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ON FOURIER TRANSFORM OF
A CLASS OF ENTIRE FUNCTIONS

I.KH. MUSIN, M.I. MUSIN

Abstract. We consider a space of entire functions of several complex variables decaying
fast on R™ and such that their growth along i{R™ is majorized by means of a family of weight
functions. Under certain assumptions for the weight functions we obtain an equivalent
description of this space in terms of estimates for partial derivatives of the functions in R"
and prove a Paley-Wiener type theorem.
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1. INTRODUCTION

1.1. On a problem. Let @ = {p,,}°_; be a family of non-decreasing functions ¢, :
[0,00) — R such that for each m € IN:
i1). limg oo me(iL“) = +00;

)

. for each A > 0 there exists a constant C'(m, A) > 0 such that
Om(x) + Aln(1 + ) < pper(x) + C(m, A), x> 0.

Let H(C") be a space of entire functions in C™ with the usual topology. Given u € R™(C"),
by |lu|| we denote its Euclidean norm.
For arbitrary v € N and k € Z, we introduce the normed space

Elpy) = {f € H(C) : pyu(f) = sup LF G+ (1= oo},

epv([tm =)
Let E(p,) be the projective limit of spaces Ex (¢, ), E(®) be the inductive limit of spaces E(¢,).
We note that if we define function ¢, by the formula ¢, (x) = Q(vz) (v € IN), where Q is
a real-valued continuously differentiable function on [0, 00) such that 2(0) = Q'(0) = 0, &
increases, 11)51_1 V(x) = +o0o (thus, in this case the weight functions ¢, (||z||) are convex in

R"), then E(®) coincides with Gelfand-Shilov space W [1] [5]. In works [I]-[5], the Fourier
transform of space W* was studied and an alternative definition of W was given. We note
that in work [6], while studying similar issues in a close to W (by the matter) space of entire
functions decaying fast on the real axis, the authors succeeded to get rid of the convexity of
weight functions.

The aim of the work is to describe the Fourier transform of space E(®) and to characterizes
E(®) in terms of estimates for partial derivatives of functions in R™ for rather general additional
conditions for ¢ extending the approach of work [6] for the case of many variables.

1.2. Notations and definitions. For u = (u,...,u,), v = (v1,...,v,) € R*(C") we let
(u,v) = ugvy + -+ - + UpUy.
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Fora = (ay,...,on) €2}, x = (21,...,2,) €ER", 2= (21,...,2,) € C", |laf| = a1 +.. .+,
=t adn 2 =220 DY = —ax‘*?”--gxa” .
1 n
If o= (on,...,an),8=(B1,...,0,) € Z7, then the notation o < j indicates that o; < f;

(j=1,2,...,n); as a <  we let CE‘:};IICZ?‘

sn(1) stands for the area of the unit sphere in R".

Given a function u : [0,00) — R, we let ule](x) := u(e®), = > 0.

For the sake of brevity we denote yn,[e] by ¢, (m € IN).

B is the set of all continuous functions g : [0,00) — R satisfying the identity
lim, 1 @ = +4o00.

Let V. ={h € B: his convex on [0,00)}, V= {h €V : h grows on [0,00) and h(0) = 0}.

For g € V we let V, = {h € V : h coincides with g on [d}, c0), where dj, is a positive number
depending on h}.

The Young transform ¢g* of function g € B is introduced by the formula ¢g*(z) = sup(xy —

y=0
9(y)), x = 0.
1.3. Main results. Let ¥* = {¢*}>2 . Given v € IN and m € Z, we let
) oo (Tam (L Jlzl)™[[(D*f) ()]
5m(w1/) = {f eC (IR‘ ) : Rm,l/(f) = sup 1o—% (el < OO}
z€R"™ €’} Q.e v

Let £(¢7) = ﬂé’()() Ué’()

Theorems 1 and 2 proven in Sectlon 3 by standard schemes are aimed for describing functions
in F(®) in terms of estimates for partial derivatives in R".

Theorem 1. Suppose that family @ satisfies condition
i3). for each m € N there exists a constant a,, > 0 such that

m(22) < Qi1 () + @, x> 0.
If f € E(®), then fgr: € E(V*).

Theorem 2. Suppose that family @ satisfies condition
i%). for each m € N there exist constants ., > 1 and 7., > 0 such that

Om(omx) < Omy1(T) +Ym, = 0.

Then each function f € E(V*) has the unique continuation to an entire function belonging to

E(®).

The proofs of Theorems 1 and 2 provide additional information on the structure of F(®).
Namely, given v € IN let H(p,) be the projective limit of the spaces

n £ (NI + [l=])*
Hi(pw) = {f € H(C") : N,i(f) = SUD " ey < [ K € s

Let H(®) be the inductive limit of spaces H(¢,). It will be shown in Section 3 that if family
¢ satisfies condition i3), then E(®) = H(P) (see Proposition 1).

Passing to problems related with Fourier transform in E(®), we introduce one more class
of infinitely differentiable functions in R™. Let U = {u,}2, be an arbitrary family of non-
decreasing convex functions u, on [0,00) such that for each v € IN:

i1). limy o0 u,,aE:L‘) = 400;
22). th (uy () — Upq1(x)) = 400.
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Given v € N and m € Z, let

Cl) =4 F € PR [l = sup I PNDI

cewn,[[B||le—uw CIBD

loll<m,Bezn

Let G(u,) = ﬁ Gn(u,), GUU) = Ej G(u,). We equip G(u,) by the topology induced the
m=0 1

family of the norms |- |, (m € Z), and G(U) is equipped by the topology of the inductive
limit of the spaces G(u,).
We introduce Fourier transform f of a function f € E(®) by the formula

f)y=[ f(©e "9 dg, x e R".
Rn

In Section 4 we shall prove

Theorem 3. Suppose that © satisfies condition iz) of Theorem 1 and condition
i4). for each m € N there exist constants h,, > 1 and l,, > 0 such that

20m (%) < @mi1(hmx) + ly, x> 0.
Then Fourier transform F : f € E(®) — f makes an isomorphism between spaces E(®) and
G(U).
Let &* = {¢:}>2,. Given v € N and m € Z,, we let

GSn(}) = {f c MR guu(f) = sp NN oo} .

z€R™ [|al|<m

For v € IN we let GS(¢%) = [ GSn(¢)). We denote GS(P*) = | GS(¢}). We equip

meZ 4 velN
GS(¢%) by the topology induced by the system of norms ¢, (m € Z,), and GS(P*) is
equipped by the topology of inductive limit of spaces G\S(¢%).
In the fifth section we shall prove the following theorem.

Theorem 4. Suppose that family @ consists of conver functions and satisfies condition i3)
of Theorem 1. Then G(V*) = GS(D*).

2. AUXILIARY RESULTS
In the proof of the theorems we shall make use of the following three lemmata.
Lemma 1. Let g € B. Then for each M > 0 there exists a constant Ay > 0 such that
(9le])*(x) S wln— — + Ay
for each x > 0.

This lemma was proven in [6].

Corollary 1. Let g € B. Then for each b > 0 the series Eaem %H(JIT'H) converges.

In the same way as Lemma 2 in [6] we prove the following lemma.
Lemma 2. Suppose that u,v € B and there exist numbers 7 > 0 and C' > 0 such that
2u(z) <v(r+7)+C, 2> 0.
Then there exist a number A > 0 such that
vz +y) <u(x) +u'(y) + 7@ +y) + A 2,y > 0.



ON FOURIER TRANSFORM ... 111

Lemma 3. Suppose that real-valued functions u,v € C[0,00) be so that
1. Timg oo 499 = Tim, o, Y@ = oo,
2. there exist numbers o > 1 and v > 0 such that
u(ox) < wv(z) 4+, = 0.
Then
(ule])*(z) — (vle])*(z) = xIng — v, x> 0.

Proof. Tt is clear that ule](t + Ino) < vle](t) + v, t = 0. Then for each x > 0

10
(ulel)" ()~ (of])* (&) =sup(at (1) — sup(at /el (1)
> sup(at — ul](1) - sgg(xt—u{ (¢ +10)) —
=sup(zt — ule](1)) — sup(z(t + In0) — ule](t +n0)) + zlno — 9
>rino — 1.

3. EQUIVALENT DESCRIPTION OF E(®) UNDER ADDITIONAL CONDITIONS FOR @

3.1. Proof of Theorem 1. Let f € E(®). Then f € E(yp,) for some v € N. Let m € Z.,
a € Z1 and x € R" be arbitrary. By integral Cauchy formula we get

. O+ Jal)”
(L el (D)) = e / / e T S

where Lp(z) ={C=((1,...,G) € C" 1 ||¢; — l'jH =R,j=1,...,n} for each R > 0. It implies
(1 — 1 m d
(BN o < [ / bl = g1+ 1)) D

1G = @[t G — [t

Lg(z)
_alpun(£)(1L+ nR)"er )
S Rl :
Employing condition i5) for & we obtain that

e‘PV‘Fl (?’LR)

1+ =)™ (D ) (@) ]| < e““™alpy,m(f) Rllall

Therefore,

WV+I(R)
m||( Mo cwm), llall 1 e
(L4 [J)™[(D* f) ()] <e n a‘pu,m(f)}g;fo Rl

<e“Cmnllalp, . (f) exp(—sup(|lal| In R — ¢, 41(R))
R>1

_Complalgly, (fye IO owmy gy, (e,
Since by condition i3) and Lemma 3
Up(®) = Y () =2 202 —ay, x>0, (1)
for £ € N, employing inequality (1) we obtain
L+ [l2z[D)™ (D)@ < @wmpum(fatePeenlleD z e RY o € 7,
where a, ,, is a positive number depending on v and m. Thus, for each m € Z,

Rm,lx—l—n(fﬂR”) < az/,mpu,m(f)- (2)
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Hence, fir» € £(¢},,). Therefore, fijr» € E(V*).
3.2. Proof of Theorem 2. Let f € £(V*). Then f € £(¢}) for some v € N. Therefore,
for each m € Z, we have

L+ )™ (D) (@) € R (fate oD 2 € R* o € Z}. (3)
Since lim, o %T(x) = +o0, inequality (3) yields that for each £ > 0 there exists a number

c. > 0 such that [[(Df)(z)]| < ceelllal. for each z € R™ and « € Z" 1t is clear that the
(D*£)(0)

al

o0

subsequence (Y )%, converges to f uniformly on compact sets R" and the series

el <k
ZII@H>0 o L2NO) 2o converges in H(C™) and its sum F(z) is an entire function. We observe that
fiRe = = f. The uniqueness of the holomorphic continuation is obvious.

Let us show that Fy € E(®). We estimate the growth of F; by employing inequality (3) and
the expansion of F} into the Taylor series at point z € R™:

Fi(z) = Z M(iy)a, z=x+1iy, yeR"

llef|>0

Let m € Z, be arbitrary. Then

x||)™ m|lel af\(x
A+ L™ Es ) < 3 L@+ el O @)l

ol

el >0

Z R (f)e 0D (1 4 ||y [y mtlel

llel|>0

(LA N9ID" e a3 1al)

m v AN

<R (F) 1+ Iyl %: e ¢ '
al|=0

Employing that by Lemma 3
V() = g () 2 0 =, 2 20, (4)

et 3%

where d; = In oy, and denoting (5,—)" by B, we obtain

- sup(tIn(1+ 1y~ 3 1 (1))
L+ 1=D™1Fr () < By R (S [lyl)™er=0 :

Hence,
(L4 [|z])™|Fs ()] < B RmV(f)e(wt+1)*(ln(1+Hyll))+mln(1+Hyll))‘ (5)
We note that condition iy) yields that for each £ € IN and A > 0
() + Az < Y (z) + C(k, A), = >0.

It implies immediately that for each £ > 0

l/fk(f) = 77Dk-|-1(§ + A) - C(kv A)
Then

(V)" () Zngg(xf — () < sup(z€ — Vi (§+ A)) + C(k, A)

>0

=sup(z(§ + A) = P (E+ A)) — Av + C(k, A) < (V)" (2) — Az + C(k, A)

£20
for each x > 0. Thus, for each £ € IN and A > 0 we have
()" (2) + Az < ($540)" () + Ok, A), 2> 0. (©)
Employing now inequality (6), by estimate (5) we obtain
(1 12 IES ] < ByRon ()eCrtm i il ™)
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It is clear that
L+ [lzZD)™Fe(2)] < BVRm’V(f)ecu+1,mewu+2(1n(1+”y”))'
It means that
1+ Iz Fr(2)]| € ByRomw(f)e Cott,m pv+2(1+yl)
Employing the non-decreasing of functions family @ and condition i4), we find a constantK, ,,, >
0 such that
L+ 12ID™ 1FF ()] < Ko R, (f)ereim =D (8)

for each z € C™.

Thus, for each m € Zy, pyrsm(Fr) < KymRm,(f). Therefore, Fy € E(p,13). Hence,
Fy € E(®). The proof is complete.

3.3. Remark on space E(®). We recall that in the first section we have introduced spaces
Hi(p,), Hp,), and H(P) as follows. Given arbitrary v € N and k € Z., let

Huln) = {f € HIE)  Ng(f) = sup LENLL D

. e@i) (n(1+m =[)) b

Let H(p,) = ﬂ Hi(o,), H(P) = fjl%(%)- Since for f € Hii1(p,) we have N, (f) <

N (f), then ’Hk+1(gpl,) is continuously embedded into Hi(p,). We equip H(p,) by the
topology induced by the family of norms Hy(p,). In view of inequality (6), we see that if
f € H(p,), then N, 14(f) < eCWYN, L (f) for each k € Z,. Thus, H(yp,) is continuously
embedded into H(p, 1) for each v € IN. We equip H(®P) by the topology of the inductive limit
of spaces H(p,).

Proposition 1. Suppose that family ® satisfies condition i3). Then E(®) = H(P).

Proof. Let us show first that H(®) is continuously embedded into F(®). Let v € N and f €
H(p,). Employing the non-decreasing of ¢, and condition i3) for @, we find a constant K, > 0
such that for each k € Z

pl/—i—l,k(f) < KVNV,k(f)7 f € H(QOV)

It follows that f € E(®) and the embedding I : H(®) — E(®P) is continuous.

Let us show that mapping [ is surjective. Let f € E(®). Then f € E(p,) for some v € IN.
Let m € Z be arbitrary. We recall that by inequality (2) Ry pin(fir) < @vmpPrm(f). Together
with inequality (7) (with v replaced by v + n; we also recall that in our case o = 2 for each
m € IN) it implies that

Nu+n+2,m(f) < Au,mpu,m(f)v
where A, ,,, > 0 is a constant. Thus, f € H(p,4ni2). Therefore, f € H(P). Moreover, the
latter estimate shows that the inverse mapping /! is continuous. Hence, E(®) = H(®). O

4. FOURIER TRANSFORM IN E(QP)

4.1. Simpler description of space G(V*). Let us show that if @ satisfies condition i3),
then space G(V*) admits a simpler description. In order to do it, we introduce space Q(V¥*) as
follows. For v € N and m € Z., let

o @):{ e OMEY  No(f) = max sup LI H(Daf)(m)ll<oo}

lol|<m zerr kez, kle=vo(k)

Let Q(¢)) = ) Qm(¥)), Q(¥*) = |J Q(¥}). By means of the family of norms N, ,,(f)

meZ4 velN
(m € Z,) we introduce a locally convex topology in Q(¢}). We equip Q(¥*) by the topology

*

of inductive limit of spaces Q(¢}).
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Lemma 4. Suppose that family ¢ satisfies condition is). Then Q(¥*) = G(V*).

Proof. It is obvious that if v € IN and f € Q(v;), then for each m € Z, we have || fl[mp: <
Ny (f). Thus, f € G, (¢}). Therefore, if f € Q(V*), then f € G(¥*) and the embedding

J: Q(¥*) — G(¥*) is continuous.
Let us show that J is surjective. Let v € N, m € N, f € G(¢¥}). By inequality we get

(1+HﬂUH)’fH(D“f)(:l?)\l< ap DN

[|z]|<1,k€EZ+ k"e u+n k) 2] <1, keZy k!e_’d};“rn*l(k:)
Since lim —ew””fl(k) = 0, then
k—oo k!
(L + =)™ (D) (@) . §
) < CI(V) sup H(D f)('I)H7 o E Z+’ (9)
llzll<1,keZ kle ¥Yv+n all<L

for some C7(v) > 1 Since

DA @) < N flmpge ™,z € R,
for each a € Z% obeying ||a|| < m, by inequality (9) we obtain that

max A+ =D NN @]

—ah* k
||aH<me||<1’k€Z+ kle V+n( )

Cr(W)|| f NIz e (10)

For each o € 7}

A+ =D NI sup (2n) PNz (D f) ()|
>t kezy  kleTVn® lei>1,6ezn ||B]|lem e UED

Employing inequality (1), for some Cy(v) > 1 and each a € 77, ||a|| < m we have

(1+ ||96||)’“||(D“ @) Co(v)l|l2” (D £) ()|
S < s . <
11 kle= Vi) TP ()

kEZy BEZT

Co(v)]|f]

my-

By (10) it implies that for each m € Z,

Nosnm () S COfllmaus, [ € G)), (11)

where C(v) = max(C)(v)e %, Cy(v)). Therefore, f € Q(¥}.,). Thus, if f € G(¥*), then
f € Q(¥*). We note that it follows easily from (11) that the inverse mapping J ! is continuous.
Hence, we finally get Q(¢*) = G(¢*). O

4.2. Proof of Theorem 3. Let us show first that the linear mapping F : f € E(®) — f
acts from E(®) into G(V*) and is continuous. Let v € IN and f € FE(y,). Employing inequality

D)) =a” | FOT T dg, C= i,
valid for each o, 8 € Z7}, x, n € R", we obtain that
B/ o f AN + [y el eten ||| 1]
(0Pl < [ LT 3 (12)

If || 3]| = 0, then by inequality (12) we have (as n = 0)

1D @)l < 52(De™ Oy o (f)- (13)
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If [|8]| > 0, z # 0, letting n = — & with ¢ > 0, by (12) we obtain that

|12°(D* f) ()] <Sn(1)pu,n+uau+1(f)e’t”x”e“””(”HxH”ﬁ”

sup(—tr+| 8| Inr)
<Sn(D)Punrfaf+1(f)e° v (D)

(D) Pun a1 (£ I8 1818 i 0),
Since for each k € Z
%Eg(—klnt + ¢, (t) = —sup(kInt — ¢,(t)) < —sup(kInt — ¢,(t))

>0 t21
—— sg}o)(ku — Yy (u) = =5 (k),

by the previous estimate we obtain
||xB(Daf)(x)|| < Sn<1)pujn+ua”+1(f)eHﬂll1nHﬁll—llﬂlle—%(llﬁll)‘ (14)
If ||3]| > 0 and 2 = 0, then 2?(Df)(z) = 0. By inequalities (13) and (14) it follows that
2% (D F) (@)l < s (DPvnsaer ()] 8] e 012D
for each o, 8 € Z7, x € R". Thus,

vax sy JPPN@I
lall<m zemrn gezn | 8]|!e=#e B

< n(1>p1/n+m+1(f)7 f S E(QOV)J

for each m € Z,. In other words, ||fA||m1/),, < S$n(Dpunsmi1(f), f € E(p,). It means that
mapping F acts from E(®) into G(V*) and is continuous.
Let us show that F is surjective. Let g € G(U*). Then g € G(¢}) for some v € IN. In
accordance with the proof of Lemma 4, g € Q(¢;,,,). Then
A+ =D (D) (@) | € Nusnja(g)kle W ke Zy, aeZl, zeR".  (15)

Let

_ 1 {6) n
f(€) Gn) /ng(:v)e de, ¢eR™

Let a = (o, ...,an),8 = (Br,--.,Bn) € 27, £ € R". We denote v, = min(a, 3;) for s =
L,...,n,v=(7,...,7). Employing the identity

_ 1yl , . | |
(1€)%(Df) (&) = ((2173)” /R Z Cé(DﬁfJg)@)(Dj(ix)a)ez@c,@ dx

JEZY gy

and inequality (15) we estimate the absolute value of SB(DO‘ £)(&). We have

1€°(D* )(€) ( > C]/ (D g)(x )||( Al |l da
J6Z13<7
<o Y l/erﬂgf @1+ et
n+
o A+ Tl
1 a! Nu+n a1 (@) (lall = |71l + n + 1)!
7 )
< %Z< Y P RN = FEE=sY
Ty
gsn(l)l\mnugu( Z Cj(llall Al +n 4 D g dlat-tin
(2m)" (a—j)!

JEZT i<y
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We note that condition i4) for ¢ implies that
20k(2) < Ypyr(r +0g) + 1k, x>0,
for each k € IN, where b, = In h;. Then in accordance with Lemma 2, for some Ay > 0

Vi (@ +y) < (@) +dp(y) +br(e +y) + Ax, 2,y > 0. (16)

s (1)efv+n

Employing inequality (16) and letting ¢; = R

, we get

cre 9N, g1 (g)a! v & Ch(llaell = [l +n + 1)ters+nllaD

Vi al) & (o —j)!

i<y

1D F)EIl <

We observe that (mq + ma)! < e™*2myImy! for my, my € Z,. Tt yields that
(my + -+ my)! < e DImt=tma)m 1o ompl my, .. my € Zy. (17)

Employing this inequality and letting c; = ¢;e"™!(n + 1)!, we obtain

<
Se

||£ﬁ(D°‘f)(§)|| _ chbwn”“”N,,w”B”(g)a! Z CjellaH—Hjll(HaH _ HjH)!ewim(Hjll).

e¥inr(lol) jeres B (a—j)!
Using inequality (17) once again, we get
o cae 1IN, 5y (9 (e ‘
1E5 (D) ()| < (). Z CJ (el =131 %2 4n (1)
e v+n+1
JEZT i<y

Thus,

CQﬂle(by+n+n)||a“Nl/—i-T‘L,HBH(g)a' Z 6w;+n(”]”)

e¥riniallal) enllilll 51~
JEZLY <y

1€7(D* £ <

W (111

i (series

Applying inequality (17) one more time and letting c3 = 28137 ;¢
Z||]||>0 AL converges (cf. Corollary 1)), we obtain

S
1€°(D* F)(€)|| < czebrintmlely, ”m‘(g)age—whnﬂ(lla\\)‘

Hence, in view of inequality (1), we find a natural number s = s(v,n) > n + 1 and a constant
¢4 > 0 (depending on v, n, and () such that

1€ (DN < caNyn gy (g)ateosllel),
Thus, if m € Z, the last inequality implies

L+ D™D YN < esNunm(g)ate 0D 0 e 71 ¢ € R™,

where ¢; > 0 is a constant depending on v, n, and m. By Theorem 2, f can be holomorphically
continued to an entire function Fy in E(®). It is obvious that ¢ = F(Fy). The proof of
Theorem 2 (see inequalities (3) and (8)) shows that there exists a constant ¢g > 0 (depending
on v, n, and m) such that

L+ =)™ 1E7 ()] < €6 Nysnm(g)eein=D

for z € C". Therefore, pyisism(Fr) < c6Nytnm(g). In view of inequality (11) we obtain
Potstam(Fr) < c7||g||m7¢y, g € G(¢}), where ¢; > 0 is a constant depending on v, n, and m. It
follows the continuity of the inverse mapping F .

Thus, we have proven that Fourier transform makes an isomorphism between the spaces E(®)
and G(¥*).

4.3. On an approach for constructing family ®. Let U = {u,}32, be a family of
non-decreasing convex functions u, on [0, c0) such that for each v:
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—_

Climg s “”T(x) = 400;
. given M > 0, there exists a constant A(M,v) > 0 such that

DN

uy(x) < xln% +A(M,v), x>0;

w

. given A > 0, there exists a constant K (v, A) > 0 such that
upr1(x+ A) <u(z)+ K(v,A), ==0;
4. there exists a constant a, > 0 such that
u () — Uy () 2 2In2 —a,, x> 0;
5. there exists a constant A, > 0 such that
uyy1(22) < 2uy(x) +xlnd+ A,, z>0.

Suppose that family ® consists of functions ¢, defined on [0,00) by the rule: ¢, (z) =
ui(In(1+x)), 2 > 0 (v € N). It is clear that functions ¢, do not decrease and are continuous
on [0,00). First two conditions follow that the constructed family satisfies condition ;). The

third condition ensures condition i5). By the forth condition it is easy to get that for each
velN

u,(t+1n2) —uy, ,(t) <a,, t=0.
Hence, for each x > 0 we have
0, (22) = u)(In(1 4 22)) <ul(In(2(1 4+ 2))) = u;(In2 + In(x + 1))
Sty (In(z + 1)) + ay = () + av.

Thus, family ® satisfies condition i3). Condition i4) holds for ®, too. While checking it, we
make use of the following simple statement.

Proposition 2. Suppose that u,v € B and there exist numbers T > 0 and A > 0 such that
v(2x) < 2u(x) + 212+ A, x,y = 0.

Then
2u*(z) < v (x+T1)+ A, z>=0.

Proof. For eachx > 0 we have

2u™(z) =sup(2z€ — 2u()) < sup(2z€ —v(28) +278) + A

&0 £20
=sup((x + 1)t —v(t)) + A=v"(z+ 1)+ A.
£20

]

Returning back to checking condition i4) for ® and employing fifth condition for U and
Proposition 2, for each v € N and = > 0 we have
2¢,(z) =2u,(In(1 +2)) < up (In(1+2) +1In2) + A,
=u,  (In(2z+1)+1)+ A, =1 (2r+1) + A,
It follows that condition i4) holds true, at that, as h, we can take any number greater than 2.

Thus, family ® satisfies the hypothesis of Theorem 3. Thus, Fourier transform makes an
isomorphism between spaces F(®) and G(U).



118 I.KH. MUSIN, M.I. MUSIN

5. SPECIAL CASE OF FAMILY @
In the proof of Theorem 4 we shall make use of the following three lemmata.
Lemma 5. Let g € B. Then for each § > 0
(10— ()

Tr——+00 €T

= +00.

Proof. Let § > 0 be arbitrary. For x > 0 by £(z) we denote the point at which the function
uz(§) = x€ — g(§) attains the supremum over the set [0,00). We note that {(z) — +oo as
x — +o0. Otherwise there exists a number M > 0 and a sequence ()32, of positive numbers
z; tending to +oo such that {(x;) < M. Then ¢*(z;) = z;£(z;) — g({(x;)). But it contradicts
9°) — 400, Hence, limy_, 400 £(#) = +00. Together with inequality

to the identity lim,
g (1 +0)x) — g"(x) = (1 4 0)x&(x) — g(&(x)) — x&(x) + g(&(x)) = dxé(x), x>0,
it completes the proof. n

The next statement follows easily from the results by S.V. Popenov (see Lemma 4 in [9]) and
this is why we do not provide its proof.

Lemma 6. Let u € V. There exists a constant K > 0 (depending on u) such that
(ule])*(t) + (u*[e])*(t) = tlnt —t — K, ¢>0.
The next lemma was proven in [§].
Lemma 7. Let uw € B. Then
(ule])*(x) + (u*[e])" () L zlnx —z, x> 0.

Proof of Theorem 4. Let v € N, f € G(}). We fix m € Z,. Since f € Q(¢},,,) (see the proof
of Lemma 4), then for each k € Zy, a € Z7}, ||of| < m, x € R",

Ny (F)Rle0en )
(1 + [Jl])*

" for j € N and employing inequality (16) and the

(D))l < (18)

Taking into consideration that j! < 3”
non-decreasing of function v}, we obtaln

k"e V+n ) 3kk+16*¢;ﬁ+n(k) 3”tt+1€7¢;+n+1(t)+¢;+n(l)+by+”t+AV+n
<

et it

~X

1k = ek ik
foreach k e N, t € [k,k+1) and p > 1
We employ (1) to obtain
k"e V+'n, )
Iz
where s > n + 2 is a natural number and C] is a positive constant depending on v, n, and s.

We choose s € IN so that sIn2 > b,,,,. We find a constant Cy > 0 (depending on v, n, and
chosen s) such that

(t+1)Int—), (t)—tInepu+(byyn—sIn2)t
< Oy e +s(®) pt(by+ i3

v+n )
/f'e—]: Copue! M= vips )=ty
1
Now by Lemma 6 we obtain
]{?'6 V+n )

,uk; Cg/lbe(wzﬁ»s[e})*(t)*t ln‘u’
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where ('3 is a positive constant depending on v, n, and chosen s. It follows that

kle=¥o4n(k) inf (o7, . [e])* (£)—tIn
ke < Gyl Ot (19)

It is obvious that

inf ((¢)4[e])"(t) = tlnp) < —Inp+ () le])*(1);

oinE, (Pl () = ) > = Inja 4 (¢,[e])* (0).
Thus,
inf () [e])"(8) = tInp) < inf () [e])" (1) = thnp) + (@) le]) (1) = (el [e]) (0).

Denoting (¢],[e])*(1) = (#}4[€])*(0) by m,,, we get
inf (0[] (8) = tIn ) < inf ((9][e])" () — thnp) + my.

t>1

Returning back to (19), we obtain

. Kle Vi (k) ., inf (954 [e)*(0)—tInp)
égﬂf\}T < Cye™ pet>o 7 : (20)
For each j € IN we choose 0; € V@; (- Then
16;(€) — &5lelNl < i €205 (21)
165(6) = (@ile)* N <75 €20, (22)

where 7; is a positive constant depending on ¢[e] and 0;. By (20) and (22) we get

kle™ ¥y (F) inf (6% —tln
inf —— < C4Met>o( st —t M),
keN U
where Cy = Cze™ v+ Employing the formula for inversion of Young transform [10], we

obtain

1% n )
inf —k'e k+ C4ue_9”+5(ln“).
keN 1
By inequality (21) it yields
infk:'e—+ < Cype Posldnm
keN T
where C5 = C, 4e™*=. Thus,
k‘ 1/+n( ) «
inf e—k < Cspe™ %o+
kelN ol

Employing this inequality and the non-decreasing of ¢;_ ., we have

inf M < C5(1 + ||z|)eer+slel 2 ¢ R™, (23)
ke (1 4[]
We observe that using condition i3) for @, it is easy to show that for each j € N
@ < (§) +a €0 (21)
Therefore,
GO -5 250 - (§) - €20
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By Lemma 5 it implies
lim 80;@) - (:0;+1(£)
r—r+00 5

= +00. (25)

Returning back to (23), by means of (25) we obtain
le=¥in(k)
inf ME T el e RY

keN (14 ||z||)*

where Cj is a positive number. By inequality (18) it follows that
(D F)(@)|| < CoNy g (f)e=#osalal) (26)

for each o € 77 obeying ||| < m. It means that ¢, 1s41(f) < CsNugnm(f), f € G(¥)). In
view of inequality (11), we have

Gmpst1(F) < Crll fllmuy, [ € Gy),

where C7 is a positive number depending on v. It follows that the identity mapping I acts from
G(U*) into GS(¢*) and is continuous.

Let us show that [ is surjective. Let f € GS(?*). Then f € GS(y}) for some v € IN. We fix
m € Z,. Let x € R", a € 77, at that, ||| < m. Then

(D) @) < G (f)e 20D (27)
Employing inequality (24), by (27) we obtain

(DY) ()| < e G (f)eerrr el

It is obvious that there exists a constant M, > 1 such that
1D F) (@) < My, (f)e P #IFD,
In other words,
(DY) ()| < Mygu, (f)e erraldndizl+),
It follows that
—sup(tIn([Jz[+1)= (¥} 41 [e)* (1)

(D f)()]] € Mygma(fle =0
Now by Lemma 7 we get

—sup(tIn(e([[z]|+1))—t Int+d7 4 (1))
>0 .

(D f) (@)l < Mygmn(f)e

Therefore, for each k € IN
. kre—viia (k)
(D) ()]l < MuQm,V(f)W'

Hence,
L+ 2D D) @) € My, (fIRle 0@ k€ Zy..
It means that
[ fllmazyy < Moo (f)- (28)

Since m € Z, is arbitrary, then f € G(¢;,,). Therefore, f € G(¥*). It follows from (28)
that mapping 7! is continuous. Thus, spaces G(¥*) and GS(®*) coincide. The proof is
complete. O
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