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IDENTIFICATION OF A POLYNOMIAL

IN NONSEPARATED BOUNDARY CONDITIONS

IN THE CASE OF A MULTIPLE ZERO EIGENVALUE

A.M. AKHTYAMOV, R.R. KUMUSHBAEV

Abstract. In the work we discuss the problem of recovering the coefficients of a poly-
nomial in spectral problems with nonseparated boundary conditions by one multiple zero
eigenvalue and 𝑛 nonzero eigenvalues. A uniqueness theorem is proved.
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1. Introduction

In solving applied problems of mathematical physics, there appear spectral problem involving
polynomially a spectral parameter in boundary conditions [1]–[4], as well as problems with an
operator in boundary conditions [5]. In the associated inverse problems, by known spectra one
has to recover the unknown coefficients in equations and boundary conditions [6]–[13]. In [14],
a polynomial is separated boundary conditions was recovered by a finite set of different eigen-
values. In [15], a polynomial of degree 𝑚 in nonseparated boundary conditions was recovered
by 𝑚 + 1 different eigenvalues. However, the information on multiplicities of the eigenvalues
was not employed in [15]. In the present paper we make use a multiplicity of zero eigenvalue.
To recover the polynomial in this case we employ less number of eigenvalues (< 𝑚).

2. Formulation of the problem

We consider the following spectral problem:

𝑦′′ + 𝑝1(𝑥, 𝜆)𝑦′ + 𝑝2(𝑥, 𝜆)𝑦 = 0, (1)

𝑈𝑖(𝑦) = 𝑎𝑖1(𝜆)𝑦′(0) + 𝑎𝑖2(𝜆)𝑦(0) + 𝑎𝑖3(𝜆)𝑦′(1) + 𝑎𝑖4(𝜆)𝑦(1) = 0, (2)

where 𝜆 is a spectral parameter; 𝑖 = 1, 2; 𝑥 ∈ [0, 1]; 𝑝1(𝑥, 𝜆), 𝑝2(𝑥, 𝜆) are continuously differ-
entiable functions w.r.t. 𝑥 and 𝜆; 𝑎𝑖𝑗 (𝑖 = 1, 2, 𝑗 = 1, 2, 3, 4) are continuously differentiable
functions w.r.t. 𝜆 and

4∑︁
𝑗=1

|𝑎𝑖𝑗(𝜆)| ≠ 0, as 𝑖 = 1, 2 and for each 𝜆. (3)
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In the present paper we solve an inverse problem. Suppose that one of the functions 𝑎2𝑗(𝜆)
(𝑗 = 1, 2, 3, 4), which we denote by 𝑎2𝑝(𝜆), is a polynomial:

𝑎2𝑝(𝜆) =
𝑚∑︁
𝑠=0

𝑎2𝑝𝑠𝜆
𝑠.

We know 𝑛 + 1 eigenvalues 𝜆0, 𝜆1, . . . , 𝜆𝑛 of problem (1), (2). One of them 𝜆0 = 0 has the
multiplicity 𝑟0, at that, 𝑚 = 𝑛 + 𝑟0 − 1 is the degree of polynomial 𝑎2𝑝(𝜆). We need to recover
polynomial 𝑎2𝑝(𝜆).

3. Uniqueness theorem

We denote by 𝑦1(𝑥, 𝜆) and 𝑦2(𝑥, 𝜆) linearly independent solutions to differential equation (1)
satisfying the conditions

𝑦1(0, 𝜆) = 1, 𝑦′1(0, 𝜆) = 0, 𝑦2(0, 𝜆) = 0, 𝑦′2(0, 𝜆) = 1. (4)

Eigenvalues 𝜆𝑘 are roots of the characteristic determinant [16]

∆(𝜆) =

⃒⃒⃒⃒
𝑈1(𝑦1) 𝑈1(𝑦2)
𝑈2(𝑦1) 𝑈2(𝑦2)

⃒⃒⃒⃒
=

4∑︁
𝑗=1

𝑎2𝑗(𝜆)𝐴2𝑗(𝜆), (5)

where

𝐴21(𝜆) = 𝑎12(𝜆) + 𝑎13(𝜆) 𝑦′1(1, 𝜆) + 𝑎14(𝜆)𝑦1(1, 𝜆),

𝐴22(𝜆) = −𝑎11(𝜆) − 𝑎13(𝜆)𝑦′2(1, 𝜆) − 𝑎14(𝜆)𝑦2(1, 𝜆),

𝐴23(𝜆) = 𝑎12(𝜆)𝑦′2(1, 𝜆) + 𝑎14(𝜆)𝑊 (1, 𝜆) − 𝑎11(𝜆)𝑦′1(1, 𝜆),

𝐴24(𝜆) = 𝑎12(𝜆)𝑦2(1, 𝜆) − 𝑎11(𝜆)𝑦1(1, 𝜆) − 𝑎13(𝜆)𝑊 (1, 𝜆),

𝑊 (1, 𝜆) = 𝑦1(1, 𝜆) 𝑦′2(1, 𝜆) − 𝑦′1(1, 𝜆) 𝑦2(1, 𝜆), as 𝑘 = 0, 1, . . . , 𝑛.

If 𝑝1(𝑥, 𝜆) ≡ 0, then by (4) and by the Liouville formula for the Wronskian [17, Ch. V,
Subsect. 17.1] we obtain that 𝑊 (1, 𝜆𝑘) = 1.

Function 𝐴2𝑝(𝜆) introduced in (5) with 𝑝 chosen above is expressed via known coefficients
𝑎2𝑗 and known functions 𝑦1(𝑥, 𝜆) and 𝑦2(𝑥, 𝜆).

Theorem. Polynomial 𝑎2𝑝(𝜆) of degree 𝑚 in boundary condition (2) is uniquely recovered
by zero eigenvalue 𝜆0 = 0 of multiplicity 𝑟0 and by 𝑛 = 𝑚− 𝑟0 + 1 non-zero mutually different
eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝑛 if 𝐴2𝑝(𝜆𝑘) ̸= 0, 𝑘 = 0, 1, . . . , 𝑛

Proof. Let us show that as 𝐴2𝑝(𝜆𝑘) ̸= 0, polynomial 𝑎2𝑝(𝜆) is uniquely recovered, while for
𝐴2𝑝(𝜆𝑘) = 0 the unique recovering is impossible.

Let 𝐴2𝑝(𝜆𝑘) ̸= 0. It follows from identities ∆(𝜆𝑘) = 0 and (4) that

𝑎2𝑝(𝜆𝑘) = −
4∑︁

𝑗=1, 𝑗 ̸=𝑝

𝑎2𝑗(𝜆𝑘)
𝐴2𝑗(𝜆𝑘)

𝐴2𝑝(𝜆𝑘)
, 𝑘 = 0, 1, . . . , 𝑛. (6)

Substituting the known eigenvalues into (4), we obtain a system of algebraic equations for
unknown coefficients 𝑎2𝑝𝑠:

𝑎2𝑝0 + 𝑎2𝑝1𝜆
1
𝑘 + . . . + 𝑎2𝑝𝑚𝜆

𝑚
𝑘 = −

4∑︁
𝑗=1, 𝑗 ̸=𝑝

𝑎2𝑗(𝜆𝑘)
𝐴2𝑗(𝜆𝑘)

𝐴2𝑝(𝜆𝑘)
, (7)

where 𝑘 = 0, 1, . . . , 𝑛.
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System of linear algebraic equations (7) has 𝑚 + 1 unknowns and 𝑛 + 1 = (𝑚 − 𝑟0 + 2)
equations. It is impossible to identify uniquely the coefficients of the polynomial since the
amount of unknowns in this system is greater than the number of equations. However, by the
assumption, 𝜆0 = 0 has multiplicity 𝑟0.

The multiplicity of the root follows that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∆(𝜆0) = 0,

∆′(𝜆0) = 0,

. . .

∆(𝑟0−1)(𝜆0) = 0,

∆(𝑟0)(𝜆0) ̸= 0.

(8)

By (5) and (8) we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆(𝜆0) =
4∑︁

𝑗=1

𝑎2𝑗(𝜆0)𝐴2𝑗(𝜆0),

∆′(𝜆0) =
4∑︁

𝑗=1

(︀
𝑎′2𝑗(𝜆0)𝐴2𝑗(𝜆0) + 𝑎2𝑗(𝜆0)𝐴

′
2𝑗(𝜆0)

)︀
,

. . .

∆(𝑟0−1)(𝜆0) =
4∑︁

𝑗=1

(︁
𝐶0

𝑟0−1𝑎
(𝑟0−1)
2𝑗 (𝜆0)𝐴2𝑗(𝜆0) + . . . + 𝐶𝑟0−1

𝑟0−1𝑎2𝑗(𝜆0)𝐴
(𝑟0−1)
2𝑗

)︁
.

(9)

Employing (9) and eigenvalue 𝜆0 = 0, we find the first 𝑟0 coefficients of polynomial 𝑎2𝑝𝑠(𝜆) by
means of the recurrent relations

𝑎2𝑝𝑖 = −

4∑︀
𝑗=1, 𝑗 ̸=𝑝

(︁
𝐶0

𝑖 𝑎
(𝑖)
2𝑗 (0)𝐴2𝑗(0) + 𝐶1

𝑖 𝑎
(𝑖−1)
2𝑗 (0)𝐴′

2𝑗(0) + · · · + 𝐶𝑖
𝑖𝑎2𝑗(0)𝐴

(𝑖)
2𝑗 (0)

)︁
𝐴2𝑝(0)

−

(︁
𝐶1

𝑖 𝑎2,𝑝,𝑖−1𝐴
′
2𝑝(0) + 𝐶2

𝑖 𝑎2,𝑝,𝑖−2𝐴
′′
2𝑝(0) + · · · + 𝐶𝑖

𝑖𝑎2𝑝0𝐴
(𝑖)
2𝑗 (0)

)︁
𝐴2𝑝(0)

,

(10)

where 𝑖 = 0, 1, . . . , 𝑟0 − 1.
Therefore, the desired polynomial reads as

𝑎2𝑝(𝜆) = 𝑎2𝑝0 + 𝑎2𝑝1𝜆 + . . . + 𝑎2 𝑝 𝑟0−1𝜆
𝑟0−1 + . . . + 𝑎2𝑝𝑚𝜆

𝑚,

where 𝑎2𝑝0,. . . , 𝑎2 𝑝 𝑟0−1 are determined by means of recurrent relations (10), while other co-
efficients 𝑎2𝑝𝑟0 , ,. . . , 𝑎2𝑝𝑚 are unknown. Let us find them by other 𝑛 = (𝑚 − 𝑟0 + 1) known
mutually different eigenvalues 𝜆1, . . . , 𝜆𝑛 of problem (1), (2).

We denote the known part of polynomial 𝑎2𝑝(𝜆) as

𝑉 (𝜆) := 𝑎2𝑝0 + 𝑎2𝑝1𝜆 + . . . + 𝑎2 𝑝 𝑟0−1𝜆
(𝑟0−1).

Then system of equations (7) becomes

𝑎2𝑝𝑟0𝜆
𝑟0
𝑘 + . . . + 𝑎2𝑝𝑚𝜆

𝑚
𝑘 = −

4∑︁
𝑗=1, 𝑗 ̸=𝑝

𝑎2𝑗(𝜆𝑘)
𝐴2𝑗(𝜆𝑘)

𝐴2𝑝(𝜆𝑘)
− 𝑉 (𝜆𝑘), (11)
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where 𝐴2𝑝(𝜆𝑘) ̸= 0, and 𝑘 = 1, 2, . . . ,𝑚 − 𝑟0 + 1. By the assumption, eigenvalues
𝜆1, 𝜆2, . . . , 𝜆𝑚−𝑟0+1 are mutually different and are non-zero. Then we divide all the equations
in system (11) by 𝜆𝑟0

𝑘 , 𝑘 = 1,𝑚− 𝑟0 + 1, to obtain

𝑎2𝑝𝑟0 + . . . + 𝑎2𝑝𝑚𝜆
𝑚−𝑟0
𝑘 = −

4∑︁
𝑗=1, 𝑗 ̸=𝑝

𝑎2𝑗(𝜆𝑘)
𝐴2𝑗(𝜆𝑘)

𝐴2𝑝(𝜆𝑘)𝜆𝑟0
𝑘

− 𝑉 (𝜆𝑘)

𝜆𝑟0
𝑘

. (12)

The determinant of system (12) w.r.t. unknowns 𝑎2𝑝𝑠, 𝑠 = 𝑟0, . . . ,𝑚, is the Vandermonde
determinant

∆ =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
1 𝜆1 . . . 𝜆𝑚

1

1 𝜆2 . . . 𝜆𝑚
2

...
...

...
1 𝜆𝑛 . . . 𝜆𝑚

𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ = (𝜆𝑛 − 𝜆𝑛−1) . . . (𝜆𝑛 − 𝜆1) . . . (𝜆2 − 𝜆1) ̸= 0.

Hence, system of equations (12) has the unique solution determined, for example, by Cramer’s
formulae:

𝑎2𝑝𝑟0 =
∆1

∆
, . . . , 𝑎2𝑝𝑚 =

∆𝑛

∆
, (13)

where the determinants ∆𝑖 (𝑖 = 1, . . . , 𝑛) are obtained from determinant ∆ by replacing 𝑖th
column by the column of the right hand sides in system of equations (12). The proof for the
case 𝐴2𝑝(𝜆𝑘) ̸= 0 is complete. The solution to the inverse problem is given by means of formulae
(10) and (13).

If polynomial 𝐴2𝑝(𝜆) vanishes at points 𝜆 = 𝜆𝑘, it follows from representation (5) that the
identity ∆(𝜆𝑘) = 0 is possible for each 𝑎2𝑝(𝜆𝑘). This is in the case 𝐴2𝑝(𝜆𝑘) = 0 polynomial
𝑎2𝑝(𝜆𝑘) is recovered non-uniquely. The proof is complete.

4. Examples

Example 1. We consider the following problem

− 𝑦′′ = 𝜆2 𝑦,

𝑦′(0) + 𝑦(1) = 0,

𝑦′(1) − 𝑎24(𝜆) 𝑦(1) = 0,

where 𝑎24(𝜆) = 𝑎240 + 𝑎241𝜆 + 𝑎242𝜆
2 + 𝑎243𝜆

3 + 𝑎244𝜆
4. We need to recover the coefficients of

polynomial 𝑎24(𝜆) by three eigenvalues. Eigenvalue 𝜆0 = 0 has multiplicity three and we know
two other eigenvalues 𝜆1 = 𝜋, 𝜆1 = 2𝜋. The characteristic determinant of the problem reads
as:

∆(𝜆) = 1 + 𝜆 sin(𝜆) − 𝑎24(𝜆) cos𝜆.

Since 𝑝 = 4, we have 𝐴24 = − cos𝜆 and 𝐴24(0) = 1 ̸= 0. Employing equation (10) and
eigenvalue 𝜆0 = 0, we find first three coefficients of polynomial 𝑎24(𝜆):

𝑎240 = 1, 𝑎241 = 0, 𝑎242 =
3

2
.

Then our polynomial becomes

𝑎24(𝜆) = 1 +
3

2
𝜆2 + 𝑎243𝜆

3 + 𝑎244𝜆
4.
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Coefficients 𝑎243 and 𝑎244 can be recovered by eigenvalues 𝜆1 = 𝜋 and 𝜆 = 2𝜋 by means of
formula (13):

𝑎243 =
∆2

∆
= − 4

𝜋3
− 9

4𝜋
, 𝑎244 =

∆1

∆
=

2

𝜋4
+

3

4𝜋2
.

It follows that

𝑎24(𝜆) = 1 +
3

2
𝜆2 −

(︂
4

𝜋3
+

9

4𝜋

)︂
𝜆3 +

(︂
2

𝜋4
+

3

4𝜋2

)︂
𝜆4.

Example 2. The characteristic determinant for the spectral problem

− 𝑦′′ = 𝜆2 𝑦,

𝑦′(0) − 𝑦′(1) = 0,

𝑦(1) − 𝑎22 𝑦(0) = 0,

reads as:

∆(𝜆) = (1 + 𝑎22) (cos𝜆− 1) .

The unique recovering of coefficient 𝑎22 by eigenvalue 𝜆 = 0 of this problem is impossible,
since, condition 𝐴22(0) ̸= 0 fails. Indeed, 𝐴22(0) = −𝑎11 − 𝑎13 𝑦

′
2(0) − 𝑎14 𝑦2(0) = −1 + 1 ·

cos(0) − 0 · sin(0) = 0.

BIBLIOGRAPHY

1. A.A. Shkalikov. Boundary value problems for ordinary differential equations with a parameter in
the boundary conditions // Trudy Sem. im I.G. Petrovskogo. 9, 190–229 (1983). (in Russian).

2. N.Yu. Kapustin, E.I. Moiseev. Spectral problems with the spectral parameter in the boundary con-
dition // Differ. Uravn. 33:1, 115–119 (1997). [Differ. Equat. 33:1, 116–120 (1997).]

3. A.M. Akhtyamov. Calculation of the coefficients of expansions in derivative chains of a spectral
problem // Matem. Zametki. 51:6, 137–139 (1992). [Math. Notes. 51:6, 618-619 (1992).]

4. A.M. Akhtyamov. On coefficients of eigenfunction expansions for boundary-value problems with
parameter in boundary conditions // Matem. Zametki. 75:4, 493–506 (2004). [Math. Notes. 75:3-
4, 462–474 (2004).]

5. S.S. Mirzoev, A.R. Aliev, L.A. Rustamova. On the boundary value problem with the operator
in boundary conditions for the operator-differential equation of second order with discontinuous
coefficients // Zh. Mat. Fiz. Anal. Geom. 9:2, 207–226 (2013).

6. I.M. Nabiev, A.Sh. Shukurov. Properties of the spectrum and uniqueness of reconstruction of Sturm-
Liouville operator with a spectral parameter in the boundary condition // Proc. Inst. Math. Mech.
Nat. Acad. Sci. Azerbaijan. 40, 332–341 (2014).

7. Kh.R. Mamedov, F. Cetinkaya. Inverse problem for a class of Sturm-Liouville operator with spectral
parameter in boundary condition // Bound. Value Probl. id 2013:183, 16pp (2013).

8. N.B. Kerimov, Kh.R. Mamedov. On a boundary value problem with a spectral parameter in the
boundary conditions // Sibir. Matem. Zhurn. 40:2, 281–290 (1999). [Sib. Mat. Zh. 40:2, 325-335
(1999).]

9. E.S. Panakhov, H. Koyunbakan, Ic. Unal. Reconstruction formula for the potential function of
Sturm-Liouville problem with eigenparameter boundary condition // Inverse Prob. Sci. Eng. 18:1,
173–180 (2010).

10. M.V. Chugunova. Inverse spectral problem for the Sturm-Liouville operator with eigenvalue pa-
rameter dependent boundary conditions in book “Operator Theory, System Theory and Related
Topics”. Oper. Theory: Adv. Appl. Birkhäuser, Basel. 123, 187–194 (2001).
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