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INTERPOLATION BY SERIES OF EXPONENTIALS

IN 𝐻(𝐷) WITH REAL NODES

S.G. MERZLYAKOV, S.V. POPENOV

Abstract. In the space of holomorphic functions in a convex domain, we study a problem
on interpolation by sums of the series of exponentials converging uniformly on compact
subsets of the domain. The discrete set of multiple interpolation nodes is located on
the real axis in the domain and has the unique finite accumulation point. We obtain a
solvability criterion in terms of distribution of limit directions at infinity for the exponents
of exponentials.
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1. Formulation of the problem and preliminaries

Let 𝐷 be a convex domain in C. We denote by 𝐻(𝐷) the space of holomorphic functions in
𝐷 with the topology of uniform convergence on compact sets in 𝐷. We consider an arbitrary
discrete set of complex numbers Λ = {𝜆𝑛}𝑛∈N in C.
We denote

Σ(Λ, 𝐷) = {𝑓 ∈ 𝐻(𝐷) : 𝑓(𝑧) =
∞∑︁
𝑛=1

𝑐𝑛𝑒
𝜆𝑛𝑧, 𝑧 ∈ 𝐷}.

The convergence of the series of exponentials is supposed to be absolute for each point 𝑧 ∈
𝐷, then ([1]) such series converges in the topology of space 𝐻(𝐷). For a multi-dimensional
situations it was shown, for instance, in work [2].

Suppose that set 𝐷∩R is non-empty. We assume that in 𝐷 we are given an infinite discrete
set real interpolation nodes ℳ = {𝜇𝑘}∞𝑘=1, ℳ ⊂ 𝐷 ∩ R. We also assume that to each node
𝜇𝑘 ∈ ℳ a multiplicity 𝑚𝑘 ∈ N is associated. If 𝑓, 𝑔 ∈ 𝐻(𝐷), we shall write 𝑓 ∼= 𝑔 on ℳ, if
𝑓 (𝑗)(𝜇𝑘) = 𝑔(𝑗)(𝜇𝑘) for each 𝑘 ∈ N and 𝑗 = 0, 1, . . . ,𝑚𝑘 − 1.
In𝐻(𝐷) we consider the following problem on interpolation by means of series of exponentials

with real nodes:
For an arbitrary set of nodes ℳ ⊂ 𝐷 ∩ R and for each function 𝑔 ∈ 𝐻(𝐷) there exists a
function 𝑓 ∈ Σ(Λ, 𝐷), such that 𝑓 ∼= 𝑔 on ℳ.

By the classical result of interpolation by holomorphic functions [3, Corol. 1.5.4], this problem
can be formulated in terms of traditional notations:
For each interpolation data 𝑏𝑗𝑘 ∈ C, 𝑘 ∈ N, 𝑗 = 0, 1, . . . ,𝑚𝑘 − 1, there exists a function 𝑓 ∈
Σ(Λ, 𝐷), such that 𝑓 (𝑗)(𝜇𝑘) = 𝑏𝑗𝑘, for each 𝑘 and 𝑗.
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We denote by 𝜓ℳ the function in 𝐻(𝐷) with zeroes at all the nodes 𝜇𝑘 ∈ ℳ, with multi-
plicities 𝑚𝑘, and only at these nodes. We denote by(︀

𝜓ℳ
)︀
= {ℎ ∈ 𝐻(𝐷) : ℎ = 𝜓ℳ · 𝑟, 𝑟 ∈ 𝐻(𝐷)} (1)

the closed ideal in 𝐻(𝐷) generated by function 𝜓ℳ. It is easy to see that
(︀
𝜓ℳ

)︀
= 𝐼ℳ = {ℎ ∈

𝐻(𝐷) : ℎ ∼= 0 on ℳ}.
Given a set of nodes ℳ, the solvability of problem on interpolation in 𝐻(𝐷) by the sums of

series of exponentials with the exponents in a prescribed set Λ is equivalent to the validity of
the following representation:

𝐻(𝐷) = Σ(Λ, 𝐷) +
(︀
𝜓ℳ

)︀
. (2)

Under the conditions of the considered problems, the interpolation can be non-unique, i.e.,
Σ(Λ, 𝐷)∩

(︀
𝜓ℳ

)︀
̸= {0}. It was proven in work [4] for the space of entire functions and the proof

adduced in this work can be adapted for our case with obvious changes.
If representation (2) holds true and Σ(Λ, 𝐷) ⊂ 𝑋 ⊂ 𝐻(𝐷), the representation 𝐻(𝐷) = 𝑋 +(︀
𝜓ℳ

)︀
is valid.

In the case 𝐷 = C and 𝑋 is the kernel of some convolution operator in the space of entire
functions 𝐻(C), in work [5] there were found sufficient conditions for interpolation of functions
in the kernel of the convolution operator in terms of location of zeroes Λ for the characteristic
function of this operator. In [5] set ℳ had two accumulation points ±∞. In work [4] we
succeeded to find other ways of proving and for all possible cases of location of accumulation
points for ℳ we obtained the solvability criterions for the problem on multiple interpolation in
𝐻(C) by the series of exponentials in Σ(Λ,C) ⊂ 𝑋. In the case when the set of nodes had two
accumulation points ±∞, the criterion in [4] was formulated via the same notions as in work
[5].

In the present paper the method of proof of sufficiency [4] is extended for the case of holomor-
phic functions in a convex domain. We obtain the criterion of interpolation in the case when
ℳ has the unique accumulation point, which lies on boundary 𝜕𝐷 of domain 𝐷. The criterion
relates the distribution of limiting directions of exponents inΛ at infinity with the geometric
structure of the part of convex domain containing this limiting point.

The proof of sufficiency is reduced to interpolation by exponential series in the space of
functions holomorphic in some half-plane. Moreover, the proof of necessity in the considered
case of one accumulation point is happened to require an idea of completely different nature
in comparison with space 𝐻(C). The matter is that the series of exponentials converging
absolutely on some set possess the property of extending the convergence [2]. It should be
noted that the analytic continuation for the elements of common invariant subspaces admitting
spectral synthesis was studied in [6].

Remark after the proof. The problem of interpolation in the kernel of convolution operator
in a convex domain was considered in work [7].

2. Scheme of reduction to interpolation in the kernel of convolution
operator. Dual formulation of interpolation problem

As in work [4], in what follows we employ the scheme of the proof described in work [8]. It
is based on the duality with employing the Laplace transform ℒ of functionals. In the proof of
the sufficiency of interpolation conditions, it is proposed to consider natural dual statements
independently for each possible location of accumulation points of set ℳ.
Let us describe briefly this scheme; in work [4] it was exposed quite in details for space 𝐻(C).

For space 𝐻(𝐷) we shall indicate some changes required in the arguments of the above cited
work.
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We denote by 𝑃𝐷 the space of entire functions of exponential type with the traditional
topology of inductive limit that ensures a topological isomorphism between a strongly dual
space 𝐻*(𝐷) and space 𝑃𝐷 obtained by means of Laplace transform ℒ of functionals 𝐹 ∈
𝐻*(𝐷). More precisely, a linear continuous one-to-one Laplace transformation ℒ of functionals
𝐹 ∈ 𝐻*(𝐷) is introduced as follows: ℒ : 𝐹 ↦−→ ℒ𝐹 (𝑧) =

⟨︀
𝐹𝜆, 𝑒

𝜆𝑧
⟩︀
, ℒ𝐹 ∈ 𝑃𝐷.

The topology in (𝐿𝑁*)-space 𝑃𝐷 is not described in terms of sequences convergence, how-
ever, sequentially closed subspaces happen to be closed ([9]). The exact definition of sequence
convergence in this topology will be provided in the proof of sufficiency for Lemma 4.

We introduce a continuous bilinear form [·, ·] : 𝐻(𝐷) × 𝑃𝐷 ↦−→ C by the formula [𝜓, 𝜙] =
⟨ℒ−1𝜙, 𝜓⟩, 𝜓 ∈ 𝐻(𝐷), 𝜙 ∈ 𝑃𝐷. By the mapping 𝜙 ↦−→ [·, 𝜑] = ⟨ℒ−1𝜙, ·⟩, where ℒ−1𝜙 ∈
𝐻*(𝐷), defines an isormophism between 𝑃𝐷 and strongly dual space 𝐻*(𝐷). In accordance
with introduced duality, each function in space 𝑃𝐷 is one-to-one correspondence with a linear
continuous functional in 𝐻*(𝐷).

It is well-known that each function 𝐺 ∈ 𝑃𝐷, 𝐺 ̸≡ 0, having the minimal type at order one
generates in space 𝐻(𝐷) the convolution operator 𝑀𝐺 : 𝐻(𝐷) ↦−→ 𝐻(𝐷). In the considered
duality, this operator can be defined as

𝑀𝐺[𝜓](𝑧) =
[︀
𝑆𝑧

(︀
𝜓(𝜆)

)︀
, 𝐺𝜆

]︀
=

⟨︀
(ℒ−1𝐺)𝜆, 𝜓(𝑧 + 𝜆)

⟩︀
,

where 𝑆𝑧 is the shift operator: 𝑆𝑧
(︀
𝜓(𝜆)

)︀
= 𝜓(𝜆+ 𝑧).

It is known that 𝑀𝐺 is a linear continuous and surjective operator. The adjoint operator for
𝑀𝐺 is operator 𝐴𝐺 of multiplication by characteristic function 𝐺. It is well-defined on functions
𝜔 ∈ 𝑃𝐷 and reads as: 𝜔 ↦−→ 𝐺 · 𝜔 (for details see [10], [11]).
We denote by Ker𝑀𝐺 = {𝑓 ∈ 𝐻(𝐷) : 𝑀𝐺[𝑓 ] = 0} the kernel of convolution operator 𝑀𝐺.

This kernel is a closed subspace in 𝐻(𝐷) invariant w.r.t. the differentiation operator.
Subspace Ker𝑀𝐺 admits spectral synthesis [11], [12], i.e., in the sense of the topology in

space 𝐻(𝐷) it coincides with the closure of a linear span of the set of all polynomial-exponential
monomial 𝑧𝜈𝑒𝜆𝑛𝑧 contained in Ker𝑀𝐺.
Generally speaking, the subspace of series of exponentials Σ(Λ, 𝐷) is not closed in 𝐻(𝐷).

Because of this fact, in the proof of sufficiency of interpolation conditions, for each possible

location of nodes ℳ, we choose a subsequence ̃︀Λ in Λ so that it is the zero set of some entire

function 𝐺 ∈ 𝑃𝐷 of minimal type, at that, Ker𝑀𝐺 = Σ(̃︀Λ, 𝐷). Then we prove the validity of

representation (2) with Λ replaced by ̃︀Λ. But in this case it is also true for Λ.

Once subsequence ̃︀Λ is chosen, it is sufficient to show the following two statements.
(I ) Subspace Ker𝑀𝐺 +

(︀
𝜓ℳ

)︀
is everywhere dense in 𝐻(𝐷);

(II ) Subspace Ker𝑀𝐺 +
(︀
𝜓ℳ

)︀
is closed in space 𝐻(𝐷).

Closed ideal
(︀
𝜓ℳ

)︀
was introduced above in (1). Hereafter in this section, to simplify the

notations we shall write 𝜓 = 𝜓ℳ.
If 𝑋1 is a subspace in a topological vector space 𝑋, by 𝑋0

1 we denote its polar (or annihilator),
i.e., the set of functionals 𝑋* vanishing at 𝑋1.

Statement (I ) is equivalent to
(︀
Ker𝑀𝐺+(𝜓)

)︀0
=

(︀
Ker𝑀𝐺

)︀0∩ (︀
(𝜓)

)︀0
= {0}. It follows from

Lemma 2 of work [13] that Statement (II ) is equivalent to the closedness of space
(︀
Ker𝑀𝐺

)︀0
+(︀

(𝜓)
)︀0

in 𝑃𝐷.

Space 𝑃𝐷 is a module over the ring of polynomials. Thanks to duality, polar
(︀
Ker𝑀𝐺

)︀0
coincides with the submodule

(︀
𝐺
)︀
𝑃𝐷

= {ℎ ∈ 𝑃𝐷 : ℎ = 𝐺 · 𝑟; 𝑟 ∈ 𝑃𝐷}. (3)
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We shall show in the proof of sufficiency in Lemma 4 that
(︀
𝐺
)︀
𝑃𝐷

=
(︀
𝐺
)︀
∩ 𝑃𝐷, where

(︀
𝐺
)︀

is the closed ideal in 𝐻(C) generated by function 𝐺. In particular, it implies that submodule(︀
𝐺
)︀
𝑃𝐷

is closed.

As it is known, (𝑀*)-space 𝐻(𝐷) is reflexive ([9], [10]), i.e., its second strongly dual space
𝐻**(𝐷) is canonically isomorphic to space 𝐻(𝐷). This is why, in view of this canonical iso-
morphism, the mapping 𝜓 ↦−→ [𝜓, ·] defines an isomorphism between (𝑀*)-space 𝐻(𝐷) and
strongly dual space 𝑃 *

𝐷. Each function in 𝐻(𝐷) is one-to-one correspondence to a linear con-
tinuous functional in strongly dual space 𝑃𝐷.

More precisely, this mapping is understood as follows: canonical isomorphism between 𝐻(𝐷)
and 𝐻**(𝐷) reads as 𝜓 ↦−→ Θ𝜓 = 𝐹𝜓, 𝐹𝜓 ∈ 𝑃 *

𝐷, ⟨𝐹𝜓, 𝜙⟩ = [𝜓, 𝜙] = ⟨ℒ−1𝜙, 𝜓⟩. Here 𝜓 ∈ 𝐻(𝐷),
𝜙 ∈ 𝑃𝐷.

Each function 𝜓 ∈ 𝐻(𝐷), 𝜓 ̸≡ 0, generates the convolution operator ̃︁𝑀𝜓 : 𝑃𝐷 ↦−→ 𝑃𝐷,̃︁𝑀𝜓[𝜙](𝑧) =
[︀
(Θ𝜓)𝜆, 𝑆𝑧

(︀
𝜙(𝜆)

)︀]︀
, in the space of entire functions of exponential type 𝑃𝐷. Here

𝑆𝑧 is a shift operator, 𝑆𝑧
(︀
𝜙(𝜆)

)︀
= 𝜙(𝜆+ 𝑧), 𝜆 ∈ C.

Hence, we obtain

̃︁𝑀𝜓[𝜙](𝑧) =
⟨︀
(ℒ−1𝑆𝑧𝜙)𝜆, 𝜓(𝜆)

⟩︀
=

⟨︀
𝑒𝑧𝜆(ℒ−1

𝜙)𝜆, 𝜓(𝜆)
⟩︀
=

⟨︀
(ℒ−1𝜙)𝜆, 𝑒

𝑧𝜆𝜓(𝜆)
⟩︀
, 𝜙 ∈ 𝑃𝐷.

We note that employing the known formula for the inverse Borel transformation [14], one
can obtain the integral representation for this operator [5], [4].

It is known that ̃︁𝑀𝜓 is a linear continuous surjective operator. Operator ̃︁𝑀𝜓 is adjoint to

operator ̃︀𝐴𝜓 of multiplication by function 𝜓 in space 𝐻(𝐷) acting on functions 𝑔 ∈ 𝐻(𝐷) as

follows: 𝑔 ↦−→ 𝜓 · 𝑔. Operator ̃︀𝐴𝜓 is linear and continuous, and its range coincides with closed

ideal (𝜓). We denote Ker ̃︁𝑀𝜓 = {𝑓 ∈ 𝑃𝐷 : ̃︁𝑀𝜓[𝑓 ] = 0}.
In view of duality, polar

(︀
(𝜓)

)︀0
coincides with Ker ̃︁𝑀𝜓.

In the beginning of this section there has been described the scheme reducing the proof of
representation (2) to Statements (I ) and (II ). Then the following proposition has been proven.

Proposition 1. In (𝑀*)-space 𝐻(𝐷), Statements (I ) and (II ) are equivalent to two dual
statements in (𝐿𝑁*)-space 𝑃𝐷, respectively:

(I *) The identity
(︀
𝐺
)︀
𝑃𝐷

∩Ker ̃︁𝑀𝜓 = {0} holds true.

(II *) Subspace
(︀
𝐺
)︀
𝑃𝐷

+Ker ̃︁𝑀𝜓 is closed in space 𝑃𝐷.

3. Auxiliary results

We begin with a simple but important statement.

Proposition 2. Let 𝐷1 be a domain such that 𝐷 ⊂ 𝐷1 and these domains have common
parts of the boundaries at which all the accumulation points of set ℳ are located. If under
some conditions for Λ representation (2) for space 𝐻(𝐷1) with set of nodes ℳ holds true, the
same representations holds also for 𝐻(𝐷) with the same set of nodes.

Proof. For each function 𝑔 ∈ 𝐻(𝐷) there exists 𝑔1 ∈ 𝐻(𝐷1), 𝑔 ∼= 𝑔1 onℳ. Then 𝑔 = 𝑔1+(𝑔−𝑔1)
in domain 𝐷. By the hypothesis there exists 𝑓1 ∈ Σ(Λ, 𝐷1) ⊂ Σ(Λ, 𝐷) such that 𝑓1 ∼= 𝑔1|ℳ. In
domain𝐷 we obtain the representation 𝑔 = 𝑓1+(𝑔1−𝑓1)+(𝑔−𝑔1). The functions in the brackets
belong to 𝐻(𝐷) and vanish on ℳ counting the multiplicities. The proof is complete.

In what follows we shall need some properties of the polynomials of exponentials with real
exponents. Such polynomials were studied in monograph [15].
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We consider an arbitrary polynomial of exponentials

𝑝(𝑧) =
𝑠∑︁

𝑘=0

𝑎𝑘(𝑧)𝑒
𝜔𝑘𝑧, 𝜔0 < 𝜔1 < · · · < 𝜔𝑠, (4)

where 𝑎𝑘(𝑧) are some polynomials and let 𝑎0 · 𝑎𝑠 ̸≡ 0.
By Theorem 12.9 in monograph [15] it is easy to obtain the following lemma.

Lemma 1. There exists 𝑐1 > 0 such that in the exterior of the circle {𝑧 ∈ C : |𝑧| > 𝑐1} we
have: there exist positive constants 𝑐2, 𝑐3 and two real numbers 𝑚0, 𝑚𝑠 obeying 𝑚0 > 𝑚𝑠 or
𝑚0 = 𝑚𝑠 = 0 such that

|𝑝(𝑧)| > 𝑐2𝑒
𝜔0 Re 𝑧 (5)

for each 𝑧 in domain 𝑈0 = {𝑧 ∈ C : Re(𝑧 +𝑚0 ln 𝑧) < −𝑐3}, and

|𝑝(𝑧)| > 𝑐2𝑒
𝜔𝑠 Re 𝑧 (6)

for each 𝑧 in domain 𝑈𝑠 = {𝑧 ∈ C : Re(𝑧 +𝑚𝑠 ln 𝑧) > 𝑐3}.

For each fixed 𝑐 ∈ R we consider the curve Re(𝑧 +𝑚 ln 𝑧) = 𝑐, 𝑚 ̸= 0. It is symmetric w.r.t.
the real axis. For 𝑚 > 0 this curve lies in the half-plane Re 𝑧 < 𝐴, 𝐴 > 0, and for 𝑚 < 0 is lies

in the half-plane Re 𝑧 > −𝐴, 𝐴 > 0. If a point 𝑧 = 𝑥 + 𝑖𝑦 lies on the curve, then
⃒⃒⃒𝑦
𝑥

⃒⃒⃒
→ ∞,

arg 𝑧 → 𝜋

2
, |𝑧| = |𝑦|(1+ 𝑜(1)), as |𝑧| → ∞. The considered curve approaches asymptotically an

exponential curve 𝑥+𝑚 ln |𝑦| = 𝑐.

We fix 𝛽 ∈
[︁
0,
𝜋

2

)︁
and for 𝛼 ∈

[︁
0,
𝜋

2
− 𝛽

)︁
we denote 𝐴𝛼(𝛽) = {𝑧 ∈ C : | arg 𝑧 − 𝛽| 6 𝛼}.

Lemma 2. Let 𝜔𝑠 < 0. For an arbitrary polynomial of exponentials 𝑝 satisfying (4) there
exists 𝑟 = 𝑟(𝑝) > 0 such that for each 𝑧, |𝑧| > 𝑟, the estimate

|𝑝(𝑧)| > 𝑐3𝑒
𝜔𝑠 cos(𝛽+𝛼)|𝑧| (7)

holds true in angle 𝐴𝛼(𝛽).

Proof. It is easy to see that all points 𝑧 in angle 𝐴𝛼(𝛽) located outside some circle lie in domain
𝑈𝑠. Hence, estimate (6) for a polynomial of exponentials 𝑝 in domain 𝑈𝑠 for |𝑧| > 𝑐1 implies
the estimate outside some circle |𝑧| > 𝑟 in angle 𝐴𝛼(𝛽). Inequality (7) follows from (6): if
𝑧 = |𝑧|𝑒𝑖𝜙, then in this angle 0 > 𝜔𝑠Re 𝑒

𝑖𝜙 > 𝜔𝑠 cos(𝛽 + 𝛼). The proof is complete.

Suppose that some convex domain 𝐷 contains all the exponents 𝜔𝑘, 𝑘 = 0, 1, . . . , 𝑠, for
polynomial 𝑝 of exponentials satisfying (4). Then it is easy to show that 𝑝 ∈ 𝑃𝐷.

The next lemma was proven in [4] in a slightly different formulation. We consider an arbitrary
sequence of complex numbers 𝒱 = {𝑣𝑗} satisfying Re 𝑣𝑗 > 0 and being discrete in a domain of
complex plane. We assume that

lim sup
𝑗→∞

Re 𝑣𝑗
ln |𝑣𝑗|

= ∞. (8)

For further purposes it is important to note that if sequence 𝒱 lies in angle 𝐴𝛼(𝛽), condition
(8) holds true.

We denote by 𝐼𝒱 = {𝑓 ∈ 𝐻(C) : 𝑓(𝑣𝑗) = 0, 𝑗 ∈ N} a closed ideal in 𝐻(C) (cf. (3)).

Lemma 3. In the above described situation, if condition (8) holds true for 𝒱, none of poly-
nomials of exponentials 𝑝 ̸≡ 0 satisfying (4) can be contained in ideal 𝐼𝒱 .

The matter is that the condition (8) for the zeroes of the ideal contradicts estimate (6).
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4. Main results

For set Λ we introduce set 𝑃 (Λ) of limiting directions at infinity as the set of points 𝑠 ∈ S,
for which there exists a sequence {𝜆𝑛𝑘

}𝑘∈N satisfying lim𝑘→∞ 𝜆𝑛𝑘
/|𝜆𝑛𝑘

| = 𝑠, lim𝑘→∞ |𝜆𝑛𝑘
| = ∞.

Set 𝑃 (Λ) is closed.
Analogues of the following notion often appear in the complex analysis under various names,

for instance, in studying the phenomenon of analytic continuation of sum of series of exponen-
tials, their analogues, as well as in studying elements of invariant subspaces [2], [16], [17], [6].
For further purposes we reproduce some definitions and results from work [2].

We denote S = {𝑠 ∈ C : |𝑠| = 1}. Let 𝑆 be a closed subset S and 𝐷 be a domain in C. We
denote ℎ(𝜙) = sup𝜎∈𝐷 Re(𝑒𝑖𝜙𝜎). If 𝑘(𝜙) : C ↦→ (−∞,+∞] is the support function (in the sense
of R2) of a convex domain 𝐷, then ℎ(𝜙) = 𝑘(−𝜙).

It is easy to see that ℎ(𝜙) is the support function (in the sense of R2) for the domain
complex conjugate with 𝐷. Function 𝐻(𝑧) = sup𝜎∈𝐷 Re(𝑧𝜎) = ℎ(𝜙)|𝑧|, 𝑧 = |𝑧|𝑒𝑖𝜙 ∈ C is
positive homogeneous, lower-semicontinuous, and convex. It implies easily that function ℎ(𝜙)
is lower-semicontinuous on S.

For 𝑠 ∈ S, 𝑠 = 𝑒𝑖𝜙, we introduce the function 𝑑(𝑠) = 𝑘(−𝜙), 𝑑 : S ↦→ (−∞,+∞]. By the
definition, for each 𝑠 ∈ S, 𝑑(𝑠) is the supremum of the projections of points in 𝐷 on the direction
𝑠 = 𝑒−𝑖𝜙.

For instance, given 𝑡 ∈ S and 𝑐 ∈ R, we denote by Π𝑐(𝑡) = {𝑧 ∈ C : Re(𝑡𝑧) < 𝑐} the
half-plane with the direction 𝑡 of the outward normal to the boundary, point 𝑧 = 𝑐𝑡 lies on its
boundary. For 𝐷 = Π𝑐(𝑡) we have 𝑑(𝑠) = +∞, 𝑠 ̸= 𝑡, and 𝑑(𝑠) = 𝑐, 𝑠 = 𝑡.
The set

𝐷𝑆 = {𝑧 ∈ C : Re(𝑠𝑧) < 𝑑(𝑠), 𝑠 = 𝑒𝑖𝜙 ∈ 𝑆, }
is called 𝑆-convex hull of domain 𝐷.

By the definition, 𝑆-convex hull 𝐷𝑆 of each domain 𝐷 is the intersection, over all 𝑠 = 𝑒𝑖𝜙 ∈ 𝑆,
of sets Π(𝑠,𝐷) = {𝑧 ∈ C : Re(𝑠𝑧) < 𝑑(𝑠)}. If there exists 𝑡 ∈ 𝑆 : 𝑑(𝑡) = ∞, then Π(𝑡,𝐷) = C.
If at that there exists at least one number 𝑠 ∈ 𝑆 for which 𝑑(𝑠) < ∞, in the definition of 𝐷𝑆

such 𝑡 ∈ 𝑆 can be neglected.
If 𝑑(𝑠) < ∞, set Π(𝑠,𝐷) is the support half-plane of domain 𝐷, i.e., 𝐷 ⊂ Π(𝑠,𝐷) and

𝜕 𝐷 ∩ 𝜕 Π(𝑠,𝐷) ̸= ∅. It is easy to see that Π(𝑠,𝐷) = Π0(𝑠) + 𝑠𝑑(𝑠). Here Π0(𝑠) = {𝑧 ∈ C :
Re(𝑠𝑧) < 0}).

Set 𝐷𝑆 is a convex domain, moreover, it is 𝑆-convex [2], [16]. If 𝑆 = S, 𝑆-convex hull of a
set is its usual convex hull.

Proposition A. Let 𝐷 be a convex domain and 𝑆 = 𝑃 (Λ). If the series of exponentials∑︀∞
𝑛=1 𝑐𝑛𝑒

𝜆𝑛𝑧 converges absolutely for each 𝑧 ∈ 𝐷, it converges absolutely for 𝑧 ∈ 𝐷𝑃 (Λ). Its sum
is an analytic function in convex domain 𝐷𝑃 (Λ).

The first statement follows from Propositions 16 and 8 in work [2]. It was proven in work
[1] that a series converging absolutely in a convex domain 𝐷 converges also in the topology of
space 𝐻(𝐷) of uniform convergence on compact sets.

Domain 𝐷 is a half-plane. We fix 𝛽, | arg 𝛽| < 𝜋

2
and we denote 𝑠𝛽 = 𝑒𝑖𝛽. We consider

the case when 𝐷 = Π0(𝑒
−𝑖𝛽) is the “left” half-plane.

Suppose that in domain 𝐷 we are given an arbitrary infinite discrete set of real interpolation
nodes ℳ ⊂ Π0(𝑠𝛽) ∩R−. Each point 𝜇𝑘 ∈ ℳ has multiplicity 𝑚𝑘, 𝑚𝑘 ∈ N.

Lemma 4. Suppose that set ℳ has the unique accumulation point 𝑧 = 0. In space
𝐻
(︀
Π0(𝑠𝛽)

)︀
, the problem of multiple interpolation by series of exponentials in Σ

(︀
Λ,Π0(𝑠𝛽)

)︀
with set of nodes ℳ is solvable if and only if 𝑠𝛽 ∈ 𝑃 (Λ).
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We observe that direction 𝑠𝛽 is complex conjugate for the direction 𝑠𝛽 = 𝑒−𝑖𝛽 of the outward
normal to boundary 𝜕Π0(𝑠𝛽).

Proof. By the symmetry arguments (consider functions 𝑓(𝑧)) in the proof we can assume that

𝛽 ∈
[︁
0,
𝜋

2

)︁
. The hypothesis of the lemma means that sets Λ ∩ 𝐴𝛼(𝛽) are infinite for all

sufficiently small 𝛼.
Necessity. Suppose that the problem of multiple interpolation by series of exponentials in

Σ
(︀
Λ,Π0(𝑠𝛽)

)︀
with set of nodes ℳ is solvable. Assume that 𝑠𝛽 ̸∈ 𝑃 (Λ). Then closed set 𝑃 (Λ)

is separated from direction 𝑠𝛽 conjugate to the direction 𝑠𝛽 of the outward normal to boundary
𝜕Π0(𝑠𝛽).

For each 𝑠 = 𝑒𝑖𝜙 ∈ 𝑃 (Λ) we have 𝑠 ̸= 𝑠𝛽. Hence, for the domain 𝐷 = Π0(𝑠𝛽) the identity
𝑑(𝑠) = +∞ holds true. Therefore, for each 𝑠 ∈ 𝑃 (Λ) we get Π(𝑠,𝐷) = C. And by the definition
of 𝑆-convex hull we obtain 𝐷𝑃 (Λ) = C.
Proposition A implies the following fact. If a series of exponentials converges absolutely in

Π0(𝑠𝛽) and 𝑠𝛽 ̸∈ 𝑃 (Λ), then this series converges absolutely in C and its sum is an entire
function.

Interpolation by entire functions with arbitrary (for instance, unbounded) data on the set of
nodes ℳ with a finite accumulation point is impossible that leads us to the contradiction.

Sufficiency. The proof consists of two steps.
1. First we reduce the problem to the interpolation in the kernel of convolution operator. If

the statement of the lemma is proven for ̃︀Λ ⊂ Λ, it will be true also for Λ. In what follows, we
pass to a special subspace in Σ(Λ, 𝐷) closed in 𝐻(𝐷). In order to do it, we replace the set of
exponents by a sequence in Λ.

Passing to a subsequence we can assume that

1. Λ ⊂ 𝐴𝛼(𝛽) for some small 𝛼.
2. 𝑃 (Λ) = {𝑠𝛽}.
3. The separation condition

|𝜆𝑛+1| > 2|𝜆𝑛| (9)

holds true.

By 𝐺 we denote an entire function with simple zeroes 𝜆𝑛,

𝐺(𝑧) =
∞∏︁
𝑛=1

(︂
1− 𝑧

𝜆𝑛

)︂
.

The quantity 𝛿 = lim sup𝑛→∞
1

|𝜆𝑛|
ln

1⃒⃒
𝐺′(𝜆𝑛)

⃒⃒ is Gelfand-Leont’ev index.

It follows from (9) that function 𝐺 has the minimal type at order 1 and the condensation
index is 𝛿 = 0. It was shown in work [4].

The results of the monograph [11, Thm. 4.2.2] implies the following statement.
Let 𝛿 = 0. Consider the closure in sense of the topology in 𝐻(𝐷) of a linear span of

polynomial-exponential monomials with the exponents having the upper density counting multi-
plicities. Each function in this closure is represented by a series of exponentials.

Subspace Ker𝑀𝐺 admits spectral synthesis. Then, in view of Theorem 4.2.3 in monograph
[11], we obtain the following statement.

Proposition B. Kernel Ker𝑀𝐺 is formed by functions 𝑓(𝑧) represented by the series of
exponentials,

𝑓(𝑧) =
∞∑︁
𝑛=1

𝑐𝑛𝑒
𝜆𝑛𝑧, 𝑧 ∈ C,
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converging in the topology of space 𝐻(𝐷), i.e., Ker𝑀𝐺 = Σ(Λ, 𝐷).

It should be noticed that in the multi-dimensional case in a more general situation of invariant
subspaces, in work [18] the fundamental principle was studied (in our case it is Proposition B).
The most general formulation of this problem for a complex plane was considered in [19]. In
work [20] series with real exponents Λ were studied in details.

In these works a new characteristics 𝑆Λ was introduced. Employing this characteristics, the
authors succeeded to obtain the validity criterions for the fundamental principle for invari-
ant subspaces in convex domains. By the results of the first step, Λ is located in an angle.
Then, reproducing word-by-word the proof of Lemma 1 in [20], we obtain that 𝑆Λ = 0 and
Proposition B can be obtained by the results in [18], [19], [20].

2. At this step we proceed to proving dual statements.
We denote by 𝜓 a function in 𝐻(𝐷) with zero set ℳ counting the multiplicities 𝑚𝑘.
By Proposition 1, the solvability of interpolation problem follows from two dual statements:

(I *) The identity
(︀
𝐺
)︀
𝑃𝐷

∩Ker ̃︁𝑀𝜓 = {0} holds true.

(𝐼𝐼*) Subspace
(︀
𝐺
)︀
𝑃𝐷

+Ker ̃︁𝑀𝜓 is closed in space 𝑃𝐷.

Submodule
(︀
𝐺
)︀
𝑃𝐷

has been introduced in (3).

An important ingredient in the proof of Statements (𝐼*) and (𝐼𝐼*) is the following known
fact.

Subspace Ker ̃︁𝑀𝜓 ⊂ 𝑃𝐷 is the linear span of all the monomials {𝑧𝜈𝑒𝜇𝑘𝑧}, 𝑘 ∈ N, 𝜈 =
0, 1, . . . ,𝑚𝑘 − 1, i.e., it consists of exponentials (4), where 𝜔𝑘 = 𝜇𝑘.

This is an easily provable fundamental principle for Ker ̃︁𝑀𝜓 in space 𝑃𝐷.
Dual statement (𝐼*) follows from Lemma 3: let us show that a polynomial of exponentials

𝑝 ∈ Ker ̃︁𝑀𝜓, 𝑝 ̸≡ 0, can not belong to
(︀
𝐺
)︀
𝑃𝐷

. Indeed, in view of Step 1, we assume that set Λ

lies in 𝐴𝛼(𝛽). It implies that sequence 𝑣𝑘 = 𝜆𝑘 satisfies condition (8) in Lemma 3. We observe
that 𝐼Λ =

(︀
𝐺
)︀
is a closed ideal in 𝐻(C). As it was mentioned in (3),

(︀
𝐺
)︀
𝑃𝐷

=
(︀
𝐺
)︀
∩ 𝑃𝐷.

Statement (𝐼*) is proven.
Let us prove the last identity. By the definition,

(︀
𝐺
)︀
𝑃𝐷

⊂ 𝐼Λ ∩ 𝑃𝐷. In accordance with

Theorem [14] on division by a function of minimal type in space 𝑃𝐷, the opposite inclusion
holds true as well. In other words, it is a corollary of the theorem on summing indicators.
Submodule in the right hand side of the last identity is closed since the topology in 𝑃C is
stronger than the topology of pointwise convergence. Hence, submodule (𝐺)𝑃𝐷

is closed in
𝑃𝐷. These facts were used above in obtaining the dual formulation of interpolation problem
(Proposition 1).

For the direct algebraic sum (𝐺)𝑃𝐷
⊕Ker ̃︁𝑀𝜓 we obtain (𝐺)𝑃𝐷

⊕Ker ̃︁𝑀𝜓 ⊂ 𝑃𝐷. Let us prove
the closedness of this subspace in 𝑃𝐷 (it is statement (𝐼𝐼*)). As it is known [9], in (𝐿𝑁*)-space
𝑃𝐷, the closedness of its arbitrary subspace 𝑋 is equivalent to its sequential closedness.

Convergence of a sequence {𝑔𝑙}𝑙∈N in (𝐿𝑁*)-topology of space 𝑃𝐷 means the following:
1. Sequence {𝑔𝑙} converges to 𝑔 in the topology of space 𝐻(C).
2. There exist 𝐴 > 0, 𝑗 ∈ N such that for each 𝑙 ∈ N the estimate

|𝑔𝑙(𝑧)| 6 𝐴𝑒𝐻𝑗(𝑧), 𝑧 ∈ C, (10)

holds true.
Here {𝐾𝑗} is an arbitrary fixed countable exhausting of domain 𝐷 by compact sets: 𝐾𝑗 ⊂

int𝐾𝑗+1 and 𝐷 =
⋃︀
𝑗∈N𝐾𝑗, 𝐻𝑗(𝑧) = sup𝜎∈𝐾𝑗

Re 𝑧𝜎. If 𝑧 = |𝑧|𝑒𝑖𝜙, ℎ𝑗(𝜙) = 𝐻𝑗(𝑧)/|𝑧| is the

support function (in the sense of R2) of the compact set complex conjugate with 𝐾𝑗.
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We consider an arbitrary sequence {𝑔𝑙}𝑙∈N of functions in (𝐺)𝑃𝐷
⊕Ker ̃︁𝑀𝜓 and assume that

it converges to a function 𝑔 ∈ 𝑃𝐷 in space 𝑃𝐷. Let us show that limiting function 𝑔 belongs to

(𝐺)𝑃𝐷
⊕Ker ̃︁𝑀𝜓.

Sequence {𝑔𝑙} consists of functions 𝑔𝑙 = 𝑝𝑙 + 𝑅𝑙, where 𝑅𝑙 ∈ (𝐺)𝑃𝐷
, i.e., 𝑅𝑙|Λ = 0, while

𝑝𝑙 ∈ Ker ̃︁𝑀𝜓. If sequence {𝑔𝑙} contains infinitely many terms with 𝑅𝑙 ≡ 0, then 𝑔 ∈ Ker ̃︁𝑀𝜓. If
in {𝑔𝑙} there are infinitely many terms with 𝑝𝑙 ≡ 0, then 𝑔 ∈ (𝐺)𝑃𝐷

. For sequences {𝑔𝑙} of such

type we have 𝑔 ∈ (𝐺)𝑃𝐷
⊕Ker ̃︁𝑀𝜓.

Therefore, in what follows we can assume that sequence {𝑔𝑙} is so that 𝑅𝑙 ̸≡ 0, 𝑝𝑙 ̸≡ 0 for
each 𝑙.

We suppose that 𝜇𝑘 < 𝜇𝑘+1 < 0, 𝜇𝑘 → 0, 𝑘 → ∞. Since 𝑝𝑙 ∈ Ker ̃︁𝑀𝜓, 𝑝 ̸≡ 0, this is a
polynomial of exponentials

𝑝𝑙(𝑧) =
∑︁
Fin

(𝑙)
ℳ

𝑎
(𝑙)
𝑘 (𝑧)𝑒𝜇𝑘𝑧.

Here for each 𝑘 ∈ N functions 𝑎𝑙𝑘 are arbitrary polynomials of degree at most 𝑚𝑘 − 1. For each

𝑙 ∈ N in the right hand side we have the sum over a finite subset 𝐹𝑖𝑛
(𝑙)
ℳ ⊂ ℳ. We denote by

𝑢𝑙 the index of maximal 𝜇𝑘 in this representation, i.e., 𝑎𝑙𝑢𝑙 ̸≡ 0.
Suppose that sequence {𝑔𝑙} is such that the set of numbers {𝑢𝑙} is infinite. Let us show that

it is bounded. Assume that set {𝑢𝑙} is unbounded.
We exhaust half-plane Π0(𝑠𝛽) by half-circles 𝐾𝑗 = 𝑒−𝑖𝛽 · 𝐵−

𝑗 , where 𝐵
−
𝑗 = (−1/𝑗 + {|𝑧| 6

𝑗}) ∩ {Re 𝑧 6 −1/𝑗}. For each 𝑗 we denote 𝑡𝑗 = arctg 𝑗2. We let 𝜀𝑗 =
1

2
(
𝜋

2
− 𝑡𝑗). It is easy to

prove the estimates

−1

𝑗
|𝑧| 6 𝐻𝑗(𝑧) 6 −𝐴𝑗|𝑧| for 𝑧 ∈ 𝐴𝜀𝑗(𝛽), (11)

where 𝐴𝑗 =

√︀
1 + 𝑗4

𝑗2
sin 𝜀𝑗 =

1

2𝑗2
(1 + 𝑜(𝑗)), 𝑗 → ∞.

All the polynomials of exponentials 𝑝𝑙 satisfy (1). We choose 𝑘 > 𝑗 such that 𝜀𝑘 <
𝜋

2
− 𝛽.

Since 𝑎
(𝑙)
−𝑞𝑙 ̸≡ 0, we can apply estimate (7) for 𝑝𝑙 in Lemma 2 with 𝛼 = 𝜀𝑘. Employing also

estimate (10), we get the following inequality for 𝑅𝑙 = 𝑔𝑙 − 𝑝𝑙, 𝑝𝑙 ̸≡ 0, 𝑅𝑙 ̸≡ 0:

|𝑅𝑙(𝑧)| > |𝑝𝑙(𝑧)| − |𝑔𝑙(𝑧)| > 𝑐3𝑒
𝜇𝑢𝑙 cos(𝛽+𝛼)|𝑧| − 𝐴𝑒𝐻𝑗(𝑧),

for each 𝑧 in domain {𝑧 ∈ 𝐴𝜀𝑘(𝛽), |𝑧| > 𝑟}, where 𝑟 = 𝑟(𝑙). Since 𝑘 > 𝑗, 𝐴𝜀𝑘(𝛽) ⊂ 𝐴𝜀𝑗(𝛽), by
(11) we obtain that

|𝑅𝑙(𝑧)| > |𝑝𝑙(𝑧)| − |𝑔𝑙(𝑧)| > 𝑐3𝑒
𝜇𝑢𝑙 cos(𝛽+𝛼)|𝑧| − 𝐴𝑒−𝐴𝑗 |𝑧|,

outside some circle |𝑧| > 𝑟 in angle 𝐴𝜀𝑘(𝛽).
By assumption, set 𝑢𝑙 is unbounded, thus, in the representations of polynomials of exponen-

tials 𝑝𝑙 there exist 𝜇𝑢𝑙 arbitrarily close to 0.
We choose 𝜇𝑢𝑙0 > 𝐴𝑗/ cos(𝛽 + 𝛼). It implies that |𝑅𝑙0(𝑧)| > 0 for each 𝑧 outside some circle

{|𝑧| > 𝑟1(𝑙0)} in angle 𝐴𝜀𝑘(𝛽).
We obtain the contradiction: indeed, by Step 1, 𝑃 (Λ) = {𝑠𝛽}, this is why for each 𝑘 outside

any circle in angle 𝐴𝜀𝑘(𝛽) there exists an infinite sequence of points in Λ, while we are given
that 𝑅𝑙0|Λ = 0.

It should be notices for arbitrary sequence {𝑔𝑙} compact set 𝐾𝑗 can be arbitrarily large while
quantity 𝜀𝑘 can be arbitrarily small as the assumption of the lemma says.

Hence, in the representations for polynomials of exponentials 𝑝𝑙 in an arbitrary converging
sequence {𝑔𝑙}, 𝑔𝑙 = 𝑝𝑙 +𝑅𝑙, set of numbers 𝑢𝑙 is bounded. Therefore, sequence {𝑝𝑙} belongs to
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some finite-dimensional subspace 𝑋 ⊂ Ker ̃︁𝑀𝜓1 . Statement (𝐼*) means that all the elements of

converging sequence 𝑔𝑙 = 𝑝𝑙+𝑅𝑙 lies in the algebraic direct sum 𝑋⊕ (𝐺)𝑃𝐷
⊂ Ker ̃︁𝑀𝜓1 ⊕ (𝐺)𝑃𝐷

.
In each topological vector space algebraic sum of a finite-dimensional subspace and a closed

subspace is a closed subspace [21]. Thus, limiting function 𝑔 of sequence 𝑔𝑙 = 𝑝𝑙 + 𝑅𝑙 belongs

to Ker ̃︁𝑀𝜓 ⊕ (𝐺)𝑃𝐷
. Statement (𝐼𝐼*) is proven.

Proven statements (𝐼*) and (𝐼𝐼*) complete the proof of Lemma 4.

Remark 1. In the proof of sufficiency we have shown the following fact. Let Λ be an arbi-
trary set of exponents. Then condition (8) (implied by the hypothesis of Lemma 4) is sufficient
for set Σ(Λ,Π0(𝑠𝛽)) + 𝐼ℳ to be everywhere dense in the topology of space 𝐻(Π0(𝑠𝛽)).

Remark 2. By the transformation 𝑧 → −𝑧 of plane C we obtain the formulation corre-
sponding to the “right” half-plane. Moreover, in the considered problem for each ℎ ∈ R the
transformation 𝑧 → 𝑧 + ℎ of the complex plane is admissible after which we need to change
the formulations in an appropriate way. Indeed, under such transformation the set of series of
exponentials is preserved while the set of nodes is shifted.

Domain 𝐷 is convex with an accumulation point ℳ at the boundary.
Let 𝐷 be a convex domain in C. We denote ℎ(𝜙) = sup𝜎∈𝐷 Re(𝑒𝑖𝜙𝜎). For each 𝜙, number

ℎ(𝜙) is the value of the support function 𝑘(−𝜙) (in the sense of R2) for domain𝐷 in the direction
𝑒−𝑖𝜙. Let𝑠 = 𝑒𝑖𝜙; function 𝑑(𝑠) = 𝑘(−𝜙) was introduced above.

The straight line 𝑙(𝑠) = {𝑧 = 𝑥 + 𝑖𝑦 : Re(𝑠𝑧) = 𝑥 cos(−𝜙) + 𝑦 sin(−𝜙) = 𝑑} is called the
support one for domain 𝐷 in the direction 𝑠 = 𝑒−𝑖𝜙, if at the boundary of 𝐷 there exists a point
belonging to 𝑙(𝑠) and domain 𝐷 lies in the support half-plane Π(𝑠,𝐷) = {𝑧 ∈ C : Re(𝑠𝑧) < 𝑑}.
We call this point the support point for line 𝑙(𝑠). It is easy to see that line 𝑙(𝑠) is support if
and only if 𝑑 = 𝑑(𝑠).

Let 0 ∈ 𝜕𝐷. We denote by 𝑇𝐷(0) ⊂ S the set of all 𝑠 ∈ S for which point 0 at boundary 𝐷
is a support one for 𝑙(𝑠). It is clear that 𝑇𝐷(0) = {𝑠 ∈ S : 𝑑(𝑠) = 0}.

We observe that under the hypothesis of Lemma 4, 𝐷 = Π0(𝑠𝛽), 𝑇𝐷(0) = {𝑠𝛽}.
Theorem 1. Let 𝐷 be a convex domain, 0 ∈ 𝜕 𝐷 and 𝐷∩R ̸= ∅. Suppose that set ℳ ⊂ 𝐷∩R

is discrete in 𝐷 and has the unique accumulation point. Problem of multiple interpolation by the
series of exponentials in Σ(Λ, 𝐷) with set of nodes ℳ is solvable if and only if 𝑃 (Λ)∩𝑇𝐷(0) ̸= ∅.

Proof. The case 𝐷 = Π0(𝑠𝛽), |𝛽| <
𝜋

2
, was considered in Lemma 4.

Without loss of generality we can assume that 𝐷 ∩ R− ̸= ∅, then ℳ ⊂ 𝐷 ∩ R−; otherwise
we can employ transformation 𝑧 → −𝑧 of plane C.
Then ℎ(𝜙) > 0 and the lower semi-continuity yield that set 𝑇𝐷(0) is closed. The convexity

and homogeneity of function 𝐻(𝑧) = ℎ(𝜙)|𝑧| imply that 𝑇𝐷(0) is a connected set.

It is also easy to see that | arg 𝑠| < 𝜋

2
for each 𝑠 ∈ 𝑇𝐷(0) since ℳ∩R− ̸= ∅.

The necessity of condition 𝑃 (Λ)∩𝑇𝐷(0) ̸= ∅ follows from Proposition B, while the sufficiency
is proven by reducing to Lemma 4.

Necessity. Suppose that the interpolation problem is solvable but the hypothesis of the
theorem is not true, 𝑃 (Λ) ∩ 𝑇𝐷(0) = ∅. In what follows we shall show that in this case the
point 𝑧 = 0 lies in 𝐷𝑃 (Λ).
Sets 𝑃 (Λ) and 𝑇𝐷(0) = {𝑠 ∈ S : 𝑑(𝑠) = 0} are closed.
For each subset 𝑋 ⊂ S and number 𝛿 > 0 we denote

𝑋𝛿 = {𝑠 ∈ S : ∃𝑢 ∈ 𝑋, |𝑠− 𝑢| 6 𝛿}.
There exists 𝛿 > 0 such that 𝑃 (Λ) ∩

(︀
(𝑇𝐷(0)

)︀
𝛿
= ∅. Hence, there exists a connected closed

set 𝑆1 ∈ S such that 𝑃 (Λ) ∈ int𝑆1, 𝑆1 ∩ 𝑇𝐷(0) = ∅.
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The definition of 𝑆-convex hull implies that

𝐷𝑆1 ⊂ 𝐷𝑃 (Λ). (12)

For each 𝑠 ∈ 𝑆1 we have 𝑑(𝑠) > 0. Hence, the semi-continuity yields that ∃𝑐, 𝑑(𝑠) > 𝑐 > 0,
𝑠 ∈ 𝑆1. We denote 𝐵(𝑐) = {𝑧 ∈ C : |𝑧| = 𝑐}. For each 𝑧 ∈ 𝐵(𝑐) and each 𝑠 ∈ 𝑆1 we have
Re(𝑠𝑧) < 𝑐 < 𝑑(𝑠). It follows that point 0 ∈ 𝜕𝐷 lies in Π𝑐(𝑠) ⊂ Π(𝑠,𝐷) for each 𝑠 ∈ 𝑆1. It is
proven that 0 ∈

(︀
𝐵(𝑐)

)︀
𝑆1

⊂ 𝐷𝑆1 .

By (12) we obtain that 0 ∈ 𝐷𝑃 (Λ). We complete the proof as follows.
By Proposition A, each series of exponentials converging absolutely in convex domain 𝐷

converges absolutely in convex domain 𝐷𝑃 (Λ). Its sum is an analytic function in 𝐷𝑃 (Λ).
Point 𝑧 = 0 lies in domain 𝐷𝑃 (Λ) and by the assumption, it is the accumulation one for set of

nodes ℳ. For set of nodes ℳ having an accumulation point in the domain, the interpolation
by analytic in this domain functions is impossible for arbitrary (for instance, unbounded)
interpolation data and it leads us to the contradiction. The proof of the necessity is complete.

Sufficiency. By the assumption, there exists a limiting direction 𝑠𝛽 = 𝑒𝑖𝛽 ∈ 𝑃 (Λ) lying in

𝑇𝐷(0). Hence, |𝛽| <
𝜋

2
since the set 𝐷 ∩R− is non-empty.

Since 𝑠𝛽 ∈ 𝑇𝐷(0), point 𝑧 = 0 is the support one for the straight line 𝑙(𝑠𝛽) = {𝑧 : Re(𝑧𝑠𝛽) =
0}. Domain 𝐷 lies in the support half-plane Π0(𝑠𝛽) = {Re(𝑧𝑠𝛽) < 0} and 0 ∈ 𝜕 Π0(𝑠𝛽) = 𝑙(𝑠𝛽).
Thus, set ℳ ⊂ Π0(𝑠𝛽) can be employed as the set of nodes for interpolation by series of
exponentials in space 𝐻

(︀
Π0(𝑠𝛽)

)︀
⊂ 𝐻(𝐷). Under such conditions, the solvability for problem

of interpolation by series of exponentials in space 𝐻
(︀
Π0(𝑠𝛽)

)︀
was proven in Lemma 4. The

solvability of the problem in 𝐻(𝐷) follows from Proposition 2. The proof is complete.

The authors express their gratitude to the participants of Ufa city seminar on theory of
functions for the attention to the work and a useful discussion.
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