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BEHAVIOR OF SOLUTIONS TO

GAUSS-BIEBERBACH-RADEMACHER

EQUATION ON PLANE

A.V. NEKLYUDOV

Abstract. We study the asymptotic behavior at infinity of solutions to Gauss-Bierbach-
Rademacher equation Δ𝑢 = 𝑒𝑢 in the domain exterior to a circle on the plane. We establish
that the leading term of the asymptotics is a logarithmic function tending to −∞. We also
find the next-to-leading term for various values of the coefficient in the leading term.
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1. Introduction

The equation

∆𝑢 = 𝑒𝑢, (1)

appears as a model one in problems of differential geometry in relation with existence of surfaces
of negative Gaussian curvature [1], the theory of automorphic functions [2], in studying the
equilibrium of a charged gas [3]. Existence of solutions to equations like (1) in unbounded
domains, in particular, existence of global solutions, was considered in works [1], [4]–[8]. In
particular, it is well-known [1] that equation (1) has no global solutions for any number of
independent variables 𝑛, while for 𝑛 > 3 there exist no solutions defined in the exterior of a
bounded domain [8]. The behavior at infinity of solutions to semi-linear elliptic equations with
an exponential nonlinearity was studied mostly for cylindrical domains [9]–[13]. In the present
paper we study the asymptotic behavior of solutions to two-dimensional equation (1) defined
in the exterior of a circle. We employ the method of energy estimates of Saint-Venant principle
kind [14]–[17] as well as the averaging principle.

We consider equation (1) in the two-dimensional domain 𝑄 = {𝑥 : |𝑥| > 𝑅0} ⊂ R2
𝑥, where

𝑥 = (𝑥1, 𝑥2), ∆ is the two-dimensional Laplace operator. We assume that 𝑢 ∈ 𝐶2(𝑄).
We introduce notations. The mean value of function 𝑢(𝑥) on the circumference

𝑆𝑅 = {𝑥 : |𝑥| = 𝑅} is denoted by

𝑢(𝑅) =
1

2𝜋𝑅

∫︁
𝑆𝑅

𝑢 𝑑𝑠,

the “heat flow” of function 𝑢(𝑥) through 𝑆𝑅 is indicated as

𝑃 (𝑅, 𝑢) =

∫︁
𝑆𝑅

𝜕𝑢

𝜕𝜈
𝑑𝑠 = 2𝜋𝑅𝑢′(𝑅), (2)
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where 𝜈 is the unit outward normal to 𝑆𝑅. Let 𝑄(𝑎, 𝑏) = {𝑥 : 𝑎 < |𝑥| < 𝑏}, 0 < 𝑅0 6 𝑎 < 𝑏. It
is obvious that solution 𝑢(𝑥) to equation (1) in 𝑄 satisfies the identity

𝑃 (𝑏, 𝑢) = 𝑃 (𝑎, 𝑢) +

∫︁
𝑄(𝑎,𝑏)

𝑒𝑢 𝑑𝑥. (3)

We shall also make use of the notation ∇𝑢 ≡ grad𝑢. The condition 𝑓/𝑔 → 1 as the arguments
of functions 𝑓 and 𝑔 tend to some value will be indicated by a standard notation: 𝑓 ∼ 𝑔.

2. Main results

Theorem 1. Let 𝑢(𝑥) be a solution to equation (1) in 𝑄. The relations∫︁
𝑄

𝑒𝑢 𝑑𝑥 < ∞; 𝑃 (𝑅, 𝑢) → 2𝜋𝐶, 𝑢(𝑅) ∼ 𝐶 ln𝑅, 𝑅 → ∞, 𝐶 = const 6 −2.

hold true.

Proof. It follows from (2) and (3) that

𝑃 (𝑅, 𝑢) = 2𝜋𝑅𝑢′(𝑅) = 𝑃 (𝑅0, 𝑢) +

∫︁
𝑄(𝑅0,𝑅)

𝑒𝑢 𝑑𝑥. (4)

Let us show that the right hand side of identity (4) is negative for each 𝑅 > 𝑅0. Suppose the
opposite, then for 𝑅 > 𝑅1 = const > 𝑅0 we obtain

𝑅𝑢′(𝑅) > 𝑐1 > 0.

Hereinafter by 𝑐𝑗 we indicate positive constants depending only on a considered solution to (1)
and independent of 𝑅, 𝑎, 𝑏, 𝑡, etc. As 𝑅 > 𝑅2 = const > 𝑅1, it implies

𝑢(𝑅) > 𝑐2 ln𝑅.

By integral Jensen’s inequality it yields∫︁
𝑆𝑅

𝑒𝑢 𝑑𝑠 > 2𝜋𝑅𝑒𝑢(𝑅) > 2𝜋𝑅𝑐2+1,

∫︁
𝑄(𝑅0,𝑅)

𝑒𝑢 𝑑𝑥 > 𝑐3𝑅
𝑐2+2, 𝑅 > 𝑅3 = const > 𝑅2.

Using (4) once again and integrating, we get

𝑅𝑢′(𝑅) > 𝑐4𝑅
𝑐2+2, 𝑢(𝑅) > 𝑐5𝑅

𝑐2+2, 𝑅 > 𝑅4 = const > 𝑅3.

Finally, employing once again (4) and Jensen’s inequality, for 𝑅 > 𝑅5 = const we have

𝑢′(𝑅) > 𝑐6 +
1

2𝜋𝑅

∫︁
𝑄(𝑅0,𝑅)

𝑒𝑢 𝑑𝑥 > 𝑐6 +
1

𝑅

∫︁ 𝑅

𝑅0

𝑟𝑒𝑢(𝑟) 𝑑𝑟 >

(︂∫︁ 𝑅

𝑅0

𝑒𝑢(𝑟) 𝑑𝑟

)︂1/2

.

Let
∫︀ 𝑅

𝑅0
𝑒𝑢(𝑟) 𝑑𝑟 = 𝑧(𝑅), then 𝑢(𝑅) = ln 𝑧′(𝑅) and the latter inequality can be written as

𝑧′′

𝑧′
> 𝑧1/2

that for 𝑅 > 𝑅6 follows
𝑧′ > 𝑐7𝑧

3/2.

It implies easily that 𝑧(𝑅) → ∞, 𝑅 → 𝑅7 − 0 for some 𝑅7 > 𝑅6. This is impossible for a
solution defined for |𝑥| > 𝑅0. Thus, the obtained contradiction means that the right hand side
in (4) is negative for each 𝑅 > 𝑅0 that implies immediately the first statement of the theorem.

It follows from (4) that

𝑃 (𝑅, 𝑢) → 2𝜋𝐶, 𝑢(𝑅) ∼ 𝐶 ln𝑅, 𝑅 → ∞, 𝐶 = const 6 0.

Jensen’s inequality yields ∫︁ ∞

𝑅0

𝑟𝑒𝑢(𝑟) 𝑑𝑟 6
1

2𝜋

∫︁
𝑄

𝑒𝑢 𝑑𝑥 < ∞.
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It follows that 𝐶 6 −2. The proof is complete.

Lemma 1. Let 𝑓 ∈ 𝐶1(𝑄) ∩ 𝐿1(𝑄),∫︁ ∞

𝑅0

𝑟

(︂∫︁
𝑆𝑟

|𝑓 | 𝑑𝑥
)︂2

𝑑𝑟 < ∞.

Then there exists a solution 𝑉 (𝑥) to equation

∆𝑉 = 𝑓

in 𝑄 satisfying the estimates∫︁
𝑄(𝑅0,𝑅)

|∇𝑉 |2 𝑑𝑥 6 𝑐0 ln𝑅, |𝑉 (𝑅)| 6 𝑐1 ln𝑅 (5)

as 𝑅 > 𝑅1 = const > 𝑅0. At that, if 𝑓 > 0 in 𝑄, then 𝑉 6 0 in 𝑄.
If in addition the conditions∫︁ ∞

𝑅0

𝑑𝑟

𝑟

∫︁
𝑄(𝑟,∞)

|𝑓 | 𝑑𝑥 < ∞,

∫︁
𝑄

|𝑥|2𝑓 2 𝑑𝑥 < ∞ (6)

hold true, then ∫︁
𝑄

|∇𝑉 |2 𝑑𝑥 < ∞, 𝑉 (𝑥) → 𝐶 = const, |𝑥| → ∞.

Proof. For each natural 𝑁 > 𝑅0, in domain 𝑄(𝑅0, 𝑁) we consider solution 𝑉𝑁 to the boundary
value problem

∆𝑉𝑁 = 𝑓, 𝑉𝑁

⃒⃒
𝑆𝑅0

= 0,
𝜕𝑉𝑁

𝜕𝜈

⃒⃒⃒⃒
𝑆𝑁

= 𝐶𝑁 ,

where

𝐶𝑁 = − 1

2𝜋𝑁

∫︁
𝑄(𝑁,∞)

𝑓 𝑑𝑥.

It is clear that as 𝑁 > 𝑅 > 𝑅0,

𝑃 (𝑅, 𝑉𝑁) = 𝑃 (𝑁, 𝑉𝑁) −
∫︁
𝑄(𝑅,𝑁)

𝑓 𝑑𝑥 = −
∫︁
𝑄(𝑅,∞)

𝑓 𝑑𝑥. (7)

In view of the identity 2𝜋𝑅𝑉
′
𝑁(𝑅) = 𝑃 (𝑅, 𝑉𝑁) we obtain that as 𝑁 > 𝑅 >> 𝑅0⃒⃒

𝑉𝑁(𝑅)
⃒⃒
6 𝑐2 ln𝑅. (8)

Let us estimate the Dirichlet integral for solution 𝑉𝑁 . It is obvious that∫︁
𝑄(𝑅0,𝑁)

|∇𝑉𝑁 |2 𝑑𝑥 = 𝐶𝑁

∫︁
𝑆𝑁

𝑉𝑁 𝑑𝑠−
∫︁
𝑄(𝑅0,𝑁)

𝑓𝑉𝑁 𝑑𝑥. (9)

Let us estimate the integrals in the right hand side of (9). Due to (8) we get⃒⃒⃒⃒
𝐶𝑁

∫︁
𝑆𝑁

𝑉𝑁 𝑑𝑠

⃒⃒⃒⃒
= 2𝜋𝑁

⃒⃒
𝐶𝑁𝑉𝑁(𝑁)

⃒⃒
6 𝑐3 ln𝑁. (10)

Since by the embedding theorem for functions of one variable and Poincaré inequality

sup
𝑆𝑟

|𝑉𝑁 − 𝑉𝑁(𝑟)| 6 𝑐4𝑟
1/2

(︀ ∫︁
𝑆𝑟

|∇𝑉𝑁 |2 𝑑𝑠
)︀1/2

,

we have ⃒⃒⃒⃒ ∫︁
𝑆𝑟

𝑓(𝑉𝑁 − 𝑉𝑁(𝑟)) 𝑑𝑠

⃒⃒⃒⃒
6𝑐4𝑟

1/2

(︂∫︁
𝑆𝑟

|∇𝑉𝑁 |2 𝑑𝑠
)︂1/2 ∫︁

𝑆𝑟

|𝑓 | 𝑑𝑠

6
1

2

∫︁
𝑆𝑟

|∇𝑉𝑁 |2 𝑑𝑠 + 𝑐5𝑟

(︂∫︁
𝑆𝑟

|𝑓 | 𝑑𝑠
)︂2

.

(11)
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By (8) we get ⃒⃒⃒⃒
𝑉𝑁(𝑟)

∫︁
𝑆𝑟

𝑓 𝑑𝑠

⃒⃒⃒⃒
6 𝑐6 ln 𝑟

∫︁
𝑆𝑟

|𝑓 | 𝑑𝑠. (12)

It follows from (9)–(12) that∫︁
𝑄(𝑅0,𝑁)

|∇𝑉𝑁 |2 𝑑𝑥 6𝑐3 ln𝑁 +
1

2

∫︁
𝑄(𝑅0,𝑁)

|∇𝑉𝑁 |2 𝑑𝑥

+ 𝑐5

∫︁ 𝑁

𝑅1

𝑟

(︂∫︁
𝑆𝑟

|𝑓 | 𝑑𝑠
)︂2

𝑑𝑟 + 𝑐6 ln𝑁

∫︁
𝑄(𝑅1,𝑁)

|𝑓 | 𝑑𝑥.

Thus, we obtain ∫︁
𝑄(𝑅0,𝑁)

|∇𝑉𝑁 |2 𝑑𝑥 6 𝑐7 ln𝑁. (13)

Let us estimate the Dirichlet integral for function 𝑉𝑁 over domain 𝑄(𝑅0, 𝑅) for arbitrary
𝑅 ∈ (𝑅0, 𝑁):

𝐼(𝑅) ≡
∫︁
𝑄(𝑅0,𝑅)

|∇𝑉𝑁 |2 𝑑𝑥 =

∫︁
𝑆𝑅

𝜕𝑉𝑁

𝜕𝜈
𝑉𝑁 𝑑𝑠−

∫︁
𝑄(𝑅0,𝑅)

𝑓𝑉𝑁 𝑑𝑥.

Estimating the second term in accordance with (11)-(12), for 𝑅 > 𝑅1 > 𝑅0 we get∫︁
𝑄(𝑅0,𝑅)

|∇𝑉𝑁 |2 𝑑𝑥 6 𝑐8 ln𝑅 +
1

2

∫︁
𝑄(𝑅0,𝑅)

|∇𝑉𝑁 |2 𝑑𝑥 +

∫︁
𝑆𝑅

𝜕𝑉𝑁

𝜕𝜈
𝑉𝑁 𝑑𝑠.

Employing Poincaré inequality and (7), (8), we arrive at

𝐼(𝑅) ≡
∫︁
𝑄(𝑅0,𝑅)

|∇𝑉𝑁 |2 𝑑𝑥 6 2

∫︁
𝑆𝑅

𝜕𝑉𝑁

𝜕𝜈
𝑉𝑁 𝑑𝑠 + 2𝑐8 ln𝑅

= 2𝑃 (𝑅, 𝑉𝑁)𝑉𝑁(𝑅) + 2

∫︁
𝑆𝑅

𝜕𝑉𝑁

𝜕𝜈

(︀
𝑉𝑁 − 𝑉𝑁(𝑅)

)︀
𝑑𝑠 + 2𝑐8 ln𝑅

6 𝑐9

(︂
𝑅

∫︁
𝑆𝑅

|∇𝑉𝑁 |2 𝑑𝑠 + ln𝑅

)︂
= 𝑐9(𝑅𝐼 ′(𝑅) + ln𝑅).

We integrate this inequality from 𝑅 to 𝑁 > 𝑅2 to obtain by (13) that

𝐼(𝑅) 6 𝐼(𝑁)

(︂
𝑅

𝑁

)︂𝛿

+ 𝑐10𝑅
𝛿

∫︁ 𝑁

𝑅

ln 𝑟

𝑟𝛿+1
𝑑𝑟 6 𝑐11 ln𝑅, 𝛿 > 0.

Thus, for each fixed 𝑅 > 𝑅0, sequence 𝑉𝑁 is uniformly bounded in Sobolev space 𝑊 1
2 (𝑄(𝑅0, 𝑅)).

Applying standard diagonal process, we obtain a sequence 𝑉𝑁𝑘
converging to some function 𝑉

weakly in 𝑊 1
2 (𝑄(𝑅0, 𝑅)) and strongly in 𝐿2(𝑄(𝑅0, 𝑅)) for each 𝑅 > 𝑅0. Since 𝑉𝑁𝑘

− 𝑉𝑁𝑙
are

harmonic functions, the convergence of these functions and of their derivatives is uniform in
𝑄(𝑅0, 𝑅). Thus, function 𝑉 satisfies equation (1) and in view of (8) it satisfies also estimates
(5).

If 𝑓 > 0 in 𝑄, by the maximum principle one can see easily that 𝑉𝑁 < 0 in 𝑄(𝑅0, 𝑁) and
𝑉 6 0 in 𝑄.

Let function 𝑓 satisfies also conditions (6). Then it follows from (6) and (7) that∫︁ ∞

𝑅0

|𝑉 ′
(𝑟)| 𝑑𝑟 =

1

2𝜋

∫︁ ∞

𝑅0

|𝑃 (𝑟, 𝑉 )|
𝑟

𝑑𝑟 < ∞, 𝑉 (𝑅) → 𝐶0 = const, 𝑅 → ∞.

In the same way (7) also follows the uniform boundedness of |𝑉 𝑁(𝑅)|. Hence, by estimates
similar to (9)–(12), we obtain ∫︁

𝑄(𝑅0,𝑁)

|∇𝑉𝑁 |2 𝑑𝑥 6 𝑐12
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that implies the finiteness of the Dirichlet integral over 𝑄 for 𝑉 .
Let us show that in this case 𝑉 (𝑥) → 𝐶0, |𝑥| → ∞. As 𝑅 > 2𝑅0, in accordance with

De Giorgi type estimates [18] and Poincaré inequality for 𝑥 ∈ 𝑆𝑅 we have

|𝑉 (𝑥) − 𝑉 (𝑅)|2 6𝑐13

(︂
𝑅−2

∫︁
𝑄(𝑅/2,3𝑅/2)

(︀
𝑉 (𝑧) − 𝑉 (𝑅)

)︀2
𝑑𝑧 + 𝑅2

∫︁
𝑄(𝑅/2,3𝑅/2)

𝑓 2(𝑧) 𝑑𝑧

)︂
6𝑐14

(︂∫︁
𝑄(𝑅/2,3𝑅/2)

|∇𝑉 (𝑧)|2 𝑑𝑧 +

∫︁
𝑄(𝑅/2,3𝑅/2)

|𝑧|2𝑓 2(𝑧) 𝑑𝑧

)︂
→ 0, 𝑅 → ∞.

Since 𝑉 (𝑅) → 𝐶0, 𝑅 → ∞, we obtain that 𝑉 (𝑥) → 𝐶0, |𝑥| → ∞. The proof is complete.

Lemma 2. Let 𝑔(𝑟) > 0 be a non-increasing on [𝑟0,∞) measurable function and∫︁ ∞

𝑟0

𝑟𝑔(𝑟) 𝑑𝑟 < ∞.

Then ∫︁ ∞

𝑟0

𝑟3𝑔2(𝑟)𝑑𝑟 < ∞.

Proof. It follows easily from monotonicity of 𝑔(𝑟) that 𝑔(𝑟) 6 𝑟−2 as 𝑟 > 𝑟1 = const > 0. Then
𝑟3𝑔2(𝑟) 6 𝑟𝑔(𝑟), 𝑟 > 𝑟1, that implies the statement of the lemma.

Lemma 3. Let 𝑢(𝑥) be a solution to equation (1) in 𝑄. Then

𝑟−1

∫︁
𝑆𝑟

𝑒𝑢 𝑑𝑠 6 𝑐0,

∫︁ ∞

𝑅0

𝑟

(︂∫︁
𝑆𝑟

𝑒𝑢 𝑑𝑠

)︂2

𝑑𝑟 < ∞.

Proof. Due to Theorem 1 and Lemma 2 it is sufficient to prove that 𝑔′(𝑟) < 0 for each 𝑟 > 𝑅0,
where

𝑔(𝑟) = 𝑟−1

∫︁
𝑆𝑟

𝑒𝑢 𝑑𝑠.

We have

𝑔′(𝑟) = 𝑟−1

∫︁
𝑆𝑟

𝑒𝑢
𝜕𝑢

𝜕𝜈
𝑑𝑠.

We assume that 𝑔′(𝑟1) > 0 for some 𝑟1 > 𝑅0 and we choose an arbitrary 𝑟 > 𝑟1. Let
𝜃 = 𝜃(|𝑥|) > 0 be a cut-off function belonging to 𝐶2 such that 𝜃(|𝑥|) = 1 as |𝑥| 6 𝑟, 𝜃(|𝑥|) = 0
as |𝑥| > 𝑟 + 1, (𝜃′(|𝑥|))2 6 𝑐1𝜃(|𝑥|) as 𝑟 6 |𝑥| 6 𝑟 + 1, 𝑐1 = const > 0. Multiplying both sides
of equation (1) by 𝑒𝑢𝜃 and integrating over domain 𝑄(𝑟1, 𝑟 + 1), we obtain∫︁

𝑄(𝑟1,𝑟+1)

(︀
𝑒2𝑢 + |∇𝑢|2𝑒𝑢

)︀
𝜃 𝑑𝑥 = − 𝑟1𝑔

′(𝑟1) −
∫︁
𝑄(𝑟,𝑟+1)

𝑒𝑢
𝜕𝑢

𝜕|𝑥|
𝜃′ 𝑑𝑥

6
∫︁
𝑄(𝑟,𝑟+1)

𝑒𝑢
(︀
|∇𝑢|2𝜃 + 𝑐2

)︀
𝑑𝑥.

Hence, ∫︁
𝑄(𝑟1,𝑟)

𝑒2𝑢 𝑑𝑥 6 𝑐2

∫︁
𝑄(𝑟,𝑟+1)

𝑒𝑢 𝑑𝑥 → 0, 𝑟 → ∞,

that is impossible. This contradiction shows that 𝑔′(𝑟) < 0 for each 𝑟 > 𝑅0 and it completes
the proof.

Theorem 2. Let 𝑢(𝑥) be a solution to equation (1) in 𝑄 obeying

𝑢(𝑅) ∼ 𝐶 ln𝑅, 𝐶 = const < −2, 𝑅 → ∞.

Then
𝑢(𝑥) = 𝐶 ln |𝑥| + 𝐶1 + 𝑜(1), |𝑥| → ∞, 𝐶1 = const.
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Proof. Let us prove first that for each 𝜀 > 0 as |𝑥| > 𝑅1 = 𝑅1(𝜀), the estimate

𝑢(𝑥) 6 (𝐶 + 𝜀) ln |𝑥|

holds true. We observe that by Theorem 1 and Lemma 3, function 𝑓(𝑥) = 𝑒𝑢(𝑥) satisfies the
hypothesis of Lemma 1, except, probably, conditions (6). We consider the harmonic function
𝑈 = 𝑢−𝑉 , where 𝑉 is the solution to equation ∆𝑉 = 𝑒𝑢, the existence of which was established
in Lemma 1. Let us estimate the Fourier coefficients w.r.t. 𝜙 for function 𝑈 on circumference
𝑆𝑟. Since by Lemma 3 and Theorem 1∫︁ 2𝜋

0

|𝑢(𝑟, 𝜙)| 𝑑𝜙 = 2

∫︁ 2𝜋

0

𝑢+(𝑟, 𝜙) 𝑑𝜙− 2𝜋𝑢(𝑟, 𝜙)) 6 2

∫︁ 2𝜋

0

𝑒𝑢(𝑟,𝜙) 𝑑𝜙 + 𝑐1 ln 𝑟 6 𝑐2 ln 𝑟,

where 𝑢+ = max{𝑢, 0}, employing estimates |𝑉 (𝑟)| 6 𝑐3 ln 𝑟, 𝑉 6 0 and Lemma 3, we obtain∫︁ 2𝜋

0

|𝑈(𝑟, 𝜙)| 𝑑𝜙 6
∫︁ 2𝜋

0

(︀
|𝑢(𝑟, 𝜙)| + |𝑉 (𝑟, 𝜙)|

)︀
𝑑𝜙 6 𝑐4 ln 𝑟, 𝑟 > 𝑟1 = const > 𝑅0.

Hence, the expansion of 𝑈 into the Fourier series w.r.t. 𝜙 reads as

𝑈 = 𝑎0 ln 𝑟 + 𝑏0 +
∞∑︁
𝑘=1

𝑟−𝑘(𝑎𝑘 cos 𝑘𝜙 + 𝑏𝑘 sin 𝑘𝜙).

Then in view of the estimate for the Dirichlet integral of 𝑉 in Lemma 1 we obtain∫︁
𝑄(𝑅0,𝑅)

|∇𝑢|2 𝑑𝑥 6 𝑐4 ln𝑅. (14)

We fix 𝜀 > 0 such that 𝐶 + 𝜀 < −2. As 𝑅 > 𝑅2 = 𝑅2(𝜀),

𝑢(𝑅) 6 (𝐶 + 𝜀/2) ln𝑅.

By (14) for each 𝑅 > 2𝑅2 there exists 𝑟1 ∈ (𝑅/2, 𝑅) satisfying∫︁
𝑆𝑟1

|∇𝑢|2 𝑑𝑠 6 2𝑐4
ln𝑅

𝑅
.

Then, by the embedding theorem and Poincaré inequality, for 𝑥 ∈ 𝑆𝑟1 we get the estimate

𝑢(𝑥) − (𝐶 + 𝜀/2) ln𝑅 <(𝑢(𝑥) − 𝑢(𝑟1)) + (𝑢(𝑟1) − (𝐶 + 𝜀/2) ln 𝑟1)

<𝑐5𝑟
1/2
1

(︂∫︁
𝑆𝑟1

|∇𝑢|2 𝑑𝑠
)︂1/2

6 𝑐6 ln1/2𝑅,

𝑢(𝑥) 6(𝐶 + 𝜀) ln𝑅, 𝑅 > 𝑅3(𝜀).

By analogy, the same inequality holds true as 𝑥 ∈ 𝑆𝑟2 for some 𝑟2 ∈ (𝑅, 3𝑅/2) provided 𝑅 is
great enough. In accordance with the maximum principle, this inequality holds true in 𝑄(𝑟1, 𝑟2)
and, in particular, as |𝑥| = 𝑅. Hence, for |𝑥| > 𝑅4(𝜀) we have

𝑢(𝑥) 6 (𝐶 + 𝜀) ln |𝑥|.

It follows that 𝑒𝑢(𝑥) 6 𝑐7|𝑥|−2−𝛿 in 𝑄, 𝛿 > 0. Thus, function 𝑓(𝑥) = 𝑒𝑢(𝑥) satisfies conditions
(6). It yields that function 𝑉 → 𝐶0, |𝑥| → ∞. Hence,

𝑢(𝑥) = 𝑈 + 𝑉 = 𝐶 ln |𝑥| + 𝐶1 + 𝑜(1), 𝐶 < −2 , |𝑥| → ∞.

The proof is complete.

We proceed to the case 𝐶 = −2, i.e., 𝑢(𝑅) ∼ −2 ln𝑅. It is clear that a direct analogue of
theorem 2 does not hold, since by Theorem 1

∫︀
𝑄
𝑒𝑢 𝑑𝑥 < ∞ and therefore, solution can not be

represented as 𝑢(𝑥) = −2 ln |𝑥| + 𝐶1 + 𝑜(1).
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Lemma 4. Let 𝑢(𝑥) be a solution to equation (1) in 𝑄. Then the Dirichlet integral for
function 𝑤(𝑥) = 𝑢(𝑥) − 𝑢(|𝑥|) over 𝑄 is finite:∫︁

𝑄

|∇𝑤|2 𝑑𝑥 < ∞.

Proof. Since ∆(𝑢(|𝑥|)) = ∆𝑢(|𝑥|) [19], function 𝑤 solves the equation

∆𝑤 = ℎ(𝑥) ≡ 𝑒𝑢 − 𝑒𝑢.

We have ∫︁
𝑄(𝑅0,𝑅)

|∇𝑤|2 𝑑𝑥 = −
∫︁
𝑄(𝑅0,𝑅)

ℎ𝑤 𝑑𝑥 +

∫︁
𝑆𝑅

𝑤
𝜕𝑤

𝜕𝜈
𝑑𝑠−

∫︁
𝑆𝑅0

𝑤
𝜕𝑤

𝜕𝜈
𝑑𝑠. (15)

Function ℎ(𝑥) satisfies the estimate like (11):⃒⃒⃒⃒ ∫︁
𝑄(𝑅0,𝑅)

ℎ𝑤 𝑑𝑥

⃒⃒⃒⃒
6

1

2

∫︁
𝑄(𝑅0,𝑅)

|∇𝑤|2 𝑑𝑥 + 𝑐1

∫︁ 𝑅

𝑅0

𝑟

(︂∫︁
𝑆𝑟

|ℎ| 𝑑𝑠
)︂2

𝑑𝑟. (16)

By Lemma 3, ∫︁ ∞

𝑅0

𝑟

(︂∫︁
𝑆𝑟

|ℎ| 𝑑𝑠
)︂2

𝑑𝑟 < ∞. (17)

It follows from (15)–(17) that∫︁
𝑄(𝑅0,𝑅)

|∇𝑤|2 𝑑𝑥 6 2

∫︁
𝑆𝑅

𝑤
𝜕𝑤

𝜕𝜈
𝑑𝑠 + 𝑐2.

Applying Cauchy-Schwarz inequality and taking into consideration that 𝑤(𝑅) = 0 and Poincaré
inequality, we obtain

𝐽(𝑅) ≡
∫︁
𝑄(𝑅0,𝑅)

|∇𝑤|2 𝑑𝑥 6 2

(︂∫︁
𝑆𝑅

𝑤2 𝑑𝑠

)︂1/2(︂∫︁
𝑆𝑅

|∇𝑤|2 𝑑𝑠
)︂1/2

+ 𝑐2

6𝑐3𝑅

∫︁
𝑆𝑅

|∇𝑤|2 𝑑𝑠 + 𝑐2 ≡ 𝑐3𝑅𝐽 ′(𝑅) + 𝑐2.

It implies that either function 𝐽(𝑅) is bounded or it grows faster than ln𝑅. The latter is
impossible by (14). The proof is complete.

Lemma 5. Let 𝑢(𝑥) be a solution to (1) in 𝑄 and 𝑢(𝑅) ∼ −2 ln𝑅, 𝑅 → ∞. Then for each
𝜀 > 0 and each 𝑅 > 𝑅1(𝜀) the estimate

𝑢(𝑅) 6 −2 ln𝑅− 2 ln ln𝑅 + ln 2 + 𝜀

holds true.

Proof. Let us prove first that the inequality

𝑢(𝑅) > −2 ln𝑅− 2 ln ln𝑅 + ln 2 + 𝜀 (18)

can not be true for each 𝑅 > 𝑅1 = const > R0. Suppose the opposite and let (18) is valid for
some 𝜀 > 0 and for each sufficiently great 𝑅. Then∫︁

𝑄(𝑅,∞)

𝑒𝑢 𝑑𝑥 > 2𝜋

∫︁ ∞

𝑅

𝑟𝑒𝑢(𝑟) 𝑑𝑟 > 2𝜋𝑀0

∫︁ ∞

𝑅

𝑑𝑟

𝑟 ln2 𝑟
=

2𝜋𝑀0

ln𝑅
, 𝑀0 = const > 2.

Since 𝑃 (𝑅, 𝑢) → −4𝜋, 𝑅 → ∞, we obtain by taking into consideration (3)

𝑢′(𝑅) =
1

2𝜋𝑅
𝑃 (𝑅, 𝑢) =

1

2𝜋𝑅

(︂
− 4𝜋 −

∫︁
𝑄(𝑅,∞)

𝑒𝑢 𝑑𝑥

)︂
6 − 2

𝑅
− 𝑀0

𝑅 ln𝑅

for each 𝑅 > 𝑅1 that contradicts inequality (18). Hence, (18) can not hold true simultaneously
for each 𝑅 starting from some 𝑅1. It means that the limit inferior of the function 𝑧(𝑅) =
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𝑢(𝑅) + 2 ln𝑅 + 2 ln ln𝑅 − ln 2 as 𝑅 → ∞ is non-positive. In order to prove the statement of
the lemma, it is sufficient that 𝑧(𝑅) has no positive local maxima. If there exists a maximum
point 𝑅, then

0 = 𝑧′(𝑅) = 𝑢′(𝑅) +
2

𝑅
+

2

𝑅 ln𝑅
=

𝑃 (𝑅, 𝑢)

2𝜋𝑅
+

2

𝑅
+

2

𝑅 ln𝑅
.

Then at this point

𝑧′′(𝑅) =𝑢′′(𝑅) − 2

𝑅2
− 2(1 + ln𝑅)

𝑅2 ln2𝑅

=
1

2𝜋

(︂
− 𝑃 (𝑅, 𝑢)

𝑅2
+

𝑃 ′(𝑅, 𝑢)

𝑅

)︂
− 2

𝑅2
− 2(1 + ln𝑅)

𝑅2 ln2𝑅

=
2

𝑅2
+

2

𝑅2 ln𝑅
+

1

2𝜋𝑅

∫︁
𝑆𝑅

𝑒𝑢 𝑑𝑠− 2

𝑅2
− 2(1 + ln𝑅)

𝑅2 ln2𝑅
> 𝑒𝑢(𝑅) − 2

𝑅2 ln2𝑅
> 0.

Hence, 𝑧′′(𝑅) > 0 that is impossible at a maximum. The proof is complete.

Lemma 6. Let 𝑢(𝑥) be a solution to (1) in 𝑄, 𝑢(𝑅) ∼ −2 ln𝑅, 𝑅 → ∞. Then

𝑢(𝑥) = 𝑢(|𝑥|) + 𝑜(1), |𝑥| → ∞.

Proof. We fix arbitrary 𝑅 > 2𝑅0. By Lemma 4, for some 𝑟1 ∈ (𝑅/2, 𝑅) the estimate∫︁
𝑆𝑟1

|∇𝑤|2 𝑑𝑠 6 𝑐1
𝑅

holds true, where 𝑤(𝑥) = 𝑢(𝑥) − 𝑢(|𝑥|). Hence,

sup
𝑆𝑟1

|𝑤| 6 𝑐2𝑟
1/2
1

(︂∫︁
𝑆𝑟1

|∇𝑤|2 𝑑𝑠
)︂1/2

6 𝑐3.

Thus, employing Lemma 5, we obtain that for each 𝑥 ∈ 𝑆𝑟1

𝑢(𝑥) 6 𝑢(|𝑥|) + 𝑐3 6 −2 ln𝑅− 2 ln ln𝑅 + 𝑐4.

In the same way, for some 𝑟2 ∈ (𝑅, 3𝑅/2) we have

𝑢(𝑥) 6 𝑢(|𝑥|) + 𝑐5 6 −2 ln𝑅− 2 ln ln𝑅 + 𝑐6

as 𝑥 ∈ 𝑆𝑟2 . In accordance with the maximum principle, for each 𝑥 ∈ 𝑆𝑅 we obtain

𝑢(𝑥) 6 −2 ln |𝑥| − 2 ln ln |𝑥| + 𝑐7,

hence,

𝑒𝑢(𝑥) 6
𝑐8

|𝑥|2 ln2 |𝑥|
, |∆𝑤| 6 𝑐9

|𝑥|2 ln2 |𝑥|
.

In accordance with De Giorgi estimate and Poincaré inequality we obtain

sup
𝑆𝑅

|𝑤|2 6𝑐10

(︂
𝑅−2

∫︁
𝑄(𝑅/2,3𝑅/2)

𝑤2 𝑑𝑥 + 𝑅2

∫︁
𝑄(𝑅/2,3𝑅/2)

(∆𝑤)2 𝑑𝑥

)︂
6𝑐11

(︂∫︁
𝑄(𝑅/2,3𝑅/2)

|∇𝑤|2 𝑑𝑥 + ln−4𝑅

)︂
→ 0, 𝑅 → ∞.

The proof is complete.

Lemma 7. Let 𝑢(𝑥) be a solution to equation (1) in 𝑄 obeying 𝑢(𝑅) ∼ −2 ln𝑅. Then for
each 𝜀 > 0 and each 𝑅 > 𝑅1(𝜀) the estimate

𝑢(𝑅) > −2 ln𝑅− 2 ln ln𝑅 + ln 2 − 𝜀

holds true.
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Proof. We arguing in the same was as in the proof of Lemma 5. At that, integral
∫︀
𝑆𝑅

𝑒𝑢 𝑑𝑠
should be estimated from above instead of from below and instead of integral Jensen’s inequality
one needs to employ small deviation 𝑢(𝑥) from its mean over circumference 𝑆𝑅 established in
Lemma 6.

We assume that for each 𝑅 > 𝑅1 the inequality

𝑢(𝑅) < −2 ln𝑅− 2 ln ln𝑅 + ln 2 − 𝜀 (19)

holds true. Then for each 𝑅 > 𝑅2 we have 𝑢(𝑥) < −2 ln𝑅− 2 ln ln𝑅 + ln 2 − 𝜀/2,∫︁
𝑄(𝑅,∞)

𝑒𝑢 𝑑𝑥 6 2𝜋𝑀1

∫︁ ∞

𝑅

𝑑𝑟

𝑟 ln2 𝑟
=

2𝜋𝑀1

ln𝑅
, 𝑀1 = const < 2.

It yields

𝑢′(𝑅) =
1

2𝜋𝑅
𝑃 (𝑅, 𝑢) =

1

2𝜋𝑅

(︂
− 4𝜋 −

∫︁
𝑄(𝑅,∞)

𝑒𝑢 𝑑𝑥

)︂
> − 2

𝑅
− 𝑀1

𝑅 ln𝑅

that contradicts to (19). Hence, (19) can not hold true for each 𝑅 > 𝑅1. By analogy with the
proof of Lemma 5 let us show that the function 𝑧(𝑅) = 𝑢(𝑅) + 2 ln𝑅 + 2 ln ln𝑅− ln 2 can not
have negative minima separated uniformly from zero. Indeed, at such minimum we obtain

𝑧′′(𝑅) =
1

2𝜋𝑅

∫︁
𝑆𝑅

𝑒𝑢 𝑑𝑠− 2

𝑅2 ln2𝑅
< 0

for sufficiently great 𝑅 that is impossible at a minimum. The proof is complete.

Thus, Theorem 2 and Lemmata 5–7 imply immediately the main result of the work.

Theorem 3. As |𝑥| → ∞, each solution to equation (1) in 𝑄 behaves either as
1) 𝑢(𝑥) = 𝐶 ln |𝑥| + 𝐶1 + 𝑜(1), 𝐶 = const < −2; 𝐶1 = const;
or as
2) 𝑢(𝑥) = −2 ln |𝑥| − 2 ln ln |𝑥| + ln 2 + 𝑜(1).

Examples of solutions to equation (1) behaving at infinity in accordance with the first or
second options are the solutions 𝑢 = − ln |𝑥|−2 ln

(︀
|𝑥|−1

)︀
+ln 2 and 𝑢 = −2 ln |𝑥|−2 ln ln |𝑥|+

ln 2, respectively.
In conclusion, we mention that since in the multidimensional case (𝑛 > 3) equation (1) has

no solutions in exteriors of a ball [8], the problem on finding the asymptotics for solutions to
(1) in the exterior domains is restricted by the two-dimensional case.
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