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NONLOCAL SOLVABILITY CONDITIONS

FOR CAUCHY PROBLEM FOR A SYSTEM OF

FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

WITH SPECIAL RIGHT-HAND SIDES

M.V. DONTSOVA

Abstract. We consider a Cauchy problem for a system of two quasilinear first order partial
differential equations with special right-hand sides. We obtain the conditions of a nonlocal
solvability of this Cauchy problem. The study of the nonlocal solvability of the Cauchy
problem for a system of two quasilinear differential equations with special right-hand sides
is based on the method of an additional argument. The proof of the nonlocal solvability of
the Cauchy problem for a system of two quasilinear first order partial differential equations
with special right-hand sides relies on global estimates.
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1. Introduction

There are various methods for studying solvability of systems of first order partial differential
equations. For instance, there are classical methods of characteristics, Galerkin’s method, flows
methods, additional argument method [1].

The additional argument method is a new way for studying solvability of systems of first
order partial differential equations. It does not replace other known methods but complements
them [2]. In many cases the application of this method allows one to find more effectively and
specifically the conditions of local solvability in original coordinates for systems of nonlinear
and quasi-linear first order differential equations without employing inverse function theorem
[2]–[13].

In work [3] first by means of the additional argument method there were determined the
nonlocal solvability conditions for the Cauchy problem for the systems{︂

𝜕𝑡𝑢(𝑡, 𝑥) + (𝑎𝑢(𝑡, 𝑥) + 𝑏𝑣(𝑡, 𝑥))𝜕𝑥𝑢(𝑡, 𝑥) = 0,

𝜕𝑡𝑣(𝑡, 𝑥) + (𝑐𝑢(𝑡, 𝑥) + 𝑔𝑣(𝑡, 𝑥))𝜕𝑥𝑣(𝑡, 𝑥) = 0,
(1)

where 𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥) are unknown functions, 𝑎, 𝑐, 𝑏, 𝑔 are known positive constants, (𝑡, 𝑥) ∈ Ω𝑇 ,
where Ω𝑇 = {(𝑡, 𝑥) |0 6 𝑡 6 𝑇, 𝑥 ∈ (−∞,∞), 𝑇 > 0} subject to the initial conditions

𝑢(0, 𝑥) = 𝜙1(𝑥), 𝑣(0, 𝑥) = 𝜙2(𝑥), (2)

𝜙1(𝑥), 𝜙2(𝑥) are given functions.
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By means of the additional argument method in work [4] there were found nonlocal solvability
conditions for the Cauchy problem for the systems{︂

𝜕𝑡𝑢(𝑡, 𝑥) + (𝑎𝑢(𝑡, 𝑥) + 𝑏𝑣(𝑡, 𝑥) + ℎ1)𝜕𝑥𝑢(𝑡, 𝑥) = 𝑓1(𝑡, 𝑥),

𝜕𝑡𝑣(𝑡, 𝑥) + (𝑐𝑢(𝑡, 𝑥) + 𝑔𝑣(𝑡, 𝑥) + ℎ2)𝜕𝑥𝑣(𝑡, 𝑥) = 𝑓2(𝑡, 𝑥),
(3)

subject to initial condition (2), where 𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥) are unknown functions, 𝑎, 𝑐, 𝑏, 𝑔, ℎ1, ℎ2

are known positive constants, 𝑓1, 𝑓2 are given functions, (𝑡, 𝑥) ∈ Ω𝑇 .
Systems (1), (3) appear in various problems in natural sciences, for instance, in describing

the spreading of finite intensity perturbation under non-stationary one-dimensional flow of ideal
gas [5]. A particular example of such systems is the Frankl system of equations [6], [7].

We consider the system{︂
𝜕𝑡𝑢(𝑡, 𝑥) + (𝑎1𝑢(𝑡, 𝑥) + 𝑏1𝑣(𝑡, 𝑥))𝜕𝑥𝑢(𝑡, 𝑥) = 𝑎2𝑢(𝑡, 𝑥) + 𝑏2𝑣(𝑡, 𝑥),

𝜕𝑡𝑣(𝑡, 𝑥) + (𝑐1𝑢(𝑡, 𝑥) + 𝑔1𝑣(𝑡, 𝑥))𝜕𝑥𝑣(𝑡, 𝑥) = 𝑔2𝑣(𝑡, 𝑥),
(4)

where 𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥) are unknown functions, 𝑎1, 𝑏𝑖, 𝑐1, 𝑔1, 𝑖 = 1, 2, are given positive constants,
𝑎2, 𝑔2 are given constants.

Various methods were applied for studying the solvability of a system close to (4). The
description of many modern approaches is contained [1]. For instance, in [1] there was made
an analysis of solvability on the basis of the classical methods of characteristics as well as
by employing the notion of the generalized solution. Both these approaches, as many others,
have their advantages and disadvantages. For instance, in the method of characteristics the
solvability condition in the original coordinates is the existence of the inverse function for
the solution to a characteristic equation. Finding the inverse function is a more complicated
problem than the original one. This is one usually does not solve it and assume instead the
possibility of the inverse change of variables [1].

In the present work by means of the additional argument method we determine the nonlocal
solvability conditions for the Cauchy problem for system (4) subject to initial conditions (2) on
Ω𝑇 , where 𝑎1, 𝑏𝑖, 𝑐1, 𝑔1, 𝑖 = 1, 2, are given positive constants, 𝑎2, 𝑔2 are given constants.

In accordance with the additional argument method, for problem (4), (2) we write the ex-
tended characteristic system [7]–[11]:

𝑑𝜂1(𝑠, 𝑡, 𝑥)

𝑑𝑠
= 𝑎1𝑢(𝑠, 𝜂1(𝑠, 𝑡, 𝑥)) + 𝑏1𝑣(𝑠, 𝜂1(𝑠, 𝑡, 𝑥)), (5)

𝑑𝜂2(𝑠, 𝑡, 𝑥)

𝑑𝑠
= 𝑐1𝑢(𝑠, 𝜂2(𝑠, 𝑡, 𝑥)) + 𝑔1𝑣(𝑠, 𝜂2(𝑠, 𝑡, 𝑥)), (6)

𝑑𝑢(𝑠, 𝜂1(𝑠, 𝑡, 𝑥))

𝑑𝑠
= 𝑎2𝑢(𝑠, 𝜂1(𝑠, 𝑡, 𝑥)) + 𝑏2𝑣(𝑠, 𝜂1(𝑠, 𝑡, 𝑥)), (7)

𝑣(𝑠, 𝜂2(𝑠, 𝑡, 𝑥))

𝑑𝑠
= 𝑔2𝑣(𝑠, 𝜂2(𝑠, 𝑡, 𝑥)), (8)

𝜂1(𝑡, 𝑡, 𝑥) = 𝑥, 𝜂2(𝑡, 𝑡, 𝑥) = 𝑥, (9)

𝑢(0, 𝜂1(0, 𝑡, 𝑥)) = 𝜙1(𝜂1(0, 𝑡, 𝑥)), 𝑣(0, 𝜂2(0, 𝑡, 𝑥)) = 𝜙2(𝜂2(0, 𝑡, 𝑥)). (10)

The feature of this system is that it involves unknown functions as superpositions that compli-
cates essentially the proof of solvability.

We introduce new unknown functions:

𝑤1(𝑠, 𝑡, 𝑥) = 𝑢(𝑠, 𝜂1(𝑠, 𝑡, 𝑥)), 𝑤2(𝑠, 𝑡, 𝑥) = 𝑣(𝑠, 𝜂2(𝑠, 𝑡, 𝑥)),

𝑤3(𝑠, 𝑡, 𝑥) = 𝑣(𝑠, 𝜂1(𝑠, 𝑡, 𝑥)), 𝑤4(𝑠, 𝑡, 𝑥) = 𝑢(𝑠, 𝜂2(𝑠, 𝑡, 𝑥)).

Then the extended characteristic system casts into the form:

𝑑𝜂1(𝑠, 𝑡, 𝑥)

𝑑𝑠
= 𝑎1𝑤1(𝑠, 𝑡, 𝑥) + 𝑏1𝑤3(𝑠, 𝑡, 𝑥), (11)
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𝑑𝜂2(𝑠, 𝑡, 𝑥)

𝑑𝑠
= 𝑐1𝑤4(𝑠, 𝑡, 𝑥) + 𝑔1𝑤2(𝑠, 𝑡, 𝑥), (12)

𝑑𝑤1(𝑠, 𝑡, 𝑥)

𝑑𝑠
= 𝑎2𝑤1(𝑠, 𝑡, 𝑥) + 𝑏2𝑤3(𝑠, 𝑡, 𝑥), (13)

𝑑𝑤2(𝑠, 𝑡, 𝑥)

𝑑𝑠
= 𝑔2𝑤2(𝑠, 𝑡, 𝑥), (14)

𝑤3(𝑠, 𝑡, 𝑥) = 𝑤2(𝑠, 𝑠, 𝜂1), 𝑤4(𝑠, 𝑡, 𝑥) = 𝑤1(𝑠, 𝑠, 𝜂2), (15)

𝜂1(𝑡, 𝑡, 𝑥) = 𝑥, 𝜂2(𝑡, 𝑡, 𝑥) = 𝑥, (16)

𝑤1(0, 𝑡, 𝑥) = 𝜙1(𝜂1(0, 𝑡, 𝑥)), 𝑤2(0, 𝑡, 𝑥) = 𝜙2(𝜂2(0, 𝑡, 𝑥)). (17)

Unknown functions 𝜂𝑖, 𝑤𝑗, 𝑖 = 1, 2, 𝑗 = 1, 4 depend not only on 𝑡 and 𝑥, but also on additional
argument 𝑠. Integrating equations (11)–(14) w.r.t. argument 𝑠 and taking into considerations
conditions (15)–(17), we obtain the equivalent system of integral equations:

𝜂1(𝑠, 𝑡, 𝑥) = 𝑥−
𝑡∫︁

𝑠

(𝑎1𝑤1 + 𝑏1𝑤3)𝑑𝜏, (18)

𝜂2(𝑠, 𝑡, 𝑥) = 𝑥−
𝑡∫︁

𝑠

(𝑐1𝑤4 + 𝑔1𝑤2)𝑑𝜏, (19)

𝑤1(𝑠, 𝑡, 𝑥) = 𝜙1(𝜂1(0, 𝑡, 𝑥)) +

𝑠∫︁
0

(𝑎2𝑤1 + 𝑏2𝑤3)𝑑𝜏, (20)

𝑤2(𝑠, 𝑡, 𝑥) = 𝜙2(𝜂2(0, 𝑡, 𝑥)) +

𝑠∫︁
0

𝑔2𝑤2𝑑𝜏, (21)

𝑤3(𝑠, 𝑡, 𝑥) = 𝑤2(𝑠, 𝑠, 𝜂1), (22)

𝑤4(𝑠, 𝑡, 𝑥) = 𝑤1(𝑠, 𝑠, 𝜂2). (23)

Substituting (18), (19) into (20)–(23), we get

𝑤1(𝑠, 𝑡, 𝑥) = 𝜙1

⎛⎝𝑥−
𝑡∫︁

0

(𝑎1𝑤1 + 𝑏1𝑤3)𝑑𝜏

⎞⎠ +

𝑠∫︁
0

(𝑎2𝑤1(𝜏, 𝑡, 𝑥) + 𝑏2𝑤3(𝜏, 𝑡, 𝑥))𝑑𝜏, (24)

𝑤2(𝑠, 𝑡, 𝑥) = 𝜙2

⎛⎝𝑥−
𝑡∫︁

0

(𝑐1𝑤4(𝜏, 𝑡, 𝑥) + 𝑔1𝑤2(𝜏, 𝑡, 𝑥))𝑑𝜏

⎞⎠ +

𝑠∫︁
0

𝑔2𝑤2(𝜏, 𝑡, 𝑥)𝑑𝜏, (25)

𝑤3(𝑠, 𝑡, 𝑥) = 𝑤2

⎛⎝𝑠, 𝑠, 𝑥−
𝑡∫︁

𝑠

(𝑎1𝑤1 + 𝑏1𝑤3)𝑑𝜏

⎞⎠ , (26)

𝑤4(𝑠, 𝑡, 𝑥) = 𝑤1

⎛⎝𝑠, 𝑠, 𝑥−
𝑡∫︁

𝑠

(𝑐1𝑤4 + 𝑔1𝑤2)𝑑𝜏

⎞⎠ . (27)

We shall write that constants 𝐾0, 𝐾1, 𝐾2, . . . are determined by the initial data if these
constants are determined by given characteristics of the problem, the norms and the extrema
of known functions by means of closed algebraic, differential or integral expressions, i.e., in the
framework of the original problem they can be expressed by a particular number.

The following lemma holds true.
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Lemma 1. Suppose that functions 𝑤1(𝑠, 𝑡, 𝑥), 𝑤2(𝑠, 𝑡, 𝑥) solve system of integral equations
(24)–(27), are continuously differentiable and bounded together with its first derivatives. Then
functions 𝑢(𝑡, 𝑥) = 𝑤1(𝑡, 𝑡, 𝑥), 𝑣(𝑡, 𝑥) = 𝑤2(𝑡, 𝑡, 𝑥) solve problem (4), (2) on Ω𝑇0, 𝑇0 6 𝑇 , where
𝑇0 is a constant determined by the given data.

Lemma 1 is the basis of the additional argument. Lemma 1 can be proven in the same way
as in works [7]–[11].

2. Existence of local solution

In order to prove the solvability of problem (4), (2) in the class of bounded functions, we
shall make use system of integral equations (24)–(27).

We denote

Γ𝑇 = {(𝑠, 𝑡, 𝑥)|0 6 𝑠 6 𝑡 6 𝑇, 𝑥 ∈ (−∞,+∞), 𝑇 > 0},

𝐶𝜙 = max

{︂
sup
R

|𝜙(𝑙)
𝑖 |

⃒⃒
𝑖 = 1, 2, 𝑙 = 0, 2

}︂
, 𝑙 = max{𝑎1, |𝑎2|, 𝑏1, 𝑏2, 𝑐1, 𝑔1, |𝑔2|},

‖𝑈‖ = sup
Γ𝑇

|𝑈(𝑠, 𝑡, 𝑥)| , ‖𝑓‖ = sup
Ω𝑇

|𝑓(𝑡, 𝑥)|,

and 𝐶1,2,2(Ω𝑇 ) stands for the space of functions differentiable w.r.t. 𝑡, twice differentiable
w.r.t. 𝑥, having mixed second order derivatives and bounded together with its derivatives on
Ω𝑇 , 𝐶𝛼1,𝛼2,...𝛼𝑛(Ω*) indicates the space of functions continuous and bounded together with its
derivatives up to order 𝛼𝑚 w.r.t. 𝑚th argument, 𝑚 = 1, 𝑛 on unbounded subset Ω* ⊂ R𝑛,
𝑛 = 1, 2, . . .

We introduce conditions playing the key role in the proof of nonlocal solvability of Cauchy
problem (4), (2):

𝑎1 > 0, 𝑏𝑖 > 0, 𝑐1 > 0, 𝑔1 > 0, 𝜙′
1(𝑥) > 0, 𝜙′

2(𝑥) > 0, 𝑖 = 1, 2. (28)

In the following theorem we formulate the conditions for the existence of a local solution to
Cauchy problem (4), (2), whose smoothness w.r.t. 𝑥 is not less than for the initial data.

Theorem 1. Suppose that 𝜙𝑖 ∈ 𝐶2(R), 𝑖 = 1, 2, and conditions (28) hold true. Then for

each 𝑇2 > 0, where 𝑇2 = min
(︁

1
25𝐶𝜙𝑙

, 1
10𝑙

)︁
, Cauchy problem (4), (2) has the unique solution

𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥) ∈ 𝐶1,2,2(Ω𝑇2) determined by system of integral equations (24)–(27).

We split the proof of this theorem into two lemmata.

Lemma 2. System of integral equations (24)–(27) has the unique solution 𝑤𝑗 ∈ 𝐶1,1,1(Γ𝑇2),

where 𝑗 = 1, 4 , 𝑇2 = min
(︁

1
25𝐶𝜙𝑙

, 1
10𝑙

)︁
.

Proof. We prove this lemma by the scheme described in [13]. This is why we provide only key
milestones.

We define the zero approximation of the solution to system of integral equations (24)–(27)
by the identities:

𝑤10(𝑠, 𝑡, 𝑥) = 𝜙1(𝑥), 𝑤20(𝑠, 𝑡, 𝑥) = 𝜙2(𝑥), 𝑤30(𝑠, 𝑡, 𝑥) = 𝜙2(𝑥), 𝑤40(𝑠, 𝑡, 𝑥) = 𝜙1(𝑥).

The first and subsequent approximations for system of equations (24)–(27) are introduced
by means of the recurrent sequence of systems of equations (𝑛 = 1, 2, . . . ):

𝑤1𝑛(𝑠, 𝑡, 𝑥) = 𝜙1

⎛⎝𝑥−
𝑡∫︁

0

(𝑎1𝑤1𝑛 + 𝑏1𝑤3𝑛)𝑑𝜏

⎞⎠ +

𝑠∫︁
0

(𝑎2𝑤1𝑛 + 𝑏2𝑤3𝑛)𝑑𝜏, (29)
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𝑤2𝑛(𝑠, 𝑡, 𝑥) = 𝜙2

⎛⎝𝑥−
𝑡∫︁

0

(𝑐1𝑤4𝑛(𝜏, 𝑡, 𝑥) + 𝑔1𝑤2𝑛(𝜏, 𝑡, 𝑥))𝑑𝜏

⎞⎠ +

𝑠∫︁
0

𝑔2𝑤2𝑛(𝜏, 𝑡, 𝑥)𝑑𝜏, (30)

𝑤3𝑛(𝑠, 𝑡, 𝑥) = 𝑤2(𝑛−1)

⎛⎝𝑠, 𝑠, 𝑥−
𝑡∫︁

𝑠

(𝑎1𝑤1𝑛 + 𝑏1𝑤3𝑛)𝑑𝜏

⎞⎠ , (31)

𝑤4𝑛(𝑠, 𝑡, 𝑥) = 𝑤1(𝑛−1)

⎛⎝𝑠, 𝑠, 𝑥−
𝑡∫︁

𝑠

(𝑐1𝑤4𝑛 + 𝑔1𝑤2𝑛)𝑑𝜏

⎞⎠ . (32)

We define the zero approximation for system of equations (29)–(32) by the identities 𝑤0
𝑗𝑛 =

𝑤𝑗(𝑛−1), 𝑗 = 1, 4.
The first and subsequent approximations for system of equations (29)–(32) are introduced

by the formulae

𝑤𝑘+1
1𝑛 (𝑠, 𝑡, 𝑥) = 𝜙1

⎛⎝𝑥−
𝑡∫︁

0

(𝑎1𝑤
𝑘
1𝑛 + 𝑏1𝑤

𝑘
3𝑛)𝑑𝜏

⎞⎠ +

𝑠∫︁
0

(𝑎2𝑤
𝑘
1𝑛 + 𝑏2𝑤

𝑘
3𝑛)𝑑𝜏, (33)

𝑤𝑘+1
2𝑛 (𝑠, 𝑡, 𝑥) = 𝜙2

⎛⎝𝑥−
𝑡∫︁

0

(𝑐1𝑤
𝑘
4𝑛(𝜏, 𝑡, 𝑥) + 𝑔1𝑤

𝑘
2𝑛(𝜏, 𝑡, 𝑥))𝑑𝜏

⎞⎠ +

𝑠∫︁
0

𝑔2𝑤
𝑘
2𝑛(𝜏, 𝑡, 𝑥)𝑑𝜏, (34)

𝑤𝑘+1
3𝑛 (𝑠, 𝑡, 𝑥) = 𝑤2(𝑛−1)

⎛⎝𝑠, 𝑠, 𝑥−
𝑡∫︁

𝑠

(𝑎1𝑤
𝑘
1𝑛 + 𝑏1𝑤

𝑘
3𝑛)𝑑𝜏

⎞⎠ , (35)

𝑤𝑘+1
4𝑛 (𝑠, 𝑡, 𝑥) = 𝑤1(𝑛−1)

⎛⎝𝑠, 𝑠, 𝑥−
𝑡∫︁

𝑠

(𝑐1𝑤
𝑘
4𝑛 + 𝑔1𝑤

𝑘
2𝑛)𝑑𝜏

⎞⎠ . (36)

In the same way as in [13] we prove that for each 0 6 𝑡 6 𝑇1, where 𝑇1 = min( 1
20𝐶𝜙𝑙

, 1
4𝑙

),

successive approximations (33)–(36) are bounded, continuous and converge to a continuous
solution to system (29)–(32) satisfying the estimates ‖𝑤𝑗𝑛‖ 6 2𝐶𝜙, 𝑗 = 1, 4.

In the same as in [13], we establish that for each 0 6 𝑡 6 𝑇1, where 𝑇1 = min( 1
20𝐶𝜙𝑙

, 1
4𝑙

), there

exist the derivatives 𝜕𝑥𝑤𝑗𝑛, 𝑗 = 1, 4 and the estimates

‖𝜕𝑥𝑤1𝑛‖ 6 4𝐶𝜙, ‖𝜕𝑥𝑤2𝑛‖ 6 4𝐶𝜙, ‖𝜕𝑥𝑤3𝑛‖ 6 6𝐶𝜙, ‖𝜕𝑥𝑤4𝑛‖ 6 6𝐶𝜙

hold true.
For each 0 6 𝑡 6 𝑇1, where 𝑇1 = min( 1

20𝐶𝜙𝑙
, 1
4𝑙

), the successive approximations determined

by system (29)–(32) converge to the solution of system (24)–(27) and the estimates

‖𝑤𝑗‖ 6 2𝐶𝜙, 𝑗 = 1, 4,

hold true. Then we prove that 𝑤𝑗𝑛𝑥 → 𝑤𝑗𝑥 = 𝜕𝑥𝑤𝑗, 𝑗 = 1, 4, where functions 𝜕𝑥𝑤𝑗 are

continuous w.r.t. all its arguments on Γ𝑇2 , 𝑇2 = min
(︁

1
25𝐶𝜙𝑙

, 1
10𝑙

)︁
. The estimates ‖𝜕𝑥𝑤𝑖‖ 6 4𝐶𝜙,

𝑖 = 1, 2, ‖𝜕𝑥𝑤3‖ 6 6𝐶𝜙, ‖𝜕𝑥𝑤4‖ 6 6𝐶𝜙 are valid.
In the same way we prove that 𝑤𝑗, 𝑗 = 1, 4 have continuous and bounded derivatives w.r.t.

𝑡 on Γ𝑇2 . The uniqueness of the solutions can be proven in the same as in paper [13].

Lemma 3. Under conditions (28) functions {𝑤𝑗}, 𝑗 = 1, 4, being solutions to the system

of equations (24)–(27), have continuous and bounded derivatives
𝜕2𝑤𝑗

𝜕𝑥2 ,
𝜕2𝑤𝑗

𝜕𝑥𝑡
, 𝑗 = 1, 4, in Γ𝑇2 ,

where 𝑇2 = min
(︁

1
25𝐶𝜙𝑙

, 1
10𝑙

)︁
.
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Proof. We differentiate twice successive approximations (29)–(32) w.r.t. 𝑥 and denote 𝜔𝑛
𝑗 =

𝑤𝑗𝑛𝑥𝑥, 𝑗 = 1, 4. It yields the system of equations:

𝜔𝑛
1 = − 𝜙′

1

𝑡∫︁
0

(𝑎1𝜔
𝑛
1 + 𝑏1𝜔

𝑛
3 )𝑑𝜏 +

𝑠∫︁
0

(𝑎2𝜔
𝑛
1 + 𝑏2𝜔

𝑛
3 )𝑑𝜏

+ 𝜙′′
1 ·

⎛⎝1 −
𝑡∫︁

0

(𝑎1𝑤1𝑛𝑥 + 𝑏1𝑤3𝑛𝑥)𝑑𝜏

⎞⎠2

,

(37)

𝜔𝑛
2 = −𝜙′

2

𝑡∫︁
0

(𝑐1𝜔
𝑛
4 + 𝑔1𝜔

𝑛
2 )𝑑𝜏 +

𝑠∫︁
0

𝑔2𝜔
𝑛
2 𝑑𝜏 + 𝜙′′

2 ·

⎛⎝1 −
𝑡∫︁

0

(𝑐1𝑤4𝑛𝑥 + 𝑔1𝑤2𝑛𝑥)𝑑𝜏

⎞⎠2

, (38)

𝜔𝑛
3 = 𝜔𝑛−1

2 ·

⎛⎝1 −
𝑡∫︁

𝑠

(𝑎1𝑤1𝑛𝑥 + 𝑏1𝑤3𝑛𝑥)𝑑𝜏

⎞⎠2

− 𝑤2(𝑛−1)𝑥

𝑡∫︁
𝑠

(𝑎1𝜔
𝑛
1 + 𝑏1𝜔

𝑛
3 )𝑑𝜏, (39)

𝜔𝑛
4 = 𝜔𝑛−1

1 ·

⎛⎝1 −
𝑡∫︁

𝑠

(𝑐1𝑤4𝑛𝑥 + 𝑔1𝑤2𝑛𝑥)𝑑𝜏

⎞⎠2

− 𝑤1(𝑛−1)𝑥

𝑡∫︁
𝑠

(𝑐1𝜔
𝑛
4 + 𝑔1𝜔

𝑛
2 )𝑑𝜏. (40)

Under conditions (28), in view of the above established estimates ‖𝑤𝑗𝑛‖ 6 2𝐶𝜙, 𝑗 = 1, 4,

we have

⃒⃒⃒⃒
𝑡∫︀
𝑠

(𝑎𝑤1𝑛 + 𝑏𝑤3𝑛)𝑑𝜏

⃒⃒⃒⃒
6 𝑡𝑙(‖𝑤1𝑛‖ + ‖𝑤3𝑛‖) 6 4𝑡𝑙𝐶𝜙 6 4𝑙𝐶𝜙

25𝑙𝐶𝜙
6 0.16. In the same way,⃒⃒⃒⃒

𝑡∫︀
𝑠

(𝑐1𝑤4𝑛 + 𝑔1𝑤2𝑛)𝑑𝜏

⃒⃒⃒⃒
6 0.16.

We fix a point 𝑥0 and consider the set Ω𝑥0 = {𝑥 |𝑥0 − 0.16 6 𝑥 6 𝑥0 +0.16}. Let us prove the
equicontinuity of functions 𝜔𝑛

1 , 𝜔𝑛
2 w.r.t. 𝑥 ∈ Ω𝑥0 , which implies the equicontinuity of functions

𝜔𝑛
1 , 𝜔𝑛

2 w.r.t. 𝑥 in the chosen arbitrary point 𝑥0, i.e., on R. The equicontinuity of functions 𝜔𝑛
1 ,

𝜔𝑛
2 w.r.t. 𝑥 is employed in the proof of convergence for successive approximations 𝜔𝑛

𝑗 , 𝑗 = 1, 4.
We take 𝑥1, 𝑥2 ∈ Ω𝑥0 . Let us prove the inequalities

|𝜂1𝑛 (𝑠, 𝑡, 𝑥1) − 𝜂1𝑛 (𝑠, 𝑡, 𝑥2) | 6 |𝑥1 − 𝑥2|, (41)

|𝜂2𝑛 (𝑠, 𝑡, 𝑥1) − 𝜂2𝑛 (𝑠, 𝑡, 𝑥2) | 6 |𝑥1 − 𝑥2|, (42)

where

𝜂1𝑛(𝑠, 𝑡, 𝑥) = 𝑥−
𝑡∫︁

𝑠

(𝑎1𝑤1𝑛(𝜏, 𝑡, 𝑥) + 𝑏1𝑤3𝑛(𝜏, 𝑡, 𝑥))𝑑𝜏,

𝜂2𝑛(𝑠, 𝑡, 𝑥) = 𝑥−
𝑡∫︁

𝑠

(𝑐1𝑤4𝑛(𝜏, 𝑡, 𝑥) + 𝑔1𝑤2𝑛(𝜏, 𝑡, 𝑥))𝑑𝜏.

Differentiating successive approximations (29)–(32) w.r.t. 𝑥, we obtain

𝑤1𝑛𝑥 =𝜙′
1

⎛⎝𝑥−
𝑡∫︁

0

(𝑎1𝑤1 + 𝑏1𝑤3)𝑑𝜏

⎞⎠ ·

⎛⎝1 −
𝑡∫︁

0

(𝑎1𝑤1𝑛𝑥 + 𝑏1𝑤3𝑛𝑥)𝑑𝜏

⎞⎠
+

𝑠∫︁
0

(𝑎2𝑤1𝑛𝑥 + 𝑏2𝑤3𝑛𝑥)𝑑𝜏,

(43)
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𝑤2𝑛𝑥 = 𝜙′
2

⎛⎝𝑥−
𝑡∫︁

0

(𝑐1𝑤4𝑛 + 𝑔1𝑤2𝑛)𝑑𝜏

⎞⎠ ·

⎛⎝1 −
𝑡∫︁

0

(𝑐1𝑤4𝑛𝑥 + 𝑔1𝑤2𝑛𝑥)𝑑𝜏

⎞⎠ +

𝑠∫︁
0

𝑔2𝑤2𝑛𝑥𝑑𝜏, (44)

𝑤3𝑛𝑥 = 𝑤2(𝑛−1)𝑥 ·

⎛⎝1 −
𝑡∫︁

𝑠

(𝑎1𝑤1𝑛𝑥 + 𝑏1𝑤3𝑛𝑥)𝑑𝜏

⎞⎠ , (45)

𝑤4𝑛𝑥 = 𝑤1(𝑛−1)𝑥 ·

⎛⎝1 −
𝑡∫︁

𝑠

(𝑐1𝑤4𝑛𝑥 + 𝑔1𝑤2𝑛𝑥)𝑑𝜏

⎞⎠ . (46)

System (43)–(46) is equivalent to

𝑤1𝑛𝑥 =𝜙′
1

⎛⎝𝑥−
𝑡∫︁

0

(𝑎1𝑤1 + 𝑏1𝑤3)𝑑𝜏

⎞⎠ ·

⎛⎝1 −
𝑡∫︁

0

(𝑎1𝑤1𝑛𝑥 + 𝑏1𝑤3𝑛𝑥)𝑑𝜏

⎞⎠ exp(𝑎2𝑠)

+

𝑠∫︁
0

𝑏2𝑤3𝑛𝑥 exp(𝑎2(𝑠− 𝜏))𝑑𝜏,

(47)

𝑤2𝑛𝑥 = 𝜙′
2

⎛⎝𝑥−
𝑡∫︁

0

(𝑐1𝑤4𝑛 + 𝑔1𝑤2𝑛)𝑑𝜏

⎞⎠ ·

⎛⎝1 −
𝑡∫︁

0

(𝑐1𝑤4𝑛𝑥 + 𝑔1𝑤2𝑛𝑥)𝑑𝜏

⎞⎠ exp(𝑔2𝑠), (48)

𝑤3𝑛𝑥 = 𝑤2(𝑛−1)𝑥 ·

⎛⎝1 −
𝑡∫︁

𝑠

(𝑎1𝑤1𝑛𝑥 + 𝑏1𝑤3𝑛𝑥)𝑑𝜏

⎞⎠ , (49)

𝑤4𝑛𝑥 = 𝑤1(𝑛−1)𝑥 ·

⎛⎝1 −
𝑡∫︁

𝑠

(𝑐1𝑤4𝑛𝑥 + 𝑔1𝑤2𝑛𝑥)𝑑𝜏

⎞⎠ . (50)

We suppose that

𝑤1(𝑛−1)𝑥 > 0, 𝑤2(𝑛−1)𝑥 > 0. (51)

Under conditions (28), by means of the properties of integrals, absolute values and supremum
of functions we prove that for each 𝑛 ∈ N the inequalities

1 −
𝑡∫︁

𝑠

(𝑎1𝑤1𝑛𝑥 + 𝑏1𝑤3𝑛𝑥)𝑑𝜏 > 0, 1 −
𝑡∫︁

𝑠

(𝑐1𝑤4𝑛𝑥 + 𝑔1𝑤2𝑛𝑥)𝑑𝜏 > 0 (52)

hold true on Γ𝑇2 . It follows from (49)–(52) that 𝑤3𝑛𝑥 > 0, 𝑤4𝑛𝑥 > 0.
Under conditions (28) by (47), (48) and inequalities (52) we get

𝑤1𝑛𝑥 > 0, 𝑤2𝑛𝑥 > 0.

Since 𝑤1𝑛𝑥 > 0, 𝑤2𝑛𝑥 > 0, 𝑤3𝑛𝑥 > 0, 𝑤4𝑛𝑥 > 0, we have

1 −
𝑡∫︁

𝑠

(𝑎1𝑤1𝑛𝑥 + 𝑏1𝑤3𝑛𝑥)𝑑𝜏 6 1, 1 −
𝑡∫︁

𝑠

(𝑐1𝑤4𝑛𝑥 + 𝑔1𝑤2𝑛𝑥)𝑑𝜏 6 1. (53)

By inequalities (52), (53) and finite increment theorem we arrive at inequalities (41), (42).
Under conditions (28) by (37), (39) and the properties of integrals, absolute values and

supremum of functions we get the inequalities

|𝜔𝑛
1 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛

1 (𝑠, 𝑡, 𝑥2)| <Φ1𝑛 + (𝐶𝜙𝑙𝑡 + 𝑙𝑡)(|𝜔𝑛
1 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛

1 (𝑠, 𝑡, 𝑥2)|
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+ |𝜔𝑛
3 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛

3 (𝑠, 𝑡, 𝑥2)|),
|𝜔𝑛

3 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛
3 (𝑠, 𝑡, 𝑥2)| <Φ2𝑛 + |𝜔𝑛−1

2 (𝑠, 𝑠, 𝜂1𝑛 (𝑠, 𝑡, 𝑥1)) − 𝜔𝑛−1
2 (𝑠, 𝑠, 𝜂1𝑛 (𝑠, 𝑡, 𝑥2))|

+ 4𝐶𝜙𝑙𝑡(|𝜔𝑛
1 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛

1 (𝑠, 𝑡, 𝑥2)| + |𝜔𝑛
3 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛

3 (𝑠, 𝑡, 𝑥2)|),

where

Φ1𝑛 =

⃒⃒⃒⃒
(𝜙′′

1(𝜂1𝑛(0, 𝑡, 𝑥1)) − 𝜙′′
1(𝜂1𝑛(0, 𝑡, 𝑥2)))𝜂

2
1𝑛𝑥(𝑠, 𝑡, 𝑥1)

+ 𝜙′′
1(𝜂1𝑛(0, 𝑡, 𝑥2))[𝜂

2
1𝑛𝑥(0, 𝑡, 𝑥1) − 𝜂21𝑛𝑥(0, 𝑡, 𝑥2)]

− (𝜙′
1(𝜂1𝑛(0, 𝑡, 𝑥1)) − 𝜙′

1(𝜂1𝑛(0, 𝑡, 𝑥2))) ·
𝑡∫︁

0

(𝑎𝜔𝑛
1 (𝜏, 𝑡, 𝑥1) + 𝑏𝜔𝑛

3 (𝜏, 𝑡, 𝑥1))𝑑𝜏

⃒⃒⃒⃒
,

Φ2𝑛 =

⃒⃒⃒⃒
𝜔𝑛−1
2 (𝑠, 𝑠, 𝜂1𝑛(𝑠, 𝑡, 𝑥2)) · [𝜂21𝑛𝑥(𝑠, 𝑡, 𝑥1) − 𝜂21𝑛𝑥(𝑠, 𝑡, 𝑥2)]

−
𝑡∫︁

𝑠

(𝑎𝜔𝑛
1 (𝜏, 𝑡, 𝑥1) + 𝑏𝜔𝑛

3 (𝜏, 𝑡, 𝑥1))𝑑𝜏

· [𝑤2(𝑛−1)𝑥(𝑠, 𝑠, 𝜂1𝑛 (𝑠, 𝑡, 𝑥1)) − 𝑤2(𝑛−1)𝑥(𝑠, 𝑠, 𝜂1𝑛 (𝑠, 𝑡, 𝑥2))]

⃒⃒⃒⃒
,

𝜂1𝑛 (𝑠, 𝑡, 𝑥) = 𝑥−
𝑡∫︁

𝑠

(𝑎𝑤1𝑛 (𝜏, 𝑡, 𝑥) + 𝑏𝑤3𝑛 (𝜏, 𝑡, 𝑥))𝑑𝜏.

Thus, on Γ𝑇2 , where 𝑇2 = min
(︁

1
25𝐶𝜙𝑙

, 1
10𝑙

)︁
, the inequalities

|𝜔𝑛
1 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛

1 (𝑠, 𝑡, 𝑥2)| <Φ1𝑛 + 0.14(|𝜔𝑛
1 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛

1 (𝑠, 𝑡, 𝑥2)|
+ |𝜔𝑛

3 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛
3 (𝑠, 𝑡, 𝑥2)|),

|𝜔𝑛
3 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛

3 (𝑠, 𝑡, 𝑥2)| <Φ2𝑛 + |𝜔𝑛−1
2 (𝑠, 𝑠, 𝜂1𝑛 (𝑠, 𝑡, 𝑥1)) − 𝜔𝑛−1

2 (𝑠, 𝑠, 𝜂1𝑛 (𝑠, 𝑡, 𝑥2))|
+ 0.16(|𝜔𝑛

1 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛
1 (𝑠, 𝑡, 𝑥2)| + |𝜔𝑛

3 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛
3 (𝑠, 𝑡, 𝑥2)|)

hold true.
Employing the uniform continuity and equicontinuity as well as the boundedness of all the

functions in Φ1𝑛, Φ2𝑛, for each arbitrarily small number 𝜀 we can choose 𝛿 > 0 such that
Φ1𝑛 < 0.5𝜀, Φ2𝑛 < 0.5𝜀 as |𝑥1 − 𝑥2| < 𝛿 for each 𝑛.

Suppose that |𝜔(𝑛−1)
2 (𝑠, 𝑡, 𝑥1) − 𝜔

(𝑛−1)
2 (𝑠, 𝑡, 𝑥2)| < 𝜀 as |𝑥1 − 𝑥2| < 𝛿. Then

|𝜔𝑛
1 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛

1 (𝑠, 𝑡, 𝑥2)| < 0.5𝜀 + 0.14(|𝜔𝑛
1 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛

1 (𝑠, 𝑡, 𝑥2)|
+ |𝜔𝑛

3 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛
3 (𝑠, 𝑡, 𝑥2)|),

|𝜔𝑛
1 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛

1 (𝑠, 𝑡, 𝑥2)| + |𝜔𝑛
3 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛

3 (𝑠, 𝑡, 𝑥2)| <
20

7
𝜀.

Therefore, |𝜔𝑛
1 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛

1 (𝑠, 𝑡, 𝑥2)| < 𝜀 as |𝑥1 − 𝑥2| < 𝛿. In the same way we obtain
|𝜔𝑛

2 (𝑠, 𝑡, 𝑥1) − 𝜔𝑛
2 (𝑠, 𝑡, 𝑥2)| < 𝜀 as |𝑥1 − 𝑥2| < 𝛿. Thus, sequences {𝜔𝑛

𝑖 (𝑠, 𝑡, 𝑥)}, 𝑖 = 1, 2, are
equicontinuous w.r.t. 𝑥 ∈ Ω𝑥0 .

We consider the system of equations

𝜔̃𝑛
1 = −𝜙′

1(𝜂1(0, 𝑡, 𝑥))

𝑡∫︁
0

(𝑎1𝜔̃
𝑛
1 + 𝑏1𝜔̃

𝑛
3 )𝑑𝜏 +

𝑠∫︁
0

(𝑎2𝜔̃
𝑛
1 + 𝑏2𝜔̃

𝑛
3 )𝑑𝜏
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+ 𝜙′′
1 ·

⎛⎝1 −
𝑡∫︁

0

(𝑎1𝑤1𝑥 + 𝑏1𝑤3𝑥)𝑑𝜏

⎞⎠2

,

𝜔̃𝑛
2 = −𝜙′

2(𝜂2(0, 𝑡, 𝑥))

𝑡∫︁
0

(𝑐1𝜔̃
𝑛
4 + 𝑔1𝜔̃

𝑛
2 )𝑑𝜏 +

𝑠∫︁
0

𝑔2𝜔̃
𝑛
2 𝑑𝜏 + 𝜙′′

2 ·

⎛⎝1 −
𝑡∫︁

0

(𝑐1𝑤4𝑥 + 𝑔1𝑤2𝑥)𝑑𝜏

⎞⎠2

,

𝜔̃𝑛
3 = 𝜔̃𝑛−1

2 ·

⎛⎝1 −
𝑡∫︁

𝑠

(𝑎1𝑤1𝑥 + 𝑏1𝑤3𝑥)𝑑𝜏

⎞⎠2

− 𝑤2𝑥(𝑠, 𝑠, 𝜂1(𝑠, 𝑡, 𝑥))

𝑡∫︁
𝑠

(𝑎1𝜔̃
𝑛
1 + 𝑏1𝜔̃

𝑛
3 )𝑑𝜏,

𝜔̃𝑛
4 = 𝜔̃𝑛−1

1 ·

⎛⎝1 −
𝑡∫︁

𝑠

(𝑐1𝑤4𝑥 + 𝑔1𝑤2𝑥)𝑑𝜏

⎞⎠2

− 𝑤1𝑥(𝑠, 𝑠, 𝜂2(𝑠, 𝑡, 𝑥))

𝑡∫︁
𝑠

(𝑐1𝜔̃
𝑛
4 + 𝑔1𝜔̃

𝑛
2 )𝑑𝜏.

Under condition (28), we obtain that 𝜔̃𝑛
𝑗 → 𝜔̃𝑗, 𝑗 = 1, 4, on Γ𝑇2 and the estimates

‖𝜔̃1‖ 6 2𝐶𝜙, ‖𝜔̃2‖ 6 2𝐶𝜙, ‖𝜔̃3‖ 6 3𝐶𝜙, ‖𝜔̃4‖ 6 3𝐶𝜙

hold true.
Inequality

⃦⃦
𝜔𝑁+𝑘
1 − 𝜔̃1

⃦⃦
+
⃦⃦
𝜔𝑁+𝑘
2 − 𝜔̃2

⃦⃦
6

(︂
1

3

)︂𝑘

(
⃦⃦
𝜔𝑁
1 − 𝜔̃1

⃦⃦
+
⃦⃦
𝜔𝑁
2 − 𝜔̃2

⃦⃦
) + 4𝜀

yields that 𝜔𝑁+𝑘
1 → 𝜔̃1, 𝜔

𝑁+𝑘
2 → 𝜔̃2 as 𝑁 → ∞, 𝑘 → ∞. We also get that 𝜔𝑛

3 → 𝜔̃3 as 𝑛 → ∞,
𝜔𝑛
4 → 𝜔̃4 as 𝑛 → ∞.

We obtain that 𝑤𝑗𝑛𝑥𝑥 → 𝑤𝑗𝑥𝑥 = 𝜔̃𝑗, where the functions
𝜕2𝑤𝑗

𝜕𝑥2 , 𝑗 = 1, 4, are continuous and
bounded on Γ𝑇2 under conditions (28). Thus, there exist continuous and bounded derivatives
𝜕2𝑤𝑗

𝜕𝑥𝑡
, 𝑗 = 1, 4 on Γ𝑇2 under condition (28).

3. Existence of nonlocal solution

Theorem 2. Suppose that 𝜙𝑖 ∈ 𝐶2(R), 𝑖 = 1, 2, and conditions (28) hold. Then for each
𝑇 > 0 Cauchy problem (4), (2) has the unique solution 𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥) ∈ 𝐶1,2,2(Ω𝑇 ) determined
by the system of integral equations (24)–(27).

Proof. We differentiate the system of equations (4) w.r.t. 𝑥 and we denote 𝑝(𝑡, 𝑥) = 𝑢𝑥(𝑡, 𝑥),
𝑞(𝑡, 𝑥) = 𝑣𝑥(𝑡, 𝑥). It leads to the system of equations⎧⎪⎨⎪⎩

𝜕𝑡𝑝 + (𝑎1𝑢(𝑡, 𝑥) + 𝑏1𝑣(𝑡, 𝑥))𝜕𝑥𝑝 = −𝑎1𝑝
2 − 𝑏1𝑝𝑞 + 𝑎2𝑝 + 𝑏2𝑞,

𝜕𝑡𝑞 + (𝑐1𝑢(𝑡, 𝑥) + 𝑔1𝑣(𝑡, 𝑥))𝜕𝑥𝑞 = −𝑔1𝑞
2 − 𝑐1𝑝𝑞 + 𝑔2𝑞,

𝑝(0, 𝑥) = 𝜙′
1(𝑥), 𝑞(0, 𝑥) = 𝜙′

2(𝑥).

(54)

To system of equations (18)–(23), we add extra two equations⎧⎪⎨⎪⎩
𝑑𝛾1(𝑠, 𝑡, 𝑥)

𝑑𝑠
= −𝑎1𝛾

2
1 − 𝑏1𝛾1𝛾2(𝑠, 𝑠, 𝜂1) + 𝑎2𝛾1 + 𝑏2𝛾2(𝑠, 𝑠, 𝜂1),

𝑑𝛾2(𝑠, 𝑡, 𝑥)

𝑑𝑠
= −𝑔1𝛾

2
2 − 𝑐1𝛾1(𝑠, 𝑠, 𝜂2)𝛾2 + 𝑔2𝛾2.

(55)

subject to the conditions 𝛾1(0, 𝑡, 𝑥) = 𝜙′
1(𝜂1), 𝛾2(0, 𝑡, 𝑥) = 𝜙′

2(𝜂2).
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We rewrite system of equations (55) as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝛾1(𝑠, 𝑡, 𝑥) = 𝜙′

1(𝜂1) +

𝑠∫︁
0

[−𝑎1𝛾
2
1 + (𝑏2 − 𝑏1𝛾1)𝛾2(𝜏, 𝜏, 𝜂1) + 𝑎2𝛾1]𝑑𝜏,

𝛾2(𝑠, 𝑡, 𝑥) = 𝜙′
2(𝜂2) +

𝑠∫︁
0

[−𝑔1𝛾
2
2 − 𝑐1𝛾1(𝜏, 𝜏, 𝜂2)𝛾2 + 𝑔2𝛾2]𝑑𝜏.

(56)

Under conditions (28), the existence of continuous solution to system (56) on Γ𝑇2 , where

𝑇2 = min
(︁

1
25𝐶𝜙𝑙

, 1
10𝑙

)︁
, is made the successive approximations method. We introduce successive

approximations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝛾𝑛+1
1 = 𝜙′

1(𝜂1) +

𝑠∫︁
0

[−𝑎1(𝛾
𝑛
1 )2 + (𝑏2 − 𝑏1𝛾

𝑛
1 )𝛾𝑛

2 (𝜏, 𝜏, 𝜂1) + 𝑎2𝛾
𝑛
1 ]𝑑𝜏,

𝛾𝑛+1
2 = 𝜙′

2(𝜂2) +

𝑠∫︁
0

[−𝑔1(𝛾
𝑛
2 )2 − 𝑐1𝛾

𝑛
1 (𝜏, 𝜏, 𝜂2)𝛾

𝑛
2 + 𝑔2𝛾

𝑛
2 ]𝑑𝜏,

(57)

and 𝛾0
1 = 𝜙′

1(𝜂1), 𝛾
0
2 = 𝜙′

2(𝜂2).
Under conditions (28), the estimates |𝛾𝑛+1

𝑖 | 6 2𝐶𝜙, |𝜂𝑖𝑥| 6 1, |𝛾𝑛+1
𝑖𝑥 | 6 5𝐶𝜙, 𝑖 = 1, 2, hold

true on Γ𝑇2 . Let us prove the convergence of successive approximations on Γ𝑇2 . We consider
the inequalities:

|𝛾𝑛+1
1 − 𝛾𝑛

1 | 6

⃒⃒⃒⃒
⃒⃒

𝑠∫︁
0

[𝑎1((𝛾
𝑛
1 )2 − (𝛾𝑛−1

1 )
2
) + 𝑏1(𝛾

𝑛
1 𝛾

𝑛
2−𝛾𝑛−1

1 𝛾𝑛−1
2 )]𝑑𝜏

⃒⃒⃒⃒
⃒⃒

+

⃒⃒⃒⃒
⃒⃒

𝑠∫︁
0

[(𝛾1
𝑛 − 𝛾1

𝑛−1)𝑎2 + (𝛾2
𝑛 − 𝛾2

𝑛−1)𝑏2]𝑑𝜏

⃒⃒⃒⃒
⃒⃒

6𝑙𝑡
(︀⃦⃦

𝛾𝑛
1 + 𝛾𝑛−1

1

⃦⃦
·
⃦⃦
𝛾𝑛
1 − 𝛾𝑛−1

1

⃦⃦
+
⃦⃦
𝛾𝑛
1 − 𝛾𝑛−1

1

⃦⃦
· ‖𝛾𝑛

2 ‖ +
⃦⃦
𝛾𝑛
2 − 𝛾𝑛−1

2

⃦⃦
·
⃦⃦
𝛾𝑛−1
1

⃦⃦)︀
+ 𝑙𝑡

(︀⃦⃦
𝛾𝑛
2 − 𝛾𝑛−1

2

⃦⃦
+
⃦⃦
𝛾𝑛
1 − 𝛾𝑛−1

1

⃦⃦)︀
.

Taking into considerations the estimates |𝛾𝑛+1
𝑖 | 6 2𝐶𝜙, 𝑖 = 1, 2, we obtain⃦⃦

𝛾𝑛+1
1 − 𝛾𝑛

1

⃦⃦
6 (6𝑙𝑡𝐶𝜙 + 𝑙𝑡)

⃦⃦
𝛾𝑛
1 − 𝛾𝑛−1

1

⃦⃦
+ (2𝑙𝑡𝐶𝜙 + 𝑙𝑡)

⃦⃦
𝛾𝑛
2 − 𝛾𝑛−1

2

⃦⃦
.

In the same way we arrive at the inequality⃦⃦
𝛾𝑛+1
2 − 𝛾𝑛

2

⃦⃦
6 (6𝑙𝑡𝐶𝜙 + 𝑙𝑡)

⃦⃦
𝛾𝑛
2 − 𝛾𝑛−1

2

⃦⃦
+ 2𝑙𝑡𝐶𝜙

⃦⃦
𝛾𝑛
1 − 𝛾𝑛−1

1

⃦⃦
.

We sum up the latter inequalities to obtain

‖𝛾𝑛+1
1 − 𝛾𝑛

1 ‖ + ‖𝛾𝑛+1
2 − 𝛾𝑛

2 ‖ 6 (8𝑙𝑡𝐶𝜙 + 2𝑙𝑡)(‖𝛾𝑛
2 − 𝛾𝑛−1

2 ‖ + ‖𝛾𝑛
1 − 𝛾𝑛−1

1 ‖).

We see that for 0 6 𝑡 6 𝑇2, where 𝑇2 = min
(︁

1
25𝐶𝜙𝑙

, 1
10𝑙

)︁
, the inequality⃦⃦

𝛾𝑛+1
1 − 𝛾𝑛

1

⃦⃦
+
⃦⃦
𝛾𝑛+1
2 − 𝛾𝑛

2

⃦⃦
6 0.52(

⃦⃦
𝛾𝑛
1 − 𝛾𝑛−1

1

⃦⃦
+
⃦⃦
𝛾𝑛
2 − 𝛾𝑛−1

2

⃦⃦
)

holds true. Thus, we conclude that successive approximations 𝛾𝑛
𝑖 , 𝑖 = 1, 2, converge to a

continuous solution of system (56) in Γ𝑇2 under conditions (28). This solutions satisfies the
estimates |𝛾𝑖| 6 2𝐶𝜙, 𝑖 = 1, 2.
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We consider the system of equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜔21 = 𝜙′′

1 (𝜂1) 𝜂1𝑥 +

𝑠∫︁
0

[(𝑎2 − 2𝑎1𝛾1 − 𝑏1𝛾2 (𝜏, 𝜏, 𝜂1))𝜔21 + (𝑏2 − 𝑏1𝛾1)𝜔22 (𝜏, 𝜏, 𝜂1) 𝜂1𝑥]𝑑𝜏,

𝜔22 = 𝜙′′
2 (𝜂2) 𝜂2𝑥 +

𝑠∫︁
0

[(𝑔2 − 2𝑔1𝛾2 − 𝑐1𝛾1 (𝜏, 𝜏, 𝜂2))𝜔22 − 𝑐1𝜔21 (𝜏, 𝜏, 𝜂2) 𝛾2𝜂2𝑥] 𝑑𝜏 .

(58)
The proof of existence of continuous solution to system (58) is made by the successive ap-

proximations method⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜔𝑛+1
21 =𝜙′′

1 (𝜂1) 𝜂1𝑥

+

𝑠∫︁
0

[(𝑎2 − 2𝑎1𝛾1 − 𝑏1𝛾2 (𝜏, 𝜏, 𝜂1))𝜔
𝑛
21 + (𝑏2 − 𝑏1𝛾1)𝜔

𝑛
22 (𝜏, 𝜏, 𝜂1) 𝜂1𝑥]𝑑𝜏,

𝜔𝑛+1
22 =𝜙′′

2 (𝜂2) 𝜂2𝑥 +

𝑠∫︁
0

[(𝑔2 − 2𝑔1𝛾2 − 𝑐1𝛾1 (𝜏, 𝜏, 𝜂2))𝜔
𝑛
22 − 𝑐1𝜔

𝑛
21 (𝜏, 𝜏, 𝜂2) 𝛾2𝜂2𝑥] 𝑑𝜏 .

(59)

Under conditions (28), the estimates ‖𝜔𝑛+1
2𝑖 | 6 5𝐶𝜙, 𝑖 = 1, 2, hold true on Γ𝑇2 .

We consider the inequalities⃒⃒
𝜔𝑛+1
21 − 𝜔𝑛

21

⃒⃒
6𝑙

𝑠∫︁
0

(1 + 2 |𝛾1| + |𝛾2|)
⃒⃒
𝜔𝑛
21 − 𝜔𝑛−1

21

⃒⃒
𝑑𝜏

+ 𝑙

𝑠∫︁
0

(1 + |𝛾1|) ·
⃒⃒
𝜔𝑛
22(𝜏, 𝜏, 𝜂1) − 𝜔𝑛−1

22 (𝜏, 𝜏, 𝜂1)
⃒⃒
𝑑𝜏.

Taking into consideration the estimates |𝛾𝑖| 6 2𝐶𝜙, 𝑖 = 1, 2, we obtain⃦⃦
𝜔𝑛+1
21 − 𝜔𝑛

21

⃦⃦
6 (6𝑙𝑡𝐶𝜙 + 𝑙𝑡)

⃦⃦
𝜔𝑛
21 − 𝜔𝑛−1

21

⃦⃦
+ (2𝑙𝑡𝐶𝜙 + 𝑙𝑡)

⃦⃦
𝜔𝑛
22 − 𝜔𝑛−1

22

⃦⃦
.

In the same way we arrive at the inequality:⃦⃦
𝜔𝑛+1
22 − 𝜔𝑛

22

⃦⃦
6 (6𝑙𝑡𝐶𝜙 + 𝑙𝑡)

⃦⃦
𝜔𝑛
22 − 𝜔𝑛−1

22

⃦⃦
+ (2𝑙𝑡𝐶𝜙 + 𝑙𝑡)

⃦⃦
𝜔𝑛
21 − 𝜔𝑛−1

21

⃦⃦
.

We sum up the latter inequalities to obtain

‖𝜔𝑛+1
21 − 𝜔𝑛

21‖ + ‖𝜔𝑛+1
22 − 𝜔𝑛

22‖ 6 (8𝑙𝑡𝐶𝜙 + 2𝑙𝑡)(‖𝜔𝑛
21 − 𝜔𝑛−1

21 ‖ + ‖𝜔𝑛
22 − 𝜔𝑛−1

22 ‖).

We see that for each 0 6 𝑡 6 𝑇2, where 𝑇2 = min( 1
25𝐶𝜙𝑙

, 1
10𝑙

), the inequality

‖𝜔𝑛+1
21 − 𝜔𝑛

21‖ + ‖𝜔𝑛+1
22 − 𝜔𝑛

22‖ 6 0.52(‖𝜔𝑛
21 − 𝜔𝑛−1

21 ‖ + ‖𝜔𝑛
22 − 𝜔𝑛−1

22 ‖)

holds true.
Therefore, successive approximations {𝜔𝑛

2𝑖}, 𝑖 = 1, 2, converge to a continuous solution of
system (58) on Γ𝑇2 under conditions (28).

Inequality⃦⃦⃦
𝛾𝑁+𝑝
1𝑥 − 𝜔21

⃦⃦⃦
+
⃦⃦⃦
𝛾𝑁+𝑝
2𝑥 − 𝜔22

⃦⃦⃦
6 (0.52)𝑝(

⃦⃦
𝛾𝑁
1𝑥 − 𝜔21

⃦⃦
+
⃦⃦
𝛾𝑁
2𝑥 − 𝜔22

⃦⃦
) + 3𝜀

follows that ‖𝛾𝑁+𝑝
1𝑥 − 𝜔21‖ + ‖𝛾𝑁+𝑝

2𝑥 − 𝜔22‖ → 0 as 𝑁 → ∞, 𝑝 → ∞. Thus, lim
𝑛→∞

𝛾𝑖𝑥
𝑛 = 𝜔2𝑖,

𝑖 = 1, 2. Therefore, there exists a continuous derivative w.r.t. 𝑥 of the solution to system
(56), 𝛾𝑖𝑥 = 𝜕𝛾𝑖

𝜕𝑥
= 𝜔2𝑖, and the estimates ‖𝛾𝑖𝑥‖ 6 5𝐶𝜙, 𝑖 = 1, 2, hold true. In the same way as

in paper [3], we prove the existence of continuous derivative w.r.t. 𝑡 of the solution to system
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(56). Since there exists a differentiable solution to problem (56), then 𝛾1(𝑡, 𝑡, 𝑥) = 𝑝(𝑡, 𝑥) = 𝜕𝑥𝑢,
𝛾2(𝑡, 𝑡, 𝑥) = 𝑞(𝑡, 𝑥) = 𝜕𝑥𝑣.

In the same way as in [3] we establish that successive approximations (57) converge to the
continuous solution to system (56) possessing continuous derivatives w.r.t. 𝑡 and 𝑥.

Therefore, 𝛾1(𝑡, 𝑡, 𝑥) = 𝑝(𝑡, 𝑥) = 𝜕𝑥𝑢, 𝛾2(𝑡, 𝑡, 𝑥) = 𝑞(𝑡, 𝑥) = 𝜕𝑥𝑣.
It follows from (13)–(14) that

𝑤1(𝑠, 𝑡, 𝑥) = 𝜙1(𝜂1) exp(𝑎2𝑠) +

𝑠∫︁
0

𝑏2𝑤3 exp(𝑎2(𝑠− 𝜏))𝑑𝜏, 𝑤2(𝑠, 𝑡, 𝑥) = 𝜙2(𝜂2) exp(𝑔2𝑠).

We obtain that

‖𝑤2‖ 6 𝐶𝜙 exp(|𝑔2|𝑇 ), ‖𝑤1‖ 6 𝐶𝜙 exp(|𝑎2|𝑇 )(1 + 𝑇𝑏2 exp(|𝑔2|𝑇 )).

Therefore, the estimates

‖𝑣‖ 6 𝐶𝜙 exp(|𝑔2|𝑇 ), ‖𝑢‖ 6 𝐶𝜙 exp(|𝑎2|𝑇 )(1 + 𝑇𝑏2 exp(|𝑔2|𝑇 )) (60)

hold true.
By (55) we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛾1(𝑠, 𝑡, 𝑥) =𝜙′
1(𝜂1) exp(−

𝑠∫︁
0

(𝑎1𝛾1 + 𝑏1𝛾2(𝜏, 𝜏, 𝜂1) − 𝑎2)𝑑𝜏)

+

𝑠∫︁
0

𝑏2𝛾2(𝜏, 𝜏, 𝜂1) exp(−
𝑠∫︁

𝜏

(𝑎1𝛾1 + 𝑏1𝛾2(𝜈, 𝜈, 𝜂1) − 𝑎2)𝑑𝜈)𝑑𝜏,

𝛾2(𝑠, 𝑡, 𝑥) =𝜙′
2(𝜂2) exp(−

𝑠∫︁
0

(𝑔1𝛾2 + 𝑐1𝛾1(𝜏 ,𝜏 ,𝜂2) − 𝑔2)𝑑𝜏).

(61)

Under conditions (28) we obtain 𝛾𝑖 > 0, 𝑖 = 1, 2, hence, ‖𝛾2‖ 6 𝐶𝜙 exp(|𝑔2|𝑇 ), ‖𝛾1‖ 6
𝐶𝜙 exp(|𝑎2|𝑇 )(1 + 𝑇𝑏2 exp(|𝑔2|𝑇 )). It implies the estimates

‖𝜕𝑥𝑣‖ 6 𝐶𝜙 exp(|𝑔2|𝑇 ), ‖𝜕𝑥𝑢‖ 6 𝐶𝜙 exp(|𝑎2|𝑇 )(1 + 𝑇𝑏2 exp(|𝑔2|𝑇 )). (62)

In the same way as in the paper [3] we establish that for each 𝑡 and 𝑥 the estimates⃒⃒
𝜕2
𝑥2𝑢

⃒⃒
6 𝐸11 cosh(𝑡

√︀
𝐶12𝐶21) + 𝐸21

√︂
𝐶12

𝐶21

sinh(𝑡
√︀

𝐶12𝐶21), (63)

⃒⃒
𝜕2
𝑥2𝑣

⃒⃒
6 𝐸21 cosh(𝑡

√︀
𝐶12𝐶21) + 𝐸11

√︂
𝐶21

𝐶12

sinh(𝑡
√︀

𝐶12𝐶21), (64)

where 𝐸11, 𝐸21, 𝐶12, 𝐶21 are constants determined by initial data.
The obtained global estimates (60), (62)–(64) allow us to continue the solution on each given

segment [0, 𝑇 ]. Taking 𝑢(𝑇0, 𝑥), 𝑣(𝑇0, 𝑥) as the initial conditions, we continue the solution to
some segment [𝑇0, 𝑇1], and then, taking 𝑢(𝑇1, 𝑥), 𝑣(𝑇1, 𝑥) as the initial condition, we continue
the solution to the segment [𝑇1, 𝑇2]. The length of the resolvability interval does not decreases
since it is determined by the quantities ‖𝜕𝑥𝑢‖, ‖𝜕𝑥𝑣‖ bounded by global estimates (62) valid on
each resolvability interval. The second derivatives satisfy estimates (63), (64), where we take
𝑇 as 𝑡. As a result, in a finite number of steps, we can continue the solution to each given
segment [0, 𝑇 ].

The uniqueness of solution to Cauchy problem (4), (2) can be proven by applying estimates
similar to those used in the proof of convergence of successive approximations.
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Exmaple. We consider the Cauchy problem for the system{︂
𝜕𝑡𝑢(𝑡, 𝑥) + (𝑢(𝑡, 𝑥) + 4𝑣(𝑡, 𝑥))𝜕𝑥𝑢(𝑡, 𝑥) = −2𝑢(𝑡, 𝑥) + 3𝑣(𝑡, 𝑥),

𝜕𝑡𝑣(𝑡, 𝑥) + (7𝑢(𝑡, 𝑥) + 5𝑣(𝑡, 𝑥))𝜕𝑥𝑣(𝑡, 𝑥) = −𝑣(𝑡, 𝑥),
(65)

where 𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥) are unknown functions, (𝑡, 𝑥) ∈ Ω𝑇 subject to the initial conditions:

𝑢(0, 𝑥) = 𝜙1(𝑥) =
arctan𝑥

4
, 𝑣(0, 𝑥) = 𝜙2(𝑥) = − 1

5(𝑒𝑥 + 1)
. (66)

Since 𝜙𝑖 ∈ 𝐶2(R), 𝑖 = 1, 2, 𝑎1 = 1 > 0, 𝑏1 = 4 > 0, 𝑐1 = 7 > 0, 𝑔1 = 5 > 0, 𝑏2 = 3 > 0,
𝜙′
1(𝑥) = 1

4(1+𝑥2)
> 0, 𝜙′

2(𝑥) = 𝑒𝑥

5(𝑒𝑥+1)2
> 0, by Theorem 2, Cauchy problem (65), (66) has the

unique solution 𝑢(𝑡, 𝑥), 𝑣(𝑡, 𝑥) ∈ 𝐶1,2,2(Ω𝑇 ).
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