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ANALOGUE OF BITSADZE-SAMARSKII PROBLEM

FOR A CLASS OF PARABOLIC-HYPERBOLIC

EQUATIONS OF SECOND KIND
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Abstract. In this work we prove the unique solvability of a Bitsadze-Samarskii problem
for a degenerate parabolic-hyperbolic equation of second kind, when on the first and second
part of characteristics Bitsadze-Samarskii condition is imposed.
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1. Introduction

Local and nonlocal boundary value problems for equations of elliptic-hyperbolic and
parabolic-hyperbolic types of first kind in various domains were studied in works by A.V. Bit-
sadze [1], M.S. Salakhitdinov [2], T.D. Dzhuraev [3], E.I. Moiseev [4], A.M. Nakhushev [5],
T.Sh. Kal’menov [6], K.B. Sabitov [7], M.S. Salakhitdinov and B.I. Islomov [8], G.C. Wen [9]
and their pupils. Later it was found that these problems appear in studying various problems
of mathemtical biology, forecasting of soil moisture, solving problems in the physics of plasma,
and in the mathematical modelling of laser emission.

It was pointed out in works by M.V. Keldysh [10] and A.V. Bitsadze [1] that there is an
essential influence of lower terms in the equations for the formulations of boundary value prob-
lems for degenerate elliptic and hyperbolic equations. As mixed type equations of second kind,
one usually calls equations whose degenerating line is an envelope for a family of characteristics,
i.e., it is itself a characteristics.

Starting from 1953, after the publication of famous paper by I.L. Karol [11] there emerged
an interest to studying boundary value problems for the mixed type equations of second kind.
Analogues of Tricomi problem for an elliptic-hyperbolic equation of second kind in a domain
a part of whose boundary is the degeneration line were considered in works [12]–[18]. In work
[19]–[20] the Dirichlet problem for mixed type equations of second kind in a rectangular domain
was studied.

Boundary value problems for parabolic-hyperbolic equations of second kind with no degener-
ation in the parabolic part were studied in works [21]–[22]. However, few works were devoted to
mixed parabolic-hyperbolic type equations of second kind with a degeneration in the parabolic
part; we mention [23], [24].
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In works [25], [26] there was studied a generalized Tricomi problem for elliptic-hyperbolic
equation of first kind in the case where boundary condition on the first part of characteristics
was imposed locally while on the second part and on a parallel characteristics a Bitsadze-
Samarskii type condition was imposed. Such problems for mixed parabolic-hyperbolic and
elliptic-hyperbolic equations of second kind were studied too little; here we mention work [27].

In this paper we study a boundary value problem for a degenerate parabolic-hyperbolic
equation of second kind in the case when on the first part of the characteristics a non-local
boundary condition is imposed while on the second part and on a parallel characteristics a
Bitsadze-Samarskii type condition is introduced.

2. Formulation of the problem

We consider the equation

0 =

{︃
𝑢𝑥𝑥 − |𝑥|𝑝𝑢𝑦, 𝑝 > 0 in 𝐷𝑗,

𝑢𝑥𝑥 − (−𝑦)𝑚𝑢𝑦𝑦, 0 < 𝑚 < 1 in 𝐷3,
(1)

where 𝐷𝑗 is the domain bounded by the segments 𝑂𝐴𝑗, 𝐴𝑗𝐵𝑗, 𝑅𝐵𝑗, 𝑂𝑅 in the lines 𝑦 = 0,
𝑥 = (−1)𝑗+1, 𝑦 = 1, 𝑥 = 0, respectively, for 𝑦 > 0. Hereinafter 𝑗 = 1 as 𝑥 > 0, 𝑗 = 2 as 𝑥 6 0;
𝐷3 is a characteristic triangle bounded by the characteristics 𝐴1𝐶 : 𝑥+(1−2𝛽)(−𝑦)1/(1−2𝛽) = 1,
𝐴2𝐶 : 𝑥 − (1 − 2𝛽)(−𝑦)1/(1−2𝛽) = −1, 𝐴1𝐴2 : 𝑦 = 0, −1 < 𝑥 < 1 of equation (1) as 𝑦 < 0.
Here 2𝛽 = 𝑚/(𝑚− 2), at that

− 1 < 2𝛽 < 0. (2)

We introduce the notations:

𝐽1 = {(𝑥, 𝑦) : 0 < 𝑥 < 1, 𝑦 = 0} ,
𝐽2 = {(𝑥, 𝑦) : −1 < 𝑥 < 0, 𝑦 = 0} , 𝐽3 = {(𝑥, 𝑦) : 𝑥 = 0, 0 < 𝑦 < 1}
𝑂𝐶1 : 𝑥− (1 − 2𝛽)(−𝑦)1/(1−2𝛽) = 0, 𝑂𝐶2 : 𝑥 + (1 − 2𝛽)(−𝑦)1/(1−2𝛽) = 0,

𝐶
(︀
0; −(2/(2 −𝑚))2/(2−𝑚)

)︀
, 𝑂(0, 0) ∈ 𝐴1𝐴2, 𝐶1 ∈ 𝐴1𝐶, 𝐶2 ∈ 𝐴2𝐶,

𝐷 = 𝐷1 ∪𝐷2 ∪𝐷3 ∪ 𝐽1 ∪ 𝐽2 ∪ 𝐽3, 𝐷4 = 𝐷1 ∪𝐷2 ∪ 𝐽3,

Θ𝑗(𝑥) =

(︃
𝑥− 1

2
; −
[︂

𝑥 + 1

2(1 − 2𝛽)

]︂1−2𝛽
)︃
, (𝑗 = 1, 2), (3𝑗)

Θ*(𝑥) =

(︃
𝑥

2
; −

[︂
𝑥

2(1 − 2𝛽)

]︂1−2𝛽
)︃
, (3)

Θ1(𝑥) and Θ2(𝑥) are the intersection points of characteristics 𝐴2𝐶 with the characteristics
starting at point 𝑀2(𝑥, 0), 𝑥 ∈ [−1; 0] and 𝑀1(𝑥, 0), 𝑥 ∈ [0; 1], respectively, and Θ*(𝑥) are the
intersection points of characteristics 𝑂𝐶1 with the characteristics starting at point 𝑀1(𝑥, 0),
𝑥 ∈ [0; 1].

By 𝐷31, 𝐷32 and 𝐷33 we denote respectively the characteristic triangles 𝑂𝐶1𝐴1, 𝐴2𝐶2𝑂 and
quadrilateral 𝑂𝐶1𝐶𝐶2.
BS problem. In domain 𝐷, find a function 𝑢(𝑥, 𝑦) with the properties:
1)𝑢(𝑥, 𝑦) ∈ 𝐶(𝐷);
2)𝑢(𝑥, 𝑦) is a regular solution to equation (1) on sets 𝐷𝑗 ∪𝐵𝑗𝑅 (𝑗 = 1, 2);
3)𝑢(𝑥, 𝑦) is a generalized solution to equation (1)in class 𝑅2 [28] in domain 𝐷3∖ (𝑂𝐶1 ∪𝑂𝐶2) ;
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4) 𝑢(𝑥, 𝑦) satisfies the boundary conditions:

𝑢(𝑥, 𝑦)
⃒⃒
𝐴𝑗𝐵𝑗

= 𝜙𝑗(𝑦), 0 6 𝑦 6 1, (𝑗 = 1, 2), (4𝑗)

𝑑

𝑑𝑥
𝑢 [Θ1(𝑥)] + 𝑎(𝑥)𝑢(𝑥, 0) = 𝑏(𝑥), (𝑥, 0) ∈ 𝐽2, (5)

𝑢 [Θ2(𝑥)] = 𝜇𝑢 [Θ*(𝑥)] + 𝜌(𝑥), (𝑥, 0) ∈ 𝐽1; (6)

5) 𝑢𝑦 ∈ 𝐶 (𝐷1 ∪ 𝐽1) ∩ 𝐶 (𝐷2 ∪ 𝐽2) ∩ 𝐶 (𝐷3 ∪ 𝐽1 ∪ 𝐽2) and 𝑢𝑥 ∈ 𝐶 (𝐷1 ∪ 𝐽3) ∩ ∩𝐶 (𝐷2 ∪ 𝐽3);
on the intervals 𝐽1 ∪ 𝐽2 and 𝐽3 we respectively have conjugation conditions

lim
𝑦→−0

𝜕𝑢 (𝑥, 𝑦)

𝜕𝑦
= 𝑝𝑗(𝑥) lim

𝑦→+0

𝜕𝑢 (𝑥, 𝑦)

𝜕𝑦
+ 𝑞𝑗(𝑥), (𝑥, 0) ∈ 𝐽𝑗, (7𝑗)

and

lim
𝑥→−0

𝜕𝑢 (𝑥, 𝑦)

𝜕𝑥
= lim

𝑥→+0

𝜕𝑢 (𝑥, 𝑦)

𝜕𝑥
, (0, 𝑦) ∈ 𝐽3, (73)

where 𝑎(𝑥), 𝑏(𝑥), 𝜌(𝑥), 𝜙𝑗(𝑦), 𝑝𝑗(𝑥), 𝑞𝑗(𝑥) (𝑗 = 1, 2) are given functions, at that,

𝑏(−1) = 0, 𝑏(0) = 0, 𝑎(0) ̸= 0, 𝜌′(0) = 0, (8)

𝜇 = 𝑐𝑜𝑛𝑠𝑡 > 0, 𝑎(𝑥) 6 0, 𝑎′(𝑥) 6 0, ∀ 𝑥 ∈ [−1, 1] , 𝑝𝑗(𝑥) < 0, ∀ 𝑥 ∈ 𝐽𝑗, (9)

𝜙1(𝑦), 𝜙2(𝑦) ∈ 𝐶(𝐽3) ∩ 𝐶1(𝐽3), (10)

𝑎(𝑥), 𝑏(𝑥) ∈ 𝐶2
(︀
𝐽2
)︀
, 𝜌(𝑥) ∈ 𝐶2

(︀
𝐽1
)︀
, 𝑝𝑗(𝑥), 𝑞𝑗(𝑥) ∈ 𝐶

(︀
𝐽𝑗
)︀
∩ 𝐶2 (𝐽𝑗) . (11)

3. Main functional relations

We introduce the notations

𝑢(𝑥, 0) = 𝜏𝑗(𝑥), (𝑥, 0) ∈ 𝐽𝑗, 𝑢𝑦 (𝑥,±0) = 𝜈
±

𝑗 (𝑥), (𝑥, 0) ∈ 𝐽𝑗, (𝑗 = 1, 2), (12𝑗)

𝑢(0, 𝑦) = 𝜏3 (𝑦) , (0, 𝑦) ∈ 𝐽3, 𝑢𝑥 (±0, 𝑦) = 𝜈3 (𝑦) , (0, 𝑦) ∈ 𝐽3. (123)

A generalized solution in class 𝑅2 to the Cauchy problem with condition (121) for equation
(1) in domain 𝐷31 is given by the formula [11], [28, Eq. (27.5)]:

𝑢 (𝜉, 𝜂) =

𝜉∫︁
0

(𝜂 − 𝑡)−𝛽(𝜉 − 𝑡)−𝛽𝑇1 (𝑡) 𝑑𝑡 +

𝜂∫︁
𝜉

(𝜂 − 𝑡)−𝛽(𝑡− 𝜉)−𝛽𝑁1 (𝑡) 𝑑𝑡, (131)

where

𝑁1(𝑡) = 𝑇1(𝑡)/2 cos𝜋𝛽 − 𝛾1𝜈
−
1 (𝑡), (141)

𝛾1 = [2 (1 − 2𝛽)]2𝛽−1Γ (2 − 2𝛽)
⧸︀

Γ2 (1 − 𝛽),

𝜉 = 𝑥− (1 − 2𝛽) (−𝑦)1/(1−2𝛽), 𝜂 = 𝑥 + (1 − 2𝛽) (−𝑦)1/(1−2𝛽), (15)

𝜏1(𝑥) =

𝑥∫︁
0

(𝑥− 𝑡)−2𝛽𝑇1 (𝑡) 𝑑𝑡, (𝑥, 0) ∈ 𝐽1, (161)

functions 𝑇1(𝑥) and 𝜈−
1 (𝑥) are continuous in (0, 1) and are integrable on [0, 1], while 𝜏1(𝑥) has

a zero of order at least −2𝛽 as 𝑥 → 0.
The generalized solution in class 𝑅2 to the Cauchy problem with condition (122) for equation

(1) in domain 𝐷3𝑗 (𝑗 = 2, 3) is given by the formula:

𝑢 (𝜉, 𝜂) =

𝜉∫︁
−1

(𝜂 − 𝑡)−𝛽(𝜉 − 𝑡)−𝛽𝑇2 (𝑡) 𝑑𝑡 +

𝜂∫︁
𝜉

(𝜂 − 𝑡)−𝛽(𝑡− 𝜉)−𝛽𝑁2 (𝑡) 𝑑𝑡, (132)
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where

𝑁2 (𝑡) = 𝑇2 (𝑡)/2 cos𝜋𝛽 − 𝛾1𝜈
−
2 (𝑡) , (142)

while 𝜉, 𝜂 are determined by (15);

𝜏2(𝑥) =

𝑥∫︁
−1

(𝑥− 𝑡)−2𝛽𝑇2 (𝑡) 𝑑𝑡, (𝑥, 0) ∈ 𝐽2, (162)

functions 𝑇2(𝑥) and 𝜈
−
2 (𝑥) are continuous in (−1, 0) and are integrable on [−1, 0], while 𝜏2(𝑥)

has a zero of order at least −2𝛽 as 𝑥 → −1.
Letting 𝜉 = −1 and 𝜂 = 𝑥 in (132), in view of (31), (5), (142) and

𝑢 [Θ1(𝑥)] =

𝑥∫︁
−1

(𝑥− 𝑡)−𝛽 (1 + 𝑡)−𝛽𝑁2 (𝑡) 𝑑𝑡, (𝑥, 0) ∈ 𝐽2, (171)

we obtain the functional relation for 𝑇2(𝑥) and 𝜈−
2 (𝑥) transferred from domain 𝐷32 in 𝐽2:

𝛾1𝜈
−
2 (𝑥) =

(1 + 𝑥)𝛽

Γ (1 − 𝛽)
𝐷−𝛽

−1𝑥𝑎(𝑥)𝜏2(𝑥) +
1

2 cos𝜋𝛽
𝑇2(𝑥) − (1 + 𝑥)𝛽

Γ (1 − 𝛽)
𝐷−𝛽

−1𝑥𝑏(𝑥), (𝑥, 0) ∈ 𝐽2, (18)

where 𝐷𝛼
𝑐𝑥 [·] is the integral-differentiation operator of fractional order 𝛼 [28], while 𝜏2(𝑥) is

determined by (162).
In the same way, letting 𝜉 = −1 , 𝜂 = 𝑥 and 𝜉 = 0 , 𝜂 = 𝑥 respectively in (132) and (131), in

view of (32), (3), after some calculations we get

𝑢 [Θ2(𝑥)] =

𝑥∫︁
−1

(𝑥− 𝑡)−𝛽(1 + 𝑡)−𝛽𝑁2 (𝑡) 𝑑𝑡, (𝑥, 0) ∈ 𝐽2, (172)

𝑢 [Θ*(𝑥)] =

𝑥∫︁
0

(𝑥− 𝑡)−𝛽𝑡−𝛽𝑁1 (𝑡) 𝑑𝑡, (𝑥, 0) ∈ 𝐽1. (19)

Differentiating (6) w.r.t. 𝑥 and applying then operator 𝐷−𝛽
0𝑥 [·], we have

𝐷−𝛽
0𝑥

𝑑

𝑑𝑥
𝑢 [Θ2(𝑥)] = 𝜇𝐷−𝛽

0𝑥

𝑑

𝑑𝑥
𝑢 [Θ*(𝑥)] + 𝐷−𝛽

0𝑥 𝜌
′(𝑥). (20)

Substituting (172), (19) into (20) and taking into consideration (5), (6), (141), (142), (18) and

the identities 𝐷−𝛽
−1𝑥𝐷

𝛽
−1𝑥(1 + 𝑥)−𝛽𝑁2(𝑥) = (1 + 𝑥)−𝛽𝑁2(𝑥), 𝐷−𝛽

0𝑥 𝐷
𝛽
0𝑥𝑥

−𝛽𝑁1(𝑥) = 𝑥−𝛽𝑁1(𝑥),
we obtain the functional relation for 𝑇1(𝑥) and 𝜈−

1 (𝑥) transferred from domain 𝐷31 in 𝐽1:

𝛾1𝜈
−
1 (𝑥) =

𝑇1(𝑥)

2 cos𝜋𝛽
+

𝑥𝛽

𝜇Γ (1 − 𝛽)
𝐷−𝛽

0𝑥 𝑎(𝑥)𝜏2(𝑥) + 𝐹1(𝑥), (𝑥, 0) ∈ 𝐽1, (21)

where 𝜏2(𝑥) is determined by (162),

𝐹1(𝑥) =
𝑥𝛽

𝜇Γ (1 − 𝛽)

{︁
𝐷−𝛽

0𝑥 𝜌
′(𝑥)− 𝐷−𝛽

0𝑥 𝑏(𝑥)
}︁
. (22)

By condition 𝜌′(0) = 0, 𝑏(0) = 0, 𝑎(0) ̸= 0, in view of (171), (172), (19), it follows
from (5) and (6) that 𝑢 (0, 0) = 0. Therefore, by the conditions of BS problem we have
𝜏1 (0) = 𝜏2 (0) = 𝜏3 (0) = 0.
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Passing to the limit as 𝑦 → +0 in equation (1) for 𝑥 > 0, 𝑦 > 0 and 𝑥 < 0, 𝑦 > 0, in view of
(41), (42), (8), (161), (12𝑗)(𝑗 = 1, 3), we respectively have

𝜏 ′′1 (𝑥) = 𝑥𝑝𝜈+
1 (𝑥), (𝑥, 0) ∈ 𝐽1, (231)

𝜏1 (0) = 𝜏3 (0) = 0, 𝜏1 (1) = 𝜙1(0) (241)

and

𝜏 ′′2 (𝑥) = (−𝑥)𝑝𝜈+
2 (𝑥), (𝑥, 0) ∈ 𝐽2, (232)

𝜏2 (−1) = 𝜙2 (0) , 𝜏2 (0) = 𝜏3 (0) = 0. (242)

Solving problem (23𝑗) and (24𝑗), we obtain functional relation for 𝜏𝑗(𝑥) and 𝜈+
𝑗 (𝑥) transferred

from domain 𝐷𝑗 in𝐽𝑗 (𝑗 = 1, 2):

𝜏1(𝑥) =

1∫︁
0

𝐺1 (𝑥, 𝑡) 𝑡𝑝𝜈+
1 (𝑡)𝑑𝑡 + Φ1(𝑥), (𝑥, 0) ∈ 𝐽1, (251)

𝜏2(𝑥) =

0∫︁
−1

𝐺2 (𝑥, 𝑡) (−𝑡)𝑝𝜈+
2 (𝑡)𝑑𝑡 + Φ2(𝑥), (𝑥, 0) ∈ 𝐽2, (252)

where

Φ1 (𝑥) = 𝑥𝜙1(0), (261)

Φ2(𝑥) = −𝑥 𝜙2(0), (262)

𝐺1 (𝑥, 𝑡) =

{︃
𝑥 (𝑡− 1) , 0 6 𝑥 6 𝑡,

𝑡 (𝑥− 1) , 𝑡 6 𝑥 6 1,
(271)

𝐺2 (𝑥, 𝑡) =

{︃
𝑡 (1 + 𝑥) , − 1 6 𝑥 6 𝑡,

𝑥 (1 + 𝑡) , 𝑡 6 𝑥 6 0.
(272)

4. Uniqueness of solution to BS problem

Theorem 1. If conditions (2), (8), (9) hold true, a solution to problem BS in domain 𝐷 is
unique.

The following two lemmata play important role in the proof of Theorem 1.

Lemma 1. If conditions (2), (8) hold true, solution

𝑢(𝑥, 𝑦) ∈ 𝐶
(︀
�̄�4

)︀
∩ 𝐶2,1

𝑥,𝑦 (𝐷1 ∪𝑅𝐵1 ∪𝐷2 ∪𝐵2𝑅) , 𝑢𝑥(𝑥, 𝑦) ∈ 𝐶(𝐷4 ∪𝐵1𝐵2)

to equation (1) as 𝑦 > 0 attains its positive maximum and negative minimum in closed domain
𝐷4 only on 𝐴1𝐵1 ∪ 𝐴2𝐵2 ∪ 𝐽1 ∪ 𝐽2.

Proof. By the maximum principle for parabolic equations [29], [30], a solution 𝑢(𝑥, 𝑦) to equa-
tion (1) for 𝑦 > 0 can not attain its positive maximum and negative minimum inside domains
𝐷1 and 𝐷2.

Let us show that solution 𝑢(𝑥, 𝑦) to equation (1) as 𝑦 > 0 does not attain its positive
maximum (negative minimum) on 𝐽3.

Assume the opposite, i.e., at some point (0, 𝑦0) in interval 𝐽3 function 𝑢(𝑥, 𝑦) attains its
positive maximum (negative minimum). Then by the maximum principle [31], [32], in domain
𝐷1 we have

𝑢𝑥(+0, 𝑦0) < 0 (> 0). (28)
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On the other hand, in domain 𝐷2 we obtain

𝑢𝑥(−0, 𝑦0) > 0 (< 0).

In view of (73), this inequality contradicts (28). Therefore, 𝑢(𝑥, 𝑦) does not attain its positive
maximum (negative minimum) on interval 𝐽3.

By condition (8), it follows from (5) and (6) that 𝑢(𝑥, 𝑦) = 0. Thus, 𝑢(𝑥, 𝑦) does not attain
its extremum at the point 𝑂(0, 0).

Employing Lemmata 1.1 and 1.2 [33, Ch. 2, Sect. 2.3], one can show that at the point (0, 1)
there is no positive maximum (negative minimum).

Hence, 𝑢(𝑥, 𝑦) does not attain its positive maximum (negative minimum) on the interval 𝐽3.
The proof is complete.

Lemma 2. Let 𝜏2(𝑥) ∈ 𝐶 [−1, 0]∩𝐶(1,𝑘) (−1, 0), where 𝑘 > −2𝛽, attain its maximal positive
(minimal negative) at the point 𝑥 = 𝑥0 (𝑥0 ∈ (−1, 0)). Then at the point 𝑥 = 𝑥0 function

𝑇2(𝑥) ≡ 1

Γ (1 − 2𝛽)
𝐷1−2𝛽

−1𝑥 𝜏2(𝑥) =
sin 2𝜋𝛽

2𝜋𝛽

𝑑2

𝑑𝑥2

𝑥∫︁
−1

𝜏2 (𝑡) (𝑥− 𝑡)2𝛽 𝑑𝑡 (29)

can be represented as

𝑇2 (𝑥0) =
sin 2𝜋𝛽

𝜋

⎡⎣(1 + 𝑥0)
2𝛽−1 𝜏2 (𝑥0) + (1 − 2𝛽)

𝑥0∫︁
−1

𝜏2 (𝑥0) − 𝜏2 (𝑡)

(𝑥0 − 𝑡)2−2𝛽
𝑑 𝑡

⎤⎦ , (30)

at that,
𝑇2 (𝑥0) < 0 (𝑇2 (𝑥0) > 0) , (𝑥0, 0) ∈ 𝐽2. (31)

This lemma can be proved by means of Theorem 1 in [14] and Lemma 27.1 in [28].
As above, we can prove Lemma 2 for the case 𝑥0 ∈ (0, 1). Hence, the identity

𝑇1 (𝑥0) ≡
1

Γ(1 − 2𝛽)
𝐷1−2𝛽

0𝑥0
𝜏1 (𝑥0) =

sin 2𝜋𝛽

𝜋

[︁
𝑥2𝛽−1
0 𝜏1 (𝑥0)

+ (1 − 2𝛽)

𝑥0∫︁
0

[𝜏1 (𝑥0) − 𝜏1 (𝑡)] (𝑥0 − 𝑡)2𝛽−2 𝑑𝑡

⎤⎦ (32)

holds true, as well as the inequality

𝑇1 (𝑥0) < 0 (𝑇1 (𝑥0) > 0) , (33)

where (𝑥0, 0) ∈ 𝐽1 is a point of positive maximum (negative minimum) of function 𝜏1(𝑥) ∈
𝐶
(︀
𝐽1
)︀
∩ 𝐶(1,𝑘) (𝐽1) .

Lemma 3 (Analogue of A.V. Bitsadze maximum principle). If conditions (2),(8),(9) hold
true, the solution 𝑢 (𝑥, 𝑦) to BS problem as 𝜌(𝑥) ≡ 0, 𝑞1(𝑥) ≡ 0, 𝑞2(𝑥) ≡ 0, 𝑏(𝑥) ≡ 0, at-
tains its positive maximum and negative minimum in closed domain �̄�4 just on 𝐴1𝐵1 ∪ 𝐴2𝐵2.

Proof. By Lemma 1, for 𝑦 > 0, solution 𝑢(𝑥, 𝑦) to equation (1) attains its positive maximum
and negative minimum in closed domain �̄�4 just on 𝐴1𝐵1 ∪ 𝐴2𝐵2 ∪ 𝐽1 ∪ 𝐽2.

Let us show that the solution 𝑢(𝑥, 𝑦) to equation (1) does not attain its positive maximum
(negative minimum) on intervals 𝐽𝑗 (𝑗 = 1, 2) and at point 𝑂(0, 0). We assume the opposite.
Let 𝑢(𝑥, 𝑦) attain its positive maximum (negative minimum) at some point 𝑄 (𝑥0, 0) ∈ 𝐽2.

Then as 𝑏(𝑥) ≡ 0 identity (18) becomes

𝛾1𝜈
−
2 (𝑥) =

1

2 cos𝜋𝛽
𝑇2(𝑥) +

(1 + 𝑥)𝛽

Γ (1 − 𝛽)
𝐷−𝛽

−1𝑥𝑎(𝑥)𝜏2(𝑥), (𝑥, 0) ∈ 𝐽2. (34)
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By (72), the definition and the maximum principle for fractional order integral-differentiation
operator [28, Eqs. (4.1), (4.6)], and (34) we obtain

𝛾1𝑝2(𝑥)𝜈+
2 (𝑥) =

1

2 cos𝜋𝛽
𝑇2(𝑥) +

(1 + 𝑥)𝛽

Γ (1 − 𝛽) Γ (1 + 𝛽)

[︃
(1 + 𝑥)𝛽 𝑎(𝑥)𝜏2(𝑥)

− 𝛽

𝑥∫︁
−1

𝜏2(𝑥) − 𝜏2 (𝑡)

𝑥− 𝑡
𝑎 (𝑡) (𝑥− 𝑡)𝛽𝑑𝑡− 𝛽𝜏2(𝑥)

𝑥∫︁
−1

𝑎(𝑥) − 𝑎(𝑡)

𝑥− 𝑡
(𝑥− 𝑡)𝛽𝑑𝑡

]︃
.

(35)

Taking into consideration (2), (9), (11), Lemma 2, (35) at the point 𝑄(𝑥0, 0) of positive maxi-
mum (negative minimum) we obtain

𝜈+
2 (𝑥0) > 0

(︀
𝜈+
2 (𝑥0) < 0

)︀
. (36)

On the other hand, since 𝜏 ′′2 (𝑥0) 6 0 [𝜏 ′′2 (𝑥0) > 0], by (232) we obtain 𝜈+
2 (𝑥0) 6

0
[︀
𝜈+
2 (𝑥0) > 0

]︀
. This inequality contradicts (36).

Hence, 𝑢(𝑥, 𝑦) does not attain its positive maximum (negative minimum) on interval 𝐽2.
In the same way, employing (2), (71), (9), (11), (231), (33), by (21) for 𝑏(𝑥) ≡ 0, 𝜌(𝑥) ≡

0, 𝑞1(𝑥) ≡ 0, we get that𝑢(𝑥, 𝑦) does not attain its positive maximum (negative minimum)
on interval 𝐽1.

It follows from (8) that 𝑢(𝑥, 𝑦) does not attain its extremum at the point 𝑂(0, 0). The proof
is complete.

Proof of Theorem 1.1. Let 𝜙1 (𝑦) ≡ 𝜙2 (𝑦) ≡ 𝑏(𝑥) ≡ 𝜌(𝑥) ≡ 𝑞1(𝑥) ≡ 𝑞2(𝑥) ≡ 0, then by
Lemma 3 and (41), (42) we get

𝑢 (𝑥, 𝑦) ≡ 0 in 𝐷4.

It follows that

𝑢 (𝑥, 0) ≡ 0, (𝑥, 0) ∈ 𝐽𝑗, 𝑢𝑦 (𝑥,±0) ≡ 0, (𝑥, 0) ∈ 𝐽𝑗, (𝑗 = 1, 2) . (37)

Taking into consideration (141), (142), (29), (32), (37), by solution to Cauchy problem (13𝑗)
for equation (1) in domains 𝐷3𝑗(𝑗 = 1, 3), we obtain 𝑢 (𝑥, 𝑦) ≡ 0 in 𝐷3. Hence, 𝑢(𝑥, 𝑦) ≡ 0 in

domain �̄�. Thus, solution to BS problem is unique. The proof is complete.

5. Existence of solution to BS problem

Theorem 2. If conditions (2), (8), (10), and (11) hold true, then BS problem is solvable in
domain 𝐷.

We proceed to the proof of this theorem. By (161), the identity 𝜏1(0) = 0, (21) we have

1

Γ (1 − 2𝛽)
𝐷−2𝛽

0𝑥 𝜏 ′1(𝑥) = 2 cos 𝜋𝛽
[︀
𝛾1𝜈

−
1 (𝑥)− 𝑥𝛽

𝜇Γ (1 − 𝛽)
𝐷−𝛽

0𝑥 𝑎(𝑥)𝜏2(𝑥) − 𝐹1(𝑥)
]︁
, (𝑥, 0) ∈ 𝐽1.

(38)
By (18), (162) we get an integral equation for 𝑇2(𝑥):

𝑇2(𝑥) +

𝑥∫︁
−1

𝐾2(𝑥, 𝑡)𝑇2 (𝑡) 𝑑𝑡 = 𝐹2(𝑥), (𝑥, 0) ∈ 𝐽2, (39)
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where

𝐾2(𝑥, 𝑡) =
2 cos𝜋𝛽 (1 + 𝑥)𝛽

Γ (1 − 𝛽) Γ (1 + 𝛽)

·

⎧⎨⎩
𝑥∫︁

𝑡

𝑎′(𝑧) (𝑥− 𝑧)𝛽 (𝑧 − 𝑡)−2𝛽 𝑑𝑧 − 2𝛽

𝑥∫︁
𝑡

𝑎(𝑧) (𝑥− 𝑧)𝛽 (𝑧 − 𝑡)−2𝛽−1 𝑑𝑧

⎫⎬⎭ ,

(40)

𝐹2(𝑥) = 2 cos 𝜋𝛽
[︀
𝛾1𝜈

−(𝑥)+
(1 + 𝑥)𝛽

Γ (1 − 𝛽)
𝐷−𝛽

−1𝑥𝑏(𝑥)
]︁
. (41)

In view of (2), (11), it follows from (40) that kernel 𝐾2(𝑥, 𝑡) satisfies the estimate

|𝐾2(𝑥, 𝑡)| 6 𝑐𝑜𝑛𝑠𝑡 (1 + 𝑥)𝛽 . (42)

It follows from (11), (132), (41) that the right hand side of equation (39) is continuous in the
interval (−1, 0) and is integrable on [−1, 0].

In view of (2), (42), equation (39) is a second kind Volterra integral equation with a weak
singularity. The formulation of BS problem, (42), and properties of function 𝐹2(𝑥) yield that a
solution to equation (39) should be sought in the class of functions continuous in (−1, 0) and
integrable on [−1, 0].

In accordance with the theory of integral Volterra equations [34], integral equation (39) is
uniquely solvable and its solution is given by the formula

𝑇2(𝑥) = 𝐹2(𝑥) −
𝑥∫︁

−1

𝐾*
2(𝑥, 𝑡)𝐹2(𝑡)𝑑𝑡, (𝑥, 0) ∈ 𝐽2, (43)

where 𝐾*
2(𝑥, 𝑡) is the resolvent of kernel 𝐾2(𝑥, 𝑡).

By (162), (43), and the identity 𝜏2(−1) = 0 we obtain

1

Γ (1 − 2𝛽)
𝐷−2𝛽

−1𝑥𝜏
′
2(𝑥)𝛾3𝜈

−
2 (𝑥) − 𝛾3

𝑥∫︁
−1

𝐾*
2(𝑥, 𝑡)𝜈−

2 (𝑡) 𝑑𝑡 + 𝐹3(𝑥), (𝑥, 0) ∈ 𝐽2, (44)

where 𝛾3 = 2𝛾1 cos 𝜋𝛽,

𝐹3(𝑥) =
2 cos𝜋𝛽

Γ (1 − 𝛽)

⎡⎣(1 + 𝑥)𝛽 𝐷−𝛽
−1𝑥𝑏(𝑥) −

𝑥∫︁
−1

𝐾*
2(𝑥, 𝑡) (1 + 𝑡)𝛽 𝐷−𝛽

−1 𝑡𝑏 (𝑡) 𝑑𝑡 . (45)
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Excluding 𝜏1(𝑥) and 𝜏2(𝑥) for relations (38), (251), (44), (252), by (71) and (72), we get

1

Γ (1 − 2𝛽)
𝐷−2𝛽

0𝑥

⎡⎣ 1∫︁
0

𝐺′
1𝑥 (𝑥, 𝑡) 𝑡𝑝𝜈+

1 (𝑡)𝑑𝑡 + Φ′
1(𝑥)

⎤⎦ = 𝛾3
[︀
𝑝1(𝑥)𝜈+

1 (𝑥) + 𝑞1(𝑥)
]︀

− 2 cos𝜋𝛽𝑥𝛽

𝜇Γ(1 − 𝛽)Γ(1 + 𝛽)

𝑑

𝑑𝑥

𝑥∫︁
0

(𝑥− 𝑡)𝛽𝑎(𝑡)𝑑𝑡

0∫︁
−1

𝐺2 (𝑡, 𝑧) (−𝑧)𝑝𝜈+
2 (𝑧)𝑑𝑧

+ 𝐹4(𝑥), (𝑥, 0) ∈ 𝐽1,

(46)

1

Γ (1 − 2𝛽)
𝐷−2𝛽

−1𝑥

⎡⎣ 0∫︁
−1

𝐺′
2𝑥 (𝑥, 𝑡) (−𝑡)𝑝𝜈+

2 (𝑡)𝑑𝑡 + Φ′
2(𝑥)

⎤⎦ = 𝛾3
[︀
𝑝2(𝑥)𝜈+

2 (𝑥) + 𝑞2(𝑥)
]︀

− 𝛾3

𝑥∫︁
−1

𝐾*
2(𝑥, 𝑡)

[︀
𝑝2(𝑡)𝜈

+
2 (𝑡) + 𝑞2(𝑡)

]︀
𝑑𝑡 + 𝐹3(𝑥), (𝑥, 0) ∈ 𝐽2,

(47)

where

𝐹4(𝑥) = −2 cos𝜋𝛽

[︂
𝑥𝛽

𝜇Γ(1 − 𝛽)
𝐷−𝛽

0𝑥 𝑎(𝑥)Φ2(𝑥) − 𝐹1(𝑥)

]︂
. (48)

We introduce the notations

𝑅1(𝑥) =
1

Γ (1 − 2𝛽)
𝐷−2𝛽

0𝑥

1∫︁
0

𝐺′
1𝑥 (𝑥, 𝑡) 𝑡𝑝𝜈+

1 (𝑡)𝑑𝑡, 0 < 𝑥 < 1, (461)

𝑅2(𝑥) =
1

Γ (1 − 2𝛽)
𝐷−2𝛽

−1𝑥

0∫︁
−1

𝐺′
2𝑥 (𝑥, 𝑡) (−𝑡)𝑝𝜈+

2 (𝑡)𝑑𝑡, −1 < 𝑥 < 0. (471)

Then by (271), (272), and the definition of fractional order integral-differential operator [28,
Eqs. (4.1), (4.6)], as well by the property of beta-functions [28, Eq. (1.7)], (461), (471), we have

𝑅1(𝑥) = 𝛾4

⎡⎣ 𝑥∫︁
0

𝑃11(𝑥, 𝑡)𝜈
+
1 (𝑡) 𝑑𝑡 +

1∫︁
𝑥

𝑃12(𝑥, 𝑡)𝜈
+
1 (𝑡) 𝑑𝑡

⎤⎦ =

1∫︁
0

𝑃1 (𝑥, 𝑡) 𝜈+
1 (𝑡)𝑑𝑡, (462)

𝑅2(𝑥) = 𝛾4

⎡⎣ 𝑥∫︁
−1

𝑃21(𝑥, 𝑡)𝜈
+
2 (𝑡) 𝑑𝑡 +

0∫︁
𝑥

𝑃22(𝑥, 𝑡)𝜈
+
2 (𝑡) 𝑑𝑡

⎤⎦ =

0∫︁
−1

𝑃2 (𝑥, 𝑡) 𝜈+
2 (𝑡)𝑑𝑡, (472)

where 𝛾4 = 1/Γ(1 − 2𝛽)Γ(1 + 2𝛽),

𝑃1 (𝑥, 𝑡) =

{︃
𝛾4𝑃11 (𝑥, 𝑡) , 0 6 𝑡 6 𝑥,

𝛾4𝑃12 (𝑥, 𝑡) 𝑥 6 𝑡 6 1,
(463)

𝑃2 (𝑥, 𝑡) =

{︃
𝛾4𝑃21 (𝑥, 𝑡) , − 1 6 𝑡 6 𝑥,

𝛾4𝑃22 (𝑥, 𝑡) , 𝑥 6 𝑡 6 0,
(473)

𝑃11 (𝑥, 𝑡) = (𝑥− 𝑡)2𝛽 𝑡𝑝 + 𝑥2𝛽𝑡𝑝(𝑡− 1), 𝑃12 (𝑥, 𝑡) = 𝑥2𝛽𝑡𝑝(𝑡− 1),

𝑃21 (𝑥, 𝑡) = (𝑥− 𝑡)2𝛽 (−𝑡)𝑝+1 + (𝑥− 𝑡)2𝛽 (1 + 𝑡) (−𝑡)𝑝 − (𝑥 + 1)2𝛽 (−𝑡)𝑝,

𝑃22 (𝑥, 𝑡) = − (𝑥 + 1)2𝛽 (−𝑡)𝑝+1.
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Substituting (462) and (472) into (46) and (47), respectively, we find

𝜈+
2 (𝑥) −

0∫︁
−1

𝑃 (𝑥, 𝑡) 𝜈+
2 (𝑡) 𝑑𝑡 = 𝐹5(𝑥), −1 < 𝑥 < 0, (49)

𝜈+
1 (𝑥) −

1∫︁
0

𝑄 (𝑥, 𝑡) 𝜈+
1 (𝑡) 𝑑𝑡 = 𝐹6(𝑥) +

0∫︁
−1

𝐾1 (𝑥, 𝑡)𝜈+
2 (𝑡)𝑑𝑡, 0 < 𝑥 < 1, (50)

where

𝑃 (𝑥, 𝑡) =

{︃
[𝑃2(𝑥, 𝑡) + 𝛾3𝐾

*
2(𝑥, 𝑡)𝑝(𝑡)]/𝛾3𝑝2(𝑥), − 1 6 𝑡 6 𝑥,

𝑃2(𝑥, 𝑡)/𝛾3𝑝2(𝑥), 𝑥 6 𝑡 6 0,
(51)

𝑄 (𝑥, 𝑡) = 𝑃1 (𝑥, 𝑡)/𝛾3𝑝1(𝑥), (52)

𝐹5(𝑥) =
𝐷−2𝛽

−1𝑥Φ′
2(𝑥)

Γ (1 − 2𝛽) 𝛾3𝑝2(𝑥)
− 𝛾3𝑞2(𝑥) + 𝐹3(𝑥)

𝛾3𝑝2(𝑥)
+

𝑥∫︁
−1

𝐾*
2(𝑥, 𝑡)𝑞2(𝑡)

𝑝2(𝑥)
𝑑𝑡 , (53)

𝐹6(𝑥) =
𝐷−2𝛽

0𝑥 Φ′
1(𝑥)

Γ (1 − 2𝛽) 𝛾3𝑝1(𝑥)
− 𝐹4(𝑥) + 𝛾3𝑞1(𝑥)

𝛾3𝑝1(𝑥)
, (54)

𝐾1 (𝑥, 𝑡) =
2 cos𝜋𝛽𝑥𝛽(−𝑡)𝑝

𝛾1𝜇Γ(1 − 𝛽)Γ(1 + 𝛽)𝑝1(𝑥)

𝑑

𝑑𝑥

𝑥∫︁
0

𝑎(𝑧)(𝑥− 𝑧)𝛽𝐺2(𝑧, 𝑡)𝑑𝑧. (55)

By (2), (11), (40), (42), (463), (473), (51), (52) we obtain the estimates

|𝑃 (𝑥, 𝑡)| 6

{︃
𝑐𝑜𝑛𝑠𝑡 (𝑥− 𝑡)2𝛽 , − 1 6 𝑡 6 𝑥,

𝑐𝑜𝑛𝑠𝑡 (1 + 𝑡)2𝛽 , 𝑥 6 𝑡 6 0,
(56)

|𝑄 (𝑥, 𝑡)| 6

{︃
𝑐𝑜𝑛𝑠𝑡 (𝑥− 𝑡)2𝛽 , 0 6 𝑡 6 𝑥,

𝑐𝑜𝑛𝑠𝑡 𝑥2𝛽, 𝑥 6 𝑡 6 1.
(57)

It follows from (56) and (57) that equations (49) and (50) are integral Fredholm equations
of second kind with a weak singularity.

By (2), (8), (10), (11), (53), (54), (22), (261), (262), (40), (41), (42), (45), (48) we conclude
that

1) Function 𝐹5(𝑥) is continuous in (−1, 0) and integrable on [−1, 0]. At that, as 𝑥 → −1
function 𝐹5(𝑥) tends to infinity slower than a power with exponent −2𝛽.

2) Function 𝐹6(𝑥) is continuous in (0, 1) and is integrable on [0, 1]. At that, as 𝑥 → 0,
function 𝐹6(𝑥) tends to infinity slower than a power with exponent −2𝛽.

The solvability of integral Fredholm equation of second kind (49) and (50) (by the equivalence
to BS problem) follows from the uniqueness of solution to BS problem. It is given by the formula
[34]:

𝜈+
2 (𝑥) =

0∫︁
−1

𝑃 * (𝑥, 𝑡)𝐹5 (𝑡) 𝑑𝑡 + 𝐹5(𝑥), −1 < 𝑥 < 0 (58)

and 𝜈+
2 (𝑥) ∈ 𝐶 (−1, 0) ∩ 𝐿1 [−1, 0]. As 𝑥 → −1, function 𝜈+

2 (𝑥) tends to infinity slower than
the power with exponent −2𝛽;

𝜈+
1 (𝑥) =

1∫︁
0

𝑄* (𝑥, 𝑡)𝐹7 (𝑡) 𝑑𝑡 + 𝐹7(𝑥), 0 < 𝑥 < 1, (59)
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and 𝜈+
1 (𝑥) ∈ 𝐶 (0, 1)∩𝐿1 [0, 1]. At that, as 𝑥 → 0, function 𝜈+

1 (𝑥) tends to infinity slower than
the power with exponent −2𝛽. Here

𝐹7(𝑥) = 𝐹6(𝑥) −
0∫︁

−1

𝐾1 (𝑥, 𝑡)

⎡⎣ 0∫︁
−1

𝑃 * (𝑡, 𝑧)𝐹5 (𝑧) 𝑑𝑧 + 𝐹5 (𝑡)

⎤⎦ 𝑑𝑡,

while 𝑃 * (𝑥, 𝑡) and 𝑄* (𝑥, 𝑡) are the resolvents for kernels 𝑃 (𝑥, 𝑡) and 𝑄(𝑥, 𝑡), respectively.
Substituting (58) and (59) into (251) and (252) respectively, we determine 𝜏2(𝑥) and 𝜏1(𝑥) in

the classes

𝜏2(𝑥) ∈ 𝐶1 [−1, 0] ∩ 𝐿1 [−1, 0] and 𝜏1(𝑥) ∈ 𝐶1 [0, 1] ∩ 𝐿1 [0, 1] . (60)

Let us solve the following problem.
AD problem. Find solution 𝑢 (𝑥, 𝑦) ∈ 𝐶

(︀
�̄�4

)︀
∩ 𝐶2,1

𝑥,𝑦 (𝐷1 ∪𝑅𝐵1 ∪𝐷2 ∪𝐵2𝑅) to equation
(1) satisfying conditions (41), (42), (73), and

𝑢 (𝑥, 0) = 𝜏1(𝑥), (𝑥, 0) ∈ 𝐽1, (611)

𝑢 (𝑥, 0) = 𝜏2(𝑥), (𝑥, 0) ∈ 𝐽2, (622)

where 𝜏𝑗(𝑥) (𝑗 = 1, 2) are given functions satisfying condition (60), at that, 𝜏1(0) = 𝜏2(0).

Theorem 3. If conditions (2), (10), (60) hold true, AD problem is uniquely solvable in
domain 𝐷4.

Proof. The solution to the Dirichlet problem for equation (1) in 𝐷1∪𝑅𝐵1 with conditions (41),
(611), and 𝑢(0, 𝑦) = 𝜏3(𝑦), (0, 𝑦) ∈ 𝐽3 read as [29], [31]:

𝑢(𝑥, 𝑦) =

1∫︁
0

𝐺0(𝑥, 𝑡, 𝑦, 𝛼)𝑡𝑝𝜏1(𝑡)𝑑𝑡 +
𝜕

𝜕𝑦

𝑦∫︁
0

𝐺(1)(𝑥, 𝑡, 𝑦, 𝛼)𝜏3(𝑡)𝑑𝑡 +
𝜕

𝜕𝑦

𝑦∫︁
0

𝐺(2)(𝑥, 𝑡, 𝑦, 𝛼)𝜙1(𝑡)𝑑𝑡.

(62)

It belongs to the class 𝐶
(︀
𝐷1

)︀
∩ 𝐶

2,1

𝑥,𝑦 (𝐷1 ∪𝑅𝐵1) if (10), (60) hold true and 𝜏3(𝑦) ∈ 𝐶
(︀
𝐽3

)︀
∩

𝐶1 (𝐽3) . Here 𝐺(𝑗)(𝑥, 𝑡, 𝑦, 𝛼), (𝑗 = 1, 2) are introduced by the formulae

𝐺(1) (𝑥, 𝑡, 𝑦, 𝛼) =
(1 − 𝛼)2(𝛼−1) − 𝑥

(1 − 𝛼)2(𝛼−1)
−

1∫︁
0

(1 − 𝛼)2(𝛼−1) − 𝑡

(1 − 𝛼)2(𝛼−1)
𝐺0 (𝑥, 𝑡, 𝑦, 𝛼) 𝑡𝑝𝑑𝑡, (63)

𝐺(2) (𝑥, 𝑡, 𝑦, 𝛼) = (1 − 𝛼)2(1−𝛼)𝑥−
1∫︁

0

𝐺0 (𝑥, 𝑡, 𝑦, 𝛼) (1 − 𝛼)2(1−𝛼)𝑡𝑝𝑑𝑡, (64)

and 𝐺0(𝑥, 𝜉, 𝑦, 𝛼) is the Green function of the Dirichlet problem for equation (1) in domain 𝐷1,

𝐺0(𝑥, 𝜉, 𝑦, 𝛼) =
∞∑︁
𝑠=0

𝑒−
𝜆2𝑠𝑦

4 (1 − 𝛼)
√︀

𝑥𝜉
𝐽1−𝛼

(︁
𝜆𝑠(1 − 𝛼)𝑥

1
2(1−𝛼)

)︁
𝐽1−𝛼

(︁
𝜆𝑠(1 − 𝛼)𝜉

1
2(1−𝛼)

)︁
𝐽2
2−𝛼(𝜆𝑠)

,

where 𝐽𝜒(𝑧) =
∞∑︀
𝑠=0

(−1)𝑠

𝑠!Γ(𝑠+𝜒+1)

(︀
𝑧
2

)︀𝜒+2𝑠
is the Bessel function of first kind, 𝛼 = 𝑝+1

𝑝+2
, at that,

1

2
< 𝛼 < 1, (65)

and 𝜆𝑠 are positive roots to the equation 𝐽1−𝛼(𝜆𝑠) = 0, 𝑠 = 0, 1, 2, . . .
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Differentiation (62) w.r.t. 𝑥 and passing to the limit as 𝑥 → +0, by (123) we find

𝜈3(𝑦) =
𝜕

𝜕𝑦

𝑦∫︁
0

𝑍(𝑦 − 𝑡)𝜏3(𝑡)𝑑𝑡 + 𝐹8(𝑦), (0, 𝑦) ∈ 𝐽3, (66)

where

𝑍(𝑦 − 𝑡) = (1 − 𝛼)2𝛼−1 lim
𝑥→+0

𝜕𝐺(1)(𝑥, 𝑦 − 𝑡, 𝛼)

𝜕𝑥
= −(1 − 𝛼) − 22𝛼

Γ2(1 − 𝛼)

∞∑︁
𝑠=0

𝜆−2𝛼
𝑠 𝑒−

𝜆2𝑠(𝑦−𝑡)

4

𝐽2
2−𝛼(𝜆𝑠)

,

𝐹8(𝑦) = lim
𝑥→+0

𝜕

𝜕𝑥

⎧⎨⎩
1∫︁

0

𝐺0(𝑥, 𝑡, 𝑦, 𝛼)𝑡𝑝𝜏1(𝑡)𝑑𝑡+
𝜕

𝜕𝑦

𝑦∫︁
0

𝐺(2)(𝑥, 𝑡, 𝑦, 𝛼)𝜙1(𝑡)𝑑𝑡. (67)

Thanks to the properties of function 𝐽𝜒 (𝑧), function 𝑍 (𝑦 − 𝑡) is represented as [21], [31]:

𝑍(𝑦 − 𝑡) = − 1

Γ(1 − 𝛼)
(𝑦 − 𝑡)𝛼−1 + 𝐵(𝑦 − 𝑡), (68)

where 𝐵 (𝑦 − 𝑡) is a continuously differentiable function for 𝑦 > 𝑡.
Substituting (68) into (66), we obtain the function relation for 𝜏3 (𝑦) and 𝜈3 (𝑦) transferred

from domain 𝐷1 to 𝐽3:

𝜈3(𝑦) = − 1

Γ(1 − 𝛼)

𝜕

𝜕𝑦

𝑦∫︁
0

(𝑦 − 𝑡)𝛼−1𝜏3(𝑡)𝑑𝑡 +
𝜕

𝜕𝑦

𝑦∫︁
0

𝐵(𝑦 − 𝑡)𝜏1(𝑡)𝑑𝑡 + 𝐹8(𝑦). (69)

It is easy to observe that the solution to the Dirichlet problem for equation (1) in 𝐷2 ∪ 𝑅𝐵2

with conditions (42), (612), and 𝑢(0, 𝑦) = 𝜏3(𝑦), (0, 𝑦) ∈ 𝐽3 is given by the formula

𝑢(𝑥, 𝑦) =

0∫︁
−1

𝐺0(−𝑥, 𝑡, 𝑦, 𝛼)(−𝑡)𝑝𝜏2(𝑡)𝑑𝑡−
𝜕

𝜕𝑦

𝑦∫︁
0

𝐺(1)(−𝑥, 𝑡, 𝑦, 𝛼)𝜏3(𝑡)𝑑𝑡

− 𝜕

𝜕𝑦

𝑦∫︁
0

𝐺(2)(−𝑥, 𝑡, 𝑦, 𝛼)𝜙2(𝑡)𝑑𝑡.

(70)

As above, differentiating (70) w.r.t. 𝑥 and passing to the limit as 𝑥 → −0, in view of (123),
(68) we obtain the functional relation for , 𝜏3 (𝑦) and 𝜈3(𝑦), transferred from domain 𝐷2 in 𝐽3:

𝜈3(𝑦) =
1

Γ(1 − 𝛼)

𝜕

𝜕𝑦

𝑦∫︁
0

(𝑦 − 𝑡)𝛼−1𝜏3(𝑡)𝑑𝑡−
𝜕

𝜕𝑦

𝑦∫︁
0

𝐵(𝑦 − 𝑡)𝜏3(𝑡)𝑑𝑡 + 𝐹9(𝑦), (71)

where

𝐹9(𝑦) = lim
𝑥→−0

𝜕

𝜕𝑥

⎧⎨⎩
0∫︁

−1

𝐺0(−𝑥, 𝑡, 𝑦, 𝛼)(−𝑡)𝑝𝜏2(𝑡)𝑑𝑡−
𝜕

𝜕𝑦

𝑦∫︁
0

𝐺(2)(−𝑥, 𝑡, 𝑦, 𝛼)𝜙2(𝑡)𝑑𝑡

⎫⎬⎭ . (72)

By (73), (69), and (71) we obtain the identity for 𝜏3(𝑦):

2

Γ(1 − 𝛼)

𝜕

𝜕𝑦

𝑦∫︁
0

(𝑦 − 𝑡)𝛼−1𝜏3(𝑡)𝑑𝑡− 2
𝜕

𝜕𝑦

𝑦∫︁
0

𝐵(𝑦 − 𝑡)𝜏3(𝑡)𝑑𝑡 = 𝐹8(𝑦) − 𝐹9(𝑦).
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By the definition of fractional order integral-differential operator [28, (4.1), (4.6)] it follows that

2Γ(𝛼)

Γ(1 − 𝛼)
𝐷1−𝛼

0𝑦 𝜏1(𝑦) − 2𝐵(0)𝜏3(𝑦) − 2

𝑦∫︁
0

𝐵′
𝑦(𝑦 − 𝑡)𝜏3(𝑡)𝑑𝑡 = 𝐹8(𝑦) − 𝐹9(𝑦). (73)

Applying operator 𝐷𝛼−1
0𝑦 to identity (73), by the identity 𝜏3(0) = 0 and

𝐷𝛼−1
0𝑦 𝐷1−𝛼

0𝑦 𝜏3(𝑦) = 𝜏3(𝑦), (74)

we arrive at the integral equation for 𝜏3(𝑦):

𝜏3(𝑦) =

𝑦∫︁
0

𝑀(𝑦, 𝑡)𝜏3(𝑡)𝑑𝑡 + 𝐹10(𝑦), (0, 𝑦) ∈ 𝐽3, (75)

where

𝑀(𝑦, 𝑡) =
Γ(1 − 𝛼)

Γ(𝛼)

⎧⎨⎩𝐵(0)(𝑦 − 𝑡)−𝛼 +

𝑦∫︁
𝑡

𝐵𝑧(𝑧 − 𝑡)(𝑦 − 𝑧)−𝛼𝑑𝑧

⎫⎬⎭ ,

𝐹10(𝑦) =
Γ(1 − 𝛼)

2Γ(𝛼)
𝐷𝛼−1

0𝑦 [𝐹8(𝑦) − 𝐹9(𝑦)] . (76)

Kernel 𝑀(𝑦, 𝑡) ∈ 𝐶([0, 1] × [0, 1] ∖ {(𝑦, 𝑡) : 𝑦 = 𝑡}) for 𝑦 close to 𝑡 obeys the estimate

|𝑀(𝑦, 𝑡)| 6 𝑐𝑜𝑛𝑠𝑡(𝑦 − 𝑡)−𝛼. (77)

Let us study function 𝐹10(𝑦, 𝑡). By employing properties of function 𝐺0 (𝑥, 𝜉, 𝑦 − 𝜂, 𝛼), 𝐽𝜒 (𝑧)
and (2), (10), (60), it was proved in works [21] and [33] that functions 𝐹𝑖 (𝑖 = 8, 9) belong to
the class

𝐹𝑖(𝑦) ∈ 𝐶
(︀
𝐽
)︀
∩ 𝐶1 (𝐽) , (𝑖 = 8, 9) . (78)

By (76), (77), (78), and the definition of fractional order integral-differential operator [28,
(4.1)] we obtain the estimate

|𝐹10(𝑦)| 6 1

2Γ(𝛼)

𝑦∫︁
0

(𝑦 − 𝑡)−𝛼 [|𝐹8(𝑡)| + |𝐹9(𝑡)|] 𝑑𝑡 6 𝑐𝑜𝑛𝑠𝑡

𝑦∫︁
0

(𝑦 − 𝑡)−𝛼𝑑𝑡 6 𝑐𝑜𝑛𝑠𝑡 𝑦1−𝛼.

Taking into consideration (65) and the inequality 0 6 𝑦 6 1, we have

|𝐹10(𝑦)| < 𝑐𝑜𝑛𝑠𝑡. (79)

By (10), (60), (65), (79), (76) it follows that

𝐹10(𝑦) ∈ 𝐶
(︀
𝐽3

)︀
∩ 𝐶1 (𝐽3) . (80)

Thus, by (77), (79), (80) equation (75) is a second kind Volterra integral equation with a weak
singularity.

In accordance with the theory of integral Volterra equations [34], we conclude that integral
equation (75) is uniquely solvable in the class 𝐶

(︀
𝐽3
)︀
∩ 𝐶1 (𝐽3) and its solution is given by the

formula

𝜏3(𝑦) = 𝐹10(𝑦) +

𝑦∫︁
0

𝑀*(𝑦, 𝑡)𝐹10(𝑡)𝑑𝑡, (0, 𝑦) ∈ 𝐽3, (81)

where 𝑀*(𝑦, 𝑡) is the resolvent of kernel 𝑀 (𝑦, 𝑡).
Therefore, AD problem is uniquely solvable since it is equivalent to Volterra equation of

second kind (75).
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Substituting 𝜏3(𝑦) from (81) into (62) and (70), we recover the solution to AD problem as
the solution to the Dirichlet problem in domains 𝐷1 and 𝐷2 respectively.

Thus, the solution to BS problem can be found in domains 𝐷1 and 𝐷2 as the solution to
the Dirichlet problem for equation (1) (see (62), (70)), while in domain 𝐷3 it can be found as
as the solution to the Cauchy problem for equation (1) (see . (13𝑗) (𝑗 = 1, 2)). The proof of
Theorem 2 is complete.

The author expresses his gratitude to his supervisor Academician of AS RUz M.S. Salakhit-
dinov for the attention to the work.
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