BEHAVIOR OF SOLUTIONS TO GAUSS-BIEBERBACH-RADEMACHER EQUATION ON PLANE

A.V. NEKLYUDOV

Abstract

We study the asymptotic behavior at infinity of solutions to Gauss-BierbachRademacher equation $\Delta u=e^{u}$ in the domain exterior to a circle on the plane. We establish that the leading term of the asymptotics is a logarithmic function tending to $-\infty$. We also find the next-to-leading term for various values of the coefficient in the leading term.

Keywords: Semilinear elliptic equations, Gauss-Bieberbach-Rademacher equation, asymptotic behavior of solutions.

Mathematics Subject Classification: 35J15, 35J61, 35J91

1. Introduction

The equation

$$
\begin{equation*}
\Delta u=e^{u}, \tag{1}
\end{equation*}
$$

appears as a model one in problems of differential geometry in relation with existence of surfaces of negative Gaussian curvature [1], the theory of automorphic functions [2, in studying the equilibrium of a charged gas [3]. Existence of solutions to equations like (1) in unbounded domains, in particular, existence of global solutions, was considered in works [1], [4]-[8]. In particular, it is well-known [1] that equation (1) has no global solutions for any number of independent variables n, while for $n \geqslant 3$ there exist no solutions defined in the exterior of a bounded domain [8]. The behavior at infinity of solutions to semi-linear elliptic equations with an exponential nonlinearity was studied mostly for cylindrical domains [9]-[13]. In the present paper we study the asymptotic behavior of solutions to two-dimensional equation (11) defined in the exterior of a circle. We employ the method of energy estimates of Saint-Venant principle kind [14]-[17] as well as the averaging principle.

We consider equation (1) in the two-dimensional domain $Q=\left\{x:|x|>R_{0}\right\} \subset \mathbb{R}_{x}^{2}$, where $x=\left(x_{1}, x_{2}\right), \Delta$ is the two-dimensional Laplace operator. We assume that $u \in C^{2}(\bar{Q})$.

We introduce notations. The mean value of function $u(x)$ on the circumference $S_{R}=\{x:|x|=R\}$ is denoted by

$$
\bar{u}(R)=\frac{1}{2 \pi R} \int_{S_{R}} u d s
$$

the "heat flow" of function $u(x)$ through S_{R} is indicated as

$$
\begin{equation*}
P(R, u)=\int_{S_{R}} \frac{\partial u}{\partial \nu} d s=2 \pi R \bar{u}^{\prime}(R), \tag{2}
\end{equation*}
$$

[^0]where ν is the unit outward normal to S_{R}. Let $Q(a, b)=\{x: a<|x|<b\}, 0<R_{0} \leqslant a<b$. It is obvious that solution $u(x)$ to equation (1) in Q satisfies the identity
\[

$$
\begin{equation*}
P(b, u)=P(a, u)+\int_{Q(a, b)} e^{u} d x \tag{3}
\end{equation*}
$$

\]

We shall also make use of the notation $\nabla u \equiv \operatorname{grad} u$. The condition $f / g \rightarrow 1$ as the arguments of functions f and g tend to some value will be indicated by a standard notation: $f \sim g$.

2. Main results

Theorem 1. Let $u(x)$ be a solution to equation (1) in Q. The relations

$$
\int_{Q} e^{u} d x<\infty ; \quad P(R, u) \rightarrow 2 \pi C, \quad \bar{u}(R) \sim C \ln R, \quad R \rightarrow \infty, \quad C=\text { const } \leqslant-2 .
$$

hold true.
Proof. It follows from (2) and (3) that

$$
\begin{equation*}
P(R, u)=2 \pi R \bar{u}^{\prime}(R)=P\left(R_{0}, u\right)+\int_{Q\left(R_{0}, R\right)} e^{u} d x \tag{4}
\end{equation*}
$$

Let us show that the right hand side of identity (4) is negative for each $R>R_{0}$. Suppose the opposite, then for $R>R_{1}=$ const $>R_{0}$ we obtain

$$
R \bar{u}^{\prime}(R)>c_{1}>0 .
$$

Hereinafter by c_{j} we indicate positive constants depending only on a considered solution to (1) and independent of R, a, b, t, etc. As $R>R_{2}=$ const $>R_{1}$, it implies

$$
\bar{u}(R)>c_{2} \ln R .
$$

By integral Jensen's inequality it yields

$$
\int_{S_{R}} e^{u} d s \geqslant 2 \pi R e^{\bar{u}(R)}>2 \pi R^{c_{2}+1}, \quad \int_{Q\left(R_{0}, R\right)} e^{u} d x>c_{3} R^{c_{2}+2}, \quad R>R_{3}=\text { const }>R_{2} .
$$

Using (4) once again and integrating, we get

$$
R \bar{u}^{\prime}(R)>c_{4} R^{c_{2}+2}, \quad \bar{u}(R)>c_{5} R^{c_{2}+2}, \quad R>R_{4}=\text { const }>R_{3} .
$$

Finally, employing once again (4) and Jensen's inequality, for $R>R_{5}=$ const we have

$$
\bar{u}^{\prime}(R) \geqslant c_{6}+\frac{1}{2 \pi R} \int_{Q\left(R_{0}, R\right)} e^{u} d x \geqslant c_{6}+\frac{1}{R} \int_{R_{0}}^{R} r e^{\bar{u}(r)} d r>\left(\int_{R_{0}}^{R} e^{\bar{u}(r)} d r\right)^{1 / 2}
$$

Let $\int_{R_{0}}^{R} e^{\bar{u}(r)} d r=z(R)$, then $\bar{u}(R)=\ln z^{\prime}(R)$ and the latter inequality can be written as

$$
\frac{z^{\prime \prime}}{z^{\prime}}>z^{1 / 2}
$$

that for $R>R_{6}$ follows

$$
z^{\prime}>c_{7} z^{3 / 2}
$$

It implies easily that $z(R) \rightarrow \infty, R \rightarrow R_{7}-0$ for some $R_{7}>R_{6}$. This is impossible for a solution defined for $|x|>R_{0}$. Thus, the obtained contradiction means that the right hand side in (4) is negative for each $R>R_{0}$ that implies immediately the first statement of the theorem.

It follows from (4) that

$$
P(R, u) \rightarrow 2 \pi C, \quad \bar{u}(R) \sim C \ln R, \quad R \rightarrow \infty, \quad C=\text { const } \leqslant 0 .
$$

Jensen's inequality yields

$$
\int_{R_{0}}^{\infty} r e^{\bar{u}(r)} d r \leqslant \frac{1}{2 \pi} \int_{Q} e^{u} d x<\infty
$$

It follows that $C \leqslant-2$. The proof is complete.
Lemma 1. Let $f \in C^{1}(\bar{Q}) \cap L_{1}(Q)$,

$$
\int_{R_{0}}^{\infty} r\left(\int_{S_{r}}|f| d x\right)^{2} d r<\infty
$$

Then there exists a solution $V(x)$ to equation

$$
\Delta V=f
$$

in Q satisfying the estimates

$$
\begin{equation*}
\int_{Q\left(R_{0}, R\right)}|\nabla V|^{2} d x \leqslant c_{0} \ln R, \quad|\bar{V}(R)| \leqslant c_{1} \ln R \tag{5}
\end{equation*}
$$

as $R>R_{1}=$ const $>R_{0}$. At that, if $f>0$ in Q, then $V \leqslant 0$ in Q.
If in addition the conditions

$$
\begin{equation*}
\int_{R_{0}}^{\infty} \frac{d r}{r} \int_{Q(r, \infty)}|f| d x<\infty, \quad \int_{Q}|x|^{2} f^{2} d x<\infty \tag{6}
\end{equation*}
$$

hold true, then

$$
\int_{Q}|\nabla V|^{2} d x<\infty, \quad V(x) \rightarrow C=\text { const, } \quad|x| \rightarrow \infty
$$

Proof. For each natural $N>R_{0}$, in domain $Q\left(R_{0}, N\right)$ we consider solution V_{N} to the boundary value problem

$$
\Delta V_{N}=f,\left.\quad V_{N}\right|_{S_{R_{0}}}=0,\left.\quad \frac{\partial V_{N}}{\partial \nu}\right|_{S_{N}}=C_{N}
$$

where

$$
C_{N}=-\frac{1}{2 \pi N} \int_{Q(N, \infty)} f d x
$$

It is clear that as $N \geqslant R>R_{0}$,

$$
\begin{equation*}
P\left(R, V_{N}\right)=P\left(N, V_{N}\right)-\int_{Q(R, N)} f d x=-\int_{Q(R, \infty)} f d x \tag{7}
\end{equation*}
$$

In view of the identity $2 \pi R \bar{V}_{N}^{\prime}(R)=P\left(R, V_{N}\right)$ we obtain that as $N \geqslant R \gg R_{0}$

$$
\begin{equation*}
\left|\overline{V_{N}}(R)\right| \leqslant c_{2} \ln R . \tag{8}
\end{equation*}
$$

Let us estimate the Dirichlet integral for solution V_{N}. It is obvious that

$$
\begin{equation*}
\int_{Q\left(R_{0}, N\right)}\left|\nabla V_{N}\right|^{2} d x=C_{N} \int_{S_{N}} V_{N} d s-\int_{Q\left(R_{0}, N\right)} f V_{N} d x \tag{9}
\end{equation*}
$$

Let us estimate the integrals in the right hand side of (9). Due to (8) we get

$$
\begin{equation*}
\left|C_{N} \int_{S_{N}} V_{N} d s\right|=2 \pi N\left|C_{N} \overline{V_{N}}(N)\right| \leqslant c_{3} \ln N . \tag{10}
\end{equation*}
$$

Since by the embedding theorem for functions of one variable and Poincaré inequality

$$
\sup _{S_{r}}\left|V_{N}-\overline{V_{N}}(r)\right| \leqslant c_{4} r^{1 / 2}\left(\int_{S_{r}}\left|\nabla V_{N}\right|^{2} d s\right)^{1 / 2},
$$

we have

$$
\begin{align*}
\left|\int_{S_{r}} f\left(V_{N}-\overline{V_{N}}(r)\right) d s\right| & \leqslant c_{4} r^{1 / 2}\left(\int_{S_{r}}\left|\nabla V_{N}\right|^{2} d s\right)^{1 / 2} \int_{S_{r}}|f| d s \tag{11}\\
& \leqslant \frac{1}{2} \int_{S_{r}}\left|\nabla V_{N}\right|^{2} d s+c_{5} r\left(\int_{S_{r}}|f| d s\right)^{2}
\end{align*}
$$

By (8) we get

$$
\begin{equation*}
\left|\overline{V_{N}}(r) \int_{S_{r}} f d s\right| \leqslant c_{6} \ln r \int_{S_{r}}|f| d s \tag{12}
\end{equation*}
$$

It follows from (9)-(12) that

$$
\begin{aligned}
\int_{Q\left(R_{0}, N\right)}\left|\nabla V_{N}\right|^{2} d x \leqslant & c_{3} \ln N+\frac{1}{2} \int_{Q\left(R_{0}, N\right)}\left|\nabla V_{N}\right|^{2} d x \\
& +c_{5} \int_{R_{1}}^{N} r\left(\int_{S_{r}}|f| d s\right)^{2} d r+c_{6} \ln N \int_{Q\left(R_{1}, N\right)}|f| d x
\end{aligned}
$$

Thus, we obtain

$$
\begin{equation*}
\int_{Q\left(R_{0}, N\right)}\left|\nabla V_{N}\right|^{2} d x \leqslant c_{7} \ln N \tag{13}
\end{equation*}
$$

Let us estimate the Dirichlet integral for function V_{N} over domain $Q\left(R_{0}, R\right)$ for arbitrary $R \in\left(R_{0}, N\right)$:

$$
I(R) \equiv \int_{Q\left(R_{0}, R\right)}\left|\nabla V_{N}\right|^{2} d x=\int_{S_{R}} \frac{\partial V_{N}}{\partial \nu} V_{N} d s-\int_{Q\left(R_{0}, R\right)} f V_{N} d x
$$

Estimating the second term in accordance with (11)-12), for $R \geqslant R_{1}>R_{0}$ we get

$$
\int_{Q\left(R_{0}, R\right)}\left|\nabla V_{N}\right|^{2} d x \leqslant c_{8} \ln R+\frac{1}{2} \int_{Q\left(R_{0}, R\right)}\left|\nabla V_{N}\right|^{2} d x+\int_{S_{R}} \frac{\partial V_{N}}{\partial \nu} V_{N} d s
$$

Employing Poincaré inequality and (7), (8), we arrive at

$$
\begin{aligned}
I(R) & \equiv \int_{Q\left(R_{0}, R\right)}\left|\nabla V_{N}\right|^{2} d x \leqslant 2 \int_{S_{R}} \frac{\partial V_{N}}{\partial \nu} V_{N} d s+2 c_{8} \ln R \\
& =2 P\left(R, V_{N}\right) \overline{V_{N}}(R)+2 \int_{S_{R}} \frac{\partial V_{N}}{\partial \nu}\left(V_{N}-\overline{V_{N}}(R)\right) d s+2 c_{8} \ln R \\
& \leqslant c_{9}\left(R \int_{S_{R}}\left|\nabla V_{N}\right|^{2} d s+\ln R\right)=c_{9}\left(R I^{\prime}(R)+\ln R\right) .
\end{aligned}
$$

We integrate this inequality from R to $N \geqslant R^{2}$ to obtain by (13) that

$$
I(R) \leqslant I(N)\left(\frac{R}{N}\right)^{\delta}+c_{10} R^{\delta} \int_{R}^{N} \frac{\ln r}{r^{\delta+1}} d r \leqslant c_{11} \ln R, \quad \delta>0
$$

Thus, for each fixed $R>R_{0}$, sequence V_{N} is uniformly bounded in Sobolev space $W_{2}^{1}\left(Q\left(R_{0}, R\right)\right)$. Applying standard diagonal process, we obtain a sequence $V_{N_{k}}$ converging to some function V weakly in $W_{2}^{1}\left(Q\left(R_{0}, R\right)\right)$ and strongly in $L_{2}\left(Q\left(R_{0}, R\right)\right)$ for each $R>R_{0}$. Since $V_{N_{k}}-V_{N_{l}}$ are harmonic functions, the convergence of these functions and of their derivatives is uniform in $Q\left(R_{0}, R\right)$. Thus, function V satisfies equation (1) and in view of (8) it satisfies also estimates (5).

If $f>0$ in Q, by the maximum principle one can see easily that $V_{N}<0$ in $Q\left(R_{0}, N\right)$ and $V \leqslant 0$ in Q.

Let function f satisfies also conditions (6). Then it follows from (6) and (7) that

$$
\int_{R_{0}}^{\infty}\left|\bar{V}^{\prime}(r)\right| d r=\frac{1}{2 \pi} \int_{R_{0}}^{\infty} \frac{|P(r, V)|}{r} d r<\infty, \quad \bar{V}(R) \rightarrow C_{0}=\text { const }, \quad R \rightarrow \infty
$$

In the same way (7) also follows the uniform boundedness of $\left|\bar{V}_{N}(R)\right|$. Hence, by estimates similar to (9)-(12), we obtain

$$
\int_{Q\left(R_{0}, N\right)}\left|\nabla V_{N}\right|^{2} d x \leqslant c_{12}
$$

that implies the finiteness of the Dirichlet integral over Q for V.
Let us show that in this case $V(x) \rightarrow C_{0},|x| \rightarrow \infty$. As $R>2 R_{0}$, in accordance with De Giorgi type estimates [18] and Poincaré inequality for $x \in S_{R}$ we have

$$
\begin{aligned}
|V(x)-\bar{V}(R)|^{2} & \leqslant c_{13}\left(R^{-2} \int_{Q(R / 2,3 R / 2)}(V(z)-\bar{V}(R))^{2} d z+R^{2} \int_{Q(R / 2,3 R / 2)} f^{2}(z) d z\right) \\
& \leqslant c_{14}\left(\int_{Q(R / 2,3 R / 2)}|\nabla V(z)|^{2} d z+\int_{Q(R / 2,3 R / 2)}|z|^{2} f^{2}(z) d z\right) \rightarrow 0, \quad R \rightarrow \infty
\end{aligned}
$$

Since $\bar{V}(R) \rightarrow C_{0}, R \rightarrow \infty$, we obtain that $V(x) \rightarrow C_{0},|x| \rightarrow \infty$. The proof is complete.
Lemma 2. Let $g(r)>0$ be a non-increasing on $\left[r_{0}, \infty\right)$ measurable function and

$$
\int_{r_{0}}^{\infty} r g(r) d r<\infty
$$

Then

$$
\int_{r_{0}}^{\infty} r^{3} g^{2}(r) d r<\infty
$$

Proof. It follows easily from monotonicity of $g(r)$ that $g(r) \leqslant r^{-2}$ as $r>r_{1}=$ const >0. Then $r^{3} g^{2}(r) \leqslant r g(r), r>r_{1}$, that implies the statement of the lemma.

Lemma 3. Let $u(x)$ be a solution to equation (1) in Q. Then

$$
r^{-1} \int_{S_{r}} e^{u} d s \leqslant c_{0}, \quad \int_{R_{0}}^{\infty} r\left(\int_{S_{r}} e^{u} d s\right)^{2} d r<\infty
$$

Proof. Due to Theorem 1 and Lemma 2 it is sufficient to prove that $g^{\prime}(r)<0$ for each $r>R_{0}$, where

$$
g(r)=r^{-1} \int_{S_{r}} e^{u} d s
$$

We have

$$
g^{\prime}(r)=r^{-1} \int_{S_{r}} e^{u} \frac{\partial u}{\partial \nu} d s
$$

We assume that $g^{\prime}\left(r_{1}\right) \geqslant 0$ for some $r_{1}>R_{0}$ and we choose an arbitrary $r>r_{1}$. Let $\theta=\theta(|x|) \geqslant 0$ be a cut-off function belonging to C^{2} such that $\theta(|x|)=1$ as $|x| \leqslant r, \theta(|x|)=0$ as $|x| \geqslant r+1,\left(\theta^{\prime}(|x|)\right)^{2} \leqslant c_{1} \theta(|x|)$ as $r \leqslant|x| \leqslant r+1, c_{1}=$ const >0. Multiplying both sides of equation (1) by $e^{u} \theta$ and integrating over domain $Q\left(r_{1}, r+1\right)$, we obtain

$$
\begin{aligned}
\int_{Q\left(r_{1}, r+1\right)}\left(e^{2 u}+|\nabla u|^{2} e^{u}\right) \theta d x & =-r_{1} g^{\prime}\left(r_{1}\right)-\int_{Q(r, r+1)} e^{u} \frac{\partial u}{\partial|x|} \theta^{\prime} d x \\
& \leqslant \int_{Q(r, r+1)} e^{u}\left(|\nabla u|^{2} \theta+c_{2}\right) d x .
\end{aligned}
$$

Hence,

$$
\int_{Q\left(r_{1}, r\right)} e^{2 u} d x \leqslant c_{2} \int_{Q(r, r+1)} e^{u} d x \rightarrow 0, \quad r \rightarrow \infty
$$

that is impossible. This contradiction shows that $g^{\prime}(r)<0$ for each $r>R_{0}$ and it completes the proof.

Theorem 2. Let $u(x)$ be a solution to equation (1) in Q obeying

$$
\bar{u}(R) \sim C \ln R, \quad C=\text { const }<-2, \quad R \rightarrow \infty
$$

Then

$$
u(x)=C \ln |x|+C_{1}+o(1), \quad|x| \rightarrow \infty, \quad C_{1}=\text { const. }
$$

Proof. Let us prove first that for each $\varepsilon>0$ as $|x|>R_{1}=R_{1}(\varepsilon)$, the estimate

$$
u(x) \leqslant(C+\varepsilon) \ln |x|
$$

holds true. We observe that by Theorem 1 and Lemma 3, function $f(x)=e^{u(x)}$ satisfies the hypothesis of Lemma 1, except, probably, conditions (6). We consider the harmonic function $U=u-V$, where V is the solution to equation $\Delta V=e^{u}$, the existence of which was established in Lemma 1. Let us estimate the Fourier coefficients w.r.t. φ for function U on circumference S_{r}. Since by Lemma 3 and Theorem 1

$$
\left.\int_{0}^{2 \pi}|u(r, \varphi)| d \varphi=2 \int_{0}^{2 \pi} u^{+}(r, \varphi) d \varphi-2 \pi \bar{u}(r, \varphi)\right) \leqslant 2 \int_{0}^{2 \pi} e^{u(r, \varphi)} d \varphi+c_{1} \ln r \leqslant c_{2} \ln r,
$$

where $u^{+}=\max \{u, 0\}$, employing estimates $|\bar{V}(r)| \leqslant c_{3} \ln r, V \leqslant 0$ and Lemma 3, we obtain

$$
\int_{0}^{2 \pi}|U(r, \varphi)| d \varphi \leqslant \int_{0}^{2 \pi}(|u(r, \varphi)|+|V(r, \varphi)|) d \varphi \leqslant c_{4} \ln r, \quad r \geqslant r_{1}=\text { const }>R_{0}
$$

Hence, the expansion of U into the Fourier series w.r.t. φ reads as

$$
U=a_{0} \ln r+b_{0}+\sum_{k=1}^{\infty} r^{-k}\left(a_{k} \cos k \varphi+b_{k} \sin k \varphi\right)
$$

Then in view of the estimate for the Dirichlet integral of V in Lemma 1 we obtain

$$
\begin{equation*}
\int_{Q\left(R_{0}, R\right)}|\nabla u|^{2} d x \leqslant c_{4} \ln R . \tag{14}
\end{equation*}
$$

We fix $\varepsilon>0$ such that $C+\varepsilon<-2$. As $R>R_{2}=R_{2}(\varepsilon)$,

$$
\bar{u}(R) \leqslant(C+\varepsilon / 2) \ln R .
$$

By (14) for each $R>2 R_{2}$ there exists $r_{1} \in(R / 2, R)$ satisfying

$$
\int_{S_{r_{1}}}|\nabla u|^{2} d s \leqslant 2 c_{4} \frac{\ln R}{R} .
$$

Then, by the embedding theorem and Poincaré inequality, for $x \in S_{r_{1}}$ we get the estimate

$$
\begin{aligned}
& u(x)-(C+\varepsilon / 2) \ln R<\left(u(x)-\bar{u}\left(r_{1}\right)\right)+\left(\bar{u}\left(r_{1}\right)-(C+\varepsilon / 2) \ln r_{1}\right) \\
&<c_{5} r_{1}^{1 / 2}\left(\int_{S_{r_{1}}}|\nabla u|^{2} d s\right)^{1 / 2} \leqslant c_{6} \ln ^{1 / 2} R, \\
& u(x) \leqslant(C+\varepsilon) \ln R, \quad R>R_{3}(\varepsilon) .
\end{aligned}
$$

By analogy, the same inequality holds true as $x \in S_{r_{2}}$ for some $r_{2} \in(R, 3 R / 2)$ provided R is great enough. In accordance with the maximum principle, this inequality holds true in $Q\left(r_{1}, r_{2}\right)$ and, in particular, as $|x|=R$. Hence, for $|x|>R_{4}(\varepsilon)$ we have

$$
u(x) \leqslant(C+\varepsilon) \ln |x|
$$

It follows that $e^{u(x)} \leqslant c_{7}|x|^{-2-\delta}$ in $Q, \delta>0$. Thus, function $f(x)=e^{u(x)}$ satisfies conditions (6). It yields that function $V \rightarrow C_{0},|x| \rightarrow \infty$. Hence,

$$
u(x)=U+V=C \ln |x|+C_{1}+o(1), \quad C<-2,|x| \rightarrow \infty .
$$

The proof is complete.
We proceed to the case $C=-2$, i.e., $\bar{u}(R) \sim-2 \ln R$. It is clear that a direct analogue of theorem 2 does not hold, since by Theorem $1 \int_{Q} e^{u} d x<\infty$ and therefore, solution can not be represented as $u(x)=-2 \ln |x|+C_{1}+o(1)$.

Lemma 4. Let $u(x)$ be a solution to equation (1) in Q. Then the Dirichlet integral for function $w(x)=u(x)-\bar{u}(|x|)$ over Q is finite:

$$
\int_{Q}|\nabla w|^{2} d x<\infty
$$

Proof. Since $\Delta(\bar{u}(|x|))=\overline{\Delta u}(|x|)$ [19], function w solves the equation

$$
\Delta w=h(x) \equiv e^{u}-\overline{e^{u}}
$$

We have

$$
\begin{equation*}
\int_{Q\left(R_{0}, R\right)}|\nabla w|^{2} d x=-\int_{Q\left(R_{0}, R\right)} h w d x+\int_{S_{R}} w \frac{\partial w}{\partial \nu} d s-\int_{S_{R_{0}}} w \frac{\partial w}{\partial \nu} d s \tag{15}
\end{equation*}
$$

Function $h(x)$ satisfies the estimate like (11):

$$
\begin{equation*}
\left|\int_{Q\left(R_{0}, R\right)} h w d x\right| \leqslant \frac{1}{2} \int_{Q\left(R_{0}, R\right)}|\nabla w|^{2} d x+c_{1} \int_{R_{0}}^{R} r\left(\int_{S_{r}}|h| d s\right)^{2} d r \tag{16}
\end{equation*}
$$

By Lemma 3,

$$
\begin{equation*}
\int_{R_{0}}^{\infty} r\left(\int_{S_{r}}|h| d s\right)^{2} d r<\infty \tag{17}
\end{equation*}
$$

It follows from (15)-17) that

$$
\int_{Q\left(R_{0}, R\right)}|\nabla w|^{2} d x \leqslant 2 \int_{S_{R}} w \frac{\partial w}{\partial \nu} d s+c_{2}
$$

Applying Cauchy-Schwarz inequality and taking into consideration that $\bar{w}(R)=0$ and Poincaré inequality, we obtain

$$
\begin{aligned}
J(R) & \equiv \int_{Q\left(R_{0}, R\right)}|\nabla w|^{2} d x \leqslant 2\left(\int_{S_{R}} w^{2} d s\right)^{1 / 2}\left(\int_{S_{R}}|\nabla w|^{2} d s\right)^{1 / 2}+c_{2} \\
& \leqslant c_{3} R \int_{S_{R}}|\nabla w|^{2} d s+c_{2} \equiv c_{3} R J^{\prime}(R)+c_{2}
\end{aligned}
$$

It implies that either function $J(R)$ is bounded or it grows faster than $\ln R$. The latter is impossible by (14). The proof is complete.

Lemma 5. Let $u(x)$ be a solution to (1) in Q and $\bar{u}(R) \sim-2 \ln R, R \rightarrow \infty$. Then for each $\varepsilon>0$ and each $R \geqslant R_{1}(\varepsilon)$ the estimate

$$
\bar{u}(R) \leqslant-2 \ln R-2 \ln \ln R+\ln 2+\varepsilon
$$

holds true.
Proof. Let us prove first that the inequality

$$
\begin{equation*}
\bar{u}(R)>-2 \ln R-2 \ln \ln R+\ln 2+\varepsilon \tag{18}
\end{equation*}
$$

can not be true for each $R \geqslant R_{1}=$ const $\geqslant \mathrm{R}_{0}$. Suppose the opposite and let (18) is valid for some $\varepsilon>0$ and for each sufficiently great R. Then

$$
\int_{Q(R, \infty)} e^{u} d x \geqslant 2 \pi \int_{R}^{\infty} r e^{\bar{u}(r)} d r \geqslant 2 \pi M_{0} \int_{R}^{\infty} \frac{d r}{r \ln ^{2} r}=\frac{2 \pi M_{0}}{\ln R}, \quad M_{0}=\text { const }>2 .
$$

Since $P(R, u) \rightarrow-4 \pi, R \rightarrow \infty$, we obtain by taking into consideration (3)

$$
\bar{u}^{\prime}(R)=\frac{1}{2 \pi R} P(R, u)=\frac{1}{2 \pi R}\left(-4 \pi-\int_{Q(R, \infty)} e^{u} d x\right) \leqslant-\frac{2}{R}-\frac{M_{0}}{R \ln R}
$$

for each $R>R_{1}$ that contradicts inequality (18). Hence, (18) can not hold true simultaneously for each R starting from some R_{1}. It means that the limit inferior of the function $z(R)=$
$\bar{u}(R)+2 \ln R+2 \ln \ln R-\ln 2$ as $R \rightarrow \infty$ is non-positive. In order to prove the statement of the lemma, it is sufficient that $z(R)$ has no positive local maxima. If there exists a maximum point R, then

$$
0=z^{\prime}(R)=\bar{u}^{\prime}(R)+\frac{2}{R}+\frac{2}{R \ln R}=\frac{P(R, u)}{2 \pi R}+\frac{2}{R}+\frac{2}{R \ln R} .
$$

Then at this point

$$
\begin{aligned}
z^{\prime \prime}(R) & =\bar{u}^{\prime \prime}(R)-\frac{2}{R^{2}}-\frac{2(1+\ln R)}{R^{2} \ln ^{2} R} \\
& =\frac{1}{2 \pi}\left(-\frac{P(R, u)}{R^{2}}+\frac{P^{\prime}(R, u)}{R}\right)-\frac{2}{R^{2}}-\frac{2(1+\ln R)}{R^{2} \ln ^{2} R} \\
& =\frac{2}{R^{2}}+\frac{2}{R^{2} \ln R}+\frac{1}{2 \pi R} \int_{S_{R}} e^{u} d s-\frac{2}{R^{2}}-\frac{2(1+\ln R)}{R^{2} \ln ^{2} R}>e^{\bar{u}(R)}-\frac{2}{R^{2} \ln ^{2} R}>0 .
\end{aligned}
$$

Hence, $z^{\prime \prime}(R)>0$ that is impossible at a maximum. The proof is complete.
Lemma 6. Let $u(x)$ be a solution to (1) in $Q, \bar{u}(R) \sim-2 \ln R, R \rightarrow \infty$. Then

$$
u(x)=\bar{u}(|x|)+o(1), \quad|x| \rightarrow \infty .
$$

Proof. We fix arbitrary $R>2 R_{0}$. By Lemma 4, for some $r_{1} \in(R / 2, R)$ the estimate

$$
\int_{S_{r_{1}}}|\nabla w|^{2} d s \leqslant \frac{c_{1}}{R}
$$

holds true, where $w(x)=u(x)-\bar{u}(|x|)$. Hence,

$$
\sup _{S_{r_{1}}}|w| \leqslant c_{2} r_{1}^{1 / 2}\left(\int_{S_{r_{1}}}|\nabla w|^{2} d s\right)^{1 / 2} \leqslant c_{3} .
$$

Thus, employing Lemma 5 , we obtain that for each $x \in S_{r_{1}}$

$$
u(x) \leqslant \bar{u}(|x|)+c_{3} \leqslant-2 \ln R-2 \ln \ln R+c_{4} .
$$

In the same way, for some $r_{2} \in(R, 3 R / 2)$ we have

$$
u(x) \leqslant \bar{u}(|x|)+c_{5} \leqslant-2 \ln R-2 \ln \ln R+c_{6}
$$

as $x \in S_{r_{2}}$. In accordance with the maximum principle, for each $x \in S_{R}$ we obtain

$$
u(x) \leqslant-2 \ln |x|-2 \ln \ln |x|+c_{7},
$$

hence,

$$
e^{u(x)} \leqslant \frac{c_{8}}{|x|^{2} \ln ^{2}|x|}, \quad|\Delta w| \leqslant \frac{c_{9}}{|x|^{2} \ln ^{2}|x|} .
$$

In accordance with De Giorgi estimate and Poincaré inequality we obtain

$$
\begin{aligned}
\sup _{S_{R}}|w|^{2} & \leqslant c_{10}\left(R^{-2} \int_{Q(R / 2,3 R / 2)} w^{2} d x+R^{2} \int_{Q(R / 2,3 R / 2)}(\Delta w)^{2} d x\right) \\
& \leqslant c_{11}\left(\int_{Q(R / 2,3 R / 2)}|\nabla w|^{2} d x+\ln ^{-4} R\right) \rightarrow 0, \quad R \rightarrow \infty .
\end{aligned}
$$

The proof is complete.
Lemma 7. Let $u(x)$ be a solution to equation (1) in Q obeying $\bar{u}(R) \sim-2 \ln R$. Then for each $\varepsilon>0$ and each $R \geqslant R_{1}(\varepsilon)$ the estimate

$$
\bar{u}(R) \geqslant-2 \ln R-2 \ln \ln R+\ln 2-\varepsilon
$$

holds true.

Proof. We arguing in the same was as in the proof of Lemma 5. At that, integral $\int_{S_{R}} e^{u} d s$ should be estimated from above instead of from below and instead of integral Jensen's inequality one needs to employ small deviation $u(x)$ from its mean over circumference S_{R} established in Lemma 6.

We assume that for each $R \geqslant R_{1}$ the inequality

$$
\begin{equation*}
\bar{u}(R)<-2 \ln R-2 \ln \ln R+\ln 2-\varepsilon \tag{19}
\end{equation*}
$$

holds true. Then for each $R \geqslant R_{2}$ we have $u(x)<-2 \ln R-2 \ln \ln R+\ln 2-\varepsilon / 2$,

$$
\int_{Q(R, \infty)} e^{u} d x \leqslant 2 \pi M_{1} \int_{R}^{\infty} \frac{d r}{r \ln ^{2} r}=\frac{2 \pi M_{1}}{\ln R}, \quad M_{1}=\text { const }<2 .
$$

It yields

$$
\bar{u}^{\prime}(R)=\frac{1}{2 \pi R} P(R, u)=\frac{1}{2 \pi R}\left(-4 \pi-\int_{Q(R, \infty)} e^{u} d x\right) \geqslant-\frac{2}{R}-\frac{M_{1}}{R \ln R}
$$

that contradicts to (19). Hence, (19) can not hold true for each $R \geqslant R_{1}$. By analogy with the proof of Lemma 5 let us show that the function $z(R)=\bar{u}(R)+2 \ln R+2 \ln \ln R-\ln 2$ can not have negative minima separated uniformly from zero. Indeed, at such minimum we obtain

$$
z^{\prime \prime}(R)=\frac{1}{2 \pi R} \int_{S_{R}} e^{u} d s-\frac{2}{R^{2} \ln ^{2} R}<0
$$

for sufficiently great R that is impossible at a minimum. The proof is complete.
Thus, Theorem 2 and Lemmata 5-7 imply immediately the main result of the work.
Theorem 3. As $|x| \rightarrow \infty$, each solution to equation (1) in Q behaves either as

1) $u(x)=C \ln |x|+C_{1}+o(1), C=$ const $<-2 ; C_{1}=$ const;
or as
2) $u(x)=-2 \ln |x|-2 \ln \ln |x|+\ln 2+o(1)$.

Examples of solutions to equation (1) behaving at infinity in accordance with the first or second options are the solutions $u=-\ln |x|-2 \ln (|x|-1)+\ln 2$ and $u=-2 \ln |x|-2 \ln \ln |x|+$ $\ln 2$, respectively.

In conclusion, we mention that since in the multidimensional case $(n \geqslant 3)$ equation (1) has no solutions in exteriors of a ball [8], the problem on finding the asymptotics for solutions to (1) in the exterior domains is restricted by the two-dimensional case.

BIBLIOGRAPHY

1. I.N. Vekua. Some properties of solutions of Gauss equation // Trudy Mat. Inst. Steklov. 64, 5-8 (1961). (in Russian).
2. L. Bieberbach. $\Delta u=e^{u}$ und die automorphen Funktionen // Math. Ann. 77:2, 173-212 (1916).
3. H. Rademacher. Die Differential- und Integralgleichungen der Mechanik und Physik. Braunschweig, Vieweg (1935).
4. O.A. Oleinik. On the equation $\Delta u+k(x) e^{u}=0 / /$ Uspekhi Matem. Nauk. 33:2, 204-205 (1978). [Russ. Math. Surv. 33:2, 243-244 (1978).]
5. J.N. Flavin, R.J. Knops, L.E Payne. Asymptotic behavior of solutions to semi-linear elliptic equations on the half-cylinder // Z. Angew. Math. Phys. 43:3, 405-421 (1992).
6. H. Usami. Note on the inequality $\Delta u \geqslant k(x) e^{u}$ in $\mathbb{R}^{n} / /$ Hiroshima Math. J. 18:3, 661-668 (1988).
7. Kuo-Shung Cheng, Chang-Shou Lin. On the conformal gaussian curvature equation in $\mathbb{R}^{2} / / \mathrm{J}$. Diff. Equat. 146:1, 226-250 (1998).
8. A.V. Neklyudov. On the absence of global solutions to the gauss equation and solutions in external areas // Izv. VUZov. Matem. 1, 55-60 (2014). [Russ. Math. 58:1, 47-51 (2014).]
9. V.A. Kondrat'ev, O.A. Oleinik. On asymptotics for solutions to nonlinear elliptic equations // Uspekhi Matem. Nauk. 48:4, 184-185 (1993). [Russ. Math. Surv. 48:4, (1993).]
10. O.A. Oleinik. Some asymptotic problems in the theory of partial differential equations. Cambridge Univ. Press, Cambridge, 1996.
11. A.I. Nasrullaev. Asymptotics of solutions of Neumann's problem for the equation $\Delta u-e^{u}=0$ in a semi-infinite cylinder // Uspekhi Matem. Nauk. 50:3, 161-162 (1995). [Russ. Math. Surv. 50:3, 630-632 (1995).]
12. A.V. Neklyudov. The behavior of solutions of semilinear elliptic equations of second order of the form $L u=e^{u}$ in the infinite cylinder // Matem. Zametki. 85:3, 408-420 (2009). [Math. Notes. 85:3-4, 397-408 (2009).]
13. A.V. Neklyudov. The behavior of solutions of the nonlinear biharmonic equation in an unbounded domain // Matem. Zametki. 95:2, 248-256 (2014). [Math. Notes. 95:1-2, 224-231 (2014).]
14. O.A. Oleinik, G.A. Iosif'yan. On the behavior at infinity of solutions of second order elliptic equations in domains with noncompact boundary // Matem. Sborn. 112:4, 588-610 (1980). [Math. USSR. Sbornik. 40:4, 527-548 (1980).]
15. O.A. Oleinik, G.A. Yosifian. On the asymptotic behavior at infinity of solutions in linear elasticity // Arch. Ration. Mech. Anal. 78:1, 29-53 (1982).
16. A.V. Neklyudov. On Neumann problem for high order divergent elliptic equations in unbounded domains close to a cylinder // Trudy Sem. I.G. Petrovskogo. 16, 191-217 (1991). (in Russian).
17. A.V. Neklyudov. On solutions to Robin problem for Laplace equation in semi-infinite cylinder // Bull. Udmurt Univ. 2, 48-58 (2013). (in Russian).
18. D. Gilbarg, N.S. Trudinger. Elliptic partial differential equations of second order. Springer, Berlin (1983).
19. I. Kametaka, O.A. Oleŭnik. On the asymptotic properties and necessary conditions for existence of solutions of nonlinear second order elliptic equations // Matem. Sborn. 107:4, 572-600 (1978). [Math. USSR. Sbornik. 35:6, 823-849 (1979).]

Alexei Vladimirovich Neklyudov,
Bauman Moscow State Technical University,
Rubtsovskaya quay, 2/18,
105005, Moscow, Russia
E-mail: nek15@yandex.ru

[^0]: A.V. Neklyudov, Behavior of solutions to Gauss-Bieberbach-Rademacher equation on plane. © Neklyudov A.V. 2014.
 Submitted March 28, 2014.

