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CLOSED SUBMODULES IN THE MODULE OF ENTIRE

FUNCTIONS OF EXPONENTIAL TYPE AND POLYNOMIAL

GROWTH ON THE REAL AXIS

N.F. ABUZYAROVA

Abstract. In the work we consider a topological module 𝒫 of entire functions, which is the
isomorphic image under the Fourier-Laplace transform of Schwarz space ℰ ′ of distributions
compactly supported in a finite or infinite interval (𝑎; 𝑏) ⊂ R. We study some properties
of closed submodules in module 𝒫 related with local description problem. We also study
issues on duality between closed submodules in 𝒫 and subspaces in the space ℰ = 𝐶∞(𝑎; 𝑏)
invariant w.r.t. the differentiation.
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1. Introduction

For a finite or infinite interval (𝑎; 𝑏) on the real axis we consider a sequence of segments
exhausting this interval: [𝑎1; 𝑏1] b [𝑎2; 𝑏2] b . . . Let 𝑃𝑘 be the Banach space formed by all
entire function 𝜙 with finite norm

‖𝜙‖𝑘 = sup
𝑧∈C

|𝜙(𝑧)|
(1 + |𝑧|)𝑘 exp(𝑏𝑘𝑦+ − 𝑎𝑘𝑦−)

, 𝑦± = max{0,±𝑦}, 𝑧 = 𝑥+ i𝑦,

𝒫 be the inductive limit of sequence {𝑃𝑘}. Each of the embedding 𝑃𝑘 ⊂ 𝑃𝑘+1 is completely
continuous, and this is why a locally convex space 𝒫 is the space of type (𝐿𝑁*); in particular,
it is complete, separated, metrizable, reflexive, Montel space (cf. [1]). Moreover, in this space,
the multiplication by an independent variable 𝑧 is continuous, i.e., 𝒫 is a topological module
over the ring of polynomials C[𝑧].

In the present paper we study some special properties of closed submodules of module 𝒫 . For
the sake of brevity we shall make use of the notion “submodule” meaning a closed submodule.
The study of submodules in 𝒫 is an interesting issue because they are dual to closed subspaces
of space 𝐶∞(𝑎; 𝑏) invariant w.r.t. the differentiation.

For a function 𝜙 ∈ 𝒫 and each 𝜆 ∈ C we define its divisor

𝑛𝜙(𝜆) =

{︃
0, if 𝜙(𝜆) ̸= 0,

𝑚, if 𝜆 is a zero of 𝜙 of multiplicity 𝑚.

A divisor of submodule 𝒥 ⊂ 𝒫 is called the function 𝑛𝒥 (𝜆) = min
𝜙∈𝒥

𝑛𝜙(𝜆). We denote by

Λ𝜙 = {(𝜆𝑘,𝑚𝑘) : 𝑚𝑘 = 𝑛𝜙(𝜆𝑘) > 0, 𝑘 = 1, 2, . . . } the zero set of function 𝜙 ∈ 𝒫 being not
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identically zero; Λ𝒥 = {(𝜆𝑘,𝑚𝑘) : 𝑚𝑘 = 𝑛𝒥 (𝜆𝑘) > 0, 𝑘 = 1, 2, . . . } is the zero set of submodule
𝒥 ̸= {0}.

It is known (see, for instance, [2]) that each element of space 𝒫 is a function of completely
regular growth of order 1 whose indicator diagram is the segment of imaginary axis [i𝑐𝜙; i𝑑𝜙] ⊂
(i𝑎; i𝑏). For a submodule 𝒥 we let 𝑐𝒥 = inf

𝜙∈𝒥
𝑐𝜙, 𝑑𝒥 = sup

𝜙∈𝒥
𝑑𝜙. We call the set [𝑐𝒥 ; 𝑑𝒥 ] indicator

segment of submodule 𝒥 .
Since 𝒫 is a space of type (𝐿𝑁*), a set 𝐵 ⊂ 𝑃 is bounded if and only if it is contained and

bounded in one of Banach spaces 𝑃𝑘 (see [1, Thm. 2]). Employing this fact and the definition
of topology in 𝒫 , it is easy to make sure that space 𝒫 is bornological and 𝑏-stable. We recall
that a locally convex space of entire functions is called 𝑏-stable if for each bounded set 𝐵 ⊂ 𝒫
the set of all all entire functions 𝜓 reading as 𝜓(𝑧) = 𝜙(𝑧)/(𝑧 − 𝜆), 𝜆 ∈ C, 𝜙 ∈ 𝐵, is contained
and bounded in 𝒫 (see [3, Sect. 1]).

By the said above, to study the submodules in module 𝒫 one can apply abstract methods
developed by I.F. Krasičkov-Ternovskĭı in [3], [4].

A submodule 𝒥 is weakly localizable if it contains all the functions 𝜙 ∈ 𝒫 satisfying the
conditions 1) 𝑛𝜙(𝑧) > 𝑛𝒥 (𝑧), 𝑧 ∈ C; 2) the indicator diagram of function 𝜙 is contained in the
set i[𝑐𝒥 ; 𝑑𝒥 ]. If 𝑐𝒥 = 𝑎 and 𝑑𝒥 = 𝑏, the weak localizability of 𝒥 means that this submodule is
local or admits local description (shortly, it is localizable).

A submodule 𝒥 is called stable at a point 𝜆 ∈ C if the conditions 𝜙 ∈ 𝒥 and 𝑛𝜙(𝜆) > 𝑛𝒥 (𝜆)
imply 𝜙/(𝑧 − 𝜆) ∈ 𝒥 . A submodule 𝒥 is stable if it is stable at each point 𝜆 ∈ C.

The notions “stable (at a point) submodule”, “local module” were introduced in [3], [5].
It is clear that stability of submodule 𝒥 is a necessary condition of its weak localizability.
We denote by 𝒥𝜙1,...,𝜙𝑚 the closed submodule generated by functions 𝜙1, . . . , 𝜙𝑚 ∈ 𝒫 :

𝒥 = {𝑝1𝜙1 + · · · + 𝑝𝑚𝜙𝑚, 𝑝1, . . . , 𝑝𝑚 ∈ C[𝑧]}, (1.1)

Functions 𝜙1, . . . , 𝜙𝑚 are called generators of submodule 𝒥𝜙1,...,𝜙𝑚 .
It follows from the results of work [4, Sect. 4] that the main (generated by one function) sub-

module in 𝒫 is always stable. One can check it also straightforwardly taking into consideration
that module 𝒫 is pointwise stable (pointwise stability of 𝒫 is discussed in details in the proof
of Theorem 1). In contrast to main submodules, those generated by 𝑚 functions, 𝑚 > 1, are
not always stable. For instance, the submodule generated in 𝒫 by the functions 𝑒−i 𝑐𝑧, 𝑒−i 𝑑𝑧,
where 𝑎 < 𝑐 < 𝑑 < 𝑏, is unstable by Proposition 1 and 2 of the present work and Example 2 in
work [12, S 2].

In what follows, in Section 3, we consider the issue on conditions ensuring the stability of
submodule generated in 𝒫 by two functions 𝜙, 𝜓 in terms of mutual location of zeroes (and thus,
in terms of “close” growth) of these functions (Theorem 1). This study is based on the stability
criterion for submodule with finite amount of generators obtained by I.F. Krasičkov-Ternovskĭı
([4, Prop. 4.9]).

The sufficient condition for stability of submodule with two generators provided in Theo-
rem 1 seem to be far from necessary as in all statements of this kind we know (cf. [6]–[11]).
On the other hand, in contrast to the general criterion of I.F. Krasičkov-Ternovskĭı [4, Prop.
4.9], the stability condition formulated in terms of mutual location of zero sets of two func-
tions (or submodules) are observable and checkable. In particular, it allows one to obtain
statements on 2-generated or representation by a sum of two special local submodules (ideals)
for local submodules (cf. [6]–[11]), or sometimes, like in our case, only for stable submodules
(Theorem 2).

The example of unstable submodule provided above shows that 2-generated submodule in
𝒫 is not necessarily main. Theorem 2 implies even more: not each stable submodule with two
generators in 𝒫 is main.
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We note that for a wide class of weight modules of functions holomorphic in a domain Ω ⊂ C,
in work [9] there were studied the conditions of locality (stability) of a submodule generated by
two local (stable) submodules in terms of “closeness” of zero sequences for generating submod-
ules. However, the gaps between the weights determining the topology of modules considered
in [9] grows faster than the logarithmic function and this is why here the results of this work
are not applicable since in the module the gaps between the weights are always logarithmic.

2. Duality issues

2.1. Duality principle. Let ℰ = 𝐶∞(𝑎; 𝑏) be the Schwarz space equipped with a standard
topology of projective limit of Banach spaces 𝐶𝑘[𝑎𝑘; 𝑏𝑘]. It is known that ℰ is a complete
metrizable reflexive locally convex space in which each bounded space is relatively compact.
Let 𝐷 = d

d𝑡
be the operator of differentiation, 𝑊 ⊂ ℰ be a closed and invariant w.r.t 𝐷 (shortly,

𝐷-invariant) subspace: 𝐷𝑊 ⊂ 𝑊 . If else is not said, we assume that 𝑊 ̸= ℰ . We denote by
Exp𝑊 the set of all root elements of operator 𝐷 (the exponential monomials 𝑡𝑗𝑒−i𝜆𝑡) contained
in 𝑊 .

In work [12] the following problem on spectral synthesis was solved: the spectrum 𝜎(𝑊 )
of restriction of differentiation operator on 𝐷-invariant subspace 𝑊 (called also spectrum of
𝐷-invariant subspace 𝑊 ) was either discrete or it coincided with the complex plane ([12, Thm.
2.1]). In the former case 𝜎(𝑊 ) is a sequence of multiple points Λ = {(−i𝜆𝑗,𝑚𝑗), } 𝑚𝑗 ∈ N,
𝑗 = 1, 2, . . . , at that, Exp𝑊 = {𝑡𝑘𝑒−i𝜆𝑗𝑡, 𝑘 = 0, 1, . . . ,𝑚𝑗 − 1, 𝑗 = 1, 2, . . . }.

Let 𝐼 ⊂ (𝑎; 𝑏) be a relatively closed in (𝑎; 𝑏) non-empty interval. We let

𝑊𝐼 = {𝑓 ∈ ℰ : 𝑓 (𝑘)(𝑡) = 0, 𝑡 ∈ 𝐼, 𝑘 = 0, 1, 2, . . . }. (2.1)

It was observed in work [12, Sect. 2, Ex. 1] that in the case 𝐼 = {𝑐}, 𝑐 ∈ (𝑎; 𝑏) the corresponding
𝐷-invariant subspace 𝑊𝑐 is a set of all functions 𝑓 ∈ ℰ satisfying the condition 𝑓 (𝑘)(𝑐) = 0,
𝑘 = 0, 1, . . . , and it has the empty spectrum.

It was also proven in [12] that for each 𝐷-invariant subspace 𝑊 ̸= ℰ there exists a minimal
relatively closed in (𝑎; 𝑏) interval 𝐼 ̸= ∅ obeying the inclusion 𝑊𝐼 ⊂ 𝑊 (Theorem 4.1).
We denote this interval by 𝐼𝑊 and we let 𝑐𝑊 = inf{𝑡 ∈ 𝐼𝑊}, 𝑑𝑊 = sup{𝑡 ∈ 𝐼𝑊}.

In accordance with Paley-Wiener-Schwarz theorem [13, Ch. 7], the Fourier-Laplace transform
ℱ makes a linear topological isomorphism between a strongly dual to ℰ space ℰ ′ and space 𝒫 :

𝑆 ∈ ℰ ′ ↔ 𝜙 ∈ 𝒫 ⇐⇒ 𝜙 = ℱ(𝑆) = (𝑆, 𝑒−i𝑡𝑧).

By the symbol ch supp𝑆 we indicate the convex hull of the support of a functional 𝑆 ∈ ℰ ′.
Since all the elements in space ℰ ′ have compact supports, ch supp𝑆 is an interval in (𝑎; 𝑏).

Proposition 1. (Duality principle.) Between 𝐷-invariant subspaces 𝑊 ⊂ ℰ and closed
submodules 𝒥 ⊂ 𝒫 there is the one-to-one correspondence described by the rule: 𝑊 ↔ 𝒥 ⇐⇒
𝒥 = ℱ(𝑊 0), where 𝑊 0 = {𝑆 ∈ ℰ ′ : (𝑆, 𝑓) = 0, 𝑓 ∈ 𝑊} is the annihilating subspace for 𝑊 .
At that,

Exp𝑊 = {𝑡𝑗𝑒−i𝜆𝑘𝑡, 𝑗 = 0, . . .𝑚𝑘 − 1, (𝜆𝑘,𝑚𝑘) ∈ Λ𝒥 }, (2.2)

and the boundary of interval 𝐼𝑊 are points 𝑐𝒥 and 𝑑𝒥 .

Proof. The first part of the duality principle is proven by the same arguments as in [5, Sect. 2]
and it implies (2.2).

Let us prove the statement on the boundary of interval 𝐼𝑊 . Let 𝒥 = ℱ(𝑊 0) be the an-
nihilating submodule of 𝐷-invariant subspace 𝑊 . Letting 𝐼 ′ = (𝑎; 𝑏)

⋂︀
[𝑐𝒥 ; 𝑑𝒥 ], we see that

𝐷-invariant subspace 𝑊𝐼′ is annihilated by all the functionals in subspace 𝑊 0. By the first
part of the duality principle we conclude that 𝑊𝐼′ is contained in 𝑊 and thus 𝑊𝐼′ ⊂ 𝑊𝐼𝑊 .
The latter is equivalent to 𝐼 ′ ⊃ 𝐼𝑊 . Suppose that it is proper, for instance, 𝑐𝒥 < 𝑐𝑊 . Then
by Paley-Wiener-Schwarz theorem, in annihilating subspace 𝑊 0 there exists a distribution 𝑆
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possessing the following property: the intersection of the support of 𝑆 and the open interval
(𝑐𝒥 ; 𝑐𝑊 ) is non-empty. By the definition of the support of distribution, there exists an infinitely
differentiable function 𝜙0 such that ch supp𝜙0 b (𝑐𝒥 ; 𝑐𝑊 ) and (𝑆, 𝜙0) ̸= 0. Therefore, 𝜙0 ̸∈ 𝑊.
On the other hand, we see that 𝜙0 ∈ 𝑊𝐼𝑊 ⊂ 𝑊. Hence, the relation 𝑐𝒥 < 𝑐𝑊 is impossible.

In the same way one can prove that the strict inequality 𝑑𝒥 > 𝑑𝑊 is impossible.

𝐷-invariant subspace 𝑊 happens to have discrete spectrum if and only if its annihilating
submodule 𝒥 is stable.

The necessary part of this statement is contained in Item ii) of Proposition 3.1 [12], while
the sufficient part is provided by the following proposition.

Proposition 2. If annihilating submodule 𝒥 ̸= {0} of 𝐷-invariant subspace 𝑊 is stable,
then 𝑊 has a discrete spectrum 𝜎𝑊 = −𝑖Λ𝒥 .

Proof. Thanks to (2.2) we need to prove only 𝜎𝑊 ⊂ −iΛ𝒥 .
By proposition 2.2 in work [12], point 𝜆 lies in a set C ∖ 𝜎𝑊 if and only if the identity

(𝐷 − 𝜆)𝑊 = 𝑊 holds true. This identity means that the mapping

(𝐷 − 𝜆) : 𝑊 → 𝑊

is surjective.
First we consider the case when 𝒥 = 𝒥𝜙 is the main submodule generated by the function

𝜙 = ℱ(𝑆), 𝑆 ∈ ℰ ′; in this case Λ𝒥 = Λ𝜙. We denote by 𝑊𝜙 the corresponding 𝐷-invariant
subspace (for which ℱ(𝑊 0

𝜙) = 𝒥𝜙). Subspace 𝑊𝜙 consists of all the functions 𝑓 ∈ ℰ , satisfying
the identities

(𝑆,𝐷𝑘𝑓) = 0, 𝑘 = 0, 1, 2, . . .

Let us prove that for each point 𝜆0 ∈ C ∖ Λ𝜙 the identity

(𝐷 + i𝜆0)𝑊𝜙 = 𝑊𝜙 (2.3)

holds true.
We suppose that 𝜙(𝜆0) = 1.
Let ch supp𝑆 = [𝑐; 𝑑] ⊂ (𝑎; 𝑏). For 𝑓 ∈ 𝑊𝜙 we define

𝑓(𝑡) = −

⎛⎝𝑆, 𝑡∫︁
𝑐

𝑓(𝜏)𝑒−i(𝑡−𝜏)𝜆0d𝜏

⎞⎠ 𝑒−i𝑡𝜆0 +

𝑡∫︁
𝑐

𝑓(𝜏)𝑒−i(𝑡−𝜏)𝜆0d𝜏. (2.4)

It is easy to check that (𝐷 + i𝜆0)𝑓 = 𝑓 and (𝑆,𝐷𝑘𝑓) = 0, 𝑘 = 0, 1, 2, . . . Thus, 𝑓 is a solution
to equation (𝐷 + i𝜆0)𝑔 = 𝑓, 𝑓 ∈ 𝑊𝜙, belonging to space 𝑊𝜙.

Relation (2.3) and, therefore, the inclusion 𝜎𝑊𝜙 ⊂ −iΛ𝒥𝜙 for the main submodule 𝒥𝜙 are
proven.

Now we consider the case when 𝒥 = ℱ(𝑊 0) is an arbitrary stable submodule 𝒫 , 𝜆0 ̸∈ Λ𝒥 .
Let 𝜙0 ∈ 𝒥 , 𝜙0(𝜆0) = 1.

If 𝜓 ∈ 𝒥 , then the function

Ψ =

{︃
𝜓 − 𝜓(𝜆0)

𝜆0
𝑧𝜙0, 𝜆0 ̸= 0,

𝜓 − 𝜓(0)𝜙0, 𝜆0 = 0,

belongs to 𝒥 and vanishes at point 𝜆0. Thus, 𝜓 = Ψ/(𝑧 − 𝜆0) ∈ 𝒥 . Hence, the representation

𝜓 =

{︃
(𝑧 − 𝜆0)𝜓 + 𝜓(𝜆0)

𝜆0
𝑧𝜙0, 𝜆0 ̸= 0,

𝑧𝜓 + 𝜓(0)𝜙0, 𝜆0 = 0,

holds true for an arbitrary function 𝜓 ∈ 𝒥 . For submodule 𝒥 we can write

𝒥 = (𝑧 − 𝜆0)𝒥 + 𝒥𝜙0 . (2.5)
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Employing duality principle (Proposition 1) and the reflexivity of space ℰ , by (2.5) it easy
to obtain that the original 𝐷-invariant subspace 𝑊 is the intersection of 𝐷-invariant subspaces
𝑊1 and 𝑊2 having annihilating submodules (𝑧 − 𝜆0)𝒥 and 𝒥𝜙0 , respectively.

A solution in 𝑊 to equation (𝐷 + i𝜆0)𝑔 = 𝑓, 𝑓 ∈ 𝑊, is function 𝑓 determined by formula

(2.4). Indeed, as it has been observed above, 𝑓 ∈ 𝑊2, and identity (𝐷 + i𝜆0)𝑓 = 𝑓 ∈ 𝑊 is

equivalent to 𝑓 ∈ 𝑊1. This is why 𝑓 ∈ 𝑊1

⋂︀
𝑊2 = 𝑊. Hence, (𝐷 + i𝜆0) : 𝑊 → 𝑊 is a

surjective operator. In accordance with the proposition in work [12] cited in the beginning
of the proof, the point (−i𝜆0) does not belong to spectrum 𝜎𝑊 . Thus, we have the inclusion
C ∖ (−iΛ𝒥 ) ⊂ C ∖ 𝜎𝑊 which is equivalent to the desired one.

2.2. Preserving of class ℱ(𝐶∞
0 (𝑎; 𝑏)) under perturbation of zeroes. We consider the

function

𝜙(𝑧) =

𝑏∫︁
𝑎

𝑠(𝑡)𝑒−i𝑡𝑧d 𝑡, 𝑠 ∈ 𝐶∞
0 (𝑎; 𝑏); (2.6)

and by Λ = {𝜆𝑘}, 𝑘 = 1, 2, , . . . we denote the sequence of its zeroes taken in the ascending
order of absolute values: |𝜆1| 6 |𝜆2| 6 . . . .

We are interesting in the conditions of closeness of another sequence Γ = {𝛾𝑘} to sequence
Λ, under which Γ is also the set of zeroes of a function 𝜓 in ℱ(𝐶∞

0 (𝑎; 𝑏)).
The stability for various classes of functions of compactly supported Fourier transforms w.r.t.

the shifts of zeroes was studied by A.M. Sedletskii [14].
Let (𝑎′; 𝑏′) b R. Theorem 5.1.2 in work [14] contains, in particular, the following statement:

The condition ∑︁
𝑗

|𝜆𝑗 − 𝛾𝑗|
1 + |Im𝜆𝑗| + |Im 𝛾𝑗|

6 +∞ (2.7)

preserves the class ℱ(𝐿𝑝(𝑎′; 𝑏′)), 1 6 𝑝 6 ∞.

Proposition 3. Let 𝜙 be a function determined by (2.6) with a sequence of zeroes Λ = {𝜆𝑘},
0 < |𝜆1| 6 |𝜆2| 6 . . . , and let Γ = {𝛾𝑘} be another sequence so close to Λ that condition (2.7)
is satisfied. Then for each 𝑎′, 𝑏′ ∈ R such that ch supp 𝑠 b (𝑎′; 𝑏′) ⊂ (𝑎; 𝑏), function 𝜓 defined
by the formula

𝜓(𝑧) = 𝑒−i𝑐𝑧 lim
𝑅→∞

∏︁
|𝛾𝑘|<𝑅

(1 − 𝑧/𝛾𝑘), where 𝑐 = (ℎ𝜙(𝜋/2) + ℎ𝜙(−𝜋/2))/2, (2.8)

belongs to the class ℱ(𝐶∞
0 (𝑎′; 𝑏′)) and its indicator ℎ𝜓 coincides with the indicator ℎ𝜙 of function

𝜙.

Proof. Let 𝑎′, 𝑏′ ∈ R be as in the formulation of the proposition. By the result of A.M. Sedletskii
cited above, function 𝜓 is the image of the Fourier-Laplace transform of some function 𝑠 ∈
𝐿𝑞(𝑎′; 𝑏′) for each 1 6 𝑞 6 ∞. At that, as one can see in the proofs of Theorems 5.1.1, 5.1.2 in
work [14], ch supp 𝑠 = ch supp 𝑠, and thus indicators of entire functions 𝜙 and 𝜓 coincide.

Applying similar arguments to functions 𝑧𝑚𝜙 and 𝑧𝑚𝜓, 𝑚 = 1, 2, . . . , and bearing in mind
the identities

𝑧𝑚𝜙 = ℱ(𝑠(𝑚)), 𝑧𝑚𝜓 = ℱ(𝑠(𝑚)) (𝑠(𝑚) is the generalized derivative of a distribution 𝑠),

we obtain

𝑠(𝑚) ∈ 𝐿𝑞(𝑎′; 𝑏′), 1 6 𝑞 6 ∞, and ch supp 𝑠(𝑚) ⊂ ch supp 𝑠, 𝑚 = 0, 1, . . .

Thus, 𝑠 ∈ 𝐶∞
0 (𝑎′; 𝑏′), 𝜓 = ℱ(𝑠) ∈ ℱ(𝐶∞

0 (𝑎′; 𝑏′)).
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It was shown in work [14] (proof of Theorem 5.1.2) that condition (2.7) the convergence of

the series
∞∑︀
𝑗=1

|𝜆𝑗−𝛾𝑗 |
1+|Im𝜆𝑗 | . We denote its sum by 𝐶.

The following statement complementing Proposition 3 will be employed in the proof of The-
orem 2.

Lemma 1. Under the hypothesis of Proposition 3 the inequalities

max
𝑎′6𝑡6𝑏′

|𝑠(𝑚)(𝑡)| 6 𝐴𝑚,𝑚 = 0, 1, . . . , where 𝐴𝑚 = 𝑒2𝐶‖𝑠(𝑚+1)‖𝐿1(𝑎′;𝑏′) (2.9)

hold true.

Proof. We let

𝑠𝑚,0(𝑡) = 𝑠(𝑚)(𝑡), 𝑠𝑚,𝑛(𝑡) = 𝑠𝑚,𝑛−1(𝑡) − i(𝛾𝑛 − 𝜆𝑛)

∫︁ 𝑡

𝑎′
𝑒i𝜆𝑛(𝑡−𝜏)𝑠𝑚,𝑛−1(𝜏)d 𝜏, 𝑡 ∈ (𝑎′; 𝑏′).

Estimate (5.1.14) in [14], the definitions of functions 𝑠𝑚,𝑛 and quantity 𝐶 yield that

‖𝑠𝑚,𝑛‖𝐿1(𝑎′;𝑏′) 6

(︂
1 +

2|𝜆𝑗 − 𝛾𝑗|
1 + |Im𝜆𝑗|

)︂
‖𝑠𝑚,𝑛−1‖𝐿1(𝑎′;𝑏′) 6 · · · 6 𝑒2𝐶‖𝑠(𝑚+1)‖𝐿1(𝑎′;𝑏′).

Since sequence 𝑠𝑚,𝑛 converges to 𝑠(𝑚) in 𝐿1(𝑎′; 𝑏′) (that was proven in Theorem 5.1.2 in work
[14]), by the latter inequality we conclude that

‖𝑠(𝑚)‖𝐿1(𝑎′;𝑏′) 6 𝑒2𝐶‖𝑠(𝑚)‖𝐿1(𝑎′;𝑏′).

By this estimate we obtain desired inequalities (2.9):

max
𝑎′6𝑡6𝑏′

|𝑠(𝑚)(𝑡)| = max
𝑎′6𝑡6𝑏′

⃒⃒⃒⃒∫︁ 𝑡

𝑎

𝑠(𝑚+1)(𝜏)d 𝜏

⃒⃒⃒⃒
6 ‖𝑠(𝑚+1)‖𝐿1(𝑎′;𝑏′) 6 𝑒2𝐶‖𝑠(𝑚+1)‖𝐿1(𝑎′;𝑏′).

3. Sufficient conditions for stability of 2-generated submodule in 𝒫

3.1. Auxiliary estimates. Let 𝜙 ∈ 𝒫 , 𝜙(0) = 1, Λ = {𝜆𝑗}, |𝜆1| 6 |𝜆2| 6 . . . be the set of
zeroes for function 𝜙. It is known [2, Ch. II] that 𝜙 satisfies the representation

𝜙(𝑧) = 𝑒−i(𝑐𝜙+𝑑𝜙)𝑧/2

∞∏︁
𝑗=1

(︂
1 − 𝑧

𝜆𝑗

)︂
, where 𝑐𝜙 = ℎ(−𝜋/2), 𝑑𝜙 = ℎ(𝜋/2), (3.1)

at that, the infinite product converges conditionally and uniformly on compact sets in C, and
sequence Λ has the density ∆0 = (𝑑𝜙 − 𝑐𝜙)/2𝜋.

We consider one more function 𝜓 ∈ 𝒫 , 𝜓(0) = 1, with zero set Γ = {𝛾𝑗} taken in the
order of ascending absolute values |𝛾𝑗| and having the density ∆0. Function 𝜓 also satisfies the
representation (3.1) with 𝛾𝑗 instead of 𝜆𝑗.

We introduce needed notations.

𝜙𝑘(𝑧) =
𝑘∏︁
𝑗=1

(︂
1 − 𝑧

𝜆𝑗

)︂
, 𝜓𝑘(𝑧) =

𝑘∏︁
𝑗=1

(︂
1 − 𝑧

𝛾𝑗

)︂
,

Φ𝑀(𝑧) =
∏︁
𝑗∈𝑀

(︂
1 − 𝑧

𝜆𝑗

)︂
, Ψ𝑀(𝑧) =

∏︁
𝑗∈𝑀

(︂
1 − 𝑧

𝛾𝑗

)︂
,

where 𝑀 ⊂ N is a non-empty set for which both the products converge (conditionally and
uniformly on compact sets in C); if 𝑀 = ∅, we let Φ𝑀(𝑧) and Ψ𝑀(𝑧) to be identically one.

For numbers 𝜎 ∈ (0; 1/2) and 𝜆 ∈ C we denote by 𝑒𝜎(𝜆) the closed circle of radius 𝜎|𝜆|
centered at 𝜆, and for a non-empty set 𝑀 ⊂ N we let 𝐸𝑀,𝜎 =

⋃︀
𝑗∈𝑀

(𝑒𝜎(𝜆𝑗)
⋃︀
𝑒𝜎(𝛾𝑗)).



CLOSED SUBMODULES IN THE MODULE OF ENTIRE FUNCTIONS OF EXPONENTIAL TYPE 9

Let

𝜒(𝜇) =
1

𝜇
ln (1 + 𝜇) + ln

(︂
1 +

1

𝜇

)︂
. (3.2)

This function strictly monotonously decreases on the positive semi-axis and takes positive
values. Thus, there exists the inverse function 𝜇(𝜒) > 0 also strictly monotonously decreasing
for positive 𝜒.

The following quantities characterize the closeness of sequences Λ and Γ.

𝑆𝑛 =
∑︁
𝑗>𝑛

⃒⃒⃒⃒
1

𝜆𝑗
− 1

𝛾𝑗

⃒⃒⃒⃒
, 𝐾𝑀 = max

𝑗∈𝑀

{︂⃒⃒⃒⃒
𝜆𝑗
𝛾𝑗

⃒⃒⃒⃒
,

⃒⃒⃒⃒
𝛾𝑗
𝜆 𝑗

⃒⃒⃒⃒}︂
, 𝑀 ⊂ N, 𝑀 ̸= ∅,

we let 𝐾𝑀 = 1 if 𝑀 = ∅.
In what follows in this subsection we assume that

|𝜆𝑗| > 2, , |𝛾𝑗| > 2, 𝑗 = 1, 2, . . . , (3.3)

for some number ∆ > ∆0 the inequalities

𝑛Λ(𝑟) < ∆𝑟, 𝑛Γ(𝑟) < ∆𝑟 (3.4)

hold true for each 𝑟 > 0. Here 𝑛Λ(𝑟) =
∑︀

𝑗: |𝜆𝑗 |6𝑟
1 and 𝑛Γ(𝑟) =

∑︀
𝑗: |𝛾𝑗 |6𝑟

1 are counting function for

sequences Λ and Γ.

Lemma 2. 1. Let 𝛿 > 0 and ∆ > ∆0 is a number for which the inequalities (3.4) hold true.
For each 𝑘 as |𝑧| > max{2, 𝜇(𝛿/∆) max{|𝜆𝑘|, |𝛾𝑘|}} the estimates

ln |𝜙𝑘(𝑧)| 6 min{𝛿|𝑧|, 𝑘ln |𝑧|}, ln |𝜓𝑘(𝑧)| 6 min{𝛿|𝑧|, 𝑘ln |𝑧|} (3.5)

are valid.
2. For 𝜎 ∈ (0; 1/2), 𝑀 ⊂ N the inequalities⃒⃒⃒⃒

ln

⃒⃒⃒⃒
Φ𝑀(𝑧)

Ψ𝑀(𝑧)

⃒⃒⃒⃒⃒⃒⃒⃒
6
𝑆𝑝
𝜎
|𝑧|, (3.6)⃒⃒⃒⃒

1 − Φ𝑀(𝑧)

Ψ𝑀(𝑧)

⃒⃒⃒⃒
6

√
𝜋2 + 1

𝜎
𝑆𝑝|𝑧| exp

(︃√
𝜋2 + 1

𝜎
𝑆𝑝|𝑧|

)︃
(3.7)

hold true outside set 𝐸𝑀,𝜎, where 𝑝 = min{𝑗 : 𝑗 ∈𝑀}, and set 𝑀 ⊂ N is so that the products
determining functions Φ𝑀 , Ψ𝑀 converge.

3. Let function 𝜙 satisfies inequality

ln |𝜙(𝑧)| 6 𝑑𝜙 − 𝑐𝜙
2

|Im 𝑧|. (3.8)

for each 𝑧 ∈ C. For arbitrary 𝜎 ∈ (0; 1/2), 𝑅 > 0, 𝑘 ∈ N we let

𝑀 = 𝑀(𝑘,𝑅, 𝜎) =
{︁
𝑗 ∈ N : 𝑗 > 𝑘,

(︁
𝑒𝜎(𝜆𝑗)

⋃︁
𝑒𝜎(𝛾𝑗)

)︁⋂︁
[−𝑅,𝑅] ̸= ∅

}︁
. (3.9)

Then inequality

|𝜓𝑘(𝑥)𝜙(𝑥)−𝜙𝑘(𝑥)𝜓(𝑥)| 6
√
𝜋2 + 1(1 + 𝜎)

𝜎(1 − 𝜎)
𝐾𝑀𝑆𝑘+1𝑅

· exp

[︃(︃√
𝜋2 + 1(1 + 𝜎)

𝜎(1 − 𝜎)
𝐾𝑀𝑆𝑘+1 +

𝜎(𝑑𝜙 − 𝑐𝜙)

1 − 𝜎

)︃
𝑅 + min{𝛿𝑅, 𝑘ln𝑅}

]︃

·

(︃
1 + exp

(︃√
𝜋2 + 1(1 + 𝜎)

𝜎(1 − 𝜎)
𝐾𝑀𝑆𝑘+1𝑅

)︃)︃
,

(3.10)

holds true for each 𝑥 ∈ [−𝑅;𝑅], 𝑅 > max{2, 𝜇(𝛿/∆)|𝜆𝑘|}, 𝑘 ∈ N.
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We observe that quantities 𝑆𝑝 in the right hands of inequalities (3.6), (3.7) and 𝑆𝑘+1 in
the right hand side of inequality (3.10) can take value +∞; in this case these inequalities
become trivial. In what follows, while using these inequalities, on sequences Λ and Γ we impose
conditions ensuring the finiteness of 𝑆𝑝.

Proof. 1. Inequalities ln |𝜙𝑘(𝑧)| 6 𝛿|𝑧|, ln |𝜓𝑘(𝑧)| 6 𝛿|𝑧| for |𝑧| > 𝜇(𝛿/∆) max{|𝜆𝑘|, |𝛾𝑘|} can be
proven in the same way as Item 1 of Lemma 1 in [6] taking into consideration conditions (3.4)
for number ∆ and ordering of sequences Λ and Γ by ascending |𝜆𝑗|, |𝛾𝑗|.

By conditions (3.3) we obtain immediately that ln |𝜙𝑘(𝑧)| 6 𝑘ln |𝑧|, ln |𝜓𝑘(𝑧)| 6 𝑘ln |𝑧| as
|𝑧| > 2.

2. To prove estimates (3.6) and (3.7) we make use the scheme employed in the proof of
Items 2 and 3 of Lemma 1 in [6]. We fix arbitrary 𝜎 ∈ (0; 1/2). For 𝑧 ̸∈ 𝑒𝜎(𝛾𝑗) we have

ln

⃒⃒⃒⃒
1 − 𝑧/𝜆𝑗
1 − 𝑧/𝛾𝑗

⃒⃒⃒⃒
= ln

⃒⃒⃒⃒
1 +

(1/𝛾𝑗 − 1/𝜆𝑗)𝑧

1 − 𝑧/𝛾𝑗

⃒⃒⃒⃒
6

⃒⃒⃒⃒
1

𝛾𝑗
− 1

𝜆𝑗

⃒⃒⃒⃒
|𝑧|
𝜎
.

In the same way, for 𝑧 ̸∈ 𝑒𝜎(𝜆𝑗) we get

ln

⃒⃒⃒⃒
1 − 𝑧/𝛾𝑗
1 − 𝑧/𝜆𝑗

⃒⃒⃒⃒
6

⃒⃒⃒⃒
1

𝛾𝑗
− 1

𝜆𝑗

⃒⃒⃒⃒
|𝑧|
𝜎
.

These inequalities imply estimate (3.6) for each 𝑧 outside set 𝐸𝑀,𝜎:⃒⃒⃒⃒
ln

⃒⃒⃒⃒
Φ𝑀(𝑧)

Ψ𝑀(𝑧)

⃒⃒⃒⃒⃒⃒⃒⃒
6
∑︁
𝑗∈𝑀

⃒⃒⃒⃒
ln

⃒⃒⃒⃒
1 − 𝑧/𝜆𝑗
1 − 𝑧/𝛾𝑗

⃒⃒⃒⃒⃒⃒⃒⃒
6

(︃∑︁
𝑗∈𝑀

⃒⃒⃒⃒
1

𝛾𝑗
− 1

𝜆𝑗

⃒⃒⃒⃒)︃
|𝑧|
𝜎

6
𝑆𝑝
𝜎
|𝑧|.

In order to obtain inequality (3.7), first we estimate the expression
⃒⃒⃒
ln Φ𝑀 (𝑧)

Ψ𝑀 (𝑧)

⃒⃒⃒
outside set

𝐸𝑀,𝜎.
We observe that⃒⃒⃒⃒

Re ln
Φ𝑀(𝑧)

Ψ𝑀(𝑧)

⃒⃒⃒⃒
=

⃒⃒⃒⃒
ln

⃒⃒⃒⃒
Φ𝑀(𝑧)

Ψ𝑀(𝑧)

⃒⃒⃒⃒⃒⃒⃒⃒
,

⃒⃒⃒⃒
Im ln

Φ𝑀(𝑧)

Ψ𝑀(𝑧)

⃒⃒⃒⃒
=

⃒⃒⃒⃒
arg

Φ𝑀(𝑧)

Ψ𝑀(𝑧)

⃒⃒⃒⃒
.

For
⃒⃒⃒
Re ln Φ𝑀 (𝑧)

Ψ𝑀 (𝑧)

⃒⃒⃒
inequality (3.6) holds true.

Let us estimate
⃒⃒⃒
Im ln Φ𝑀 (𝑧)

Ψ𝑀 (𝑧)

⃒⃒⃒
. In order to do it, we employ the easily checked inequality

arg (1 + 𝑤) 6 𝜋|𝑤|, 𝑤 ∈ C,
where the branch of the function arg takes the values in the interval (−𝜋; 𝜋].

For 𝑧 ̸∈ 𝑒𝜎(𝛾𝑗) we have

arg

⃒⃒⃒⃒
1 − 𝑧/𝜆𝑗
1 − 𝑧/𝛾𝑗

⃒⃒⃒⃒
= arg

⃒⃒⃒⃒
1 +

(1/𝛾𝑗 − 1/𝜆𝑗)𝑧

1 − 𝑧/𝛾𝑗

⃒⃒⃒⃒
6
𝜋

𝜎

⃒⃒⃒⃒
1

𝛾𝑗
− 1

𝜆𝑗

⃒⃒⃒⃒
|𝑧|.

In the same way, for 𝑧 ̸∈ 𝑒𝜎(𝜆𝑗) we obtain

arg

⃒⃒⃒⃒
1 − 𝑧/𝛾𝑗
1 − 𝑧/𝜆𝑗

⃒⃒⃒⃒
6
𝜋

𝜎

⃒⃒⃒⃒
1

𝛾𝑗
− 1

𝜆𝑗

⃒⃒⃒⃒
|𝑧|.

Hence, ⃒⃒⃒⃒
Im ln

Φ𝑀(𝑧)

Ψ𝑀(𝑧)

⃒⃒⃒⃒
6
∑︁
𝑖∈𝑀

⃒⃒⃒⃒
arg

⃒⃒⃒⃒
1 − 𝑧/𝜆𝑗
1 − 𝑧/𝛾𝑗

⃒⃒⃒⃒⃒⃒⃒⃒
6
𝜋

𝜎
𝑆𝑝|𝑧|, 𝑧 ̸∈ 𝐸𝑀,𝜎.

The obtained estimates for Re ln Φ𝑀 (𝑧)
Ψ𝑀 (𝑧)

and Im ln Φ𝑀 (𝑧)
Ψ𝑀 (𝑧)

follow that⃒⃒⃒⃒
ln

Φ𝑀(𝑧)

Ψ𝑀(𝑧)

⃒⃒⃒⃒
6

√
𝜋2 + 1

𝜎
𝑆𝑝|𝑧|, 𝑧 ̸∈ 𝐸𝑀,𝜎.
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Outside set 𝐸𝑀,𝜎 the expression Φ𝑀 (𝑧)
Ψ𝑀 (𝑧)

can be represented as exp 𝑐𝑀(𝑧), where 𝑐𝑀(𝑧) = ln Φ𝑀 (𝑧)
Ψ𝑀 (𝑧)

.

Expanding exp 𝑐𝑀(𝑧) into the power series w.r.t. 𝑐𝑀(𝑧) and employing the standard way of
estimating such series, we arrive at inequality (3.7).

3. We let 𝑁 = {𝑗 > 𝑘, 𝑗 ̸∈ 𝑀}. Since {𝑗 : 𝑗 > 𝑘} = 𝑀
⋃︀
𝑁 , function to be estimated can

be represented as

𝜓𝑘(𝑧)𝜙(𝑧)−𝜙𝑘(𝑧)𝜓(𝑧) = 𝜓𝑘(𝑧)𝜙(𝑧)

(︂
1 − Ψ𝑀(𝑧)

Φ𝑀(𝑧)

)︂
++𝜓𝑘(𝑧)𝜙(𝑧)

Ψ𝑀(𝑧)

Φ𝑀(𝑧)

(︂
1 − Ψ𝑁(𝑧)

Φ𝑁(𝑧)

)︂
. (3.11)

We note that set 𝑀 defined by formula (3.9) is finite and this is why the set of indices 𝑁 differs
from the set {𝑗 : 𝑗 > 𝑘} just by a finite number of elements. Thus, all four products involved
in the definition of functions Φ𝑀 , Ψ𝑀 , Φ𝑁 , Ψ𝑁 converge.

For fixed 𝜎 ∈ (0; 1/2), 𝑅 > max{2, 𝜇(𝛿/∆)|𝜆𝑘|} we choose a small positive number
𝜀𝑅,𝜎 < 2𝜎𝑅/(1 − 𝜎) so that the rectangle Π𝑅,𝜀 = {𝑧 = 𝑥+ i𝑦 : |𝑥| 6 𝑅, |𝑦| 6 𝜀} and set
𝐸𝑁,𝜎 =

⋃︀
𝑗∈𝑁

(𝑒𝜎(𝜆𝑗)
⋃︀
𝑒𝜎(𝛾𝑗)) have no common internal points for each 𝜀 6 𝜀𝑅,𝜎.

Let us estimate each of the terms in the right hand side of (3.11).

The expression 𝜙(𝑧)
(︁

1 − Ψ𝑀 (𝑧)
Φ𝑀 (𝑧)

)︁
is an entire function. Employing condition (3.8), estimate

(3.7) and restrictions for the choice of number 𝜀, we obtain that on the boundary of the domain

𝐺𝑅,𝜀,𝜎 formed by all internal points of the set Π𝑅,𝜀

⋃︀(︃ ⋃︀
𝑗∈𝑀

(𝑒𝜎(𝜆𝑗)
⋃︀
𝑒𝜎(𝛾𝑗))

)︃
this entire function

satisfies the inequality⃒⃒⃒⃒
𝜙(𝑧)

(︂
1 − Ψ𝑀(𝑧)

Φ𝑀(𝑧)

)︂⃒⃒⃒⃒
6

√
𝜋2 + 1(1 + 𝜎)

𝜎(1 − 𝜎)
𝐾𝑀𝑆𝑘+1𝑅

· exp

(︃√
𝜋2 + 1(1 + 𝜎)

𝜎(1 − 𝜎)
𝐾𝑀𝑆𝑘+1 +

𝜎(𝑑𝜙 − 𝑐𝜙)

1 − 𝜎

)︃
𝑅.

(3.12)

Taking into consideration relations (3.5), we obtain that as 𝑅 > max{2, 𝜇(𝛿/∆)|𝜆𝑘|}, 𝑘 ∈ N
for each 𝑥 ∈ [−𝑅;𝑅] the inequality⃒⃒⃒⃒

𝜓𝑘(𝑥)𝜙(𝑥)

(︂
1 − Ψ𝑀(𝑥)

Φ𝑀(𝑥)

)︂⃒⃒⃒⃒
6

√
𝜋2 + 1(1 + 𝜎)

𝜎(1 − 𝜎)
𝐾𝑀𝑆𝑘+1𝑅

· exp

[︃(︃√
𝜋2 + 1(1 + 𝜎)

𝜎(1 − 𝜎)
𝐾𝑀𝑆𝑘+1 +

𝜎(𝑑𝜙 − 𝑐𝜙)

1 − 𝜎

)︃
𝑅 + min{𝛿𝑅, 𝑘ln𝑅}

]︃ (3.13)

holds true.
Let us estimate the second term in the right hand side of the representation (3.11). By

inequalities (3.6), (3.8) and the choice of number 𝜀, on the boundary of domain 𝐺𝑅,𝜀,𝜎 the

entire function 𝜙(𝑧)Ψ𝑀 (𝑧)
Φ𝑀 (𝑧)

satisfies the inequality⃒⃒⃒⃒
𝜙(𝑧)

Ψ𝑀(𝑧)

Φ𝑀(𝑧)

⃒⃒⃒⃒
6 exp

(︃√
𝜋2 + 1(1 + 𝜎)

𝜎(1 − 𝜎)
𝐾𝑀𝑆𝑘+1 +

𝜎(𝑑𝜙 − 𝑐𝜙)

1 − 𝜎

)︃
𝑅. (3.14)

For each 𝜀 ∈ (0; 𝜀𝑅,𝜎) on the boundary of rectangle Π𝑅,𝜀 the term
(︁

1 − Ψ𝑁 (𝑧)
Φ𝑁 (𝑧)

)︁
satisfies the

estimate ⃒⃒⃒⃒(︂
1 − Ψ𝑁(𝑧)

Φ𝑁(𝑧)

)︂⃒⃒⃒⃒
6

√
𝜋2 + 1

𝜎
𝑆𝑘+1|𝑧| exp

(︃√
𝜋2 + 1

𝜎
𝑆𝑘+1|𝑧|

)︃
.
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Inside rectangle Π𝑅,𝜀 function
(︁

1 − Ψ𝑁 (𝑧)
Φ𝑁 (𝑧)

)︁
is analytic. Hence, for each 𝑥 ∈ [−𝑅;𝑅],⃒⃒⃒⃒(︂

1 − Ψ𝑁(𝑥)

Φ𝑁(𝑥)

)︂⃒⃒⃒⃒
6

√
𝜋2 + 1

𝜎
𝑆𝑘+1

√
𝑅2 + 𝜀2 exp

(︃√
𝜋2 + 1

𝜎
𝑆𝑘+1

√
𝑅2 + 𝜀2

)︃
.

Passing to the limit as 𝜀→ 0, we get⃒⃒⃒⃒(︂
1 − Ψ𝑁(𝑥)

Φ𝑁(𝑥)

)︂⃒⃒⃒⃒
6

√
𝜋2 + 1

𝜎
𝑆𝑘+1𝑅 exp

(︃√
𝜋2 + 1

𝜎
𝑆𝑘+1𝑅

)︃
𝑥 ∈ [−𝑅;𝑅].

These inequality and estimates (3.14), (3.5) imply the required estimate for the second term:⃒⃒⃒⃒
𝜓𝑘(𝑥)𝜙(𝑥)

Ψ𝑀(𝑥)

Φ𝑀(𝑥)

(︂
1 − Ψ𝑁(𝑥)

Φ𝑁(𝑥)

)︂⃒⃒⃒⃒
6

√
𝜋2 + 1(1 + 𝜎)

𝜎(1 − 𝜎)
𝐾𝑀𝑆𝑘+1𝑅

· exp

[︃(︃
2
√
𝜋2 + 1(1 + 𝜎)

𝜎(1 − 𝜎)
𝐾𝑀𝑆𝑘+1 +

𝜎(𝑑𝜙 − 𝑐𝜙)

1 − 𝜎

)︃
𝑅 + min{𝛿𝑅, 𝑘ln𝑅}

]︃ (3.15)

for each 𝑥 ∈ [−𝑅;𝑅], 𝑅 > max{2, 𝜇(𝛿/∆)|𝜆𝑘|}, 𝑘 ∈ N. Estimates (3.13) and (3.15) yield
desired inequality (3.10).

3.2. Stability conditions for submodule with two generators. We consider functions
𝜙, 𝜓 ∈ ℱ(𝐶∞

0 (𝑎; 𝑏)) ⊂ 𝒫 , obeying the conditions

𝜙(0) = 𝜓(0) = 1, ℎ𝜙(𝜃) = ℎ𝜓(𝜃), 𝜃 ∈ [0; 2𝜋). (3.16)

Functions 𝜙 and 𝜓 are Fourier-Laplace transforms of compactly supported infinitely differen-
tiable functions and hence, they satisfy the estimates

|𝜙(𝑥)| 6 1

|𝑥|𝑘
, |𝜓(𝑥)| 6 1

|𝑥|𝑘
, 𝑥 ∈ R, |𝑥| > 𝑅𝑘, 𝑘 = 1, 2, . . . , (3.17)

where {𝑅𝑘} is an increasing sequence of numbers greater than 2.
We denote by Λ = {𝜆𝑗}, Γ = {𝛾𝑗} the sequences of zeroes of functions 𝜙 and 𝜓, respectively,

taken in the ascending order of absolute values and each zero is written in accordance with
its multiplicity. Sequences Λ and Γ have the same density; as above, we denote it by ∆0. For
arbitrary fixed numbers ∆ > ∆0, 𝛿 > 0 we let 𝑅*

𝑗 = 𝜇(𝛿/∆) max{|𝜆𝑗|, |𝛾𝑗|}, where function
𝜇(𝜒) is the inverse one for function 𝜒(𝜇) defined by formula (3.2).

Theorem 1. Suppose that for some number ∆ > ∆0, 𝛿 > 0 and an increasing sequence
𝑅𝑘 > 2, 𝑘 = 1, 2, . . . , satisfying (3.17) the identity

lim sup
𝑘→∞

ln 1
𝑆𝑘+1

max{𝑅𝑘, 𝑅*
𝑘}

> 𝛿 (3.18)

holds true. Then submodule 𝒥𝜙,𝜓 generated by functions 𝜙 and 𝜓 in module 𝒫 is stable.

Proof. For a real number 𝑐 the mapping

𝜙 ↦→ 𝜙𝑐 = 𝑒i𝑐𝑧𝜙

defines a topological isomorphism of original module 𝒫 and module 𝒫𝑐 formed by Fourier-
Laplace transforms of distributions with compact supports lying in the interval (𝑎− 𝑐; 𝑏− 𝑐). It
is clear that submodule 𝒥𝜙,𝜓 and its image 𝒥𝜙𝑐,𝜓𝑐 under the mentioned isomorphism are stable
or unstable simultaneously.

Making use of this fact, we pass to the functions 𝜙𝑐 = 𝑒i𝑐𝑧𝜙, 𝜓𝑐 = 𝑒i𝑐𝑧𝜙 ∈ 𝒫𝑐, where
𝑐 = (ℎ𝜙(−𝜋/2) + ℎ𝜙(𝜋/2))/2. The indicator diagrams of functions 𝜙𝑐 and 𝜓𝑐 coincide with the
segment [−i𝜋∆0; i𝜋∆0] of the imaginary axis. Hence, these functions satisfy estimate like (3.8).
In what follows we omit subscript 𝑐.
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As it was mentioned above, module 𝒫 is 𝑏-stable. Hence, in accordance with Proposition 4.2
in work [4] (in view of Remark 1 in Section 4 of the same work), it is sufficient to show the
stability of closed submodule 𝒥 for some point 𝜆0 ∈ C. For instance, for 𝜆0 = 0.

Let us employ the criterion of stability at point 𝜆0 for a submodule with a finite number of
generators ([4, Prop. 4.9]). In the case of two generators it is formulated as follows: submodule
𝒥𝜙,𝜓 with generators satisfying conditions 𝜙(𝜆0) = 1, 𝜓(𝜆0) = 1 is stable at point 𝜆0 if and only
if the identical zero can be approximated by functions (𝑝𝜙− 𝑞𝜓) in the sense of topology of 𝒫,
where 𝑝, 𝑞 are polynomials and 𝑝(𝜆0) = 𝑞(𝜆0) = 1.

In the beginning of Section 4 in work [4] containing Assumptions 4.5, 4.8 implying this
criterion, on module 𝒫 there imposed a stronger than 𝑏-stability condition on uniform stability.
We recall that uniform stability of module 𝒫 means that for each neighborhood 𝑈 ⊂ 𝒫 of zero
there exists a neighborhood 𝑈 ′ ⊂ 𝒫 of zero such that for each 𝜆 ∈ C the implication 𝜙 ∈ 𝑈 ′,
𝑛𝜙(𝜆) > 0 =⇒ 𝜙

𝑧−𝜆 ∈ 𝑈 holds true. This notion was introduced in [3], [4].
In fact, as it was mentioned in Remark 2 in [4, Sect. 4], in the proof of Proposi-

tions 4.5, 4.8, 4.9 in [4] there was used just the following weaker property of pointwise stability
of space 𝒫 : for each neighborhood 𝑈 ⊂ 𝒫 of zero and each 𝜆 ∈ C there exists a neighborhood
𝑉𝜆 ⊂ 𝒫 of zero such that 𝜙 ∈ 𝑉𝜆, 𝑛𝜙(𝜆) > 0 =⇒ 𝜙

𝑧−𝜆 ∈ 𝑈 . It was also proven in [4, Sect. 4]
that a bornological 𝑏-stable space is pointwise stable.

By the said above we conclude that the formulated criterion of stability for a submodule with
two generators can be applied for the considered module 𝒫 .

We note that the interesting for us properties of the submodule generated by functions 𝜙
and 𝜓 are not influenced by changing a finite number of points in sequences Λ and Γ. Indeed,
suppose that for some 𝑛0 ∈ N for functions 𝜙/𝜙𝑛0 , 𝜓/𝜓𝑛0 the stability criterion conditions hold
true: there exist generalized sequence of polynomials 𝑝𝛼, 𝑞𝛼 obeying the identities

𝑝𝛼
𝜙

𝜙𝑛0

− 𝑞𝛼
𝜓

𝜓𝑛0

→ 0 in 𝒫 , 𝑝𝛼(0) = 𝑞𝛼(0) = 1 for each 𝛼.

Then the polynomials 𝑝𝛼 = 𝜙𝑛0𝜓𝑛0𝑝𝛼, 𝑞𝛼 = 𝜙𝑛0𝜓𝑛0𝑞𝛼 and functions 𝜙, 𝜓 obviously satisfy the
following relations:

𝑝𝛼𝜙− 𝑞𝛼𝜓 → 0 in 𝒫 , 𝑝𝛼(0) = 𝑞𝛼(0) = 1 for each 𝛼.

Thus, we can assume that the original sequence of zeroes Λ and Γ satisfy conditions (3.3),
(3.4).

We consider the sequence {𝜓𝑘𝜙− 𝜙𝑘𝜓}. By (3.3) on real axis for |𝑥| > 2 we have

|𝜙𝑘(𝑥)| 6 |𝑥|𝑘, |𝜓𝑘(𝑥)| 6 |𝑥|𝑘, 𝑘 = 1, 2, . . .

Taking into consideration (3.17) and that 𝑅𝑘 > 2, we get

|𝜓𝑘(𝑥)𝜙(𝑥) − 𝜙𝑘(𝑥)𝜓(𝑥)| 6 2, |𝑥| > 𝑅𝑘, 𝑘 = 1, 2, . . . (3.19)

We choose and fix number 𝛿′ > 𝛿 such that relation (3.18) remains true after the change of
𝛿 by 𝛿′. There exists a subsequence of subscripts 𝑘𝜈 such that

ln 1
𝑆𝑘𝜈+1

max{𝑅𝑘𝜈 , 𝑅
*
𝑘𝜈
}
> 𝛿′, 𝜈 = 1, 2, . . . (3.20)

Hence,

𝑆𝑘𝜈+1𝑅̃𝑘𝜈 → 0, 𝜈 → ∞, (3.21)

where we have indicated 𝑅̃𝑘 = max{𝑅𝑘, 𝑅
*
𝑘}.

We fix arbitrary 𝜎 ∈ (0; 1/2) and make use of Item 3 in Lemma 2 letting 𝑅 = 𝑅̃𝑘𝜈 . First
we estimate quantities 𝐾𝑀𝜈 , where the set of subscripts 𝑀𝜈 = 𝑀(𝑘𝜈 , 𝑅̃𝑘𝜈 , 𝜎) is determined by
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formula (3.9). For 𝑗 ∈𝑀𝜈 at least one of the quantities |𝜆𝑗|, |𝛾𝑗| does not exceed 𝑅̃𝑘𝜈/(1 − 𝜎).

For instance, let |𝜆𝑗| 6 𝑅̃𝑘𝜈/(1 − 𝜎). Then⃒⃒⃒⃒
1 −

⃒⃒⃒⃒
𝜆𝑗
𝛾𝑗

⃒⃒⃒⃒⃒⃒⃒⃒
6 𝑆𝑘𝜈+1𝑅̃𝑘𝜈/(1 − 𝜎).

Hence,

𝐾𝑀𝜈 → 1, 𝜈 → ∞. (3.22)

By inequality (3.10) for the function (𝜓𝑘𝜈𝜙− 𝜙𝑘𝜈𝜓) we obtain the estimate

|𝜓𝑘𝜈 (𝑥)𝜙(𝑥) − 𝜙𝑘𝜈 (𝑥)𝜓(𝑥)| 6 ℳ1,𝜈ℳ2,𝜈 , |𝑥| 6 𝑅̃𝑘𝜈 ,

where

ℳ1,𝜈 =

√
𝜋2 + 1(1 + 𝜎)

𝜎(1 − 𝜎)
𝐾𝑀𝜈

(︃
1 + exp

(︃√
𝜋2 + 1(1 + 𝜎)

𝜎(1 − 𝜎)
𝐾𝑀𝜈𝑆𝑘𝜈+1𝑅̃𝑘𝜈

)︃)︃
,

ℳ2,𝜈 = 𝑆𝑘𝜈+1𝑅̃𝑘𝜈 exp

[︃(︃√
𝜋2 + 1(1 + 𝜎)

𝜎(1 − 𝜎)
𝐾𝑀𝜈𝑆𝑘𝜈+1 +

2𝜋∆0𝜎

1 − 𝜎

)︃
𝑅̃𝑘𝜈 + 𝛿𝑅̃𝑘𝜈

]︃
.

It follows from relations (3.21) and (3.22) that sequence {ℳ1,𝜈} is bounded. For second term
ℳ2,𝜈 we have

lnℳ2,𝜈 =

[︃(︃√
𝜋2 + 1(1 + 𝜎)

𝜎(1 − 𝜎)
𝐾𝑀𝜈𝑆𝑘𝜈+1 +

2𝜋∆0𝜎

1 − 𝜎
+

ln 𝑅̃𝑘𝜈

𝑅̃𝑘𝜈

)︃
+ 𝛿 −

ln 1
𝑆𝑘𝜈+1

𝑅̃𝑘𝜈

]︃
𝑅̃𝑘𝜈 . (3.23)

We choose 𝜎 close to zero so that the inequality (2𝜋∆0𝜎)/(1 − 𝜎) < (𝛿′ − 𝛿)/3 holds true. For

the chosen 𝜎 we find the subscript 𝜈 = 𝜈𝜎 so that both the expressions
√
𝜋2+1(1+𝜎)
𝜎(1−𝜎) 𝐾𝑀𝜈𝑆𝑘𝜈+1

and (ln 𝑅̃𝑘𝜈 )/(𝑅̃𝑘𝜈 ) are less than (𝛿′ − 𝛿)/3 for each 𝜈 > 𝜈𝜎.
Number 𝛿′ and subsequence {𝑘𝜈} satisfy the relation

lim
𝜈→∞

−ln 𝑆𝑘𝜈+1

max{𝑅𝑘𝜈 , 𝑅
*
𝑘𝜈
}
> 𝛿′.

This is why there exist positive number 𝜀0 and subscript 𝜈 = 𝜈1 > 𝜈𝜎 so that the expression
in the square brackets in the right hand side of formula (3.23) does not exceed (−𝜀0) for each
𝜈 > 𝜈1. Thus, we have the estimate

ℳ2,𝜈 6 exp(−𝜀0𝑅̃𝑘𝜈 ), 𝜈 > 𝜈1.

Due to the boundedness of sequence {ℳ1,𝜈} it yields that there exists an index 𝜈0 > 𝜈1 such
that

|𝜓𝑘𝜈 (𝑥)𝜙(𝑥) − 𝜙𝑘𝜈 (𝑥)𝜓(𝑥)| 6 2, |𝑥| 6 𝑅̃𝑘𝜈 , 𝜈 > 𝜈0. (3.24)

By these estimates and inequalities (3.19) we conclude that for each 𝜈 > 𝜈0 the inequalities

|𝜓𝑘𝜈 (𝑥)𝜙(𝑥) − 𝜙𝑘𝜈 (𝑥)𝜓(𝑥)| 6 2, 𝑥 ∈ R
hold true. By Phragmén-Lindelöf principle the inequalities

|𝜓𝑘𝜈 (𝑧)𝜙(𝑧) − 𝜙𝑘𝜈 (𝑧)𝜓(𝑧)| 6 2 exp (𝜋∆0|Im𝑧|) , 𝜈 > 𝜈0

are valid in the whole complex plane. These inequalities imply that the sequence of functions
Φ𝜈(𝑧) = 𝜓𝑘𝜈 (𝑧)𝜙(𝑧) − 𝜙𝑘𝜈 (𝑧)𝜓(𝑧), 𝜈 = 𝜈1, 𝜈2, . . . , is bounded in 𝒫 and thus, it is relatively
compact in this space (cf. [1]). Thanks to the completeness of 𝒫 (as a space of type (𝐿𝑁*) we
conclude that some subsequence {Φ𝜈𝑙} converges to the identical zero in space 𝒫 .

In accordance with the aforementioned stability criterion in work [4], submodule 𝒥𝜙,𝜓 is
stable.
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Remark 1. Let 𝑁0 ⊂ N be an infinite set of indices so that for numbers 𝑅𝑘 the relation

lim
𝑘→∞, 𝑘∈𝑁0

𝑅𝑘

𝑘
= +∞

holds true. Changing slightly the arguments in the latter part of the proof of Theorem 1 (con-
cerning application of inequality (3.10)), one can show that the theorem remains true if we
replace condition (3.18) by the following one: there exists a subsequence 𝑁1 ⊂ 𝑁0 satisfying

lim
𝑘→∞, 𝑘∈𝑁1

ln 1
𝑆𝑘+1

𝑅𝑘

> 0.

Corollary 1. Under the hypothesis of Theorem 1 the implication holds: if the set Λ
⋂︀

Γ is
finite, then submodule 𝒥𝜙,𝜓 is weakly localizable.

Proof. Let 𝑊 be a 𝐷-invariant subspace in ℰ , for which 𝒥𝜙,𝜓 is an annihilating submodule:
𝒥𝜙,𝜓 = ℱ(𝑊 0). In accordance with Theorem 1, submodule 𝒥𝜙,𝜓 is stable and hence (Proposi-
tion 2), the spectrum of subspace 𝑊 is finite and is equal to (−iΛ𝒥𝜙,𝜓). By Proposition 6.1 in
work [12] subspace 𝑊 is the algebraic direct sum of subspaces 𝑊𝐼𝑊 and ℒ(Exp (−iΛ𝒥 )) (ℒ( · )
stands for the linear span of a set). Employing the duality, we obtain that submodule 𝒥 is the
intersection of annihilating submodules of these spaces

𝒥𝜙,𝜓 = ℱ(𝑊 0
𝐼𝑊

)
⋂︁

ℱ(ℒ(Exp (−iΛ𝒥 ))0).

Submodule ℱ(𝑊 0
𝐼𝑊

) is the set of all functions in 𝒫 whose indicator diagrams are contained in
the set i𝐼𝑊 = i[𝑐𝒥 ; 𝑑𝒥 ]. Submodule ℱ(ℒ(Exp (−iΛ𝒥 ))0) is the set of all functions in 𝒫 vanishing
on set Λ𝒥 . Therefore, 𝒥𝜙,𝜓 is a weakly localizable submodule.

4. 2-generated submodules in 𝒫

We apply the results of the previous section for proving the following theorem.

Theorem 2. Let 𝒥 ⊂ 𝒫 be a stable submodule with a finite number of zeroes Λ𝒥 and an
indicator segment [𝑐𝒥 ; 𝑑𝒥 ] ⊂ (𝑎; 𝑏), and 1 𝑐𝒥 < 𝑑𝒥 . Then for each function 𝜙 ∈ 𝒥 satisfying
conditions 𝜙 ∈ ℱ(𝐶∞

0 (𝑎; 𝑏)), ℎ𝜙(−𝜋/2) = 𝑐𝒥 , ℎ𝜙(𝜋/2) = 𝑑𝒥 there exists a function 𝜓 ∈ 𝒥 such
that

𝒥 = 𝒥𝜙,𝜓.

Proof. Without loss of generality we can assume that 0 ̸∈ Λ𝒥 .
Arguing as in the proof of Corollary 1, we conclude that submodule 𝒥 is weakly localizable.

Hence, the set 𝒥
⋂︀

ℱ(𝐶∞
0 (𝑎; 𝑏)) is non-empty. It is easy to see that among the functions of

this set there exist function with the indicator diagram i[𝑐𝒥 ; 𝑑𝒥 ]. Let 𝜙 ∈ 𝒥
⋂︀
ℱ(𝐶∞

0 (𝑎; 𝑏)) be
one of these function equalling 1 at point 0 and let Λ be its zero set.

We choose and fix two numbers 𝑎′, 𝑏′ ∈ R satisfying the inequalities

𝑎 6 𝑎′ < 𝑐𝒥 6 𝑑𝒥 < 𝑏′ 6 𝑏,

and a sequence Γ̃ = {𝛾𝑘} close to Λ so that sequences Λ and Γ̃ satisfy (2.7). Let

𝐶 =
∞∑︁
𝑗=1

|𝜆𝑗 − 𝛾𝑗|
1 + |Im𝜆𝑗|

, 𝐴𝑚 = 𝑒2𝐶‖𝑠(𝑚+1)
𝜙 ‖𝐿1(𝑎′;𝑏′),

where 𝑠𝜙 ∈ 𝐶∞
0 (𝑎′; 𝑏′) is the preimage under the Fourier-Laplace transform of function 𝜙.

1If 𝑐𝒥 = 𝑑𝒥 = 𝑐 ∈ (𝑎; 𝑏), then submodule 𝒥 is generated by one function 𝑒−i 𝑐𝑧. It follows from Example 1
in [12, Sect. 2] mentioned in the beginning of Section 2 and the duality principle (Proposition 1).
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Let us consider an arbitrary sequence Γ = {𝛾𝑘}, 0 ̸∈ Γ, so that

|𝛾𝑘 − 𝜆𝑘| 6 |𝛾𝑘 − 𝜆𝑘|, 𝑘 = 1, 2, . . . (4.1)

It follows from Proposition 3 and Lemma 1 that function 𝜓 determined by function 𝜙 and
sequence Γ by identity (2.8) is the Fourier-Laplace transform of some function 𝑠𝜓 ∈ 𝐶∞

0 (𝑎′; 𝑏′) ⊂
𝐶∞

0 (𝑎; 𝑏), at that, ch supp 𝑠𝜓 = [𝑐𝒥 ; 𝑑𝒥 ] and |𝑠(𝑚)
𝜓 (𝑡)| 6 𝐴𝑚, 𝑡 ∈ (𝑎; 𝑏), 𝑚 = 0, 1, . . .

Let {𝑟𝑘}∞𝑘=0 be an increasing sequence of real numbers greater than 2 such that |𝜙(𝑥)| 6 |𝑥|−𝑘,
𝑥 ∈ R, |𝑥| > 𝑟𝑘. We let

𝑅𝑘 = max{𝑟𝑘, 𝐴𝑘+1(𝑏
′ − 𝑎′)}, 𝑘 = 0, 1, 2, . . . (4.2)

Function 𝜓 satisfies the relations

|𝜓(𝑥)| 6 𝐴𝑘+1(𝑏
′ − 𝑎′)

|𝑥|𝑘+1
6

1

|𝑥|𝑘
, |𝑥| > 𝑅𝑘, 𝑘 = 0, 1, . . .

These estimate hold true with the same 𝑅𝑘 for each function 𝜓 determined via formula (2.8)
by function 𝜙 and sequence Γ once Γ satisfies (4.1). Among these sequences Γ we choose that
obeying additional conditions: the intersection Γ

⋂︀
Λ is Λ𝒥 and sequences Λ and Γ obey the

hypothesis of Theorem 1 with numbers 𝑅𝑘 defined by formula (4.2). Since 𝒥 is a weakly
localizable submodule, function 𝜓 determined by such sequence Γ is contained in 𝒥 . By
Theorem 1, submodule 𝒥𝜙,𝜓 is stable and by Corollary 1 it is also weakly localizable.

Weakly localizable submodules 𝒥 and 𝒥𝜙,𝜓 have the same indicator segments and zero sets.
Hence, 𝒥𝜙,𝜓 = 𝒥 .

Remark 2. Theorem 1 and the scheme of the proof of Theorem 2 can be employed for
studying issue of 2-generatedness for stable submodules with an infinite zero set. We plan
to discuss these issues in future publications.

The author expresses her gratitude to the participants of Ufa city seminar named after
A.F. Leontiev on function theory for the attention to the work and useful discussion.
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4. I.F. Krasičkov-Ternovskĭı. Local description of closed ideals and submodules of analytic func-
tions of one variable. II // Izvestia AN SSSR. Ser. Matem. 43:2, 309–341 (1979). [Math. USSR-
Izvestiya. 14:2, 289–316 (1980).]
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