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ON REGULAR AND SINGULAR SOLUTIONS FOR

EQUATION 𝑢𝑥𝑥 +𝑄(𝑥)𝑢+ 𝑃 (𝑥)𝑢3 = 0

G.L. ALFIMOV, M.E. LEBEDEV

Abstract. The paper is devoted to the equation 𝑢𝑥𝑥+𝑄(𝑥)𝑢+𝑃 (𝑥)𝑢3 = 0. The equations
of such kind have been used to describe stationary modes in the models of Bose-Einstein
condensate. It is known that under some conditions for 𝑃 (𝑥) and 𝑄(𝑥), the “most part” of
solutions for such equations are singular, i.e. tend to infinity at some point of the real axis.
In some situations this fact allows us to apply the methods of symbolic dynamics to describe
non-singular solutions of this equation and to construct comprehensive classification of these
solutions. In the paper we present (i) necessary conditions for existence of singular solutions
as well as conditions for their absence; (ii) the results of numerical study of the case when
𝑄(𝑥) is a constant and 𝑃 (𝑥) is an alternate periodic function. Basing on these results, we
formulate a conjecture that all the non-singular solutions of the equation can be coded by
bi-infinite sequences of symbols of a countable alphabet.
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1. Introduction

Starting from 90’s of the last century, nonlinear Schrödinger equation with additional spatial
non-autonomy is a object of a detailed studying. An interest to this class of equations is moti-
vated mostly by successes in studying Bose-Einstein condensate (BEC). BEC is a matter state
initiated under an ultralow temperature; its existence was predicted in 20’s of XXth century.
In 1995, BEC was obtained experimentally [1]. At that, the dynamics of BEC happened to
be well described by a Schrödinger type equation with a non-autonomy being an additional
external potential. In the context of BEC theory, it is the Gross-Pitaevskii equation. In the
spatial one-dimensional case (“cigar-shaped” condensate), Gross-Pitaevskii equation reads as

𝑖Ψ𝑡 = −Ψ𝑥𝑥 + 𝑈(𝑥)Ψ− 𝑃 (𝑥)|Ψ|2Ψ. (1)

Here Ψ(𝑥, 𝑡) is the macroscopic wave function of the condensate, 𝑈(𝑥) corresponds to the
potential of the trap holding the condensate, and 𝑃 (𝑥) describes the characteristic length
of interatomic interaction. Employing the so-called Feshbach resonance, this length in an
experiment can be made variable, in particular, periodic in the space [2]. In this case, one
speaks about interaction of condensate with a non-linear lattice (the details can be found in
review [3]). It should be noted that 𝑃 (𝑥) can be both sign-definite and sign-indefinite function.
In the literature, a special attention was paid to two model cases: 𝑃 (𝑥) ≡ 1 (the case of
interatomic attraction) and 𝑃 (𝑥) ≡ −1 (the case of interatomic repulsion).

In the case of an optical trap, potential 𝑈(𝑥) is also modeled by a periodic function. In this
case one speaks on a linear lattice trapping the condensate. The discussion of physical principles
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of trapping the condensate by a laser radiation can be found in work [4], and a review of results
on the Gross-Pitaevskii equation with a periodic (linear) potential was provided in work [5].

In studying the problems related with BEC, an important role is played by so-called station-
ary modes. They are associated with the solutions like Ψ(𝑥, 𝑡) = 𝑒−𝑖𝜔𝑡𝑢(𝑥). If 𝑢(𝑥) is a real
function, it satisfies the ordinary differential equation

𝑢𝑥𝑥 +𝑄(𝑥)𝑢+ 𝑃 (𝑥)𝑢3 = 0, (2)

where 𝑄(𝑥) = 𝜔 − 𝑈(𝑥). Localisation condition for a stationary mode

lim
𝑥→±∞

𝑢(𝑥) = 0 (3)

is natural from the physical point of view. At the same time, other types of stationary modes
are considered in the literature, in particular, spatially periodic and quasi-periodic structures.

Thus, to describe the set of stationary modes, a detailed study of the set of solutions to
equation (2) is needed. An attempt of such study was made in [6] in the case 𝑃 (𝑥) ≡ −1
(repulsive interatomic interactions) and with 𝑄(𝑥) being a bounded periodic function. The
main idea of work [6] said that the “most part” of the solutions to equation (2) went to infinity at
some (finite) point of the real axis. Next, it was found out that under some conditions the set of
“remaining” solutions defined on the whole of the real axis could be described by employing the
methods of symbolic dynamics. More precisely, there is a one-to-one correspondence between
these solutions with bi-infinite sequences of symbols in some alphabet (solution codes). Among
these codes, one can select those corresponding to localized or periodic modes. In work [6],
there was performed a detailed analysis of the case

𝑄(𝑥) = 𝜔 − 𝐴 cos 2𝑥,

and there was described the domain on the plane of parameters (𝜔,𝐴), where the solutions
defined on the whole of the real axis can be coded by infinite sequences of symbols “0”, “+”,
“−”. At that, localized modes correspond to the codes containing just a finite number of
non-zero symbols.

The generalization of work [6] for the case 𝑃 (𝑥) ̸= const looks to be an interesting and topical
problem. Here the key role belongs to the study of the set of solutions to (2) going to infinity
at a finite point of the real axis, and in additional, the set of solutions continued on the whole
real axis. In particular, assuming that 𝑄(𝑥) is a bounded periodic function, we can pose the
following questions:

A. Whether application of the methods of work [6] is possible as 𝑃 (𝑥) ≡ 1? In particular, as
𝑃 (𝑥) ≡ 1, whether there exist solutions to equation (2) going to infinity at a finite point of the
real axis?

B. What conditions for functions 𝑃 (𝑥) and 𝑄(𝑥) are needed for equation (2) to have the
solutions going to infinity at a finite point 𝑥 = 𝑥0 of the real axis? Whether it is possible to
extend the approach of work [6] for the case when 𝑃 (𝑥) is non-constant?

In the present work we provide partial answers for Questions A and B. Concerning Ques-
tion A, the negative answer is given by Proposition 1: for each bounded from below function
𝑄(𝑥) having a bounded derivative and each strictly positive function 𝑃 (𝑥), all the solutions to
equation (2) are continued over whole real axis. Then, a particular answer for Question B is
contained in Propositions 2 and 3. In particular, Proposition 2 says that if 𝑃 (𝑥) is negative
at least at one point of the axis 𝑥 = 𝑥0, equation (2) has 𝐶1-smooth one-parametric family
of solutions going to infinity at this point. Moreover, in accordance with Proposition 3, if
𝑄(𝑥) 6 𝑄0 < 0 and 𝑃 (𝑥) 6 𝑃0 < 0, none of solutions to equaion (2) except zero is continued
over whole real axis. If 𝑃 (𝑥) and 𝑄(𝑥) are periodic functions with the same period and 𝑃 (𝑥) is
sign-changing, a classification of stationary modes similar to [6] seems to be possible. In Section
4 we consider the case when 𝑄(𝑥) is constant and 𝑃 (𝑥) is 𝜋-periodic and changes the sign. The
numerical study allows us to assume that in this case a generalization of approach of work [6]
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is possible. At that, to code possible stationary modes we need an alphabet of countably many
symbols.

In what follows we adopt the following terminology. A solution 𝑢(𝑥) to equation (2) is called
singular, if for some finite point 𝑥0 ∈ R the relation

lim
𝑥→𝑥0

𝑢(𝑥) = ∞

holds true. At that, we say that solution 𝑢(𝑥) collapses at point 𝑥0. Respectively, solution 𝑢(𝑥)
to equation (2) collapsing at no points of R is called non-singular or regular.

2. Case 𝑃 (𝑥) > 𝑃0 > 0: absence of singular solutions

A partial answer to Question A is given by the following proposition:

Proposition 1. Suppose that 𝑄(𝑥), 𝑃 (𝑥) ∈ 𝐶1(R) and for each 𝑥 ∈ R
a) 𝑃 (𝑥) > 𝑃0 > 0, |𝑃 ′(𝑥)| 6 ̃︀𝑃 ;

b) 𝑄(𝑥) > 𝑄0, |𝑄′(𝑥)| 6 ̃︀𝑄.

Then the solution to the Cauchy problem for equation (2) with arbitrary initial conditions
𝑢(𝑥0) = 𝑢0, 𝑢𝑥(𝑥0) = 𝑢′

0 can be continued on the whole real axis R.

Proof. By the existence theorem for solutions to ODE, there exists an interval [𝑥0, 𝑥1) such that
the solution 𝑢(𝑥) to the Cauchy problem for equation (2) with initial conditions 𝑢(𝑥0) = 𝑢0,
𝑢𝑥(𝑥0) = 𝑢′

0 exists and is unique on this interval and 𝑢(𝑥) ∈ 𝐶2[𝑥0;𝑥1). Suppose that [𝑥0;𝑥1) is
the maximal existence interval for the solution, i.e., the solution to the Cauchy problem can not
be continued beyond the point 𝑥 = 𝑥1. We multiply the original equation by 4𝑢𝑥 and integrate
over [𝑥0;𝑥), 𝑥 < 𝑥1, to obtain

2𝑢2
𝑥(𝑥) + 2𝑄(𝑥)𝑢2(𝑥)− 2

𝑥∫︁
𝑥0

𝑄′(𝜉)𝑢2(𝜉)𝑑𝜉 + 𝑃 (𝑥)𝑢4(𝑥)−
𝑥∫︁

𝑥0

𝑃 ′(𝜉)𝑢4(𝜉)𝑑𝜉 (4)

= 2(𝑢′
0)

2 + 2𝑄(𝑥0)𝑢
2
0 + 𝑃 (𝑥0)𝑢

4
0 ≡ 𝐶.

Omitting 𝑢2
𝑥(𝑥) > 0 in the left hand side of the identity, and also employing the boundedness

from below of the functions 𝑄(𝑥) and 𝑃 (𝑥), we arrive at the inequality:

2𝑄0𝑢
2(𝑥) + 𝑃0𝑢

4(𝑥) 6 𝐶 + 2

𝑥∫︁
𝑥0

𝑄′(𝜉)𝑢2(𝜉)𝑑𝜉 +

𝑥∫︁
𝑥0

𝑃 ′(𝜉)𝑢4(𝜉)𝑑𝜉. (5)

We replace the derivatives of 𝑄′(𝜉) and 𝑃 ′(𝜉) by its upper bounds: 𝑄′(𝜉) 6 ̃︀𝑄, 𝑃 ′(𝜉) 6 ̃︀𝑃 ,

where ̃︀𝑄 > 0, ̃︀𝑃 > 0. We multiply both sides of the inequality by 𝑃0 > 0 and get:

2𝑄0𝑃0𝑢
2(𝑥) + 𝑃 2

0 𝑢
4(𝑥) 6 𝑃0𝐶 + 2𝑃0

̃︀𝑄 𝑥∫︁
𝑥0

𝑢2(𝜉)𝑑𝜉 + 𝑃0
̃︀𝑃 𝑥∫︁
𝑥0

𝑢4(𝜉)𝑑𝜉.

Denote 𝑣(𝑥) = (𝑃0𝑢
2(𝑥) +𝑄0)

2, 𝑣(𝑥) > 0. Then

𝑣(𝑥) 6 ̃︀𝐶 +
̃︀𝑃
𝑃0

𝑥∫︁
𝑥0

𝑤(𝑣(𝜉)) 𝑑𝜉. (6)

Here ̃︀𝐶 = 𝑃0𝐶 +𝑄2
0 > 0, 𝛼 = 2 ̃︀𝑄𝑃0/ ̃︀𝑃 > 0, and 𝑤(𝑣) is determined by the formula

𝑤(𝑣) ≡ 𝛼(
√
𝑣 −𝑄0) + (

√
𝑣 −𝑄0)

2.
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We introduce the function

𝐺(𝑠) =

𝑠∫︁
𝑠0

𝑑𝑣

𝑤(𝑣)
. (7)

Here 𝑠0 > 𝑄2
0 is an arbitrary constant, 𝑠 > 𝑠0. Since 𝑤(𝑣) is positive and monotonically

decreasing, and the integral
+∞∫︁
𝑠0

𝑑𝑣

𝑤(𝑣)

diverges, function 𝐺(𝑠) is positive, monotonically increasing and unbounded. It means, that
the inverse function 𝐺−1(𝑟) is well-defined for 𝑟 > 0, increases monotonically and is unbounded.
The said above allows us to apply Bihari inequality, [7, Th. 2.3.1], to (6):

𝑣(𝑥) 6 𝐺−1

⎛⎝𝐺( ̃︀𝐶) +
̃︀𝑃
𝑃0

𝑥∫︁
𝑥0

𝑑𝜉

⎞⎠ = 𝐺−1

(︃
𝐺( ̃︀𝐶) +

̃︀𝑃
𝑃0

(𝑥− 𝑥0)

)︃
< ∞. (8)

Inequality (8) is valid for each 𝑥 ∈ [𝑥0;𝑥1). It follows from (8) that function 𝑣(𝑥) is bounded
on the whole segment [𝑥0;𝑥1)

𝑣(𝑥) 6 𝑀 = 𝐺−1

(︃
𝐺( ̃︀𝐶) +

̃︀𝑃
𝑃0

(𝑥1 − 𝑥0)

)︃
.

We observe that ̃︀𝐶 > 𝑄2
0, at that, ̃︀𝐶 = 𝑄2

0 only as 𝑢0 = 𝑢′
0 = 0. It means that 𝐺(𝑠) is well-

defined for ̃︀𝐶 for each non-zero solution 𝑢(𝑥). The boundedness of 𝑣(𝑥) yields that solution
𝑢(𝑥) is also bounded on the segment [𝑥0;𝑥1):

|𝑢(𝑥)| 6

√︃√
𝑀 −𝑄0

𝑃0

, 𝑥 ∈ [𝑥0, 𝑥1). (9)

Substituting estimate (9) into identity (4), we obtain the upper estimate for the derivative
𝑢𝑥(𝑥) on the semi-interval 𝑥 ∈ [𝑥0;𝑥1). Since functions 𝑢(𝑥) and 𝑢𝑥(𝑥) are continuous and
bounded on [𝑥0;𝑥1), the values 𝑢(𝑥1) and 𝑢𝑥(𝑥1) are finite. Hence, there exists a continuation
of the solution to the Cauchy problem with the initial conditions 𝑢(𝑥0), 𝑢𝑥(𝑥0) on an interval
large than [𝑥0;𝑥1). It contradicts to the original assumption.
Thus, we have proven the possibility of continuation of the solution to the half-line 𝑥 > 𝑥0.

To prove the same for 𝑥 < 𝑥0, it is sufficient to make the change 𝑥 → −𝑥 and to reproduce the
above arguments.

Comment: The proof of Proposition 1 implies in particular that if Conditions (a) and (b)
are satisfied not on the whole real line but on a segment [𝑥1;𝑥2], the solution to the Cauchy
problem for equation (2) with arbitrary initial data collapses at no points of segment [𝑥1;𝑥2].

3. Singular solutions in the case 𝑃 (𝑥) is sign-indefinite

3.1. Asymptotic expansions. If 𝑃 (𝑥) is negative at least at one point 𝑥0 ∈ R, formal
asymptotic expansions predict the existence of two one-parametric families of the solutions to
equation (2) collapsing at this point.

Let us construct these asymptotic expansions. We suppose that 𝑃 (𝑥0) = −1 (this condition
can be satisfied by renormalization of an independent variable). We introduce the notation
𝜂 = 𝑥− 𝑥0 and assume that in the vicinity of the point 𝑥 = 𝑥0, the expansions

𝑄(𝑥) = 𝑄0 +𝑄1𝜂 +𝑄2𝜂
2 + . . . , 𝑃 (𝑥) = −1 + 𝑃1𝜂 + 𝑃2𝜂

2 + . . .
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hold true. We have

𝑢𝜂𝜂 + (𝑄0 +𝑄1𝜂 +𝑄2𝜂
2 + . . .)𝑢+ (−1 + 𝑃1𝜂 + 𝑃2𝜂

2 + . . .)𝑢3 = 0.

The solutions to this equation collapsing at the point 𝑥 = 𝑥0, satisfies the condition 𝑢(𝜂) → ±∞,
𝜂 → 0. Suppose that 𝜂 tends to zero from the right, 𝜂 > 0. We make the changes 𝑣(𝜂) = 𝜂𝑢(𝜂),
𝜂 = 𝑒−𝑡. We obtain

𝑣𝑡𝑡 + 3𝑣𝑡 + 2𝑣 + 𝑒−2𝑡𝑄(𝑡)𝑣 + 𝑃 (𝑡)𝑣3 = 0, (10)

We determine the leading term in the expansion by balancing 2𝑣 and −𝑣3. Respectively, we
have

𝑉0(𝑡) = ±
√
2. (11)

Let us find the first corrector, 𝑣(𝑡) = ±
√
2+𝑉1(𝑡)+ 𝑜(𝑉1(𝑡)). Substituting the latter expression

into equation (10), employing the expansions for functions 𝑄(𝑡) and 𝑃 (𝑡) and omitting the
terms of orders higher than 𝑒−𝑡, we obtain

𝑉1,𝑡𝑡 + 3𝑉1,𝑡 − 4𝑉1 = ∓2
√
2𝑒−𝑡 (12)

that yileds 𝑉1(𝑡) = ±
√
2
3
𝑒−𝑡. The second, third, and fourth correctors 𝑉𝑛, 𝑛 = 2, 3, 4, can be

found in the same way. For each of them the associated equation reads as

𝑉𝑛,𝑡𝑡 + 3𝑉𝑛,𝑡 − 4𝑉𝑛 = 𝐶𝑛𝑒
−𝑛𝑡. (13)

However, once for 𝑛 = 2, 3 the solutions to equation (13) read as 𝑉𝑛 ∼ 𝑒−𝑛𝑡, in the case
𝑛 = 4 the exponent in the right hand side coincides with one of the roots of the characteristic
polynomial of the operator in the left hand side. In this case the solution to equation (13)
should be chosen as 𝐶𝑒−4𝑡 − 𝐴3𝑡𝑒

−4𝑡. Here constant 𝐶 is arbitrary, while 𝐴3 is determined
uniquely by the coefficients in the expansions for 𝑃 (𝑥) and 𝑄(𝑥). If constant 𝐶 is fixed, at the
further steps of this procedure the corresponding equations are uniquely solvable. We observe
that the replacement of “+” by “−” in formula (11) leads us to the replacement of the signs
for all the coefficients 𝐴𝑛, 𝑛 = 0, 1, . . ., that is natural due to the invariancy of equation (2)
w.r.t. the change 𝑢 → −𝑢. We obtain

±𝑣(𝑡) =
√
2 + 𝐴0𝑒

−𝑡 + 𝐴1𝑒
−2𝑡 + 𝐴2𝑒

−3𝑡 + 𝐴3 · (−𝑡) · 𝑒−4𝑡 + 𝐶𝑒−4𝑡 + . . . .

The explicit expressions for 𝐴0 - 𝐴3 are as follows:

𝐴0 =

√
2

3
𝑃1, (14)

𝐴1 =

√
2

3
𝑃2 +

√
2

6
𝑄0 +

2
√
2

9
𝑃 2
1 ; (15)

𝐴2 =
2
√
2

3
𝑃2𝑃1 +

7
√
2

27
𝑃 3
1 +

√
2

6
𝑄0𝑉1 +

√
2

4
𝑄1 +

√
2

2
𝑃3; (16)

𝐴3 = −
√
2

6
𝑄1𝑃1 −

√
2

5
𝑄2 −

32
√
2

45
𝑃2𝑃

2
1 − 3

√
2

5
𝑃3𝑃1 −

2
√
2

15
𝑃2𝑄0

−2
√
2

15
𝑄0𝑃

2
1 − 2

√
2

5
𝑃4 −

28
√
2

135
𝑃 4
1 − 4

√
2

15
𝑃 2
2 . (17)

In the case 𝜂 → 0 from the left, 𝜂 < 0, to construct similar expansions one should make the
changes 𝑣(𝜂) = 𝜂𝑢(𝜂), 𝜂 = −𝑒−𝑡. The formulae for the coefficients 𝐴𝑛 happened to be the same
as in the case 𝜂 > 0.

Finally, for the original solution 𝑢(𝑥), as 𝑥 → 𝑥0 ± 0 we obtain

± 𝑢(𝑥) =

√
2

𝜂
+ 𝐴0 + 𝐴1𝜂 + 𝐴2𝜂

2 + 𝐴3𝜂
3 ln |𝜂|+ 𝐶𝜂3 + 𝐴4𝜂

4 ln |𝜂|+ . . . , (18)
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where 𝐴0-𝐴3 are defined by formulae (14)-(17), and other coefficients 𝐴𝑛, 𝑛 > 3, are expressed
via 𝑄𝑛 and 𝑃𝑛 and arbitrary constant 𝐶.
Summarizing the said above, asymptotic expansion (18) predicts the existence of two one-

parametric families of solutions collapsing at point 𝑥0. These families are related by the sym-
metry 𝑢 → −𝑢. As 𝑥 → 𝑥0 − 0, the solutions in one of these families tends to +∞, and to −∞
for the other family.

3.2. Existence of one-parametric families of collapsing solutions. The possibility of
constructing asymptotic expansions (18) does not prove the existence of one-parametric families
of solutions collapsing at point 𝑥0. At the same time, the following rigorous statement is true.

Proposition 2. Let Ω be a neighborhood of point 𝑥0, and 𝑄(𝑥) ∈ 𝐶2(Ω) and 𝑃 (𝑥) ∈ 𝐶4(Ω).
Then there exist two 𝐶1-smooth one-parametric families of solutions to equation (2) correspond-
ing to expansions (18), collapsing at the point 𝑥 = 𝑥0 (while approaching from the left, 𝑥 < 𝑥0)
and related by the symmetry 𝑢 → −𝑢. Each of these families can be parametrized by a free
variable 𝐶 ∈ R in expansion (18).

Proof. By the hypothesis, the identities

𝑄(𝑥) = 𝑄0 +𝑄1𝜂 +𝑄2𝜂
2 +𝑄3𝜂

3 + ̃︀𝑄(𝜂)𝜂4

𝑃 (𝑥) = −1 + 𝑃1𝜂 + 𝑃2𝜂
2 + 𝑃3𝜂

3 + 𝑃4𝜂
4 + ̃︀𝑃 (𝜂)𝜂5

hold true, where 𝜂 = 𝑥 − 𝑥0 and ̃︀𝑄(𝜂), ̃︀𝑃 (𝜂) ∈ 𝐶(Ω). To prove the existence of the family
corresponding to the sign “+” in (18), we make the change

𝑢(𝑥) =

√
2

𝜂
+ 𝐴0 + 𝐴1𝜂 + 𝐴2𝜂

2 + 𝐴3𝜂
3 ln(−𝜂) + 𝑧(𝜂)𝜂3,

where 𝑧(𝜂) is a new unknown function. The coefficients 𝐴0, 𝐴1, 𝐴2 and 𝐴3 are chosen in
accordance with formulae (14)-(17), i.e., so that the coefficients at the powers 𝜂−2, 𝜂−1, 𝜂0 and
𝜂 vanish. The straightforward check shows that under such choice of 𝐴𝑘, 𝑘 = 0, 1, 2, 3, equation
(2) implies the following equation for 𝑧

𝑧𝜂𝜂 +
6

𝜂
𝑧𝜂 + 𝑔(𝜂, 𝑧) = 0, (19)

where 𝑔(𝜂, 𝑧) is a third order polynomial in 𝑧 and 𝑔(𝜂, 𝑧) ∼ ln(−𝜂)
𝜂

as 𝜂 → −0 for a fixed 𝑧. The

change 𝜂 = −𝑒−𝑡 maps the point 𝜂 = 0 into 𝑡 = +∞, and equation (19) is transformed into the
equation

𝑧𝑡𝑡 − 5𝑧𝑡 − 𝑓(𝑡, 𝑧) = 0, (20)

at that, 𝑓(𝑡, 𝑧) ∼ 𝑡𝑒−𝑡 as 𝑡 → +∞. Assumptions for 𝑓(𝑡, 𝑧) allow us to apply the lemma
on bounded solutions in Appendix to equation (20). This lemma states that all bounded as
𝑡 → +∞ solutions to equation (20), as 𝑡 → +∞, tend to some constant 𝐶. At that, for
each value 𝐶 ∈ R there exists the unique solution approaching asymptotically this constant as
𝑡 → +∞. Moreover, these solutions form 𝐶1-smooth family. Returning back to equation (19)
and then, to (2), we arrive at the statement of the proposition. The existence of the second
family of solutions corresponding to the sign “−” in (18) follows from the invariance of equation
(2) under the change 𝑢 → −𝑢.

Comment: Similar one-parametric families of collapsing solutions exist to the right of the
point 𝑥 = 𝑥0.

Once 𝑃 (𝑥) is negative on some segments of the real axis, the set of non-singular solutions
can have rather complicated structure. It was found in [6] that if 𝑃 (𝑥) = −1 and 𝑄(𝑥) satisfies
some additional conditions, to each non-singular solution of equation (2), one can associate a
bi-infinite sequence of symbols in a finite alphabet. At that, the correspondence between the set
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of non-singular solutions and the set of symbols is a homeomorphism. In Section 4 we provide
the results of numerical study for one more case: 𝑄(𝑥) ≡ 𝜔 = const, 𝑃 (𝑥) = 𝛼 + cos 2𝑥, and
|𝛼| < 1. At that, in some cases the structure of the set of non-singular solutions to equation
(2) happens to be trivial.

3.3. Case 𝑃 (𝑥) 6 𝑃0 < 0, 𝑄(𝑥) 6 𝑄0 < 0. The next statement happens to be true.

Proposition 3. Suppose that for 𝑥 ∈ R the conditions 𝑃 (𝑥) 6 𝑃0 < 0, 𝑄(𝑥) 6 𝑄0 < 0 hold
true. Then all the solutions to equation (2) except the zero one are singular.

Before we prove Proposition 3, let us prove the following auxiliary statement.

Lemma 1. All the solutions to the equation

𝑣𝑥𝑥 − 𝑞𝑣 − 𝑝𝑣3 = 0, (21)

where 𝑝, 𝑞 > 0 are constants, except the zero one are singular.

Proof of Lemma 1. The solution to the Cauchy problem for equation (21) with the initial con-
ditions 𝑣0 = 𝑣(𝑥0), 𝑣

′
0 = 𝑣𝑥(𝑥0) can be written implicitly

±
𝑣∫︁

𝑣0

𝑑𝜉√︂
𝐶 + 𝑞𝜉2 +

𝑝

2
𝜉4

= 𝑥− 𝑥0;

𝐶 ≡ (𝑣′0)
2 − 𝑞𝑣20 −

𝑝

2
𝑣40.

The choice of the sign in the left hand side depends on the initial conditions and value of 𝑥.
The integral in the left hand side of the identity converges as 𝑣 → ∞, and hence, there exists
a value 𝑥 such that

𝑥𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 = 𝑥0 +

∞∫︁
𝑣0

𝑑𝜉√︂
𝐶 + 𝑞𝜉2 +

𝑝

2
𝜉4
,

while approaching each, 𝑣(𝑥) tends to infinity.

Proof of Proposition 3. We employ Comparison Lemma from [8, Appendix C]. Consider the
equation

𝑣𝑥𝑥 +𝑄0𝑣 + 𝑃0𝑣
3 = 0.

We introduce the notations

𝑔(𝑥, 𝜉) = −𝑄(𝑥)𝜉 − 𝑃 (𝑥)𝜉3, 𝑓(𝑥, 𝜉) = 𝑓(𝜉) = −𝑄0𝜉 − 𝑃0𝜉
3.

We apply Comparison Lemma to the pair of equations

𝑢𝑥𝑥 = 𝑔(𝑥, 𝑢); (22)

𝑣𝑥𝑥 = 𝑓(𝑥, 𝑣). (23)

In the domain 𝐷+ = {𝑥 ∈ R, 𝜉 ∈ (0;+∞)} we have 𝑓(𝑥, 𝜉) 6 𝑔(𝑥, 𝜉). Let 𝑢̃(𝑥) be the solution
to the Cauchy problem for equation (22) with initial conditions 𝑢(𝑥0) = 𝑢0, 𝑢

′(𝑥0) = 𝑢′
0. We

choose the initial conditions for the Cauchy problem for equation (23): 𝑣(𝑥0) = 𝑢(𝑥0) = 𝑢0,
𝑣′(𝑥0) = 𝑢′(𝑥0) = 𝑢′

0. Let 𝑣(𝑥) be its solution. Let 𝑢0 > 0, then there can be two cases:
(i) 𝑢′

0 > 0. Function 𝑣(𝑥) increases monotonically; this fact can be easily established by
the phase portrait of equation (23). In view of Comparison Lemma, solution 𝑢̃(𝑥) is an upper
bound for solution 𝑣(𝑥) which is singular. Therefore, solution 𝑢̃(𝑥) is also singular.
(ii) 𝑢′

0 < 0. Let us make the change 𝑥̃ = −𝑥. In this case solution 𝑣(𝑥̃) also decreases
monotonically, and thanks to Comparison Lemma, 𝑢̃(𝑥̃) is its upper bound, and hence, it is
singular.
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In the same way, in the domain 𝐷− = {𝑥 ∈ R, 𝜉 ∈ (−∞; 0)}, the inequality 𝑓(𝑥, 𝜉) > 𝑔(𝑥, 𝜉)
holds true. By similar arguments we prove that in domain𝐷−, solution 𝑢(𝑥) is also singular.

4. 𝑃 (𝑥) and 𝑄(𝑥) are periodic functions: numerical study of the set of
non-singular solutions

4.1. General scheme of study and some definitions. We proceed to the case when 𝑃 (𝑥)
is 𝜋-periodic and take negative values for at least some values 𝑥. We introduce some definitions.

Definition 1. We define Poincaré mapping 𝑇 : R2 → R2 generated by equation (2) as
follows: [9]

𝑇

(︂
𝑢0

𝑢′
0

)︂
=

(︂
𝑢(𝜋)
𝑢𝑥(𝜋)

)︂
,

where 𝑢(𝑥) is the solution to equation (2) with initial conditions 𝑢(0) = 𝑢0, 𝑢𝑥(0) = 𝑢′
0.

Definition 2. A sequence of points (finite or infinite) {𝑝𝑛} ∈ R2 such that 𝑇𝑝𝑛 = 𝑝𝑛+1 will
be called orbit.

Definition 3. We define sets 𝒰+
𝐿 ⊂ R2 and 𝒰−

𝐿 ⊂ R2, 𝐿 > 0 as follows: 𝑝 = (𝑢0, 𝑢
′
0) ∈ 𝒰+

𝐿

if and only if the solution to the Cauchy problem for equation (2) with initial data 𝑢(0) = 𝑢0,
𝑢𝑥(0) = 𝑢′

0 does not collapse on the segment [0;𝐿]. In the same way, 𝑝 = (𝑢0, 𝑢
′
0) ∈ 𝒰−

𝐿 if and
only if the solution to the Cauchy problem for equation (2) with initial conditions 𝑢(0) = 𝑢0,
𝑢𝑥(0) = 𝑢′

0 does not collapse on the segment [−𝐿; 0].

We observe that Poincaré mapping 𝑇 is defined only on set 𝒰+
𝜋 , while the inverse mapping

𝑇−1 is defined only on set 𝒰−
𝜋 , at that, 𝑇𝒰+

𝜋 = 𝒰−
𝜋 . Consider the sequence of sets

Δ0 = 𝒰+
𝜋 ∩ 𝒰−

𝜋 ,

Δ+
𝑛+1 = 𝑇Δ+

𝑛 ∩Δ0, 𝑛 = 0, 1, . . . ,

Δ−
𝑛+1 = 𝑇−1Δ−

𝑛 ∩Δ0, 𝑛 = 0, 1, . . .

It is obvious that Δ0 consists of the points which have 𝑇 -image and 𝑇 -preimage. Moreover,
the statements

{𝑝 ∈ Δ+
𝑛 } ⇔ {𝑇𝑝, 𝑇 2𝑝, . . . , 𝑇 𝑛𝑝 ∈ Δ0}

{𝑝 ∈ Δ−
𝑛 } ⇔ {𝑇−1𝑝, 𝑇−2𝑝, . . . , 𝑇−𝑛𝑝 ∈ Δ0}

hold true that implies

. . . ⊂ Δ+
𝑛+1 ⊂ Δ+

𝑛 . . . ⊂ Δ+
1 ⊂ Δ0

. . . ⊂ Δ−
𝑛+1 ⊂ Δ−

𝑛 . . . ⊂ Δ−
1 ⊂ Δ0.

We define the sets

Δ+ =
∞⋂︁
𝑛=1

Δ+
𝑛 , Δ− =

∞⋂︁
𝑛=1

Δ−
𝑛 .

Non-singular solutions to equation (2) correspond to the initial data of the Cauchy problem
belonging to the set Δ = Δ+∩Δ−. This set is invariant w.r.t. the action of 𝑇 . The description
of set Δ and of the action of mapping 𝑇 on Δ allows us to list all non-singular solutions to (2).
It was shown in work [6] that if

a) Set Δ0 has a finite amount 𝑁 of connectivity components, Δ0 =
⋃︀𝑁

𝑘=1𝐷𝑘, at that, each of
components 𝐷𝑘 is a curvilinear quadrilateral, whose boundaries satisfy special smoothness
and monotonicity conditions;

b) All the sets 𝑇𝐷𝑘 ∩ 𝐷𝑚 and 𝑇−1𝐷𝑘 ∩ 𝐷𝑚, 𝑘,𝑚 = 1, . . . , 𝑁 , are non-empty, at that, the
action of 𝑇 on the curves lying in 𝐷𝑘 preserves properly the monotonicity properties;

c) the areas of Δ±
𝑛 tend to zero as 𝑛 → ∞;
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the orbits generated by 𝑇 in Δ are in one-to-one correspondence with bi-infinite sequences
formed by an alphabet of 𝑁 symbols. As the symbols, we choose 1, . . . , 𝑁 . The sequence
. . . 𝛼−1, 𝛼0, 𝛼1, . . ., where 𝛼𝑘 ∈ {1, . . . , 𝑁}, is associated with the unique orbit satisfying

. . . , 𝑇−1𝑝 ∈ 𝐷𝛼−1 , 𝑝 ∈ 𝐷𝛼0 , 𝑇𝑝 ∈ 𝐷𝛼1 , . . .

Work [6] contains rigorous formulations of conditions (a), (b) and (c). In [6], its verification
was made numerically for the case

𝑄(𝑥) = 𝜔 − 𝐴 cos 2𝑥, 𝑃 (𝑥) = −1

In what follows we provide the results of numerical study for another case, when 𝑃 (𝑥) is a
sign-changing function.

4.2. Case 𝑃 (𝑥) is a sign-changing function. Numerical study. We consider the model
case

𝑄(𝑥) = 𝜔, 𝑃 (𝑥) = 𝛼 + cos 2𝑥, 𝛼 ∈ (−1, 1).

Equation (2) becomes
𝑢𝑥𝑥 + 𝜔𝑢+ (𝛼 + cos 2𝑥)𝑢3 = 0. (24)

In what follows we provide a brief summary of the results for this case obtained by numerical
calculations. The statements are not rigorous and are conjectures. A more detailed exposition
of numerical study is planned to be presented later.

Sets 𝒰±
𝜋 . We search set 𝒰±

𝜋 by scanning the plane of initial conditions (𝑢, 𝑢𝑥) with sufficiently
small steps in 𝑢 and 𝑢𝑥. For each point (𝑢0, 𝑢

′
0) we solve the Cauchy problem with the initial

conditions 𝑢(0) = 𝑢0, 𝑢𝑥(0) = 𝑢′
0. If on the segment [0; 𝜋] the absolute value of the solution

exceeds a prescribed great number 𝑢𝑚𝑎𝑥, the solution is assumed to be collapsed otherwise the
point (𝑢0, 𝑢

′
0) is supposed to belong to set 𝒰+

𝜋 . In numerical experiments we first assume that
𝑢𝑚𝑎𝑥 = 105, and the result is checked for 𝑢𝑚𝑎𝑥 = 107. Sets 𝒰+

𝜋 obtained for different values
𝑢𝑚𝑎𝑥 are in good accordance. The examples of sets 𝒰+

𝜋 for various parameters 𝜔 and 𝛼 are
presented in Figure 1. Since equation (24) is invertible, sets 𝒰−

𝜋 are obtained from sets 𝒰+
𝜋 by

a reflection along the axis 𝑢. The numerical results allow us to assume that sets 𝒰±
𝜋 are spirals

with infinitely many rotations around the origin.
Set Δ0. The structure of set Δ0 is determined by geometric properties of sets 𝒰±

𝜋 . If sets
𝒰±
𝜋 are spirals with infinitely many rotations around the origin, Δ0 consists of infinitely many

connectivity components. These components are located symmetrically along the axes 𝑢 and
𝑢𝑥 and can be indexed by indices {𝐴𝑘}, 𝑘 = ±1,±2, . . . (for the components along axis 𝑢) and
{𝐵𝑘}, 𝑘 = ±1,±2, . . . (for the components along axis 𝑢𝑥). At the origin there is one more
connectivity component denoted by 𝑂, cf. Figure 2. In contrast to the case studied [6], set Δ0

seems to be unbounded. It means that assumption (a) is not satisfied and moreover, it prevents
a numerical verification of conjectures (b) and (c) similar to that in [6].

Despite of this circumstance, we employ the general idea of work [6] to describe the set of non-
singular solutions. In view of the geometric properties of spirals 𝒰±

𝜋 , we assume that each of the
connectivity components 𝐴𝑘 and 𝐵𝑘 is a curvilinear quadrilateral whose boundaries satisfy the
smoothness and monotonicity conditions. Generally speaking, this is not the case for central
component 𝑂. This component is not necessary a curvilinar quadrilateral with monotonous
boundaries but it can be under an appropriate choice of parameters 𝜔 and 𝛼, cf. Figure 3.
Solutions coding. Suppose that all the connectivity components 𝐴𝑘, 𝐵𝑘, and 𝑂 are curvilinear

quadrilaterals. Then the results of numerical calculations allow us to assume that sets 𝑇−1𝐴𝑘,
𝑇−1𝐵𝑘, 𝑘 = 1, 2, . . ., and 𝑇−1𝑂 infinite curvilinear strips located inside 𝒰+

𝜋 . In the same way,
𝑇𝐴𝑘, 𝑇𝐵𝑘, 𝑘 = 1, 2, . . ., and 𝑇𝑂 are also infinite curvilinear strips located inside 𝒰−

𝜋 . Next,
𝑇 -preimages of the sets

𝑇−1𝑍 ∩ 𝐴𝑙, 𝑇−1𝑍 ∩𝐵𝑙, 𝑇−1𝑍 ∩𝑂, 𝑙 = ±1,±2, . . . ,

𝑍 ∈ {𝑂,𝐴𝑘, 𝐵𝑘, 𝑘 = ±1,±2, . . .},
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Figure 1. Sets 𝒰+
𝜋 : A) 𝜔 = 0.5, 𝛼 = 0.5; B) 𝜔 = 1, 𝛼 = 0; C) 𝜔 = −0.5,

𝛼 = 0.5; D) 𝜔 = −1, 𝛼 = −0.1.

Figure 2. Sets 𝒰+
𝜋 (dark grey color), 𝒰−

𝜋 (light gray color), and their intersection
𝒰𝜋 (black color) for equation (24) with parameters 𝜔 = 1, 𝛼 = −0.1.

are infinite curvilinear strips lying in 𝑇−1𝑍. A similar statement is also true for 𝑇 -images of
sets 𝑇𝑍∩𝐴𝑙, 𝑇𝑍∩𝐵𝑙, 𝑇𝑍∩𝑂 𝑙 = ±1,±2, . . ., which are located inside 𝑇𝑍, 𝑍 ∈ {𝑂,𝐴𝑘, 𝐵𝑘, 𝑘 =
±1,±2, . . .}. Thus, the dynamics of mapping 𝑇 happens to be similar to the dynamics of the
Poincaré mapping described in work [6].

In view of this, by analogy with [6], we assume that all non-singular solutions to equa-
tion (24) are in one-to-one correspondence with bi-infinite sequences of symbols of the form
{. . . 𝑍−1, 𝑍0, 𝑍1, . . .}, where 𝑍𝑚 ∈ {𝑂,𝐴𝑘, 𝐵𝑘, 𝑘 = ±1,±2, . . .}. At that, the orbit associated
with the code {. . . 𝑍−1, 𝑍0, 𝑍1, . . .} come sequentially connectivity components 𝑍𝑚, 𝑚 =
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Figure 3. Central connectivity component 𝑂 for various values of the parame-
ters: A) 𝜔 = −1, 𝛼 = 0.5; B) 𝜔 = −1, 𝛼 = 0.3; C) 𝜔 = −1, 𝛼 = −0.1;

Figure 4. Solutions and codes: A)..𝑂𝐴1𝑂..; B)..𝑂𝐴−2𝐴1𝐴−2𝑂..; C)..𝑂𝐴1𝐴1𝐴1𝑂..;

. . . ,−1, 0, 1, . . . In Figure 4, we provide several localized solutions to equation (24) and there
codes.

5. Conclusion

In the work we present the results of the study of equation (2) describing the stationary modes
for non-autonomous non-linear Schrödinger equation. The main attention is paid to singular
solutions going to infinity at some point on the real axis. As work [6] shows, if there are
“sufficiently many” singular solutions, this fact can be employed for classification of stationary
modes for equation (1).

It is convenient to present the results of the study as Table 1. Apart from rigorous statements,
in the work we also present the results of numerical studying of equation (2) for the case
when 𝑄(𝑥) ≡ 𝜔 and 𝑃 (𝑥) = 𝛼 + cos 2𝑥, −1 < 𝛼 < 1. On the basis of these results we
propose a conjecture that in some range of parameters 𝛼 and 𝜔, non-singular solutions to
equation (2) are in one-to-one correspondence with bi-infinite sequences {. . . 𝑍−1, 𝑍0, 𝑍1, . . .},
where 𝑍𝑚 ∈ {𝑂,𝐴𝑘, 𝐵𝑘, 𝑘 = ±1,±2, . . .}, 𝑚 = 0,±1,±2, . . .. Unfortunately, rigorous sufficient
conditions for parameters 𝜔 and 𝛼 ensuring such coding are not known by the present time.
Apart the question on rigorous justification of such coding the solutions, there are other

interesting subjects for further studies. In particular, in our opinion, the estimate for solution
to equation (2) implied by Proposition 1 is not optimal. Under the made assumptions one can
likely prove the boundedness of solutions on the whole real line. One more issue important for
physical applications concerns the stability of stationary modes in the framework of the original
evolution equation (1). In our opinion, the study of the connection between the stability and
instability of a stationary mode and its coding is of interest. In particular, to the best of the
authors’ knowledge, a systematic study of stability of stationary modes described by (24) has
not been made yet.

The authors thank D.A. Zezyulin, V.V. Konotop and B.I. Suleimanov for useful discussions.
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𝑃 𝑄
𝑃 (𝑥) > 0 — All the solutions are continued on

the whole real line, singular solu-
tions are absent (Proposition 1).

𝑃 (𝑥) < 0 at least at
one point 𝑥 = 𝑥0

— There exists a pair of one-
parametric family of solutions
collapsing at point 𝑥 = 𝑥0 and re-
lated by the symmetry 𝑢 → −𝑢
(Proposition 2)

𝑃 (𝑥) < 0 𝑄(𝑥) < 0 All the solutions except the zero
one are singular ( Proposition 3).

𝑃 (𝑥) is sign-changing — Complicated classes of non-
singular solutions are possible.
Under some additional restric-
tions, a coding of non-singular
solutions is likely possible by
bi-infinite sequences of symbols
in some alphabet (numerical
study, Section 4).

Table 1. Summary table of the results on existence or absence of singular so-
lutions to equation (2) for periodic and sufficiently smooth 𝑃 (𝑥) and 𝑄(𝑥)

6. Appendix: Lemma on bounded solutions

Lemma on bounded solutions. Suppose that 𝑓(𝑡, 𝑧) is a function continuous w.r.t. 𝑡 and
infinitely differentiable w.r.t. 𝑧 defined for 𝑡 > 𝑡0 and |𝑧| < ∞ and possessing the following
properties:

(i) as |𝑧| < 𝜌, 𝜌 > 0, the estimate |𝑓(𝑡, 𝑧)| < 𝜂𝜌(𝑡)|𝑧| holds true, at that, 𝜂𝜌(𝑡) ∈ 𝐿1(𝑡0;∞);

(ii) for each 𝑧1 and 𝑧2, such that |𝑧1,2| < 𝜌, 𝜌 > 0, there exists a function 𝜂𝜌(𝑡) ∈ 𝐿1(𝑡0;∞)
such that |𝑓(𝑡, 𝑧2)− 𝑓(𝑡, 𝑧1)| 6 𝜂𝜌(𝑡)|𝑧2 − 𝑧1|;

(iii) as |𝑧| < 𝜌, 𝜌 > 0, the inequality |𝑓𝑧(𝑡, 𝑧)| < 𝜃𝜌(𝑡)|𝑧| holds true, at that, 𝜃𝜌(𝑡) ∈ 𝐿1(𝑡0;∞);

(iv) for each 𝑧1 and 𝑧2 such that |𝑧1,2| < 𝜌, 𝜌 > 0, there exists a function 𝜃𝜌(𝑡) ∈ 𝐿1(𝑡0;∞)

such that |𝑓𝑧(𝑡, 𝑧2)− 𝑓𝑧(𝑡, 𝑧1)| 6 𝜃𝜌(𝑡)|𝑧2 − 𝑧1|.

Then for the equation

𝑧𝑡𝑡 − 𝛼𝑧𝑡 + 𝑓(𝑡, 𝑧) = 0, 𝛼 > 0, (25)

the following statements hold true:

(A) for each solution 𝑧(𝑡) to equation (25) bounded as 𝑡 → ∞ there exists 𝐶 ∈ R such that
𝑧(𝑡) → 𝐶 as 𝑡 → ∞;

(B) for each 𝐶 ∈ R there exists the unique solution 𝑍(𝑡;𝐶) to equation (25) defined on the
segment (𝑡𝐶 ,∞) such that

𝑍(𝑡;𝐶) = 𝐶 + 𝑜(1) as 𝑡 → +∞; (26)

(C) Family of solutions 𝑍(𝑡;𝐶) is 𝐶1-smooth w.r.t. parameter 𝐶.
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Proof of Lemma on bounded solutions. Let us prove Statement (A). Employing the variation of
constants, we obtain that the solution to equation (25) satisfies the identity

𝑧(𝑡) = κ1 + κ2𝑒
𝛼𝑡 +

∫︁ 𝑡

𝑡0

𝑒𝛼𝜂
(︂∫︁ ∞

𝜂

𝑒−𝛼𝜉 𝑓(𝜉, 𝑧(𝜉)) 𝑑𝜉

)︂
𝑑𝜂.

Due to Condition (i), if 𝑧(𝑡) is bounded as 𝑡 → ∞, the interal∫︁ ∞

𝑡0

𝑒𝛼𝜂
(︂∫︁ ∞

𝜂

𝑒−𝛼𝜉 𝑓(𝜉, 𝑧(𝜉)) 𝑑𝜉

)︂
𝑑𝜂 (27)

converges. For bounded solution κ2 = 0, therefore, 𝑧(𝑡) tends to a constant as 𝑡 → +∞.
Statement (A) is proven.

Let us prove Statement (B). We make the change 𝑢(𝑡) = 𝑧(𝑡) − 𝐶, where 𝐶 is an arbitrary
number. We write equation (25) as the system

𝑦𝑡 = 𝐴𝑦 + 𝐹 (𝑡, 𝑦), (28)

where

𝑦 =

(︂
𝑢
𝑣

)︂
, 𝐴 =

(︂
0 1
0 𝛼

)︂
, 𝐹 (𝑡, 𝑦) =

(︂
0

𝑓(𝑡, 𝑢+ 𝐶)

)︂
.

We use Theorem 9.1 in [10, Ch. XII]. It states that system (28) has a solution vanishing at
infinity if the following conditions are satisfied:

(1) function 𝐹 (𝑡, 𝑦) is continuous, at that, ||𝐹 (𝑡, 𝑦)|| 6 𝜆(𝑡) as 𝑡 ∈ [𝑡0,∞), ||𝑦|| 6 𝜌, where
𝜆(𝑡) ∈ 𝐿1(𝑡0,∞);

(2) for each 𝑔(𝑡) = col(𝑔1(𝑡), 𝑔2(𝑡)), 𝑔(𝑡) ∈ 𝐿1(𝑡0;∞), there exists a solution 𝑦(𝑡) ∈ 𝐿∞
0 (𝑡0;∞)

to the inhomogeneous system

𝑦𝑡 = 𝐴𝑦 + 𝑔(𝑡); (29)

(hereinafter as the norm we mean the Euclidean norm in R2).
First, by (i), as |𝑢| 6 𝜌 and 𝑡 > 𝑡0, the relation ‖𝑓(𝑡, 𝑢, 𝐶)‖ 6 𝜌𝜂𝜌(𝑡) holds true. At that,

𝜂𝜌(𝑡) ∈ 𝐿1(𝑡0,∞) and hence, Condition (1) of the theorem is satisfied. Second, the general
solution to inhomogeneous system of equations (29) reads as

𝑢(𝑡) = 𝐶2 +

𝑡∫︁
𝑡0

⎛⎝𝑔1(𝜂) + 𝑒𝛼𝜂

⎛⎝𝐶1 −
𝜂∫︁

∞

𝑒−𝛼𝜉𝑔2(𝜉)𝑑𝜉

⎞⎠⎞⎠ 𝑑𝜂;

𝑣(𝑡) = 𝑢𝑡(𝑡)− 𝑔1(𝑡).

Since 𝑔1,2(𝑡) ∈ 𝐿1[𝑡0;∞), choosing appropriate constants 𝐶1, 𝐶2, we can obtain the solution
vanishing as 𝑡 → ∞, i.e., Condition (2) is satisfied. Thus, the assumptions of the cited theorem
are satisfied for system (28). It means that for each value 𝐶, equation (25) has a solution 𝑧(𝑡)
tending to 𝐶 as 𝑡 → ∞.
Let us prove that this solution is unique. Suppose that for the same 𝐶 there exist two

solutions to the equation

𝑢𝑡𝑡 − 𝛼𝑢𝑡 + 𝑓(𝑡, 𝑢+ 𝐶) = 0 (30)

Then their difference Δ(𝑡) = 𝑢2(𝑡)− 𝑢1(𝑡) satisfies the equation

Δ𝑡𝑡 − 𝛼Δ𝑡 +𝑅(𝑡)Δ = 0 (31)

and the boundary condition Δ → 0 as 𝑡 → +∞. Here

𝑅(𝑡) ≡ 𝑓(𝑡, 𝑢2(𝑡) + 𝐶)− 𝑓(𝑡, 𝑢1(𝑡) + 𝐶)

𝑢2(𝑡)− 𝑢1(𝑡)
.
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By Condition (ii), we can apply Theorem 3 in [11, Ch. 3] to equation (31). It states that there
exists a homeomorphism between the bounded solutions to equation (31) and to the equation

Δ𝑡𝑡 − 𝛼Δ𝑡 = 0. (32)

At that, see the remark after this theorem in [11], by the linearity of the perturbation, this
homeomorphism is a linear mapping. It means that only the zero solution to (31) satisfies the
zero asymptotic condition at infinity, i.e., 𝑢2(𝑡) ≡ 𝑢1(𝑡). Thus, we have proven the existence of
the family of solutions 𝑍(𝑡;𝐶) parametrized by 𝐶 ∈ R, i.e., Statement (B) is proven.

To prove Statement (C), we observe that the derivative

𝜕𝑍

𝜕𝐶
(𝑡, 𝐶) ≡ Θ(𝑡, 𝐶)

satisfies equation (30) differentiated w.r.t. 𝐶, and Θ(𝑡, 𝐶) → 0 as 𝑡 → ∞. We have

Θ𝑡𝑡 − 𝛼Θ𝑡 + 𝑓𝑧(𝑡, 𝑢+ 𝐶)Θ + 𝑓𝑧(𝑡, 𝑢+ 𝐶) = 0 (33)

Applying again Theorem 11 in [11, Ch. 3] and employing (iii), we conclude that there exists
a solution to this equation Θ(𝑡, 𝐶) such that Θ(𝑡, 𝐶) → 0 as 𝑡 → ∞ and Θ(𝑡, 𝐶) is continuous
w.r.t. parameter 𝐶. The proof is complete.
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