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ON ABSENCE CONDITIONS
OF UNCONDITIONAL BASES OF EXPONENTS

R.A. BASHMAKOV, A.A. MAKHOTA, K.V. TROUNOV

Abstract. In the classical space L?(—,7) there exists the unconditional basis {e’**} (k
is integer). In the work we study the existence of unconditional bases in weighted Hilbert
spaces L2(I,exph) of the functions square integrable on an interval I in the real axis with
the weight exp(—h), where h is a convex function. We obtain conditions showing that
unconditional bases of exponents can exist only in very rare cases.
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Laplace transform
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Let I be an interval in the real axis, h(t) be a convex function on this interval L?(I,exp h)
be the space of locally integrable functions on [ satisfying the condition

Ifll == \//I!f(t)Pe?h(t) dt < oo.

It is a Hilbert space with the scalar product

/ f g —Qh(t t

Definition 1. The family {e = 1,2,...} is called unconditional basis in space
L*(I,exph) if

1) family {e™!, k =1,2,...} is dense in space L*(I,exph);

2) there exist positive constants m, M such that for each finite sequence ay, € C the two-sided

estimate
m > arPeM ) <D ae P <MY JarlleM )% (1)
k k k

holds true.

We follow the definition in work [2]. As it was mentioned in this work, if system {e*:'}
forms an unconditional basis in space L*(I,exp h), each function f € L*(I,exph) is uniquely
expanded into absolutely (reodered) convergent series over this system:

oo
= fee, tel (2)
k=1
In this section we consider the existence of unconditional exponential bases in space L?(I, exp h).

The main tool of the study is the Laplace transform.
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As it was shown in work [7], Laplace transform L : S — S makes an isomorphism of the
space adjoint to L?(I,exph) with Hilbert space L?(I,exp h) of functions F analytic in space
J + iR, where

J={x: h(x) =sup(zt — h(t)) < oo}

tel

7] = \/ | [ divway,

K(z) = /Iezxt_%(t) dt = ||eM]?, N =z +iy.

with the norm

and

Suppose that system {e*:!} forms an unconditional basis in space L?(I,exph). By Sj we
denote a linear functional in space L?(I, exp h) which maps each function f € L?*(I,exp h) into
the coefficient fj in expansion :

Si(f) = fx-

If by P we denote max(M, %), where M, m are the constants in relation , then for each n
the two-sided estimate

1 — n n
S D UARIE < I YD A 2 < P el
k=1 el —

holds true. Passing to the limit as n — oo, we obtain

1 o0 [e.e]
= U < IAIE < P Y 1),
k=1 k=1
By the definition of function K (A) = K(Re\) this relation can be written as

SRR < IFIP < P Y2 LA (). )
k=1 k=1

The left inequality implies the boundedness of functional Sj:

1Suf)] < ,/ﬁwn.

Thus, functions §k()\) lie in space ZQ([ ,exp h) and moreover,

5i0) = {f " (@)

We observe that \,, n # k, are simple zeroes of function §k()\) Indeed, if for some m # k the
quantity S'\,’C()\m) vanished, function (Ay — Am)Sk(A) /(A = ) lying in L2(I, exp h) would vanish
at points \,, n # k, and would equal to 1 at point A, i.e., at all the points A\,, n = 1,2,...,
it would coincide with function Sp()\). Then by the completeness of the system e* in space
L*(I,exp h) the system of points \,, n = 1,2,..., is the uniqueness set for space ZQ(], exp h).
Hence, functions (A\; — )\m)gk()\) /(A — Ap) and §k(/\) should coincide identically.

Let

L(\) = §1(/\)()\ — A1),
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This function is analytic in the strip J 4 ‘R with simple zeroes at points A\,, n =1,2,... The
functions

L()) - S1N = )
L) A=) (A= A) e — A)SL () b
P 5

L'(A) (A= )\p)

are also elements of space EQ(I ,exp h) and they coincide with function §k()\) at all the points
A, n=1,2,.... Again by the completeness of system {e*!} in space L%(I,exph) we have

S LA
Se(A) = TOW0 =)

For a fixed A € C, function e lies in space L?(I,exp h) and thus, it can be expanded into the

series over system e
[o¢]
= Z cr(N)e!, (6)
k=1

We apply functional S,, to this identity. In view of relations we obtain

A e C. (5)

o0

SN =D NS (M) = ea(N).

Together with it yields

cn(A) =

Representation @ and condition (3) imply

PZ|ck 2K (W) < PZ|ck V2K (M)

or

V2K (Ap)
< PK(N). 7
kam S S PE) (™)

Thus, we have proven the theorem:

Theorem 1. If system {e*'} is an unconditional basis in space L*(I,exph), there exists a
function L analytic in the strip J + iR with simple zeroes at poins A\, k = 1,2,..., satisfying
relation (@

Relation allows us to find out some properties of the distribution of zeroes of function
L(N).

We introduce a characteristics 7(u, z, p) for a convex function u(z).

Let z be a fixed point in the plane. For each positive r > 0, by B(z,r) we denote the circle
{w: |w—z| <7}, and for a function f continuous in B(z,r) we let

1fllr = Irifm)lf(w)l-

weB(z,r
Let d(f, z,7) be the distance from function f to the subspace of harmonic in B(z,r) functions:

d(f,z,r) =inf{||f — H||,, His harmonic in B(z,7)}.
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If u(z) is a convex function on interval I C R, function u(w) = u(Rew) is continuous in the
vertical strip I + ¢R in the plane. For a positive number p we let
T(u,z,p) = sup{r : d(u,z,r) < p}.

It is clear that 7(u,z,p) depends only on Rez. If needed, we redefine function u letting it
being equal to +oo outside interval I. Then 7(u, z,p) can not exceed the distance from y to
the boundary of the domain for function w. Thus, 7(u, z,p) is the radius of the maximal circle
centered at point z, in which function u deviate from the space of harmonic functions in this
circle at most by p.

The introduced characteristics 7(u, z,p) of a convex function u(x) happens to be closely
related with the geometric characteristic of convexity po(u,y, p) introduced in works [4], [7]:

y+t

ooty p) = sup{t > 0 / /(1) — /()| dr < p}.

y—t
This quantity ps = pa(u,y, p) can be determined by the identity

u(y — p2) +u(y + p2) D
B —u(y) = 9

We observe that
p(u, y,p) = pa(u, y, 2p).
For an arbitrary continuous function u(y) on the real axis and a positive number r, by
dy(u,y,r) we denote the deviation in the uniform norm for function u on the segment [y—r; y+r]
from linear functions:

di(u,y,r) = inf{te[yrr_1%>;+r] lu(t) — I(t)], lis linear}.

By p(u,y,p) we denote the maximal number r such that on the interval [y — r;y + 7] function
u deviates from linear functions at most by p:
p(u,y,p) =sup{r: di(u,y,r) <p}.
Lemma 1. 1. For each positive p, function 7(y,p) = 7(u,y,p) satisfy the estimates

1
7(y,p) = p(y,p) = 1—67(y,p)~

2. For q = p > 0, the two-sided estimates

7(y,q) = 7(y,p) > %}T(y, q)

hold true. 3. Function 7(y) = 7(u,y,p) satisfies Lifschitz condition: for each x,y in the domain
of u
(y) = 7(2)| < ly — =l

Proof. 1. We fix a point z € C so that y = Rez lies in the domain of function u. We let
r = p(u,y,p). Then there exists a linear function [ satisfying the condition

u(z) = (@) <p, z€ly—ry+r]
The function v(w) = I[(Rew) is harmonic and

lu(Rew) —l(Rew)| < p, w € B(z,r).
Hence,

m(y,p) = = p(y,p).

We let r = 7(u, y,p). In circle B(z,r), there exists a harmonic function H such that |ju— H||, <
p. We choose a linear function [ such that I(z) < u(x) for each z, l[(y) = u(y). The existence of
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such function is ensured by the convexity of function u. We let v(w) = I[(Rew). Then in circle
B(z,r) the inequalities

hold true. Therefore,
(H(w) +p) — v(w) > 0.
Moreover, since v(z) = u(Re z), then
(H(z)+p) —v(z) = (H(2) + p) —u(Rez) = (H(z) —u(Rez)) +p < 2p.

We apply Harnack inequality for non-negative harmonic functions to the function H(w) + p —
v(w): in circle B(z, 5) we have the estimate

(H(w) +p) = v(w) <3((H(2) +p) = v(2)) < 6p.
Then in the same circle B(z, ) the estimate
|u(Rew) — v(w)| < J[u(Rew) — H(w)| + |h(w) +p — v(w)| +p < 8p

is valid. The functions in the left hand side of this inequality depend on x = Rew only. Thus,
we obtain

T T
— < - . —|.
lu(z) = l(z)] <8p, z€ [y 5yt 2]

It follows from this estimate that

p(y,8p) = = =7(y,p)

N3

or

7(y,p) < 2p(y, 8p).
It implies

7(y,p) < 16p(y, p)

2. The second part of Lemma [I| can be obtained on the basis of the properties of function

p(y, z,p).
3. We choose points y1, y2 in the domain of function u(x), and let r = 7(u, y1,p). It means

that in circle B(y;,r) there exists a harmonic function H(z) obeying the condition
[u(Re z) — H(z)| <p.
If |y1 — ya| < 7, this inequality is satisfied also in the circle B(ys, 7 — |y1 — y2]), hence,

T(u, Y2,0) Z 7 — Y1 — Y2 = 7(w, 91, p) — Y1 — B2l
or
7(u, y1,p) — 7(u, y2,p) < [y — 12l
If ly1 — y2| = 7 = 7(u,y1,p), then

T(u,y1,p) — 7(u, Y2, p) < |y1 — vl
We swap y1, ys:

T(u,y2,p) — T(u, y1,p) < |y1 — vl
Thus,

|7(u, y1,p) — T(u, y2,0)| < [y1 — Y2l
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It was shown in work [IT] that the quantity 7 = 7(u, A, p) is well determined by the condition:
if H(z) is a harmonic majorant for function u(z) in circle B(A, 7), then

max (H(z) - u(2)) = 2. (®)

z€B(A,T)

We determine this quantity for the function In K'(A) and the number In(5P), where P is the
constant in relation (7). In what follows we shall denote it simply by 7()\). So,

inf max |In K z)| = In(5P),
veA(B(A) 2eB(x, 7—)‘ (2) = v(2)] = In(5P)

where by A(B(A, 7)) we denote the set of the functions harmonic in circle B(A, 7).

Theorem 2. Let L(\) be a function analytic in the strip J + iR, with simple zeroes Ay,
k=1,2,... for some P satz’sfying the two-sided estimate

N PK (A)
< PK(MN).
Z |L/( Ak 2N — Ak ]? )

Then
1) Each circle B(\,27(\)) contains at least one zero Ay, of function L.
2) For each n,k, n # k, the inequality

max(7(Ag), 7(An))

10P>
holds true.
3) For each k, in the circle B()\k, ) the relation
1 KAL)
K(\) < < PK(A
56 p8 ) |L'(Ak) 2N — g |? )

18 valid.

Proof. 1. We argue by contradiction to prove the first statement. Suppose that for some A\ € C,
the circle B = B(\,27(\)) contains no zeros of function L. We take a point z € B(\, 7(X)).
Then for each & we have 7(\) < | A\, — A|/2 and |A — z] < 7(A) < |Ax — A|/2. Thus,

1
|2 — | > |/\k—)\|—|)\—z|>§|)\—)\k|,
3
|2 = Ak <A = AL+ [A — 2 <§|>\—/\k|-
It yields
1 ’Z—)\k| 3
- < <

<2
2 A= T2

This relation implies the two-sided estimate valid for z € B(A, 7(\)):

1 |2 /\k) 2
: <AC(N)|L(2))?,
1C §:|L, Amf W7 S ACOILE)

where C'(A) stands for the number

ZlL/)\kH)\ )\k‘2
Thanks to relation (7)) satisfied by the assumption of the theorem for function L(\), we get

ﬁC(A)\L(z)IQ < K(2) SAPCO)|L(2)P, 2 € B\ 7).
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We find the logarithm of this relation:
|In K (2) — In(C(A\)|L(2)[*)| < In(4P) < In(5P), z € B(\, 7).

Since by the assumption the circle B(\, 2p())) contains no zeroes of function L, function u(z) =
In(C'(M\)|L(2)|?) is harmonic in the circle B(A7())) and is continuous in its closure. Then the
latter estimate contradicts the definition of quantity 7(\).

2. We fix two different numbers k, n. By relation , the function

_ K(An)
B L/()‘n)O‘n - )‘)

[F(A)] < VPE(A).

And due to the definition of quantity 7(\g), in circle B(Ag, 7(\g)) there exists a harmonic
function ug(\) satisfying the estimate

| In K(A\) — ug(N)| < In(5P). (9)

FA)

L(A)

satisfies the upper estimate

In particular,
ug (M)

K(\) < VbPe >

Let gx(A) be a function analytic in the circle B(Ag, 7(Ax)) such that Re gx(A) = uk(A)/2. Then
the function

f(2) = F(1(M)z + A )e 9 (TQu)ztAe)
is analytic in the unit circle B(0,1) and satisfies the upper estimate
|f(2)| < V5P,
and f(0) = 0. By Schwarz lemma, we have the upper estimate
|(2)| < V5P|,

thus,
|'(0)] < V/5P.
Calculating f’(0), we obtain

euk(z\k)
F'(\)| < V5P .
PO < VEP
Together with relation @D it implies
s VE (M)
F'(\)| < 5p2 Y8
[F"(Ar)] )

We calculate the value of F'(\x) by the definition to obtain
LOVEDD _ s VEDW
L) 1Ak = An] 7(Ar)
Indices k, n are arbitrary and we can swap them:
L OWVEDW _ s VEOW)
L/ (M) [[An = A 7(An)
Multiplying two latter estimates, we get:

1L _ %P
e = Aal? T T(A)T(A)
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or
7(Ae)7(An)
Mo — An® = ——2 2 10
he- Al > TR (10)
Let 7(Ag) = 7(A\,) and assume that the inequality in Statement 2 is not valid, i.e.,

T()\k)

A — Al < .
e =l 0P}

(11)

The circle ,
10P2 — 1
B ={IN=\,| < ——7(\
A=l € =t ()

lies in the circle B(\g, 7(Ax)) in which there exists a harmonic function ug(z) with the estimate

|In K(z) — ux(z)] < In(5P).

Then
10P2 — 1
T(A\p) =2 ——————7(Mp)-
(W) 2 = mr(h)
This estimate and lead us to the inequality
1 1 10P2 —1
e — \o|? > )T = )2
Since P > 1, then
10P2 — 1 91
10P3 10~ 4
and
oy 2o o
or

1
|/\k_)‘n| > 3
10Pz2

2

(k)

that contradicts assumption ({11).

3. We fix an index k. The right inequality in Statement 3 follows directly from the assump-
tions of the theorem. By the definition of 7(\x), in circle B(Ag, 7(Ax)) there exists a harmonic
function ug(\) such that

—In(5P) < In K(\) — ux(A) < In(5P). (12)

By the assumptions of the theorem,

LV K (ML) LA
PZ IL/ !A Aal? 7 P (AR)PIA = A2

or

KWL
DO - NE

In K(\) > 1n

Therefore, for A € B(Ag, 7(Ar)) we have

K()\k)|L<)‘)|2
In —InP —ui(A) —In(bP) <0,

ie.,
2
K(Ak)2|L()‘)| >0
|L (M) P A — Akl

up(A) +2In P+ 1n5 —In
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By Statement 2, circle B ()\k, ()\k)> contains no zeroes of function L(\) except Ay.
Therefore, the function

KAL)
L (M)A = Axl?

is harmonic in this circle. And the function ug(\)+vi(A)+1n(5P?) is harmonic and non-negative
T(Ak) )
20P2

vp(A) = —In

in it. By Harnack inequality, in the circle B(\, the estimate

up(A) + v (N) +1In(5P?) < 3(ur (M) + (M) +In(5P%)) = 3(up(M\e) — In K (A\g) + In(5P?))
holds true. By the left inequality in (12)) we have ug(Ax) < In K () 4+ In(5P) and therefore
up(A) 4+ ve(A) < 3In(5P) + 21In(5P%) = In5°P7.
The right inequality in implies ug(A) > In K(\) — In(5P) and hence,
—0e(A) = In K(\) — In(5P) —In5°P" = In K(\) — In(5°P®).

Thus,
KOILOE 1
LOWP — M2~ 5078
The proof is complete. n

K(N).

Theorem 3. Let Ay, k = 1,2,..., be the zeroes of function L(\) satisfying the assumption
of the previous theorem. Then in each bounded set B containing at least two of points N,
k=1,2,..., there exists a point X\, such that

> L < (5P)12. (13)

— N2 T 2
ALEB k#n Ak = Aaf® = 72(An)

Proof. By relation , for each A the estimate

(WL
< PK(A 14
Zwmu w7 S PEOY) (14)

holds true. There exists an index n such that

KOy (00)
PSR ANTZPWIE A

By Statement 3 of Theorem , for points A lying on the boundary of circle B ()\n, 20#7’(&))

the estimate

1 K (An)[LA)*

K(\) <20°P?

50pP® | (M) [P72(An)
holds true or
KO) _ prap_ KO
ILV)2 1L (An)PT2(An)
Together with estimate it implies
2:8 pll K(An)
o0, 7 P Z 00w e

In view of the choice of index n, for points A on the boundary of B ()\n, ﬁT(AM) we have

K(\)
28 pll n
TP =T Wi P|L' PZM WE
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or

1 4258P12
> < . (15)
A — Ag|? 72(\p)
By Statement 2 of Theorem [2] for the mentioned points A with k& # n the estimate

3
< <A — A
5| il
holds true. Therefore, it follows from (|15)) that

5 L _(GP)®
AR EB,k#£n An = Al? - 72(A0)

The proof is complete. O

On the basis of Theorem [3| one can show that the existence of Riesz basis of exponentials is
rather an exception than a rule.

Theorem 4. Let I be an arbitrary interval in R, h(t) be a convex function on this interval,
KO\ = / RN gy T~ (11 K(z) < oo},
I

Suppose that for some p > 0 there exists a sequence of segments [any;by] and positive numbers
Tm, M =1,2,..., such that
1) for some positive number § and for each x € [ap; by,]

0T S TN K (2),2,p) < Ty, m=1,2,...,
2) the relation

lim —— =
m—o0 Tim

holds true.
Then there is no Riesz basis of exponentials in space L*(I,exph).

Proof. First of all we observe that if the assumptions of the theorem hold true for some p, by
Statement 2 of Lemma [I] these assumptions hold true for each p > 0.

Suppose that the system e*! forms a Riesz basis in space L?(I,exp h). By Theorem , there
exists an entire function with simple zeroes at points A\; obeying relation . In what follows
we assume that in the assumption of Theore , as p we choose the number In(5P), where P
is the constant in relation (7). For the sake of brief notation, we denote 7(In K(z), A, In(5P))
by 7(A). By Theorem 3| the set of points A, possesses property . We choose an arbitrary
index m. Let

Tm= _sup (7())),
AE[am,bm)

Sy, be the maximal natural number such that
A, + 48Ty, < by

Then
Am + 4(Sm + ]—)Tm > bm — Am,
therefore,
(Qm + SiTm) — Gm

lim = 0.
m—oo Tm
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To simplify the notations, in what follows we suppose that a,, + $,,7,n = b,,. For a fixed index
m, we consider the system P formed by square with side 47,,:

Py={z: am+27, <Rez < ap+2(l+ 1), 2q7, <Imz < 2(q+ 1)7,},
[=0,1,...,8,— 1, q€Z.

Two squares in these system will be called adjacent if they have a common vertex. Let @)1, Q2
be two non-adjacent squares in this system and z;,w; € Q1, 22, ws € Q2. Then

‘Zl — 22| 4|U}1 wg\. (16)
Indeed, since the squares are not adjacent, it follows that |w; — wy| > 4AT,, or
Tm S 1|’LUl — wal.
4
Therefore,

|21 — 2| < |21 — wi| + Jwy — wo| + |wy — 22| < 8V27, + |wa — 25| < 4wy — 2.

We denote the center of the square P, by (;. Each square P, contains the circle B((y, 27,),
which, in its turn, under the assumption of the theorem, contains the circle B((y,27((y). By
Statement 1 of Theorem [2 this circle contains at least one of the exponents \;. We take a
sufficiently great N and by By we denote the union of squares P, over all ¢ and [, |[[| < N. We
apply Theorem 5 to system A, and to set By. There exists an index n such that the relation

1 (5P)12
DD v WER=Tpw

MeEBN, k£n

holds true. By Condition 1) of the theorem it implies the estimate

1 (5P)12
) 17
X RS en (17)

M EBN,k#n

Let )y be a square in system P containing point A,, and point ) lies in square @) (in our
system) not adjacent with Qy. We take arbitrary point A € ) and employ relation :

Ak = An| <A[A = A

or
1 1

< .
16N — A2~ A — A2
We integrate this inequality w.r.t. A over square Q:

1 1 1
Ao\ € ———
167%/6216\A—An\2 v(N) JYESWE

By Bjy we denote set By without the squares adjacent with @Qg. Since each of the squares
contains at least one point in the system of exponents, the latter inequality and relation (23)

yield
1 256(5P)12
B /Y5 | I i Sl
/B/ FYSWERY 52
Let Qo = Ps; and for the definiteness we assume that j <0, s < % and we let

By ={\: am+ (s +2)7m <ReA < bm, (G+2)7m <ImA< (N + )7}
Then By C B, and hence, the inequality

1 256(5P)12
T dv(\) <
/EN A= A2 v(N) 52
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holds true. We employ the change of variables A — (a,, + (s 4+ 2)7 + i(j + 2) T = Tnw and by
wo we denote the image of point A\, under this change:

/Sm o /N+1 () < 256(5P)"
|w — wo|? 2

At that, for point wy we have —2 < Rewy, Imwy < —1. Therefore, we can assume that
wy = —2 — 24, it lessens the left hand side in the latter inequality and the inequality is kept.
Indices m, N have influence only on the integration limits, this is why in the latter inequality
we can pass to the limit as m, N — oco. Since

m
Sy = ———— — 00,

and we assume that s < %, then s, —s—2 > % — 2 — oco and we obtain

256(5P)"2
S Sl
/0 /0 (a:+2)2+(y+2)2dxdy\ 52

The integral in the left hand side diverges and we arrive at the contradiction. The proof is
complete. O

This theorem requires to calculate function K (x) that is not always simple. It happens that
it is sufficient to calculate function h.

Theorem 4 (a). Let I be an arbitrary interval in R, h(t) be a conver function on this
nterval,

h(z) = sup(zt — h(t)).

tel
Suppose that for some p > 0 there exist a sequence of segments [am; by and positive numbers
tm, m=1,2,..., such that
1) for some positive number 6 and for each x € [ay,; by]

St < T(2h,2,p) <tm, m=1,2,...,
2) the relation

lim — =00
m—o0

holds true.
Then there is Riesz basis of exponentials in space L*(I,exph).

Proof. In accordance with the results of works [3], [9], [I0], for some constants ¢, C' > 0
depending only on number p the relation

2h(x) 2h(z)

pl(zhwxap) p1(2h7x7p>
holds true. It follows that for some other constants ¢, C' > 0 the estimate

2h(x) 2h(w)

7(2h, z,p) 7(2h, z,p)

holds true. Under the assumptions of the theorem we get
> C
c < K(x)e 2@t ) < 5

We let C" = max(|In¢|,|InC — Ind|). Then

|In K () — (2h(z) — Inty)| < C', @ € [am;bml.
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It is obvious that 7(2%,13,])) = 7'(2% — tm,x,p). Let al, = ay + ty, b, = by — tp,. In
the interval [a,;b;,], we apply Statement 4 of Lemma [1| to the functions wui(z) = In K (z),
us(x) = 2h(z) — Int,,. Then under the assumptions of the theorem
J ' C’
Lot < —Lm(2) < milx) < pt Ta(z) < e
p+C p+C p p
We let t, = ’%Cltm, § = %. The latter inequalities imply
't S T(InK,2,p) <, @ € [aj,; V)],
and
b, —al
lim =—™ = oo.
m— oo t%

Thus, the assumptions of Theorems || are satisfied and the proof of Theorem (a) is complete.
]

In the formulation of the latter theorem we have employed the quantity 7(\), which is not
always easy to calculate. Let us prove a lemma simplifying the calculation of quantity 7(\) for
particular examples.

Lemma 2. Let u(z) be a twice differentiable convex function on some interval I C R. Sup-
pose that for some point y € I and some constants A, B,C > 0 the relation

u”’(x) 1
<B —y| <
, aslr—yl <C 7

holds true. Then
. p 1 P 1

= < < m —_— .

min (C, BC') 7 S 7(u,y,p) < 32max (C, AC’> \/ ()

u'(@) —u'(y) = u"(z")(z —y),
where * is a point between z, y, under the assumptoins of the theorem we have

Proof. Since

1
u'(y)

Au(y)|e —y| < |u'(z) = W' (y)] < Bu"(y)le —yl, if [r—y[<C
Therefore, for each r € [0; C'\/1/u”(y)] we have

y+r y+r
[ W@ -l < Bt [ el = ) < Be,
Y Y

) y+r ) y+r
[ @ -z aw) [ e ol =
y—r y—r

The first inequality imply the estimate

1
BC*H >C
pQ(U,y, ) u”(y)
We observe that
g s | OV e BC
p2(u,y,p) =
? 2 [ iy < BC2
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Hence,
, p 1
pa(u,y,p) > min (C, %> ) (18)
On the other hand, as r = C'\/1/u"(y), we have
y+r
| W@~ do > ) = ac,
y—r
and this is why
pa(u,y, AC*) < C !
s u(y)
We observe that
( ) C uul(y) ) if b < ACQ? ( )
P2\, Y, p < . 19
Vtok /u,%(y), if p > AC?.

Thus,

P 1
102(u7 yvp) < max <C7 E) u//<y)'

Together with estimate it yields

. p 1
min (CB_C> u//(y) < Pz(%y,p) < ,02(% Y, 2p) = p(u7 yvp)a

D 1
p(u,y,p) = pa(u,y,2p) < 2pa(u,y,p) < 2max (C’ @) )

Then we employ Statement 1 of Lemma [l| and arrive at the statement of Lemma [2. The proof
is complete. O

Now we are in position to formulate a useful particular case of Theorem [a).

Theorem 4 (b). Let I be an arbitrary interval on R, h(t) be a conver function on this
mterval,

h(z) = sup(zt — h(t)).

tel

Suppose that for some p > 0 there exists a sequence of segments [any; by] and positive numbers
tm, m=1,2,..., such that
1) for some positive number § and each x € [ay,; by,]

1
Sty < 4= <ty m=1,2,...,
h”(.’E)
2) the relation
. bm — Gm
lim —— =00
m—o0

holds true.
Then there is not Riesz basis of exponentials in space L*(I,exph).
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Examples.
1. Let I = R and h(t) = A|t|*, where o > 1.

la. If & > 1, then
~ 1N/ 1\*7 | .
h =11—-— — a-1
@=(1-2)(5) Hl wer

i.e., the Young conjugate reads as B|x|?, where 3 > 1 is determined by the restriction é+% =1.
Then for x # 0

R (x) /BB 1)

and Condition 1 of Theorem [4|(b) is satisfied, for instance, for the sequence of segments [n; 2n].
Thus, there are no Riesz bases of exponentials in spaces L*(RR, )

1b. If a =1, i.e., h(t) = A|t|, then
~ < 47
h(z) = {O’ 2

+oo, |z| > A,

and p(h,z,1) = 1 — |z|. Therefore, the assumption of Theorem () can not be satisfied and we
can not state the existence of Riesz bases in space L?(R, el) on the basis of Theorem .
2. Let I =[—1;1] and h(t) = W, where A >0, « > 0. Then
Ala+1)
(Aoz)a%l

R C—E
W)  VBla+)

and again Condition 1 of Theorem (b) holds true, for instance, for the sequence of segments
[n;2n]. Thus, there are no Riesz bases of exponentials in spaces L?(R, exp ﬁ)

Y

h(z) = |z| = Bla|=7, B =

and

2a. We take A = 0 in Example 2. Then
h(t) =0, |t| <1,

ie., L2(1,e"*) = L?[—1;1] and

h(z) = |z|, z € R.
Therefore,

p(h,z,1) > |z + 1.
Suppose that there exists a sequence of segments [a,,; by, satisfying the assumptions of Theo-
rem [4. Suppose that b,, > 0, then for sufficiently large m

b — iy = 270 = 2p(hy by, 1) = 26, + 2,

and thus,

m < —bp, —2<0

and 0 € [am; by). Then the estimate p(ﬁ,O, 1) > 07, should be satisfied. Since p(ﬁ,O, 1) =1,
1

then 6 < —. However, 7,, — 00 as m — oo, thus, 6 = 0. We obtain the contradiction and

Theorem WiLs not applicable in the present case.
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