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PROPERLY DISTRIBUTED SUBSEQUENCE ON THE LINE

A.I. ABDULNAGIMOV, A.S. KRIVOSHEYEV

Abstract. In the article we consider first order sequences of complex numbers. We prove
that a sequence of nonzero minimal density contains a subsequence of the same density. We
also prove that a real sequence of nonzero minimal density contains a properly distributed
subsequence. Basing on this fact, we prove a result on representation of an entire function
of exponential type with real zeros as a product of two entire functions with the same
properties. Moreover, one of these functions has a regular growth. As a corollary, we
obtain a result on completeness of exponential systems with real exponents in the space of
analytic functions in a bounded convex domain of the complex plane.
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1. Introduction

In the paper we mostly study real sequences of first order. We find the conditions under
which such sequences contain a properly distributed set of a prescribed density. On the basis
of these conditions we prove the result on representing an entire function of exponential type
with real zeroes by a product of two functions of the same type, one of those has the a regular
growth. As a corollary, we obtain the result on the completeness of exponential systems with
real exponents in the space of functions analytic in a bounded convex planar domain.

Let Λ = {𝜆𝑘}∞𝑘=1 be a sequence of complex numbers taken in the ascending order of its
absolute values. At that we assume that it can be multiple, i.e. some of 𝜆𝑘 can coincide. We
denote by 𝑛(𝑟,Λ) the number of the terms in sequence Λ located in the circle |𝜆| < 𝑟, 𝑟 > 0.
The lower and upper densities of Λ are respectively the quantities

𝑛(Λ) = lim
𝑟→∞

𝑛(𝑟,Λ)

𝑟
, 𝑛(Λ) = lim

𝑟→∞

𝑛(𝑟,Λ)

𝑟
.

Sequence Λ is said to have density 𝑛(Λ) if 𝑛(Λ) = 𝑛(Λ) = 𝑛(Λ). It is easy to see that in this
case the identity

𝑛(Λ) = lim
𝑘→∞

𝑘

|𝜆𝑘|
holds true.

Maximal and minimal densities of sequence Λ are the quantities

𝑛0(Λ) = lim
𝛿→0

lim
𝑟→∞

𝑛(𝑟,Λ) − 𝑛((1 − 𝛿)𝑟,Λ)

𝛿𝑟
, 𝑛0(Λ) = lim

𝛿→0
lim
𝑟→∞

𝑛(𝑟,Λ) − 𝑛((1 − 𝛿)𝑟,Λ)

𝛿𝑟
.

Lemma 1. Let Λ = {𝜆𝑘}∞𝑘=1 be such 𝑛(Λ) < ∞. The inequalities

𝑛0(Λ) 6 𝑛(Λ) 6 𝑛(Λ) 6 𝑛0(Λ) (1)

hold true.
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Proof. We have

𝑛0(Λ) =lim
𝛿→0

lim
𝑟→∞

𝑛(𝑟,Λ) − 𝑛((1 − 𝛿)𝑟,Λ)

𝛿𝑟
> lim

𝛿→0

(︂
lim
𝑟→∞

𝑛(𝑟,Λ)

𝛿𝑟
− lim

𝑟→∞

𝑛((1 − 𝛿)𝑟,Λ)

𝛿𝑟

)︂
=lim

𝛿→0

(︂
𝑛(Λ)

𝛿
− (1 − 𝛿) lim

𝑟→∞

𝑛((1 − 𝛿)𝑟,Λ)

(1 − 𝛿)𝛿𝑟

)︂
= lim

𝛿→0

(︂
𝑛(Λ)

𝛿
− (1 − 𝛿)

𝑛(Λ)

𝛿

)︂
= 𝑛(Λ).

Thus, 𝑛(Λ) 6 𝑛0(Λ).
Inequalities 𝑛(Λ) 6 𝑛(Λ) follow directly from the definitions of these quantuties.
To prove (1), it remains to show that 𝑛0(Λ) 6 𝑛(Λ). Let 𝛿 ∈ (0, 1). We have

lim
𝑟→∞

𝑛(𝑟,Λ) − 𝑛((1 − 𝛿)𝑟,Λ)

𝛿𝑟
6 lim

𝑟→∞

𝑛(𝑟,Λ)

𝛿𝑟
− (1 − 𝛿) lim

𝑟→∞

𝑛((1 − 𝛿)𝑟,Λ)

𝛿𝑟

=
𝑛(Λ)

𝛿
− (1 − 𝛿)

𝑛(Λ)

𝛿
= 𝑛(Λ).

It implies the required inequality. The proof is complete.

Let Λ = {𝜆𝑘}∞𝑘=1 and ̃︀Λ = {𝜆̃𝑛}∞𝑛=1. If Λ is a subsequence of ̃︀Λ, we shall write Λ ⊂ ̃︀Λ. The
proof of the following statement is based on the approach employed in the proof of Lemma 5
in work [1].

Lemma 2. Let 𝜏 > 0 and ̃︀Λ = {𝜆̃𝑛}∞𝑛=1 be such that 𝑛0(̃︀Λ) > 𝜏 . Then there exists a sequence

Λ ⊂ ̃︀Λ having density 𝜏 .

Proof. Since the arguments of the terms in ̃︀Λ makes no influence of its various densities, we can

assume that sequence ̃︀Λ lies on a non-negative real semi-axis. We can also assume that 𝜏 > 0,
since the case 𝜏 = 0 is trivial.

Let 𝛼 = 1/𝜏 , and ̃︀Λ𝑚 be the set of all the terms in ̃︀Λ belonging the semi-interval
[(𝑚− 1)𝛼,𝑚𝛼), 𝑚 > 1. We seek sequence Λ as the union Λ =

⋃︀
𝑚>1 Λ𝑚, where Λ𝑚 is a

subset of ̃︀Λ𝑚. We construct sets Λ𝑚, 𝑚 > 1, by induction following the restriction: for each
𝑚 > 1 the total amount of points in sets Λ1, . . . ,Λ𝑚 should be less or equal 𝑚.

Let 𝑚 = 1. If ̃︀Λ1 is non-empty, we choose an arbitrary point 𝜆̃𝑛(1) in ̃︀Λ1 and let 𝜆1 = 𝜆̃𝑛(1),
Λ1 = {𝜆1}. Otherwise we let Λ1 = ∅. By construction, the number of points in set Λ1 does not
exceed one.

Assume that we have constructed sets Λ𝑚 for each 𝑚 < 𝑝 and the number of points in these
sets satisfy the aforementioned restriction. Let us define Λ𝑝. If total amount of points in sets

Λ1, . . . ,Λ𝑝−1, ̃︀Λ𝑝 is less or equal 𝑝, as Λ𝑝 we take the set ̃︀Λ𝑝. Otherwise, as Λ𝑝 we choose an

arbitrary subset ̃︀Λ𝑝 such that the total amount of potins in sets Λ1, . . . ,Λ𝑝 is 𝑝. Hence, the
aforementioned restriction is satisfied.

Let us show that our construction is well-defined, i.e., at the last step in set ̃︀Λ𝑝 there are
always a necessary amount of points. Suppose this is not true. In other words, for each subset

Λ𝑝 (including an empty set) of set ̃︀Λ𝑝, the total amount of points in Λ1, . . . ,Λ𝑝 is not 𝑝. Then

for each Λ𝑝 ⊂ ̃︀Λ𝑝 the total amount of points in Λ1, . . . ,Λ𝑝 is either strictly less than 𝑝 or strictly
greater than 𝑝. The first case is impossible since on the last step of construction it is assumed

for Λ𝑝 = ̃︀Λ𝑝 that the total amounts of points in Λ1, . . . ,Λ𝑝 is strictly greater than 𝑝. The second
case is also impossible since by the assumption of the induction the total amount of points in
sets Λ1, . . . ,Λ𝑝−1 is less or equal 𝑝− 1, and therefore, for Λ𝑝 = ∅ the total amount of points in
Λ1, . . . ,Λ𝑝 is also less than 𝑝. Thus, our construction is well-defined.

Let us show that Λ is the sought set, i.e., Λ ⊂ ̃︀Λ and 𝑛(𝑟,Λ)/𝑟 → 𝜏 as 𝑟 → ∞. The
former is valid by the construction. Let us show the latter. Let 𝑟 > 0 and 𝑞(𝑟) stands for the
maximal natural number satisfying the inequality 𝛼𝑞(𝑟) 6 𝑟. By construction, the quantity
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𝑛(𝛼(𝑞(𝑟) + 1),Λ) coincides with the total amount of point in sets Λ1, . . . ,Λ𝑞(𝑟)+1; in accordance
with the above restriction this amount does not exceed 𝑞(𝑟) + 1. Therefore,

𝑛(Λ) = lim
𝑟→∞

𝑛(𝑟,Λ)

𝑟
6 lim

𝑟→∞

𝑛(𝛼(𝑞(𝑟) + 1),Λ)

𝛼𝑞(𝑟)
6 lim

𝑟→∞

𝑞(𝑟) + 1

𝛼𝑞(𝑟)
=

1

𝛼
= 𝜏. (2)

Let us prove the inequality 𝑛(Λ) > 𝜏 . In view of (1), it is sufficient to show that 𝑛0(Λ) > 𝜏 .

We fix 𝜀 > 0. In accordance with the hypothesis of the lemma and the definition of 𝑛0(̃︀Λ) we
find 𝛿0 > 0 such that

lim
𝑟→∞

𝑛(𝑟, ̃︀Λ) − 𝑛((1 − 𝛿′)𝑟, ̃︀Λ)

𝛿′𝑟
> 𝑛0(̃︀Λ) − 𝜀 > 𝜏 − 𝜀, 𝛿′ ∈ (0, 𝛿0). (3)

Let 𝑟 > 0. By construction, Λ𝑝 ⊂ ̃︀Λ𝑝. We denote by 𝑝(𝑟) the maximal index such that

𝛼𝑝(𝑟) 6 𝑟 and Λ𝑝(𝑟) is a proper subset of ̃︀Λ𝑝(𝑟). We can assume that for large 𝑟 such index

exists since otherwise sequences Λ and ̃︀Λ coincide. Then the required inequality holds by the

condition: 𝑛0(Λ) = 𝑛0(̃︀Λ) > 𝜏 .
We fix 𝛿 ∈ (0, 𝛿0). We choose a sequence 𝑟𝑗 → ∞ such that

lim
𝑟→∞

𝑛(𝑟,Λ) − 𝑛((1 − 𝛿)𝑟,Λ)

𝛿𝑟
= lim

𝑗→∞

𝑛(𝑟𝑗,Λ) − 𝑛((1 − 𝛿)𝑟𝑗,Λ)

𝛿𝑟𝑗
. (4)

In accordance with the construction and the choice of numbers 𝑝(𝑟) and 𝑞(𝑟), the intersections

of the semi-interval [𝛼𝑝(𝑟), 𝛼𝑞(𝑟)) with sets Λ and ̃︀Λ coincide. This is why the identity

𝑛(𝛼𝑞(𝑟),Λ) − 𝑛(𝑟,Λ) = 𝑛(𝛼𝑞(𝑟), ̃︀Λ) − 𝑛(𝑟, ̃︀Λ), 𝛼𝑝(𝑟) 6 𝑟 < 𝛼𝑞(𝑟) (5)

holds true. Let 𝛿′ ∈ (0, 𝛿). Then by the definition of 𝑞(𝑟) there exists 𝑟(𝛿′) > 0 such that
(1 − 𝛿′)𝑟′ > (1 − 𝛿)𝑟 as 𝑟 > 𝑟(𝛿′), where 𝑟′ = 𝛼𝑞(𝑟). If 𝛼𝑝(𝑟𝑗(𝑘)) 6 (1 − 𝛿)𝑟𝑗(𝑘) for some
subsequence {𝑟𝑗(𝑘)}, by (3)–(5) we obtain

lim
𝑟→∞

𝑛(𝑟,Λ) − 𝑛((1 − 𝛿)𝑟,Λ)

𝛿𝑟
= lim

𝑘→∞

𝑛(𝑟𝑗(𝑘),Λ) − 𝑛((1 − 𝛿)𝑟𝑗(𝑘),Λ)

𝛿𝑟𝑗(𝑘)

> lim
𝑘→∞

𝑛(𝛼𝑞(𝑟𝑗(𝑘)),Λ) − 𝑛((1 − 𝛿)𝑟𝑗(𝑘),Λ)

𝛿𝑟𝑗(𝑘)
= lim

𝑟→∞

𝛼𝑞(𝑟𝑗(𝑘)), ̃︀Λ) − 𝑛((1 − 𝛿)𝑟𝑗(𝑘), ̃︀Λ)

𝛿𝑟𝑗(𝑘)

> lim
𝑟→∞

𝑛(𝛼𝑞(𝑟), ̃︀Λ) − 𝑛((1 − 𝛿)𝑟, ̃︀Λ)

𝛿𝑟
>

𝛿′

𝛿
lim
𝑟→∞

𝑟′
(︁
𝑛(𝑟′, ̃︀Λ) − 𝑛((1 − 𝛿′)𝑟′, ̃︀Λ)︁

𝑟𝛿′𝑟′

=
𝛿′

𝛿
lim
𝑟′→∞

𝑛(𝛼𝑞(𝑟), ̃︀Λ) − 𝑛((1 − 𝛿′)𝑟′, ̃︀Λ)

𝛿′𝑟′
>

𝛿′

𝛿
(𝜏 − 𝜀).

Since the latter inequality holds for each 𝛿′ ∈ (0, 𝛿), then

lim
𝑟→∞

𝑛(𝑟,Λ) − 𝑛((1 − 𝛿)𝑟,Λ)

𝛿𝑟
> 𝜏 − 𝜀. (6)

Thus, we can assume that 𝛼𝑝(𝑟𝑗) > (1 − 𝛿)𝑟𝑗 for each 𝑗 > 1. Passing to a subsequence, we
can also suppose that

lim
𝑗→∞

𝑛(𝑟𝑗,Λ) − 𝑛(𝛼𝑝(𝑟𝑗),Λ)

𝛿𝑟𝑗
= lim

𝑗→∞

𝑛(𝑟𝑗,Λ) − 𝑛(𝛼𝑝(𝑟𝑗),Λ)

𝛿𝑟𝑗
.

Hence, we have

lim
𝑗→∞

𝑛(𝑟𝑗,Λ) − 𝑛(𝛼𝑝(𝑟𝑗),Λ) + 𝑛(𝛼𝑝(𝑟𝑗),Λ) − 𝑛((1 − 𝛿)𝑟𝑗,Λ)

𝛿𝑟𝑗

= lim
𝑗→∞

𝑛(𝑟𝑗,Λ) − 𝑛(𝛼𝑝(𝑟𝑗),Λ)

𝛿𝑟𝑗
+ lim

𝑗→∞

𝑛(𝛼𝑝(𝑟𝑗),Λ) − 𝑛((1 − 𝛿)𝑟𝑗,Λ)

𝛿𝑟𝑗
.

(7)
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Let us estimate separately the terms in (7). Since 𝛼𝑝(𝑟𝑗) ∈ ((1 − 𝛿)𝑟𝑗, 𝑟𝑗), passing to a
subsequence we can assume that 𝑝(𝑟𝑗)/𝑟𝑗 converges to some 𝛾, at that, 𝛼𝛾 ∈ [1 − 𝛿, 1]. We
proceed to the second term in (7). By the choice of number 𝑝(𝑟), set Λ𝑝(𝑟𝑗) is a proper subset

of ̃︀Λ𝑝(𝑟𝑗). Then by construction the identity 𝑛(𝛼𝑝(𝑟𝑗),Λ) = 𝑝(𝑟𝑗) holds true. Moreover, in
accordance with the above restriction, we have the inequality 𝑛(𝛼𝑚(𝑟𝑗),Λ) 6 𝑚(𝑟𝑗), where
𝑚(𝑟𝑗) is a minimal natural number such that 𝛼𝑚(𝑟𝑗) > (1 − 𝛿)𝑟𝑗. Therefore,

lim
𝑗→∞

𝑛(𝛼𝑝(𝑟𝑗),Λ) − 𝑛((1 − 𝛿)𝑟𝑗,Λ)

𝛿𝑟𝑗
> lim

𝑗→∞

𝑝(𝑟𝑗) −𝑚(𝑟𝑗)

𝛿𝑟𝑗
=

𝛾

𝛿
− 1 − 𝛿

𝛼𝛿
. (8)

If 𝛼𝛾 = 1, by (8), (7) and (4) we obtain

lim
𝑟→∞

𝑛(𝑟,Λ) − 𝑛((1 − 𝛿)𝑟,Λ)

𝛿𝑟
> 𝜏. (9)

Let 𝛼𝛾 < 1 and 𝛿 ∈ (0, 1 − 𝛼𝛾) ⊂ (0, 𝛿). Then there exists an index 𝑗0 such that 𝛼𝑝(𝑟𝑗) 6
(1 − 𝛿)𝑟′𝑗, 𝑗 > 𝑗0, where 𝑟′𝑗 = 𝛼𝑞(𝑟𝑗). This is why in view of (5) and (3) we obtain

lim
𝑗→∞

𝑛(𝑟𝑗,Λ) − 𝑛(𝛼𝑝(𝑟𝑗, 𝛿),Λ)

𝛿𝑟𝑗
> lim

𝑗→∞

𝑛(𝛼𝑞(𝑟𝑗),Λ) − 𝑛((1 − 𝛿)𝑟′𝑗,Λ)

𝛿𝑟𝑗

=
𝛿

𝛿
lim
𝑗→∞

𝑟′𝑗

(︁
𝑛(𝑟′𝑗, ̃︀Λ) − 𝑛((1 − 𝛿)𝑟′𝑗, ̃︀Λ)

)︁
𝑟𝑗𝛿𝑟′𝑗

>
𝛿

𝛿
(𝜏 − 𝜀).

By (4), (7), (8) it yields

lim
𝑟→∞

𝑛(𝑟,Λ) − 𝑛((1 − 𝛿)𝑟,Λ)

𝛿𝑟
>

𝛾

𝛿
− 1 − 𝛿

𝛼𝛿
+

𝛿

𝛿
(𝜏 − 𝜀).

Since 𝛼 = 1/𝜏 and 𝛿 can be arbitrarily close to 1 − 𝛼𝛾 < 𝛿, then

lim
𝑟→∞

𝑛(𝑟,Λ) − 𝑛((1 − 𝛿)𝑟,Λ)

𝛿𝑟
>

𝛼𝛾

𝛿
𝜏 − 1 − 𝛿

𝛿
𝜏 +

1 − 𝛼𝛾

𝛿
(𝜏 − 𝜀) = 𝜏 − 1 − 𝛼𝛾

𝛿
𝜀 > 𝜏 − 𝜀.

Thus, in view of (9), (6) and the arbitrariness of number 𝜀 > 0 we obtain the inequality
𝑛0(Λ) > 𝜏 . By (1) and (2) it completes the proof.

Let Λ = {𝜆𝑘}∞𝑘=1 and 𝑟 > 0. We define

𝑉 (𝑟,Λ) =
∑︁

0<|𝜆𝑘|<𝑟

1

𝜆𝑘

.

In what follows we consider only real sequences Λ and we represent them as Λ = Ω ∪ Ξ,
where Ω = {𝜔𝑘}∞𝑘=1 and Ξ = {𝜉𝑘}∞𝑘=1 are taken in the ascending order of their absolute values.
These sequences consists of non-negative and negative terms of Λ.

Lemma 3. Let Λ = Ω ∪ Ξ, where Ω and Ξ have the same density 𝜏 . Then for each 𝜀 > 0
there exists 𝑟(𝜀) such that for each 𝑟2 > 𝑟1 > 𝑟(𝜀) the inequality

|𝑉 (𝑟2,Λ) − 𝑉 (𝑟1,Λ)| 6 ln(𝑟2/𝑟1) + 𝜀

holds true.

Proof. Without loss of generality we can assume that 𝜔𝑘 ̸= 0, 𝑘 > 1. In accordance with Euler’s
representation we have

𝑛∑︁
𝑘=1

1

𝑘
= ln𝑛 + 𝛽 + 𝜀(𝑛), (10)
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where 𝛽 is Euler constant and 𝜀(𝑛) → 0 as 𝑛 → ∞. By the assumption, Ω and Ξ have density
𝜏 , i.e., the identities

𝜔𝑘 = |𝜔𝑘| = 𝑘/(𝜏 + 𝛿′(𝑘)), 𝜉𝑘 = −|𝜉𝑘| = −𝑘/(𝜏 + 𝛿′′(𝑘)) (11)

𝑛(𝑟,Ω) = 𝜏𝑟 + 𝜀′(𝑟)𝑟, 𝑛(𝑟,Ξ) = 𝜏𝑟 + 𝜀′′(𝑟)𝑟, (12)

hold true, where 𝛿′(𝑘), 𝛿′′(𝑘) → 0 as 𝑘 → ∞ and 𝜀′(𝑟), 𝜀′′(𝑟) → 0 as 𝑟 → ∞. We fix 𝜀 > 0. We
choose index 𝑚 such that

|𝛿′(𝑘)| 6 𝜀, |𝛿′′(𝑘)| 6 𝜀, |𝜀(𝑛)| 6 𝜀, 𝑘, 𝑛 > 𝑚. (13)

We choose 𝑟(𝜀) > 0 so that

𝑛(𝑟1,Ω) > 𝑚, 𝑛(𝑟1,Ξ) > 𝑚,

⃒⃒⃒⃒
ln

𝜏 + 𝜀′(𝑟2)

𝜏 + 𝜀′(𝑟1)

⃒⃒⃒⃒
6 𝜀,

⃒⃒⃒⃒
ln

𝜏 + 𝜀′′(𝑟2)

𝜏 + 𝜀′′(𝑟1)

⃒⃒⃒⃒
6 𝜀, 𝑟2 > 𝑟1 > 𝑟(𝜀). (14)

Then by (10)–(14) we obtain

|𝑉 (𝑟2,Λ) − 𝑉 (𝑟1,Λ)| =

⃒⃒⃒⃒
⃒⃒ 𝑛(𝑟2,Ω)∑︁
𝑘=𝑛(𝑟1,Ω)+1

𝜏 + 𝛿′(𝑘)

𝑘
−

𝑛(𝑟2,Ξ)∑︁
𝑘=𝑛(𝑟1,Ξ)+1

𝜏 + 𝛿′′(𝑘)

𝑘

⃒⃒⃒⃒
⃒⃒

6

⃒⃒⃒⃒
⃒⃒ 𝑛(𝑟2,Ω)∑︁
𝑘=𝑛(𝑟1,Ω)+1

𝜏

𝑘
−

𝑛(𝑟2,Ξ)∑︁
𝑘=𝑛(𝑟1,Ξ)+1

𝜏

𝑘

⃒⃒⃒⃒
⃒⃒ +

𝑛(𝑟2,Ω)∑︁
𝑘=𝑛(𝑟1,Ω)+1

|𝛿′(𝑘)|
𝑘

+

𝑛(𝑟2,Ξ)∑︁
𝑘=𝑛(𝑟1,Ξ)+1

|𝛿′′(𝑘)|
𝑘

6 𝜏

⃒⃒⃒⃒
ln

𝑛(𝑟2,Ω)

𝑛(𝑟1,Ω)
− ln

𝑛(𝑟2,Ξ)

𝑛(𝑟1,Ξ)

⃒⃒⃒⃒
+ 4𝜏𝜀 + 𝜀 ln

𝑛(𝑟2,Ω)

𝑛(𝑟1,Ω)
+ 𝜀 ln

𝑛(𝑟2,Ξ)

𝑛(𝑟1,Ξ)
+ 4𝜀2

6 6𝜏𝜀 + 2𝜀 ln
𝑟2
𝑟1

+ 6𝜀2, 𝑟2 > 𝑟1 > 𝑟(𝜀).

It follows easily the required inequality. The proof is complete.

Lemma 4. Let Λ = Ω∪Ξ, where Ω and Ξ have the same density 𝜏 . Then there exists a set
of zero density 𝑇 ⊂ Λ such that

lim
𝑟→∞

(𝑉 (𝑟,Λ) − 𝑉 (𝑟, 𝑇 )) = 0.

Proof. If 𝜏 = 0, then Λ has the zero density. In this case the statement of the lemma is trivial
since as 𝑇 we can take Λ.

Let 𝜏 > 0. We seek sequence 𝑇 ⊂ Λ, 𝑇 = {𝑡𝑝} as the union 𝑇 = ∪𝑚>1𝑇𝑚, where 𝑇𝑚 =

{𝑡𝑝}𝑝(𝑚+1)−1
𝑝=𝑝(𝑚) . We construct sets 𝑇𝑚 by induction. Let 𝑚 = 1. As 𝑇1 = {𝑡𝑝}𝑝(2)−1

𝑝=𝑝(1)=1 we take a

set formed by all the elements in Λ belonging to the interval (−2, 2). We suppose that we have
constructed sets 𝑇𝑚 for each 𝑚 < 𝑙. Let us define 𝑇𝑙. We consider two cases.

1) 𝑉 (2𝑙,Λ) −
∑︀𝑝(𝑙)−1

𝑝=1 1/𝑡𝑝 > 0.

a) If

𝑉 (2𝑙,Λ) −
𝑝(𝑙)−1∑︁
𝑝=1

1

𝑡𝑝
−

∑︁
2𝑙−16𝜔𝑘<2𝑙

1

𝜔𝑘

> 0,

then as 𝑇𝑙 we take the set (probably empty) of all the elements in Ω belonging to the semi-
interval [2𝑙−1, 2𝑙).

b) Let

𝑉 (2𝑙,Λ) −
𝑝(𝑙)−1∑︁
𝑝=1

1

𝑡𝑝
−

∑︁
2𝑙−16𝜔𝑘<2𝑙

1

𝜔𝑘

< 0.
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Then semi-interval [2𝑙−1, 2𝑙) contains points 𝜔𝑘 of sequence Ω. By 𝑘(𝑙) we denote the minimal
of indices 𝑘 for which 𝜔𝑘 > 2𝑙−1. As 𝑇𝑙 we take the set of the elements 𝜔𝑘(𝑙), . . . , 𝜔𝑘′(𝑙), where
𝑘′(𝑙) is the minimal index satisfying the inequality

𝑉 (2𝑙,Λ) −
𝑝(𝑙)−1∑︁
𝑝=1

1

𝑡𝑝
−

𝑘′(𝑙)∑︁
𝑘=𝑘(𝑙)

1

𝜔𝑘

< 0.

By the choice of 𝑘′(𝑙), the point 𝜔𝑘′(𝑙) together with all the elements in set 𝑇𝑙 belong the
semi-interval [2𝑙−1, 2𝑙).

2) 𝑉 (2𝑙,Λ) −
𝑝(𝑙)−1∑︀
𝑝=1

1/𝑡𝑝 < 0.

a) If

𝑉 (2𝑙,Λ) −
𝑝(𝑙)−1∑︁
𝑝=1

1

𝑡𝑝
−

∑︁
−2𝑙<𝜉𝑛6−2𝑙−1

1

𝜉𝑛
< 0,

as 𝑇𝑙 we take the set of all the elements Ξ lying in the semi-interval (−2𝑙,−2𝑙−1].
b) Let

𝑉 (2𝑙,Λ) −
𝑝(𝑙)−1∑︁
𝑝=1

1

𝑡𝑝
−

∑︁
−2𝑙<𝜉𝑛6−2𝑙−1

1

𝜉𝑛
> 0.

Then semi-interval (−2𝑙,−2𝑙−1] contains points 𝜉𝑛 of sequence Ξ. By 𝑛(𝑙) we denote the minimal
of indices 𝑛 satisfying 𝜉𝑛 6 −2𝑙−1. As 𝑇𝑙, we take the set of the elements 𝜉𝑛(𝑙), . . . , 𝜉𝑛′(𝑙), where
𝑛′(𝑙) is the minimal index satisfying the estimate

𝑉 (2𝑙,Λ) −
𝑝(𝑙)−1∑︁
𝑝=1

1

𝑡𝑝
−

𝑛′(𝑙)∑︁
𝑛=𝑛(𝑙)

1

𝜉𝑛
> 0.

By the choice of 𝑛′(𝑙), point 𝜔𝑘′(𝑙) together with all the elements in 𝑇𝑙 belong to the semi-interval
[2𝑙−1, 2𝑙).

Thus, sequence 𝑇 is defined completely. We note that by construction, one of the following
possibilities occurs:

a) the quantity 𝑉 (2𝑚,Λ)−𝑉 (2𝑚, 𝑇 ) preserves the sign (number 0 is assigned with sign “+”)
while passing from 𝑚 = 𝑙 − 1 to 𝑚 = 𝑙 (𝑙 > 1) and thus, the inequality

|𝑉 (2𝑙,Λ) − 𝑉 (2𝑙, 𝑇 )| 6 |𝑉 (2𝑙−1,Λ) − 𝑉 (2𝑙−1, 𝑇 )| (15)

holds true, while set 𝑇𝑙 consists of all the elements in Λ lying in the annulus 𝐵(0, 2𝑙)∖𝐵(0, 2𝑙−1)
and having the same sign as 𝑉 (2𝑙,Λ) − 𝑉 (2𝑙, 𝑇 ).

b) quantity 𝑉 (2𝑚,Λ) − 𝑉 (2𝑚, 𝑇 ) changes the sign while passing from 𝑚 = 𝑙 − 1 to 𝑚 = 𝑙
and thus, the estimate

|𝑉 (2𝑙,Λ) − 𝑉 (2𝑙, 𝑇 )| 6 1/𝜔𝑘′(𝑙)(1/|𝜉𝑛′(𝑙)|) 6 1/2𝑙−1 (16)

holds true. It is implied by the choice of indices 𝑘′(𝑙) and 𝑛′(𝑙).
Suppose that for some index 𝑚(0) the quantity 𝑉 (2𝑚,Λ) − 𝑉 (2𝑚, 𝑇 ) preserves the sign for

all 𝑚 > 𝑚(0), for instance, “+”. Then the part of sequence 𝑇 formed by the elements lying
outside the circle 𝐵(0, 2𝑚(0)) coincides with the corresponding part of sequence Ω. Then by
(15), the series

∑︀
1/𝜉𝑛 converges. It means that 𝑛/𝜉𝑛 → 0 as 𝑛 → ∞, i.e., sequence Ξ has the

zero density. It contradicts to the inequality 𝜏 > 0.
Thus, there exists a sequence of indices 𝑚(𝑗), 𝑗 > 1, such that the quantity 𝑉 (2𝑚,Λ) −

𝑉 (2𝑚, 𝑇 ) changes the sign while passing from 𝑚 = 𝑚(𝑗) to 𝑚 = 𝑚(𝑗) + 1. Then it follows from
(15) and (16) that

|𝑉 (2𝑚,Λ) − 𝑉 (2𝑚, 𝑇 )| → 0, 𝑚 → ∞. (17)



PROPERLY DISTRIBUTED SUBSEQUENCE ON THE LINE 9

Let us prove that 𝑇 has the zero density. Let 𝑠𝑚 be then number of the elements in 𝑇𝑚.
By construction, all of them have the same sign and lie in the annulus 𝐵(0, 2𝑚) ∖ 𝐵(0, 2𝑚−1).
Therefore, by (17) and Lemma 3 we obtain

𝑠𝑚
2𝑚

6

⃒⃒⃒⃒
⃒⃒𝑝(𝑚+1)−1∑︁

𝑝=𝑝(𝑚)

1

𝑡𝑝

⃒⃒⃒⃒
⃒⃒ = |𝑉 (2𝑚, 𝑇 ) − 𝑉 (2𝑚−1, 𝑇 )| 6 |𝑉 (2𝑚,Λ) − 𝑉 (2𝑚−1,Λ)|

+ |𝑉 (2𝑚,Λ) − 𝑉 (2𝑚, 𝑇 )| + |𝑉 (2𝑚−1,Λ) − 𝑉 (2𝑚−1, 𝑇 )| → 0, 𝑚 → ∞.

We fix 𝜀 > 0. Then there exists an index 𝑚(𝜀) such that

𝑠𝑚/2𝑚 6 𝜀, 𝑚 > 𝑚(𝜀). (18)

Let 𝑟 > 2𝑚(𝜀) and 𝑛 be the minimal of the indices for which 𝑟 6 2𝑛. Then by (18)

𝑛(𝑟, 𝑇 )

𝑟
6
𝑛(2𝑚(𝜀), 𝑇 )

𝑟
+

𝑛(2𝑛, 𝑇 ) − 𝑛(2𝑚(𝜀), 𝑇 )

2𝑛−1
=

𝑛(2𝑚(𝜀), 𝑇 )

𝑟

+
𝑠𝑚(𝜀)+1 + 𝑠𝑚(𝜀)+2 + · · · + 𝑠𝑛

2𝑛−1
6

𝑛(2𝑚(𝜀), 𝑇 )

𝑟
+ 2𝜀

(︂
1 +

1

2
+ · · · +

1

2𝑛−𝑚(𝜀)−1

)︂
.

It follows that 𝑛(𝑇 ) 6 2𝜀. Since 𝜀 > 0 is arbitrary and 𝑛(𝑇 ) > 0, it leads to the required
identity 𝑛(𝑇 ) = 0.

It remains to show that 𝑉 (𝑟,Λ) − 𝑉 (𝑟, 𝑇 ) → 0 as 𝑟 → ∞. Let 𝑟 > 2. We choose index 𝑚
such that 2𝑚 6 𝑟 < 2𝑚+1. As it has been proved above, 𝑇 has the zero density. This is why
for sequence 𝑇 , as well as for Λ, Lemma 3 holds true. Then by (17) we have

|𝑉 (𝑟,Λ) − 𝑉 (𝑟, 𝑇 )| 6|𝑉 (2𝑚,Λ) − 𝑉 (2𝑚, 𝑇 )| + |𝑉 (𝑟,Λ) − 𝑉 (2𝑚,Λ)| + |𝑉 (𝑟, 𝑇 ) − 𝑉 (2𝑚, 𝑇 )|
6 |𝑉 (2𝑚,Λ) − 𝑉 (2𝑚, 𝑇 )| + 2𝜀(𝑟)(ln 2 + 1) → 0, 𝑟 → ∞.

The proof is complete.

We recall that set Λ = Ω ∪ Ξ is called properly distributed (see [2, Ch. II, Sect. 1]), if
sequences Ω and Ξ have densities and there exists lim𝑟→∞ 𝑉 (𝑟,Λ).

Theorem 1. Let 𝜏 > 0 and ̃︀Λ = ̃︀Ω ∪ ̃︀Ξ be such that 𝑛(̃︀Ω) > 𝜏 and 𝑛(̃︀Ξ) > 𝜏 . Then there

exists a properly distributed set Λ ⊂ ̃︀Λ, Λ = Ω∪Ξ, where Ω and Ξ have the same density 𝜏 and
lim𝑟→∞ 𝑉 (𝑟,Λ) = 0.

Proof. In accordance with Lemma 2, there exists a sequence Λ′ ⊂ ̃︀Λ, Λ′ = Ω′ ∪ Ξ′ such that
𝑛(Ω′) = 𝑛(Ξ′) = 𝜏 . Then by Lemma 4 there exists a sequence 𝑇 ⊂ Λ′ satisfying condition
lim𝑟→∞(𝑉 (𝑟,Λ′) − 𝑉 (𝑟, 𝑇 )) = 0. Thus, Λ = Λ′ ∖ 𝑇 possesses all the required properties. The
proof is complete.

Let us consider some applications of Theorem 1.
Let 𝑓 be an entire function of exponential type (i.e., there exist 𝐴,𝐵 > 0 such that the

estimate |𝑓(𝑧)| 6 𝐴 + 𝐵|𝑧|, 𝑧 ∈ C holds true). The upper indicator of 𝑓 is the function

ℎ𝑓 (𝜆) = lim
𝑡→∞

ln |𝑓(𝑡𝜆)|/𝑡, 𝜆 ∈ C.

Indicator ℎ𝑓 is a convex order one positively homogeneous function which coincides with the
complex support function 𝐻𝐾 of some convex compact set 𝐾 (in other words, with the usual
support function of the compact set complex conjugate with 𝐾) called adjoint diagram of 𝑓
(see, for instance, [3, Ch. I, Sect. 5, Thm. 5.4]):

ℎ𝑓 (𝜆) = 𝐻𝐾(𝜆) = sup
𝑧∈𝐾

Re (𝜆𝑧), 𝜆 ∈ C.
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Function 𝑓 is said to have a regular growth (see [2, Ch. III]) if

ℎ𝑓 (𝜆) = lim
𝑡→∞,𝑡/∈𝐸

ln |𝑓(𝑡𝜆)|/𝑡, 𝜆 ∈ C,

where 𝐸 is a set of relative zero measure on the ray (0,+∞), i.e., the Lebesgue measure of its
intersection with the interval (0, 𝑟) is infinitesimally small w.r.t. 𝑟 as 𝑟 → +∞.

Let 𝐾 be a convex compact set. The points 𝑧(𝜙) being the intersection of support line
𝑙(𝜙) = {𝑧 : Re (𝑧𝑒𝑖𝜙 = 𝐻𝐾(𝑒𝑖𝜙)} and the boundary 𝜕𝐾 are called support points of line 𝑙(𝜙).

In accordance of [2, Ch. III, Thm. 4], function 𝑓 has a regular growth if and only if its multiple
zero set Λ (i.e., each zero of 𝑓 appears in Λ counting its multiplicity) is properly distributed.
At that, if Λ is real (Λ = Ω ∪ Ξ), the identities

𝑛(Ω) = 𝑆𝐾(𝜙1, 𝜙2)/2𝜋, −𝜋/2 < 𝜙1 < 𝜙2 < 𝜋/2,

𝑛(Ξ) = 𝑆𝐾(𝜙1, 𝜙2)/2𝜋, 𝜋/2 < 𝜙1 < 𝜙2 < 3𝜋/2,

hold true, see [2, Ch. II, Sect. 1, Formula (2.07)]. Here 𝐾 is the adjoint diagrma, and 𝑆𝐾(𝜙1, 𝜙2)
is the length of boundary 𝜕𝐾 (measured in the clockwise direction) between support points
𝑧(𝜙1) and 𝑧(𝜙2). We observe that for all mentioned 𝜙1, 𝜙2 quantity 𝑆𝐾(𝜙1, 𝜙2) is constant. It
is possible if and only if 𝐾 is the vertical segment of length 2𝜋𝜏 , where 𝜏 = 𝑛(Ω) = 𝑛(Ξ).

Theorem 2. Let 𝑓 be an entire function of exponential type with a real zero set ̃︀Λ = ̃︀Ω ∪ ̃︀Ξ.
Then the following statements are equivalent:

1) The inequalities 𝑛(̃︀Ω) > 𝜏 , 𝑛(̃︀Ξ) > 𝜏 hold true.
2) The representation 𝑓 = 𝑓1𝑓2 is valid, where 𝑓1, 𝑓2 are entire function of exponential type,

𝑓1 is a function of regular growth, its adjoint diagram is a vertical segment of length 2𝜋𝜏 and
ℎ𝑓2 ≡ ℎ𝑓 − ℎ𝑓1.

Proof. Assume that Statement 1) holds true. Then by Theorem 1 there exists a properly

distributed set Λ ⊂ ̃︀Λ, Λ = Ω∪Ξ, where Ω and Ξ have the same density 𝜏 . By 𝑓1 we denote the
canonical function of set Λ. It has exponential type and regular growth (see [2, Ch. II, Thm.
4]). At that, as it was mentioned above, the adjoint diagram 𝑓1 coincides with the vertical
segment of length 2𝜋𝜏 . We let 𝑓2 = 𝑓/𝑓1. Since the zero set of 𝑓1 is a part of zero set of 𝑓 ,
function 𝑓2 is entire. Then by Corollary 2 of Theorem 5 in [2, Ch. III] the identity ℎ𝑓2 ≡ ℎ𝑓 −ℎ𝑓1

holds true. In particular, it implies that 𝑓2 is of exponential type.
Assume that Statement 2 holds true. Then zero set Λ = Ω ∪ Ξ of function 𝑓1 satisfies the

identities 𝑛(Ω) = 𝑛(Ξ) = 𝜏 . Since Λ is a part of ̃︀Λ, it yields 𝑛(̃︀Ω) > 𝜏 , 𝑛(̃︀Ξ) > 𝜏 . The proof is
complete.

Theorem 3. Let 𝑓 be an entire function of exponential type with real zero set ̃︀Λ = ̃︀Ω ∪ ̃︀Ξ,
where ̃︀Ω and ̃︀Ξ possess densities. Then the representation 𝑓 = 𝑓1𝑓2 holds true, where 𝑓1, 𝑓2 are
entire function of exponential type, 𝑓1 is a function of regular growth, its adjoint diagram is a
vertical segment, ℎ𝑓2 ≡ ℎ𝑓 − ℎ𝑓1 and the zero set of 𝑓2 has the zero density.

Proof. Let us show first that the densities of ̃︀Ω and ̃︀Ξ are same. Since 𝑓 has an exponential type,

by the Lindelöf’s theorem (see [2, Ch. I, Thm. 15]) there exists 𝑐 > 0 such that |𝑉 (𝑟, ̃︀Λ)| 6 𝑐,

𝑟 > 0. Let 𝑛(̃︀Ω) = 𝜏 and 𝑛(̃︀Ξ) = 𝛾. Assume that 𝜏 ̸= 𝛾, for instance, 𝜏 > 𝛾 (the case 𝜏 < 𝛾 is
studied in the same way). As in Lemma 3, we have (without loss of generality we can assume
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that 0 /∈ ̃︀Ω):

𝑉 (𝑟, ̃︀Λ) =

𝑛(𝑟,̃︀Ω)∑︁
𝑘=1

𝜏 + 𝛿′(𝑘)

𝑘
−

𝑛(𝑟,̃︀Ξ)∑︁
𝑘=1

𝛾 + 𝛿′′(𝑘)

𝑘
= 𝜏 ln𝑛(𝑟, ̃︀Ω) − 𝛾 ln𝑛(𝑟, ̃︀Ξ)

+

𝑛(𝑟,̃︀Ω)∑︁
𝑘=1

𝛿′(𝑘)

𝑘
−

𝑛(𝑟,̃︀Ξ)∑︁
𝑘=1

𝛿′′(𝑘)

𝑘
+ 𝜀(𝑛(𝑟, ̃︀Ω)) − 𝜀(𝑛(𝑟, ̃︀Ξ)),

𝑛(𝑟, ̃︀Ω) =𝜏𝑟 + 𝜀′(𝑟)𝑟, 𝑛(𝑟, ̃︀Ξ) = 𝜏𝑟 + 𝜀′′(𝑟)𝑟,

where 𝜀(𝑘), 𝛿′(𝑘), 𝛿′′(𝑘) → 0, 𝑘 → ∞ and 𝜀′(𝑟), 𝜀′′(𝑟) → 0, 𝑟 → ∞. We fix 𝜀 > 0. We choose
index 𝑚 such that |𝛿′(𝑘)| 6 𝜀, |𝛿′′(𝑘)| 6 𝜀,|𝜀(𝑛)| 6 𝜀, 𝑘, 𝑛 > 𝑚. Then we choose 𝑟(𝜀) > 0 so

that 𝑛(𝑟, ̃︀Ω) > 𝑚, 𝑛(𝑟, ̃︀Ξ) > 𝑚, 𝑟 > 𝑟(𝜀). By (10) it implies

|𝑉 (𝑟, ̃︀Λ)| >(𝜏 − 𝛾) ln 𝑟 − 𝜏 | ln(𝜏 + 𝜀𝜀′(𝑟))| − 𝛾| ln(𝛾 + 𝜀′′(𝑟))| −
𝑚∑︁
𝑘=1

|𝛿′(𝑘)| + |𝛿′′(𝑘)|
𝑘

− 2𝜀 ln 𝑟 − 𝜀| ln(𝜏 + 𝜀′(𝑟))| − 𝜀𝜀| ln(𝛾 + 𝜀′′(𝑟))| − 2𝜀− 2𝛽, 𝑟 > 𝑟(𝜀).

It yields that |𝑉 (𝑟, ̃︀Λ)| → ∞ as 𝑟 → ∞. It contradicts the boundedness of |𝑉 (𝑟, ̃︀Λ)|. Thus,

sequences ̃︀Ω and ̃︀Ξ have the same density 𝜏 .
As in Theorem 2, the representation 𝑓 = 𝑓1𝑓2 holds true, where 𝑓1, 𝑓2 are entire functions of

exponential type, 𝑓1 has a regular growth, its adjoint diagram is a vertical segment of length

2𝜋𝜏 , and ℎ𝑓2 ≡ ℎ𝑓 − ℎ𝑓1 . At that, ̃︀Λ = Λ ∪ Λ′, where Λ = Ω ∪ Ξ, Λ′ are zero sets of functions

𝑓1, 𝑓2, respectively, and 𝑛(Ω) = 𝑛(Ξ) = 𝜏 . Since the densities of sequences ̃︀Ω and ̃︀Ξ are also
equal to 𝜏 , we get

lim
𝑟→∞

𝑛(𝑟,Λ′)

𝑟
= lim

𝑟→∞

𝑛(𝑟, ̃︀Λ) − 𝑛(𝑟,Λ)

𝑟
= lim

𝑟→∞

𝑛(𝑟, ̃︀Ω) + 𝑛(𝑟, ̃︀Ξ) − 𝑛(𝑟,Ω) − 𝑛(𝑟,Ξ)

𝑟
= 0.

The proof is complete.

Let 𝐷 be a convex set in C, 𝐻(𝐷) is the space of functions analytic in 𝐷 with the topology
of uniform convergence on compact subsets in 𝐷, and 𝐻*(𝐷) is a strongly dual space for 𝐻(𝐷).
By 𝑃𝐷 we denote the space of entire functions of exponential type whose adjoint diagrams lie in
domain 𝐷. The Laplace transform 𝑓(𝜆) = 𝜈(exp(𝜆𝑧)) makes an isomorphism (see, for instance,
[4, Ch. III, Sect. 12, Thm. 12.3]) between 𝐻*(𝐷) and 𝑃𝐷.

Let Λ = {𝜆𝑘}∞𝑘=1 and ℰ(Λ) = {𝑧𝑛−1 exp(𝜆𝑘𝑧)}𝑛(𝑘)𝑛=1,𝑘, where we go over various points 𝜆𝑘,
and 𝑛(𝑘) is the multiplicity of 𝜆𝑘 (i.e., the number of elements in sequence Λ coinciding with
𝜆𝑘). By the Hahn-Banach theorem, system ℰ(Λ) is incomplete in space 𝐻(𝐷) if and only if
there exists a non-zero functional 𝜈 ∈ 𝐻*(𝐷) vanishing on the elements of the system. Hence,
the incompleteness of ℰ(Λ) is equivalent to the existence of function 𝑓 ∈ 𝑃𝐷 vanishing on the
points 𝜆𝑘 with multiplicity at least 𝑛(𝑘), 𝑘 = 1, 2, . . . If domain 𝐷 is non-empty, for the sake of
convenience we assume that each system ℰ(Λ) is complete in 𝐻(𝐷).

Let 𝜏 > 0, 𝐼(𝜏) = [−𝑖𝜋𝜏, 𝑖𝜋𝜏 ], and 𝐷(𝜏) denotes a convex domain covered while segment
𝐼(𝜏) moves inside 𝐷. By the definition, the inclusion 𝐷(𝜏) ⊂ 𝐷 holds true. Domain 𝐷(𝜏) is
empty if none of the shifts of segment 𝐼(𝜏) lies in 𝐷. We obviously have the representation
𝐷(𝜏) = 𝐷′(𝜏) + 𝐼(𝜏), where

𝐷′(𝜏) = {𝑧 ∈ C : Re (𝑧𝜆) < 𝐻𝐷(𝜆) − 𝜋𝜏 |Im𝜆|, ∀𝜆 : |𝜆| = 1},
𝜋𝜏 |Im𝜆| is the support function of segment 𝐼(𝜏).

Theorem 4. Let 𝜏 > 0, 𝐷 be a convex domain and ̃︀Λ = ̃︀Ω ∪ ̃︀Ξ is a real sequence such that

𝑛(̃︀Ω) > 𝜏 , 𝑛(̃︀Ξ) > 𝜏 . System ℰ(̃︀Λ) is complete in 𝐻(𝐷) if and only if it is complete in 𝐻(𝐷(𝜏)).
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Proof. Suppose that ℰ(̃︀Λ) is incomplete in space 𝐻(𝐷(𝜏)). Then there exists an entire function
𝑓 of exponential type vanishing at the points 𝜆𝑘 of the multiplicity at least 𝑛(𝑘), 𝑘 = 1, 2, . . .,

whose adjoint diagram lies in 𝐷(𝜏). Since 𝐷(𝜏) ⊂ 𝐷, we have 𝑓 ∈ 𝑃𝐷. It follows that ℰ(̃︀Λ) is
incomplete in space 𝐻(𝐷).

Suppose that ℰ(̃︀Λ) is incomplete in 𝐻(𝐷). Then there exists 𝑓 ∈ 𝑃𝐷 vanishing at points 𝜆𝑘

of multiplicity at least 𝑛(𝑘), 𝑘 = 1, 2, . . . Let us show that 𝑓 ∈ 𝑃𝐷(𝜏).

In accordance with Theorem 1, there exists a properly distributed set Λ ⊂ ̃︀Λ, Λ = Ω ∪ Ξ,
where Ω and Ξ have the same density 𝜏 . By 𝑓1 we denote the canonical function of set Λ. It is
of exponential type and regular growth, while its adjoint diagram 𝐾1 is represented as 𝐼(𝜏)+𝑧0
(𝑧0 is some point in the plane). We let 𝑓2 = 𝑓/𝑓1. Since the zero set of 𝑓1 is a part of zero set
for 𝑓 , function 𝑓2 is entire. Then in accordance with Corollary 2 of Theorem 5 in [2, Ch. III]
the identity ℎ𝑓2 ≡ ℎ𝑓 − ℎ𝑓1 holds true. In particular, it follows that 𝑓2 is of exponential type.
Let 𝐾 and 𝐾2 be adjoint diagrams of functions 𝑓 and 𝑓2, respectively. Then

𝐻𝐾2 ≡ ℎ𝑓2 ≡ ℎ𝑓 − ℎ𝑓1 ≡ 𝐻𝐾 −𝐻𝐾1 .

Thus, 𝐻𝐾 ≡ 𝐻𝐾1 + 𝐻𝐾2 , i.e., 𝐾 = 𝐾1 + 𝐾2 = 𝐼(𝜏) + 𝑧0 + 𝐾2 ⊂ 𝐷. Hence, if 𝑧 ∈ 𝐾, then 𝑧
belongs to a shift of segment 𝐼(𝜏) lying in domain 𝐷. It means that the inclusion 𝐾 ⊂ 𝐷(𝜏) is

true. It follows that ℰ(̃︀Λ) is incomplete in 𝐻(𝐷(𝜏)). The proof is complete.
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