 Λ0 +
1

2
√
𝑁

)︂
> 1 −𝑁𝑛(1− 1

𝛾 )e−𝑐4𝑁
𝑛
𝛾

holds true for 𝑁 > max{𝑁𝛾
1 , 𝑁2}, where 𝑁1, 𝑁2 is from Theorem 3.1, 3.2, 𝑐4 is from Theo-

rem 3.3.

It was mentioned in [3, Rem. 2.9] that operators ℒ1, ℒ2 can depend on 𝑡. We suppose that
ℒ1 = ℒ1(𝑡), ℒ2 = ℒ2(𝑡), 𝑡 ∈ [0, 𝑡0]. For 𝑡 ∈ [−𝑡0, 0) we redefine them as follows: ℒ1(𝑡) = ℒ1(−𝑡),
ℒ2(𝑡) = ℒ2(−𝑡). These operators should be assumed to be uniformly bounded for 𝑡 ∈ [0, 𝑡0]
as operators from 𝐻2(�) into 𝐿2(�). Assumption (A1) should be satisfied for each 𝑡 ∈ [0, 𝑡0],
while estimate (3.3) in assumption (A2) should be replaced by the following one:

(ℒ2(𝑡)𝜓0, 𝜓0)𝐿2(�) − (𝑈,ℒ1(𝑡)𝜓0)𝐿2(�) > 𝑐0 > 0, 𝑡 ∈ [0, 𝑡0], (3.5)

where 𝑐0 is a constant independent of 𝑡.
Let us stress certain features of the proofs of Theorems 3.1, 3.2, 3.3, 3.4.
Theorem 3.1 employs essentially the smallness of operator ℒ(𝜀𝜔𝑘) for small 𝜀. At that, the

symmetricity of this operator was not used in the proof; one just needed the reality of eigenvalue
𝜆𝜀𝛼,𝑁(𝜔). The only exclusion was the proof of an auxiliary estimate

Λ0 6 𝜆𝜀𝛼,𝑁(𝜔) 6 Λ0 + 𝐶𝑁−2 (3.6)

for a given constant 𝐶. Under the presence of this estimate and the aforementioned reality of
eigenvalue 𝜆𝜀𝛼,𝑁(𝜔), Theorem 3.1 remains true for non-symmetric operators ℒ1, ℒ2 depending
likely on 𝑡.

Theorem 3.2 does not need the smallness of operator ℒ(𝜀𝜔𝑘) but employs the symmetricity.
It also requires the self-adjointness of operator ℋ𝜀

𝛼,𝑁(𝜔). The similar situation is for Theo-
rems 3.3, 3.4; they require just the symmetricity of operator ℒ(𝜀𝜔𝑘) and self-adjointness of и
ℋ𝜀

𝛼,𝑁(𝜔) as well as validity of Theorem 3.1. Operators ℒ1, ℒ2 can again depend on 𝑡.
Let us describe the scheme of the proof of Theorems 2.1–2.12. In view of the definition

of operators ℋ𝜀,𝛼,𝑁
♯ (𝜔), ♯ = loc, osc, dlt, random perturbation in these operators can not be

represented as (3.1) that prevents a direct application of the results of work [3]. This is why for
each of operators ℋ𝜀,𝛼,𝑁

♯ (𝜔) we construct a special bounded and boundedly invertible opera-
tor 𝒱𝜀,♯

𝛼,𝑁(𝜔) in 𝐿2(Π𝛼,𝑁) such that the operator
(︀
𝒱𝜀,♯
𝛼,𝑁(𝜔)

)︀−1ℋ𝜀,𝛼,𝑁
♯ (𝜔)𝒱𝜀,♯

𝛼,𝑁(𝜔) is represented as
(3.4). At that, we have to introduce a new small parameter and new random variables. Gen-
erally speaking, operators ℒ𝑖 happen to be non-symmetric. But as it has been said above, this
is a serious obstacle for proving Theorem 3.1; one just need to check the reality of eigenvalue
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𝜆𝜀,𝛼,𝑁♯ (𝜔) and estimate (3.6). It is clear that spectra of operators
(︀
𝒱𝜀,♯
𝛼,𝑁(𝜔)

)︀−1ℋ𝜀,𝛼,𝑁
♯ (𝜔)𝒱𝜀,♯

𝛼,𝑁(𝜔)

and ℋ𝜀,𝛼,𝑁
♯ (𝜔) coincides. Thanks to the self-adjointness of the latter operator it ensures the

reality of eigenvalue 𝜆𝜀,𝛼,𝑁♯ (𝜔). Then we succeed to prove estimate (3.6) independently that
finally leads us to the statement of Theorem 3.1 for our particular operators ℋ𝜀,𝛼,𝑁

♯ (𝜔). The
formulation of the latter theorem for these operators is exactly Theorems 2.1, 2.2, 2.3.

Then we return back to original operators ℋ𝜀,𝛼,𝑁
♯ (𝜔), where random perturbation are not

small anymore but symmetric. And as it has been said above, this fact and proven Theo-
rems 2.1, 2.2, 2.3 are sufficient to prove general theorems 3.2, 3.3, 3.4. Being applied to our
operators, they give immediately Theorems 2.4–2.12.

4. Random localized potentia

The present section is devoted to the study of operator ℋ𝜀,loc
𝛼,𝑁 (𝜔) and the proof of Theo-

rems 2.1, 2.4, 2.7, 2.10.
We begin with proving Theorem 2.1. We observe first that by the self-adjointness of operator

ℋ𝜀,loc
𝛼,𝑁 (𝜔) its minimal eigenvalue is real. Then we transform operator ℋ𝜀,loc

𝛼,𝑁 (𝜔) to (3.4). We recall
that we consider the case 𝑛 = 1.

Let 𝑊 l
* = 𝑊 l

*(𝜉) be the solution to the equation

𝑑2𝑊 l
*

𝑑𝜉2
= 𝑊 l, 𝜉 ∈ R, (4.1)

determined by the formula

𝑊 l
*(𝜉) =

1

2

∫︁
R

|𝜉 − 𝜁|𝑊 l(𝜁) 𝑑𝑧. (4.2)

We note that outside the support of 𝑊 l, function 𝑊 l
* is linear:

𝑊 l
*(𝜉) =

1

2
𝜉

∫︁
R

𝑊 l(𝜁) 𝑑𝜁 − 1

2

∫︁
R

𝜁𝑊 l(𝜁) 𝑑𝑧 (4.3)

to the right of the support of 𝑊 l and

𝑊 l
*(𝜉) = −1

2
𝜉

∫︁
R

𝑊 l(𝜁) 𝑑𝜁 +
1

2

∫︁
R

𝜁𝑊 l(𝜁) 𝑑𝑧 (4.4)

to the left of the support of 𝑊 l. We let

𝑄loc(𝑥, 𝜀, 𝜔) := 1 +
∑︁

𝑘∈Γ𝛼,𝑁

(𝜀𝜔𝑘)2−𝑎𝑊 loc
* (𝑥1 − 𝑘, 𝜀𝜔𝑘)𝜒(𝑥1), (4.5)

where function 𝑊 loc
* is introduced by the identities

𝑊 loc
* (𝑥1, 𝜀) := 𝑊 l

*

(︁𝑥1
𝜀

)︁
, 𝜀 > 0, 𝑊 loc

* (𝑥1, 0) := 0.

By 𝜒 = 𝜒(𝑥1) we denote an infinitely differentiable cut-off function equalling one in a neigh-
borhood of the origin and vanishing outside a bigger neighborhood. The size of the bigger
neighborhood is supposed to be small enough so that it is contained in �′; we recall that by
our assumption the origin is an internal point of �′. In view of the identities and the presence
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of cut-off function 𝜒, the second term in the right hand side of (4.5) is of order 𝑂(𝜀1−𝑎):⃒⃒⃒
(𝜀𝜔𝑘)2−𝑎

∑︁
𝑘∈Γ𝛼,𝑁

𝑊 loc
* (𝑥1 − 𝑘, 𝜀𝜔𝑘)𝜒(𝑥1 − 𝑘)

⃒⃒⃒
6 𝐶𝜀1−𝑎,

⃒⃒⃒
(𝜀𝜔𝑘)2−𝑎 𝑑

𝑑𝑥1

∑︁
𝑘∈Γ𝛼,𝑁

𝑊 loc
* (𝑥1 − 𝑘, 𝜀𝜔𝑘)𝜒(𝑥1 − 𝑘)

⃒⃒⃒
6 𝐶𝜀1−𝑎,

(4.6)

where constant 𝐶 is independent of 𝜀, 𝑥1, and 𝜔. This is why the operator of multiplication by
function𝑄loc(𝑥, 𝜀, 𝜔) is bounded and boundedly invertible in 𝐿2(Π). We denote such operator by
𝒱𝜀,loc
𝛼,𝑁 (𝜔). Since function 𝑄loc(·, 𝜀, 𝜔) belongs to 𝐶2(Π), is independent of 𝑥𝑛+1 and is identically

equals to one in the vicinity of the lateral boundary of Π𝛼,𝑁 , operator 𝒱𝜀,loc
𝛼,𝑁 (𝜔) maps the domain

of operator ℋ𝜀,loc
𝛼,𝑁 (𝜔) onto itself. Employing equation (4.1), by straightforward calculations one

can check easily that(︀
𝒱𝜀,loc
𝛼,𝑁 (𝜔)

)︀−1ℋ𝜀,loc
𝛼,𝑁 (𝜔)𝒱𝜀,loc

𝛼,𝑁 (𝜔) = −∆ + 𝑉0

+
∑︁

𝑘∈Γ𝛼,𝑁

(𝜀𝜔𝑘)1−𝑎

(︂
𝐴1,loc(𝑥1 − 𝑘, 𝜀𝜔𝑘)

𝑑

𝑑𝑥1
+ 𝐴0,loc(𝑥1 − 𝑘, 𝜀𝜔𝑘)

)︂
,

(4.7)

where the operator in the right hand side is considered in Π𝛼,𝑁 with the same boundary con-
ditions as ℋ𝜀,loc

𝛼,𝑁 (𝜔). Coefficients 𝐴𝜀𝜔𝑘
0,loc(𝑥1 − 𝑘), 𝐴𝜀𝜔𝑘

1,loc(𝑥1 − 𝑘) are determined by the identities

𝐴1,loc(𝑥1, 𝜀) := − 𝜀

1 + 𝜀2−𝑎𝑊 loc
* (𝑥1, 𝜀)𝜒(𝑥1)

𝑑

𝑑𝑥1
𝑊 loc

* (𝑥1, 𝜀)𝜒(𝑥1),

𝐴0,loc(𝑥1, 𝜀) := − 𝜀

1 + 𝜀2−𝑎𝑊 loc
* (𝑥1, 𝜀)𝜒(𝑥1)

(︂
2
𝑑𝑊 loc

* (𝑥1, 𝜀)

𝑑𝑥1

𝑑𝜒

𝑑𝑥1
(𝑥1)

+𝑊 loc
* (𝑥1, 𝜀)

𝑑2𝜒

𝑑𝑥21
(𝑥1)

)︂
+

𝜀1−𝑎

1 + 𝜀2−𝑎𝑊 loc
* (𝑥1, 𝜀)𝜒(𝑥1)

𝜒(𝑥1)𝑊
loc
* (𝑥1, 𝜀)𝑊

loc(𝑥1, 𝜀).

These formulae and estimates (4.6) imply that coefficients 𝐴0,loc(𝑥1, 𝜀𝜔𝑘), 𝐴1,loc(𝑥1, 𝜀𝜔𝑘) are
bounded uniformly in 𝑥1, 𝜀, 𝜔. This is why the operator in the right hand side of identity (4.7)
can be represented as (3.4) if we take 𝜀

1−𝑎
2 as a new small parameter, 𝜔

1−𝑎
2

𝑘 as new random
variables, and (3.1) we let

ℒ1 := 0, ℒ2 := 3, ℒ2 := 𝐾1,loc(𝑥1, 𝑡)
𝑑

𝑑𝑥1
+𝐾0,loc(𝑥1, 𝑡), (4.8)

where coefficients 𝐾1,loc, 𝐾0,loc are determined by the formulae:

𝐾1,loc(𝑥1, 𝑡) := − 𝑡
1

1−𝑎

1 + 𝑡
2−𝑎
1−𝑎𝑊 l

*

(︁
𝑥1

𝑡
1

1−𝑎

)︁ 𝑑

𝑑𝑥1
𝑊 l

*

(︂
𝑥1

𝑡
1

1−𝑎

)︂
𝜒(𝑥1),

𝐾0,loc(𝑥1, 𝑡) := − 𝑡
1

1−𝑎

1 + 𝑡
2−𝑎
1−𝑎𝑊 l

*

(︁
𝑥1

𝑡
1

1−𝑎

)︁(︂2
𝑑𝜒

𝑑𝑥1
(𝑥1)

𝑑

𝑑𝑥1
𝑊 l

*

(︂
𝑥1

𝑡
1

1−𝑎

)︂

+
𝑑2𝜒

𝑑𝑥21
(𝑥1)𝑊

l
*

(︂
𝑥1

𝑡
1

1−𝑎

)︂)︂
+

1

1 + 𝑡
2−𝑎
1−𝑎𝑊 l

*

(︁
𝑥1

𝑡
1

1−𝑎

)︁𝜒(𝑥1)𝑊
l
*

(︂
𝑥1

𝑡
1

1−𝑎

)︂
𝑊 l

(︂
𝑥1

𝑡
1

1−𝑎

)︂
,

(4.9)
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as 𝑡 > 0 and

𝐾1,loc(𝑥1, 0) := 0, 𝐾0,loc(𝑥1, 0) :=
1

2

∫︁
R

𝑊 l(𝜁) 𝑑𝜁. (4.10)

The choice of the values for coefficients 𝐾1,loc(𝑥1, 0), 𝐾0,loc(𝑥1, 0) is arbitrary since ℒ(0) = 0.
The above choice of these values will be clarified later, cf, Remark 4.1.

Let us prove that operator ℒ(𝑡) introduced by formulae (3.1), (4.8) satisfies Assump-
tions (A1), (A2). The first of them is satisfied since ℒ1 = 0. To check the other, we first
observe that for our case the solution to equation (3.2) is zero: 𝑈 = 0. This is why to check
inequality (3.5), it is sufficient to estimate from below the scalar (ℒ2(𝑡)𝜓0, 𝜓0)𝐿2(�). Since
coefficients 𝐴1, 𝐴0 are real-valued, the same is true for this scalar product. Formulae (4.9),
estimates (4.6), identities (4.4), (4.5), and the fact that the supports of the functions 𝑊 l

(︁
𝑥1

𝑡
1

1−𝑎

)︁
and 1 − 𝜒(𝑥1) are disjoint for small 𝑡 imply immediately that

𝐾1,loc(𝑥1, 𝑡)
𝑑

𝑑𝑥1
𝜓0(𝑥𝑛+1) = 0,

(𝐾0,loc𝜓0, 𝜓0)𝐿2(�) =

∫︁
�′

𝐾0,loc(𝑥1, 𝑡) 𝑑𝑥1 =

∫︁
R

𝐴0(𝑥1, 𝑡) 𝑑𝑥1

= 𝑡
1

1−𝑎

∫︁
R

𝑑

𝑑𝑥1

(︀
1 − 𝜒(𝑥1)

)︀
𝑊 l

*

(︂
𝑥1

𝑡
1

1−𝑎

)︂
𝑑𝑥1 +𝑂(𝑡

1
1−𝑎 )

=

∫︁
R

𝑊 l(𝜁) 𝑑𝜁 +𝑂(𝑡
1

1−𝑎 ).

(4.11)

These relations, Assumption (2.13) and definition (4.8) of operator ℒ2 yield required estimate
(3.5) with 𝑐0 = 1

2

∫︀
R

𝑊 l(𝜁) 𝑑𝜁.

Remark 4.1. The above choice of value for 𝐴0(𝑥1, 0) ensures estimate (3.5) for 𝑡 = 0 with
above mentioned constant 𝑐0.

In view of said in the previous section, to complete the proof of Theorem 2.1 we just need to
check estimates (3.6). By the minimax principle for the original self-adjoint operator ℋ𝜀,loc

𝛼,𝑁 (𝜔)
with test function 𝜓0 we have

𝜆𝜀,loc𝛼,𝑁 (𝜔) 6
‖∇𝜓0‖2𝐿2(Π𝛼,𝑁 ) + (𝑉0𝜓0, 𝜓0)𝐿2(Π𝛼,𝑁 )

‖𝜓0‖2𝐿2(Π𝛼,𝑁 )

+

∑︀
𝑘∈Γ𝛼,𝑁

(︀
𝑊 loc(· − 𝑘, 𝜀𝜔𝑘)𝜓0, 𝜓0

)︀
𝐿2(Π𝛼,𝑁 )

‖𝜓0‖2𝐿2(Π𝛼,𝑁 )

6Λ0 +

∑︀
𝑘∈Γ𝛼,𝑁

(︀
𝑊 loc(· − 𝑘, 𝜀𝜔𝑘)𝜓0, 𝜓0

)︀
𝐿2(Π𝛼,𝑁 )∑︀

𝑘∈Γ𝛼,𝑁

‖𝜓0‖2𝐿2(�)

6Λ0 +

∑︀
𝑘∈Γ𝛼,𝑁
𝜀𝜔𝑘 ̸=0

(𝜀𝜔𝑘)−𝑎
(︁
𝑊 l

(︁
·

𝜀𝜔𝑘

)︁
𝜓0, 𝜓0

)︁
𝐿2(�)∑︀

𝑘∈Γ𝛼,𝑁

‖𝜓0‖2𝐿2(�)
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6Λ0 +
𝜀1−𝑎

|�′|

∫︁
R

𝑊 l(𝜁) 𝑑𝜁 6 Λ0 +
𝐶

𝑁8
,

and for sufficiently great 𝑁1 (cf. (2.14)) we arrive at the right estimate in (3.6).
To prove the left estimate in (3.6), in domain Π𝛼,𝑁 we consider lateral boundaries 𝜕�𝑘 ∖ 𝜕Π

of sets �𝑘 for each 𝑘 ∈ Γ𝛼,𝑁 , and on these surfaces we impose Neumann boundary conditions.
Then by the minimax principle, eigenvalue 𝜆𝜀,loc𝛼,𝑁 (𝜔) is estimated from below by the minimal
among smallest eigenvalues of operators ℋ𝜀,loc

𝑘,1 (𝜔𝑘), 𝑘 ∈ Γ𝛼,𝑁 , on cells �𝑘:

𝜆𝜀,loc𝛼,𝑁 (𝜔) > min
𝑘∈Γ𝛼,𝑁

𝜆𝜀,loc𝑘,1 (𝜔𝑘).

Smallest eigenvalue 𝜆𝜀,loc𝑘,1 (𝜔𝑘) of operator ℋ𝜀,loc
𝑘,1 (𝜔𝑘) is also the smallest eigenvalue of operator(︀

𝒱𝜀,loc
𝑘,1

)︀−1ℋ𝜀,loc
𝑘,1 (𝜔𝑘)𝒱𝜀,loc

𝑘,1 . According to (4.7) with 𝛼 = 𝑘, 𝑁 = 1, this operator is a small regular
perturbation of operator −∆ + 𝑉0 in �𝑘 subject to boundary condition (2.2) on 𝜕�𝑘 ∩ 𝜕Π and
to Neumann condition on 𝜕�𝑘 ∖ 𝜕Π. This is why in accordance with the general theory of
regular perturbations, 𝜆𝜀,loc𝑘,1 (𝜔𝑘) has the asymptotics

𝜆𝜀,loc𝑘,1 (𝜔𝑘) =Λ0 +
(𝜀𝜔𝑘)1−𝑎

|�′|

(︂(︂
𝐴1,loc( ·, 𝜀𝜔𝑘)

𝑑

𝑑𝑥1
+ 𝐴0,loc( ·, 𝜀𝜔𝑘)

)︂
𝜓0, 𝜓0

)︂
𝐿2(�)

+𝑂((𝜀𝜔𝑘)2−2𝑎).

(4.12)

Formulae (4.9) with 𝑡 = (𝜀𝜔𝑘)
1−𝑎
2 yield that(︂(︂

𝐴1,loc( ·, 𝜀𝜔𝑘)
𝑑

𝑑𝑥1
+ 𝐴0,loc( ·, 𝜀𝜔𝑘)

)︂
𝜓0, 𝜓0

)︂
𝐿2(�)

=

∫︁
R

𝑊 l(𝜁) 𝑑𝜁 +𝑂(𝜀𝜔𝑘),

and hence, asymptotics (4.12) becomes

𝜆𝜀,loc𝑘,1 (𝜔𝑘) = Λ0 +
(𝜀𝜔𝑘)1−𝑎

|�′|

∫︁
R

𝑊 l(𝜁) 𝑑𝜁 +𝑂((𝜀𝜔𝑘)2−2𝑎).

Now by Assumption (2.13) we arrive at the left estimate in (3.6). The proof of Theorem 2.1 is
complete.

The proofs of Theorems 3.2, 3.3, 3.4 for operator ℋ𝜀,loc
𝛼,𝑁 (𝜔) are borrowed from [3] with no

changes and it leads us to Theorems 2.4, 2.7, 2.10.

Remark 4.2. We observe that we consider operator ℋ𝜀,loc
𝛼,𝑁 (𝜔) with random localized potential

only in a strip assuming 𝑛 = 1. In the multi-dimensional case we can also construct transfor-
mation 𝒱𝜀,loc

𝛼,𝑁 (𝜔) satisfying formula (4.7). Such transformation should be constructed as (4.5)
and function 𝑊 l

* should be introduced as the solution to the equation

∆𝜉𝑊
l
* = 𝑊 l, 𝜉 ∈ R𝑛,

determined by the identity

𝑊 l
*(𝜉) := −

∫︁
R𝑛

𝐸(𝜉 − 𝜁)𝑊 l(𝑧) 𝑑𝑧,

where 𝐸 is the fundamental solution of Laplace operator R𝑛. At the same time, after passing to
the transformed operator, Assumption (A2) is not satisfied, namely, estimate (3.5) fails. This
is the reason for introducing the aforementioned restriction for the dimension of layer Π.
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5. Random fast oscillating potential

In the present section we consider operator ℋ𝜀,osc
𝛼,𝑁 (𝜔) and prove Theorems 2.2, 2.5, 2.8, 2.11.

The scheme of the proof follows the same lines as in the third section: we pay the main assump-
tion to the proof of Theorem 3.1 for operator 2.2. After that, the proof of Theorems 3.2, 3.3, 3.4
is borrowed from [3] with no changes and being applied to operator ℋ𝜀,osc

𝛼,𝑁 (𝜔), it gives the state-
ments of Theorems 2.5, 2.8, 2.11. This is why in what follows we prove Theorem 2.2 only.

Thanks to the self-adjointness of operator ℋ𝜀,osc
𝛼,𝑁 (𝜔), its smallest eigenvalue 𝜆𝜀,osc𝛼,𝑁 (𝜔) is real.

Let us construct operator 𝒱𝜀,osc
𝛼,𝑁 (𝜔) transforming operator ℋ𝜀,osc

𝛼,𝑁 (𝜔) to (3.4). We let

𝑄osc(𝑥, 𝜀, 𝜔) := 1 +
∑︁

𝑘∈Γ𝛼,𝑁

(𝜀𝜔𝑘)2−𝑎𝑊 osc
* (𝑥′ − 𝑘, 𝑥𝑛+1, 𝜀𝜔𝑘), (5.1)

where function 𝑊 osc
* is determined by the identities:

𝑊 osc
* (𝑥, 𝜀) := 𝑊 s

*

(︁
𝑥,
𝑥

𝜀

)︁
, 𝜀 > 0, 𝑊 s(𝑥, 0) := 0. (5.2)

By 𝒱𝜀,osc
𝛼,𝑁 (𝜔) we denote the operator of multiplication by function 𝑄osc(𝑥, 𝜀, 𝜔). Due to the

smoothness of 𝑊 s, function 𝑄osc is twice continuously differentiable w.r.t. 𝑥 in Π. Moreover,
uniform in 𝑥 ∈ Π, 𝜀, 𝜔 estimates⃒⃒⃒

(𝜀𝜔𝑘)2−𝑎
∑︁

𝑘∈Γ𝛼,𝑁

𝑊 osc
* (𝑥′ − 𝑘, 𝑥𝑛+1, 𝜀𝜔𝑘)𝜒(𝑥′ − 𝑘)

⃒⃒⃒
6 𝐶𝜀2−𝑎,

⃒⃒⃒
(𝜀𝜔𝑘)2−𝑎∇𝑥′

∑︁
𝑘∈Γ𝛼,𝑁

𝑊 osc
* (𝑥′ − 𝑘, 𝑥𝑛+1, 𝜀𝜔𝑘)𝜒(𝑥′ − 𝑘)

⃒⃒⃒
6 𝐶𝜀1−𝑎

(5.3)

hold true. This is why operator 𝒱𝜀,osc
𝛼,𝑁 (𝜔) is bounded and boundedly invertible in 𝐿2(Π𝛼,𝑁) and

maps the domain of operator ℋ𝜀,osc
𝛼,𝑁 (𝜔) onto itself. As in (4.7), in view of equation (2.16), one

can easily check that(︀
𝒱𝜀,osc
𝛼,𝑁 (𝜔)

)︀−1ℋ𝜀,loc
𝛼,𝑁 (𝜔)𝒱𝜀,osc

𝛼,𝑁 (𝜔) = −∆ + 𝑉0+

+
∑︁

𝑘∈Γ𝛼,𝑁

(𝜀𝜔𝑘)1−𝑎

(︂ 𝑛+1∑︁
𝑗=1

𝐴𝑗,osc(𝑥
′ − 𝑘, 𝑥𝑛+1, 𝜀𝜔𝑘)

𝜕

𝜕𝑥𝑗
+

+ 𝐴0,osc(𝑥
′ − 𝑘, 𝑥𝑛+1, 𝜀𝜔𝑘)

)︂
.

(5.4)

Operator in the right hand side of this identity is considered in Π𝛼,𝑁 with the same boundary
conditions as ℋ𝜀,osc

𝛼,𝑁 (𝜔). Coefficients 𝐴𝑗,osc, 𝐴0,osc read as

𝐴𝑗,osc(𝑥, 𝜀) := − 𝜀

1 + 𝜀2−𝑎𝑊 osc
* (𝑥, 𝜀)

𝜕𝑊 osc
*

𝜕𝑥𝑗
(𝑥, 𝜀),

𝐴0,osc(𝑥, 𝜀) := − 1

1 + 𝜀2−𝑎𝑊 osc
* (𝑥, 𝜀)

(︂
2

𝑛+1∑︁
𝑗=1

𝜕2𝑊 s
*

𝜕𝑥𝑗𝜕𝜉𝑗

(︁
𝑥,
𝑥

𝜀

)︁
+ 𝜀(∆𝑥𝑊

s
*)

(︁
𝑥,
𝑥

𝜀

)︁
+ 𝜀1−𝑎𝑊 s

*

(︁
𝑥,
𝑥

𝜀

)︁
𝑊 osc

* (𝑥, 𝜀)

)︂
+ 𝜀1−𝑎𝑊 (𝑥).

The first two terms in the brackets in the right hand side of the formula for 𝐴0,osc should be
treated in the sense of the partial derivatives w.r.t. 𝑥 and 𝜉 for function 𝑊 s

*(𝑥, 𝜉) followed by
the substitution 𝜉 = 𝑥

𝜀
.
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It follows from estimates (5.3) that functions 𝐴𝑗,osc(𝑥, 𝜀), 𝐴0,osc(𝑥, 𝜀) are bounded uniformly
in 𝑥, 𝜀 and 𝜔𝑘. The right hand side of identity (5.4) can be represented as (3.4) satisfying at
the same time Assumptions (A1), (A2).

In order to do it, we shall make use of the following auxiliary lemma.

Lemma 5.1. Suppose that function 𝑤 = 𝑤(𝑥, 𝜉) defined in R2𝑛+2 is 1-periodic w.r.t. each
of variables 𝜉𝑖, 𝑖 = 1, . . . , 𝑛, and is compactly supported w.r.t. 𝑥:

supp𝑤(·, 𝜉) ⊆𝑀 ⊂ � for each 𝜉 ∈ R𝑛, (5.5)

where 𝑀 is a some fixed set. Suppose that

𝜕|𝛼|+|𝛽|𝑤

𝜕𝑥𝛼𝜕𝜉𝛽
∈ 𝐶(R2𝑛+2), 𝛼, 𝛽 ∈ Z𝑛

+, |𝛼| 6 𝑚, |𝛽| 6 1, (5.6)

for some 𝑚 ∈ N. Then the asymptotic identity∫︁
�

𝑤
(︁
𝑥,
𝑥

𝜀

)︁
𝑑𝑥 =

∫︁
�

𝑑𝑥

∫︁
(0,1)𝑛+1

𝑤(𝑥, 𝜉) 𝑑𝜉 +𝑂(𝜀𝑚) (5.7)

holds true.

Proof. Passing to the function

(𝑥, 𝜉) ↦→ 𝑤(𝑥, 𝜉) −
∫︁

(0,1)𝑛+1

𝑤(𝑥, 𝜁) 𝑑𝜁,

we see that it is sufficient to prove the statement of the lemma for the case∫︁
(0,1)𝑛+1

𝑤(𝑥, 𝜉) 𝑑𝜉 = 0 для 𝑥 ∈ �. (5.8)

Thanks to this identity, the boundary value problem for the equation

∆𝜉𝑤* = 𝑤, 𝜉 ∈ (0, 1)𝑛+1

subject to periodic boundary conditions is solvable for each 𝑥 ∈ � and there exists the unique
solution satisfying condition (5.8). This function possesses the following smoothness:

𝜕|𝛼|+|𝛽|𝑤*

𝜕𝑥𝛼𝜕𝜉𝛽
∈ 𝐶(R2𝑛+2), 𝛼, 𝛽 ∈ Z𝑛

+, |𝛼| 6 𝑚, |𝛽| 6 2. (5.9)

As 𝑤, function 𝑤* is compactly supported w.r.t. 𝑥. By the equation for 𝑤*, the identity

𝜀2
𝑛+1∑︁
𝑗=1

𝜕

𝜕𝑥𝑗

𝜕𝑤*

𝜕𝜉𝑗

(︁
𝑥,
𝑥

𝜀

)︁
= 𝜀

𝑛+1∑︁
𝑗=1

𝜕2𝑤*

𝜕𝑥𝑗𝜕𝜉𝑗

(︁
𝑥,
𝑥

𝜀

)︁
+ 𝑤

(︁
𝑥,
𝑥

𝜀

)︁
holds true, where the derivatives in the right hand side are treated as the partial derivatives
w.r.t. 𝑥 and 𝜉 for function 𝑤(𝑥, 𝜉), and the derivative w.r.t. in 𝑥𝑗 in the left hand side is the
total derivative w.r.t. 𝑥𝑗 for a function depending of 𝑥 and 𝑥/𝜀. In view of the last identity we
have: ∫︁

�

𝑤
(︁
𝑥,
𝑥

𝜀

)︁
𝑑𝑥 =𝜀2

∫︁
�

𝑛+1∑︁
𝑗=1

𝜕

𝜕𝑥𝑗

𝜕𝑤*

𝜕𝜉𝑗

(︁
𝑥,
𝑥

𝜀

)︁
𝑑𝑥− 𝜀

∫︁
�

𝑛+1∑︁
𝑗=1

𝜕2𝑤*

𝜕𝑥𝑗𝜕𝜉𝑗

(︁
𝑥,
𝑥

𝜀

)︁
𝑑𝑥

= − 𝜀

∫︁
�

𝑛+1∑︁
𝑗=1

𝜕2𝑤*

𝜕𝑥𝑗𝜕𝜉𝑗

(︁
𝑥,
𝑥

𝜀

)︁
𝑑𝑥.

(5.10)
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We observe that each of the integrands in the left hand side of the obtained identity has
smoothness (5.6) with 𝑚 replaced by 𝑚 − 1 and satisfies condition (5.8). Applying identity
(5.10) as many times as needed, we arrive at the statement of the lemma.

We denote

𝑇 osc(𝜀) :=
𝜀𝑎−1

|�′|

∫︁
�

𝜓2
0(𝑥𝑛+1)

1 + 𝜀2−𝑎𝑊 osc
* (𝑥, 𝜀)

(︂
2

𝑛+1∑︁
𝑗=1

𝜕2𝑊 s
*

𝜕𝑥𝑗𝜕𝜉𝑗

(︁
𝑥,
𝑥

𝜀

)︁
+ 𝜀(∆𝑥𝑊

s
*)

(︁
𝑥,
𝑥

𝜀

)︁)︂
𝑑𝑥.

By the first estimate in (5.3), the identity

1

1 + 𝜀2−𝑎𝑊 osc
* (𝑥, 𝜀)

= 1 +𝑂(𝜀2−𝑎) (5.11)

holds true uniformly in 𝑥 ∈ �. This is why Lemma 5.1, condition (2.17) and the smoothness
of function 𝑊 s

* imply the identity
𝑇 osc(𝜀) = 𝑂(𝜀). (5.12)

Let us define operator ℒ(𝑡). We let

ℒ1(𝑡) :=
𝑛+1∑︁
𝑗=1

𝐾
(1)
𝑗,osc(𝑥, 𝑡)

𝜕

𝜕𝑥𝑗
+𝐾

(1)
0,osc(𝑥, 𝑡),

ℒ2(𝑡) := 𝐾
(2)
0,osc(𝑥, 𝑡), ℒ3(𝑡) := 0,

(5.13)

as 𝑡 > 0, where

𝐾
(1)
𝑗,osc(𝑥, 𝑡) :=

𝑡
1

1−𝑎

1 + 𝑡
2−𝑎
1−𝑎𝑊 osc

* (𝑥, 𝑡
1

1−𝑎 )

𝜕

𝜕𝑥𝑗
𝑊 osc

* (𝑥, 𝑡
1

1−𝑎 ),

𝐾
(1)
0,osc(𝑥, 𝑡) := − 1

1 + 𝑡
2−𝑎
1−𝑎𝑊 osc

* (𝑥, 𝑡
1

1−𝑎 )

(︂
2

𝑛+1∑︁
𝑗=1

𝜕2𝑊 s
*

𝜕𝑥𝑗𝜕𝜉𝑗

(︂
𝑥,

𝑥

𝑡
1

1−𝑎

)︂
+ 𝑡

1
1−𝑎 (∆𝑥𝑊

s
*)

(︂
𝑥,

𝑥

𝑡
1

1−𝑎

)︂)︂
+ 𝑡 𝑇 osc(𝑡

1
1−𝑎 ),

𝐾
(2)
0,osc(𝑥, 𝑡) := − 𝑇 osc(𝑡

1
1−𝑎 ) +𝑊 (𝑥) +

𝑊 s
(︁
𝑥, 𝑥

𝑡
1

1−𝑎

)︁
𝑊 osc

*

(︁
𝑥, 𝑥

𝑡
1

1−𝑎

)︁
1 + 𝑡

2−𝑎
1−𝑎𝑊 osc

* (𝑥, 𝑡
1

1−𝑎 )
,

and for 𝑡 = 0, operators ℒ𝑖 are determined by the formulae

ℒ1(0) :=0, ℒ3(0) := 0,

ℒ2(0) :=
1

2

∫︁
�

𝑊 (𝑥)𝜓2
0(𝑥𝑛+1) 𝑑𝑥

− 1

2

∫︁
�

𝑑𝑥𝜓2
0(𝑥𝑛+1)

∫︁
(0,1)𝑛+1

|∇𝜉𝑊
s
*(𝑥, 𝜉)|2 𝑑𝜉.

(5.14)

It is easy to make sure that under such choice of operator ℒ(𝑡), the right hand side of (5.4)
becomes (3.4), if as a new small parameter we choose 𝜀1−𝑎, and as new random variables we
take 𝜔1−𝑎

𝑘 .
Let us check Assumptions (A1), (A2). The first of the assumptions follows directly from the

definition of quantity 𝑇 osc and coefficient 𝐾(2)
0,osc.
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Let us check Assumption (A2), namely, estimate (3.5). First we find out the behavior of
scalar product (ℒ2(𝑡)𝜓0, 𝜓0)𝐿2(�). In order to do it, we employ estimate (5.12), identity (5.11)
and Lemma 5.1:

(ℒ2(𝑡)𝜓0, 𝜓0)𝐿2(�) =

∫︁
�

𝐾
(2)
2,osc(𝑥, 𝑡)𝜓

2
0(𝑥𝑛+1) 𝑑𝑥 =

∫︁
�

𝑊 (𝑥)𝜓2
0(𝑥𝑛+1) 𝑑𝑥

+

∫︁
𝐿2(�)

𝜓2
0(𝑥𝑛+1)𝑊

s

(︂
𝑥,

𝑥

𝑡
1

1−𝑎

)︂
𝑊 osc

* (𝑥, 𝑡
1

1−𝑎 ) 𝑑𝑥+𝑂(𝑡
1

1−𝑎 )

=

∫︁
�

𝑊 (𝑥)𝜓2
0(𝑥𝑛+1) 𝑑𝑥

+

∫︁
𝐿2(�)

𝜓2
0(𝑥𝑛+1)𝑊

s

(︂
𝑥,

𝑥

𝑡
1

1−𝑎

)︂
𝑊 s

*

(︂
𝑥,

𝑥

𝑡
1

1−𝑎

)︂
𝑑𝑥+𝑂(𝑡

1
1−𝑎 )

=

∫︁
�

𝑊 (𝑥)𝜓2
0(𝑥𝑛+1) 𝑑𝑥+

∫︁
�

𝑑𝑥𝜓2
0(𝑥𝑛+1)

∫︁
(0,1)𝑛+1

𝑊 s(𝑥, 𝜉)𝑊 s
*(𝑥, 𝜉) 𝑑𝜉 +𝑂(𝑡

1
1−𝑎 ).

In view of equation (2.16) and boundary conditions for 𝑊 s
* , we can integrate by parts in the

latter integral: ∫︁
�

𝑑𝑥𝜓2
0(𝑥𝑛+1)

∫︁
(0,1)𝑛+1

𝑊 s(𝑥, 𝜉)𝑊 s
*(𝑥, 𝜉) 𝑑𝜉

=

∫︁
�

𝑑𝑥𝜓2
0(𝑥𝑛+1)

∫︁
(0,1)𝑛+1

𝑊 s
*(𝑥, 𝜉)∆𝜉𝑊

s
*(𝑥, 𝜉) 𝑑𝜉

= −
∫︁
�

𝑑𝑥𝜓2
0(𝑥𝑛+1)

∫︁
(0,1)𝑛+1

|∇𝜉𝑊
s
*(𝑥, 𝜉)|2𝑊 s

*(𝑥, 𝜉) 𝑑𝜉.

We finally obtain:

(ℒ2(𝑡)𝜓0, 𝜓0)𝐿2(�) =

∫︁
𝐿2(�)

𝑊 (𝑥)𝜓2
0(𝑥𝑛+1) 𝑑𝑥

−
∫︁
�

𝑑𝑥𝜓2
0(𝑥𝑛+1)

∫︁
(0,1)𝑛+1

|∇𝜉𝑊
s
*(𝑥, 𝜉)|2𝑊 s

*(𝑥, 𝜉) 𝑑𝜉 +𝑂(𝑡
1

1−𝑎 ).

(5.15)

Let us find out the behavior of the solution to equation (3.2). The right hand side of this
equation is the function(︀

ℒ1(𝑡)𝜓0

)︀
(𝑥, 𝑡) = − 𝜓0(𝑥𝑛+1)

1 + 𝑡
2−𝑎
1−𝑎𝑊 osc

* (𝑥, 𝑡
1

1−𝑎 )

(︂
2

𝑛+1∑︁
𝑗=1

𝜕2𝑊 s
*

𝜕𝑥𝑗𝜕𝜉𝑗

(︂
𝑥,

𝑥

𝑡
1

1−𝑎

)︂
+ 𝑡

1
1−𝑎 (∆𝑥𝑊

s
*)

(︂
𝑥,

𝑥

𝑡
1

1−𝑎

)︂)︂
+ 𝑡 𝑇 osc(𝑡

1
1−𝑎 )𝜓0(𝑥𝑛+1).

For the solution to equation (3.2) with such right hand side, one can construct its asymptotic
expansion for small 𝑡 by the multiscale method [6]. This expansion is valid at least in the norm
of 𝐿2(�). The leading term of this expansion is a quantity of order 𝑂(𝑡

2
1−𝑎 ). This is why

(𝑈,ℒ1(𝑡)𝜓0)𝐿2(�) = 𝑂(𝑡
2

1−𝑎 ), 𝑡→ 0.
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Hence, in view of (5.15) we have:

(ℒ2(𝑡)𝜓0, 𝜓0)𝐿2(�) − (𝑈,ℒ1(𝑡)𝜓0)𝐿2(�) =

∫︁
𝐿2(�)

𝑊 (𝑥)𝜓2
0(𝑥𝑛+1) 𝑑𝑥

−
∫︁
�

𝑑𝑥𝜓2
0(𝑥𝑛+1)

∫︁
(0,1)𝑛+1

|∇𝜉𝑊
s
*(𝑥, 𝜉)|2𝑊 s

*(𝑥, 𝜉) 𝑑𝜉 +𝑂(𝑡
1

1−𝑎 )

>
1

2

∫︁
𝐿2(�)

𝑊 (𝑥)𝜓2
0(𝑥𝑛+1) 𝑑𝑥

− 1

2

∫︁
�

𝑑𝑥𝜓2
0(𝑥𝑛+1)

∫︁
(0,1)𝑛+1

|∇𝜉𝑊
s
*(𝑥, 𝜉)|2𝑊 s

*(𝑥, 𝜉) 𝑑𝜉

(5.16)

for sufficiently small 𝑡. It proves Assumption (A2) for 𝑡 > 0. As 𝑡 = 0, we have ℒ1(𝑡)𝜓0 = 0,
𝑈 = 0, and estimate (5.16) is satisfied by the definition of ℒ2(0), cf. (5.14).

Let us check estimates (3.6). As in the previous section, to prove the right estimate, we apply
the minimax principle with test function 𝜓0:

𝜆𝜀,osc𝛼,𝑁 (𝜔) 6
‖∇𝜓0‖2𝐿2(Π𝛼,𝑁 ) + (𝑉0𝜓0, 𝜓0)𝐿2(Π𝛼,𝑁 )

‖𝜓0‖2𝐿2(Π𝛼,𝑁 )

+

∑︀
𝑘∈Γ𝛼,𝑁

(︀
𝑊 osc(· − 𝑘, 𝑥𝑛+1, 𝜀𝜔𝑘)𝜓0, 𝜓0

)︀
𝐿2(Π𝛼,𝑁 )

‖𝜓0‖2𝐿2(Π𝛼,𝑁 )

6Λ0 +

∑︀
𝑘∈Γ𝛼,𝑁

(︀
𝑊 osc(· − 𝑘, 𝑥𝑛+1, 𝜀𝜔𝑘)𝜓0, 𝜓0

)︀
𝐿2(Π𝛼,𝑁 )∑︀

𝑘∈Γ𝛼,𝑁

‖𝜓0‖2𝐿2(�)

6Λ0 +

∑︀
𝑘∈Γ𝛼,𝑁
𝜀𝜔𝑘 ̸=0

(𝜀𝜔𝑘)−𝑎
(︁
𝑊 osc

(︁
·, ·

𝜀𝜔𝑘

)︁
𝜓0, 𝜓0

)︁
𝐿2(�)∑︀

𝑘∈Γ𝛼,𝑁

‖𝜓0‖2𝐿2(�)

=Λ0 +
1

𝑁𝑛|�′|
∑︁

𝑘∈Γ𝛼,𝑁
𝜀𝜔𝑘 ̸=0

(𝜀𝜔𝑘)−𝑎

∫︁
�

𝑊 s

(︂
𝑥,

𝑥

𝜀𝜔𝑘

)︂
𝜓2
0(𝑥𝑛+1) 𝑑𝑥.

By Lemma 5.1 and Assumption (2.18) it yields:

𝜆𝜀,osc𝛼,𝑁 (𝜔) 6 Λ0 + 𝐶𝜀1−𝑎 6 Λ0 +
𝐶

𝑁4
, 𝐶 > 0,

where constant 𝐶 is independent of 𝜀 and 𝑁 . In view of (2.19), for sufficiently large 𝑁1 it
implies the right estimate in (3.6).

In order to prove the left estimate in (3.6), completely by analogy with the previous section
on the basis of the minimax principle we get the lower estimate:

𝜆𝜀,osc𝛼,𝑁 (𝜔) > min
𝑘∈Γ𝛼,𝑁

𝜆𝜀,osc𝑘,1 (𝜔𝑘), (5.17)

where 𝜆𝜀,osc𝑘,1 (𝜔𝑘) is the smallest eigenvalue of operator ℋ𝜀,osc
𝑘,1 (𝜔𝑘) on cell �𝑘 subject to ap-

propriate boundary conditions. At the same time, it is an eigenvalue of the operator
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(︀
𝒱𝜀,osc
𝑘,1 (𝜔𝑘)

)︀−1ℋ𝜀,osc
𝑘,1 (𝜔𝑘)𝒱𝜀,osc

𝑘,1 (𝜔𝑘). In accordance with identity (5.4), the latter is a small reg-
ular perturbation of the operator −∆ + 𝑉0 in �𝑘 subject to appropriate boundary conditions.
Then in accordance with regular perturbation theory, the asymptotics for eigenvalue 𝜆𝜀,osc𝑘,1 (𝜔𝑘)
reads as

𝜆𝜀,osc𝑘,1 (𝜔𝑘) =Λ0 +
(𝜀𝜔𝑘)1−𝑎

|�′|
(ℒ1(𝜀𝜔𝑘)𝜓0, 𝜓0)𝐿2(�)

+
(𝜀𝜔𝑘)2−2𝑎

|�′|
(︀
(ℒ2(𝜀𝜔𝑘)𝜓0, 𝜓0)𝐿2(�) − (𝑈,ℒ1(𝜀𝜔𝑘)𝜓0)𝐿2(�)

)︀
+𝑂

(︀
(𝜀𝜔𝑘)3−3𝑎

)︀
,

where 𝑈 is the solution to equation (A2) with right hand side ℒ1(𝜀𝜔𝑘)𝜓0. By formula (5.16)
and Assumption (A1) it follows that

𝜆𝜀,osc𝑘,1 (𝜔𝑘) =Λ0 +
(𝜀𝜔𝑘)2−2𝑎

|�′|

(︂∫︁
�

𝑊 (𝑥)𝜓2
0(𝑥𝑛+1) 𝑑𝑥

−
∫︁
�

𝑑𝑥𝜓2
0(𝑥𝑛+1)

∫︁
(0,1)𝑛+1

|∇𝜉𝑊
s
*(𝑥, 𝜉)|2 𝑑𝜉

)︂
+𝑂

(︀
(𝜀𝜔𝑘)3−3𝑎

)︀
that implies

𝜆𝜀,osc𝑘,1 (𝜔𝑘) > Λ0

for sufficiently small 𝜀. By (5.17) it proves the leftt estimate in (3.6) and completes the proof
of Theorem 2.2.

Remark 5.1. The idea of constructing operator 𝒱𝜀,osc
𝛼,𝑁 (𝜔) is borrowed from works [4], [5],

where a similar operator was constructing in one-dimensional case. In the present work this
approach is extended to an arbitrary dimension.

6. Random delta-interaction

In the present section we study operator ℋ𝜀,dlt
𝛼,𝑁 (𝜔) and prove Theorems 2.3, 2.6, 2.9, 2.12.

It was shown in papers [7, Ex. 5], [8, Ex. 5] that by means of a certain change of spatial
variables and a multiplication by a certain function, the operators with delta-interactions can be
reduced to usual differential operators keeping the spectrum and the self-adjointness. Applying
the results of works [7, Ex. 5], [8, Ex. 5] to our operator ℋ𝜀,dlt

𝛼,𝑁 (𝜔), we arrive at the following
statement.

Lemma 6.1. There exists a change of variables 𝑦 = (𝑦1, . . . , 𝑦𝑛+1), 𝑦𝑖 = 𝑦𝑖(𝑥, 𝜀𝜔), 𝑖 =
1, . . . , 𝑛+ 1, such that

1. Outside small fixed neighborhoods of surfaces 𝑆𝑘, 𝑘 ∈ Γ, change 𝑥 ↦→ 𝑦 is identical, i.e.,
𝑦𝑖 = 𝑥𝑖. Change 𝑥 ↦→ 𝑦 maps each cell �𝑘 onto itself.

2. Functions 𝑦𝑖 are twice differentiable functions and their second derivatives are piecewise
continuous.

3. Let 𝑝 = 𝑝(𝑦, 𝜀𝜔) be the Jacobian of change 𝑥 ↦→ 𝑦, i.e.,

𝑝 = det
𝐷(𝑦1, . . . , 𝑦𝑛+1)

𝐷(𝑥1, . . . , 𝑥𝑛+1)
,

where the matrix in the left hand side is the Jacobi matrix of the change. On functions
𝑢 ∈ 𝐿2(Π𝛼,𝑁), 𝑢 = 𝑢(𝑦) we define the operator in terms of the inverse change 𝑥 = 𝑥(𝑦, 𝜀𝜔):

(𝒱𝜀,dlt
𝛼,𝑁 (𝜔)𝑢)(𝑥) := 𝑝−

1
2 (𝑥(𝑦, 𝜀𝜔))𝑢(𝑥(𝑦, 𝜀𝜔)).
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The identity(︀
𝒱𝜀,dlt
𝛼,𝑁 (𝜔)

)︀−1ℋ𝜀,dlt
𝛼,𝑁 (𝜔)𝒱𝜀,dlt

𝛼,𝑁 (𝜔) = − ∆ + 𝑉0

+
∑︁

𝑘∈Γ𝛼,𝑁

𝜀𝜔𝑘𝒮(𝑘)ℳ(𝜀𝜔𝑘)𝒮(−𝑘) (6.1)

holds true, where 𝑀(𝑡) is a symmetric second order differential operator with piecewise
coefficients vanishing outside a small neighborhood of surface 𝑆.

4. The identity

(ℳ(𝑡)𝜓0, 𝜓0)𝐿2(�) =

∫︁
𝑆

𝑊 dlt𝜓2
0 𝑑𝑆

holds true.

We define operator ℒ(𝑡):

ℒ1 := 0, ℒ2(𝑡) := ℳ(𝑡
1
2 ), ℒ3(𝑡) := 0, ℒ(𝑡) := 𝑡ℳ(𝑡), 𝑡 ∈ [0, 𝑡0].

In accordance with Statement 3 of Lemma 6.1, the left hand side of identity (6.1) coincides with
operator (3.4) if as a new small parameter we take 𝜀

1
2 , and 𝜔

1
2
𝑘 as new random variables. At

that, Assumption (A1) holds true. The solution of the corresponding equation (3.2) vanishes,
and thus, by (2.21), Assumption (A2) is also satisfied. And since operators ℒ𝑖, 𝑖 = 1, 2, 3, are
symmetric, we can apply directly the general results of Theorems 3.1, 3.2, 3.3, 3.4. It leads us
immediately to Theorems 2.3, 2.6, 2.9, 2.12.

The authors thank G.P. Panasenko for discussing particular aspects of the work.
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semi-classique // Ann. Inst. Fourier (Grenoble). 45:1, 265-316 (1995).

25. F. Klopp. Localization for some continuous random Schrödinger operators // Comm. Math.
Phys.167:3, 553-569 (1995).

26. F. Klopp. Weak disorder localization and Lifshitz tails: continuous Hamiltonians // Ann. Henri
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31. D. Lenz, N. Peyerimhoff, O. Post, and I. Veselić. Continuity properties of the integrated density of

states on manifolds // Japan. J. Math. 3:1, 121-161 (2008).
32. D. Lenz, N. Peyerimhoff, O. Post, and I. Veselić. Continuity of the integrated density of states on
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