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Abstract. In the work we consider nonlinear optimal control problems for semilinear
elliptic equations with discontinuous coefficients and solutions with control in the conjuga-
tion boundary conditions. We construct difference approximations for extremum problems
and obtain the estimates for approximation accuracy with respect to the state.
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1. Introduction

Optimization mathematical models for systems with distributed parameters described by
the equations of mathematical physics (EMP) is the most complicated class of problems in
the optimization theory, especially for nonlinear control problems. As “nonlinear optimization
problems” for EMP we regard those for which the mapping 𝑔 → 𝑢(𝑔) from the set of admissible
controls 𝑈 into the space of states 𝑊 is nonlinear. The nature of specific formulations for
problems in optimal control of distributed systems depends essentially on many factors: how
the control is involved (into the free terms of state equations or into the coefficients of equations);
whether the states of a system are described by linear or nonlinear EMP; what is the structure
of set of admissible controls and target functionals; what is the smoothness of state ensured by
a given apriori smoothness of initial data and of control and so forth. Nowadays linear control
systems with sufficiently smooth initial data and state functions of controls are studied in most
details. A special interest both for practical and theoretical points of view is related with a
physical and mathematical formulation of optimal control problems, in which, due to a nature
of a studied physical process, the states are described by nonlinear EMP with discontinuous
coefficients, and moreover, originally in their physical and mathematical formulation, solutions
to EMP admit discontinuities.

The issue of numerical solving of optimal control problems leads one to the need of ap-
proximating them by simpler problems, namely, by “finite-dimensional problems”. A correctly
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constructed approximation allows one to obtain instructive results of qualitative and quanti-
tative character on the studied process. Basic issues in the approximation problem are “con-
structing” approximations, convergence of approximations w.r.t. state, functional, control,
regularization of approximations [1]–[5]. For systems with distributed parameters, constructing
and studying approximations were mainly performed for linear optimal control problems, and
with sufficiently smooth coefficients in EMP and states. Here actual issues are “constructing”
finite-dimensional approximations and studying their convergence for optimal control problems
described by nonlinear EMP with discontinuous coefficients and solutions (states). We observe
that difference schemes for equations with discontinuous coefficients but continuous flow and
solution (with with perfect-contact matching condition) were constructed and studied in [6], [7]
for EMP with classical solutions of certain smoothness. The convergence of difference schemes
for parabolic equations with discontinuous coefficients and solutions in classical formulation of
the problems with sufficiently smooth solutions were studied in works [8], [9]. We also mention
that optimization issues were not considered in these works.

In the present work, in the field related to [1]–[5], [10]–[13], we consider mathematical models
of nonlinear optimal control problems described by semilinear elliptic equations in inhomoge-
neous anisotropic media with discontinuous coefficients and solutions (states) and imperfect-
contact matching condition [6], [14]. A coefficient in the conjugation boundary condition serves
as a control. We construct difference scheme of extremum problems and establish estimates for
approximations convergence rate w.r.t. state.

In terms of termal physics the formulated problem can be interpreted as a problem on optimal
control by the coefficient in the boundary condition of heat-conducting media conjugation. At
that, this coefficient characterizes the thermal resistance of nonideal contact of heterogeneous
media [6], [14].

2. Formulation of problems

Let Ω =
{︀
𝑟 = (𝑟1, 𝑟2) ∈ R2 : 0 6 𝑟𝛼 6 𝑙𝛼, 𝛼 = 1, 2

}︀
be a rectangle in R2 with boundary

𝜕Ω = Γ. Suppose that domain Ω is paritioned by the line 𝑟1 = 𝜉, where 0 < 𝜉 < 𝑙1 (“internal
contact boundary” 𝑆 =

{︀
𝑟1 = 𝜉, 0 6 𝑟2 6 𝑙2

}︀
, where 0 < 𝜉 < 𝑙1) into the subdomains

Ω1 ≡ Ω− =
{︀

0 < 𝑟1 < 𝜉, 0 < 𝑟2 < 𝑙2} and Ω2 ≡ Ω+ =
{︀
𝜉 < 𝑟1 < 𝑙1, 0 < 𝑟2 < 𝑙2} (into left

and right subdomains Ω1 and Ω2, respectively) with boundaries 𝜕Ω1 ≡ 𝜕Ω− and 𝜕Ω2 ≡ 𝜕Ω+.
Domain Ω is the union of domains Ω1 and Ω2 and internal points of “contact” boundary 𝑆 of
subdomains Ω1 and Ω2, while 𝜕Ω is the external boundary of domain Ω. By Γ𝑘 we denote the
boundaries of domains Ω𝑘 without 𝑆, 𝑘 = 1, 2. So, 𝜕Ω𝑘 = Γ𝑘 ∪ 𝑆, where parts Γ𝑘, 𝑘 = 1, 2,
are open non-empty subsets in 𝜕Ω𝑘, 𝑘 = 1, 2; Γ1 ∪ Γ2 = 𝜕Ω = Γ. By 𝑛𝛼, 𝛼 = 1, 2 we indicate
outward normal to boundary 𝜕Ω𝛼 of domain Ω𝛼, 𝛼 = 1, 2. Let 𝑛 = 𝑛(𝑥) be the unit normal to
𝑆 at a point 𝑥 ∈ 𝑆 oriented, for instance, so that normal 𝑛 is outward for 𝑆 w.r.t. domain Ω1,
i.e., normal 𝑛 is directed inside domain Ω2. In what follows, while formulating boundary value
problems for the states of control processes, 𝑆 stands for the line along which the coefficients
and solutions of boundary value problems are discontinuous, while inside domains Ω1 and Ω2

they possess certain smoothness.
Suppose that the conditions of a controlled physical process allow us to model it in the

domain Ω = Ω1 ∪ Ω2 ∪ 𝑆 formed by two parts (subdomains) Ω1 and Ω2 and partitioned by
internal boundary 𝑆 and this process is described by the following Dirichlet problem for the
semilinear elliptic equations with discontinuous coefficients and solutions:

To find a function 𝑢(𝑥) defined on Ω as 𝑢(𝑥) = 𝑢1(𝑥), 𝑥 ∈ Ω1 ≡ Ω−, 𝑢(𝑥) = 𝑢2(𝑥),
𝑥 ∈ Ω2 = Ω+, where components 𝑢𝑘, 𝑘 = 1, 2, satisfy the conditions:
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1) functions 𝑢𝑘(𝑥), 𝑘 = 1, 2, defined on Ω𝑘 = Ω𝑘 ∪ 𝜕Ω𝑘, 𝑘 = 1, 2, satisfy the equations

𝐿𝑘 𝑢𝑘 = −
2∑︁

𝛼=1

𝜕

𝜕𝑥𝛼

(︂
𝑘(𝑘)𝛼 (𝑥)

𝜕𝑢𝑘
𝜕𝑥𝛼

)︂
+ 𝑑𝑘(𝑥)𝑞𝑘(𝑢𝑘) = 𝑓𝑘(𝑥), in Ω𝑘, 𝑘 = 1, 2, (1a)

and the conditions
𝑢𝑘(𝑥) = 0, 𝑥 ∈ Γ𝑘, 𝑘 = 1, 2, (1b)

where Γ𝑘 = 𝜕Ω𝑘 ∖ 𝑆.
2) Unknown functions 𝑢𝑘(𝑥), 𝑘 = 1, 2, obey also additional conditions on 𝑆 which is the bound-
ary of discontinuity of the coefficients and solution and these conditions allow one to “glue”
solutions 𝑢1(𝑥) and 𝑢2(𝑥) along contact boundary 𝑆 of domains Ω1 and Ω2. These conditions
read as follows

𝐺(𝑥) = 𝑘
(1)
1 (𝑥)

𝜕𝑢1
𝜕𝑥1

= 𝑘
(2)
1 (𝑥)

𝜕𝑢2
𝜕𝑥1

= 𝜃(𝑥2) (𝑢2(𝑥) − 𝑢1(𝑥)) , 𝑥 ∈ 𝑆. (1c)

If we introduce the functions

𝑢(𝑥) =

{︂
𝑢1(𝑥), 𝑥 ∈ Ω1;

𝑢2(𝑥), 𝑥 ∈ Ω2,

𝑞(𝜉) =

{︂
𝑞1(𝜉1), 𝜉1 ∈ R;

𝑞2(𝜉2), 𝜉2 ∈ R,

𝑘𝛼(𝑥), 𝑑(𝑥), 𝑓(𝑥) =

{︃
𝑘(1)𝛼 (𝑥), 𝑑1(𝑥), 𝑓1(𝑥), 𝑥 ∈ Ω1;

𝑘(2)𝛼 (𝑥), 𝑑2(𝑥), 𝑓2(𝑥), 𝑥 ∈ Ω2,
𝛼 = 1, 2,

problem (1)=(1a)+(1b)+(1c) can be rewritten in a more compact form:
To find a function 𝑢(𝑥) defined on Ω and satisfying the equation

𝐿𝑢(𝑥) = −
2∑︁

𝛼=1

𝜕

𝜕𝑥𝛼

(︂
𝑘𝛼(𝑥)

𝜕𝑢

𝜕𝑥𝛼

)︂
+ 𝑑(𝑥)𝑞(𝑢) = 𝑓(𝑥), 𝑥 ∈ Ω1 ∪ Ω2,

and conditions 𝑢(𝑥) = 0, 𝑥 ∈ 𝜕Ω = Γ1 ∪ Γ2,[︀
𝑘1(𝑥)

𝜕𝑢

𝜕𝑥1

]︀
= 0, 𝐺(𝑥) =

(︀
𝑘1(𝑥)

𝜕𝑢

𝜕𝑥1

)︀
= 𝜃(𝑥2)[𝑢], 𝑥 ∈ 𝑆.

Here
[︀
𝑢
]︀

= 𝑢2(𝑥) − 𝑢1(𝑥) is the jump of function 𝑢(𝑥) on 𝑆; 𝑘𝛼(𝑥), 𝛼 = 1, 2, 𝑑(𝑥), 𝑓(𝑥) are
known functions defined in different ways in Ω1 and Ω2 and having a jump discontinuity on
𝑆; 𝑞𝛼(𝜉𝛼), 𝛼 = 1, 2, are given functions defined as 𝜉𝛼 ∈ R, 𝛼 = 1, 2; 𝜃(𝑥) ≡ 𝑔(𝑥), 𝑥 ∈ 𝑆, is a
control. For the described functions, we assume:

𝑘𝛼(𝑥) ∈ 𝑊 1
∞(Ω1)×𝑊 1

∞(Ω2), 𝛼 = 1, 2, 𝑑(𝑥) ∈ 𝐿∞(Ω1)×𝐿∞(Ω2), 𝑓(𝑥) ∈ 𝐿2(Ω1)×𝐿2(Ω2);

0 < 𝜈 6 𝑘𝛼(𝑥) 6 𝜈, 𝛼 = 1, 2, 0 6 𝑑0 6 𝑑(𝑥) 6 𝑑0, 𝑥 ∈ Ω1 ∪ Ω2; 𝜈, 𝜈, 𝑑0, 𝑑0 are given constants;
functions 𝑞𝛼(𝜉𝛼) are defined on R with values in R and satisfy the conditions: 𝑞𝛼(0) = 0,
0 < 𝑞0 6

(︀
𝑞𝛼(𝜉𝛼) − 𝑞𝛼(𝜉𝛼)

)︀
/
(︀
𝜉𝛼 − 𝜉𝛼

)︀
6 𝐿 <∞ for each 𝜉𝛼, 𝜉𝛼 ∈ R, 𝜉𝛼 ̸= 𝜉𝛼, 𝛼 = 1, 2.

We introduce the set of admissible controls

𝑈 =
{︀
𝑔(𝑥) = 𝜃(𝑥) ∈ 𝐿2(𝑆) = 𝐻 : 0 < 𝑔0 6 𝑔(𝑥) 6 𝑔0 a.e. on 𝑆

}︀
, (2)

where 𝐿2(𝑆) = 𝐻 is the space of controls, 𝑈 ⊂ 𝐻, 𝑔0, 𝑔0 are given numbers.
We define a target functional 𝐽 : 𝑈 → R1 as

𝑔 → 𝐽(𝑔) =

∫︁
Ω1

⃒⃒⃒
𝑢(𝑟1, 𝑟2; 𝑔) − 𝑢

(1)
0 (𝑟)

⃒⃒⃒2
𝑑Ω1 = 𝐼(𝑢(𝑟; 𝑔)), (3)
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where 𝑢
(1)
0 ∈ 𝑊 1

2 (Ω1) is a given function.
The optimal control problem is to find a control 𝑔* ∈ 𝑈 minimizing functional 𝑔 → 𝐽(𝑔) on

set 𝑈 ⊂ 𝐻, namely, on solutions 𝑢(𝑟) = 𝑢(𝑟; 𝑔) to problem (1) obeying all admissible controls
𝑔 = 𝜃 ∈ 𝑈 , we need to minimize functional (3).

We introduce the space 𝑉 (Ω(1,2)), Ω(1,2) = Ω1∪Ω2, of pairs of functions 𝑢(𝑥) = (𝑢1(𝑥), 𝑢2(𝑥)):
𝑉 (Ω(1,2)) =

{︀
𝑢(𝑥) = (𝑢1(𝑥), 𝑢2(𝑥)) ∈ 𝑊 1

2 (Ω1) ×𝑊 1
2 (Ω2)

}︀
, where 𝑊 1

2 (Ω𝑘), 𝑘 = 1, 2, are Sobolev
spaces of functions defined in subdomains Ω𝑘 with boundaries 𝜕Ω𝑘, 𝑘 = 1, 2, respectively, and
with the norms [15]–[19]:

‖𝑢𝑘‖2𝑊 1
2 (Ω𝑘)

=

∫︁
Ω𝑘

[︂ 2∑︁
𝛼=1

(︂
𝜕𝑢𝑘
𝜕𝑥𝛼

)︂2

+ 𝑢2𝑘

]︂
𝑑Ω𝑘, 𝑘 = 1, 2.

Space 𝑉 = 𝑉 (Ω(1,2)) equipped with the scalar product (𝑢, 𝜗)𝑉 =
2∑︁

𝑘=1

(𝑢𝑘, 𝜗𝑘)𝑊 1
2 (Ω𝑘) and the

norm ‖𝑢‖2𝑉 =
2∑︁

𝑘=1

‖𝑢𝑘‖2𝑊 1
2 (Ω𝑘)

is a Hilbert one.

One can show that in Hilbert space 𝑉 (Ω(1,2)) one can introduce the equivalent norm

‖𝑢‖2* =
2∑︁

𝑘=1

∫︁
Ω𝑘

2∑︁
𝛼=1

(︂
𝜕𝑢𝑘
𝜕𝑥𝛼

)︂2

𝑑Ω𝑘 +
2∑︁

𝑘=1

∫︁
Γ𝑘

𝑢2𝑘 𝑑Γ𝑘 +

∫︁
𝑆

[𝑢]2 𝑑𝑆,

where
[︀
𝑢
]︀

= 𝑢2(𝑥) − 𝑢1(𝑥) = 𝑢+(𝑥) − 𝑢−(𝑥) is the jump of function 𝑢(𝑥) on 𝑆. Here 𝑢2(𝑥) =
𝑢+(𝑥), 𝑥 ∈ 𝑆, and 𝑢1(𝑥) = 𝑢−(𝑥), 𝑥 ∈ 𝑆, are the traces of function 𝑢(𝑥) on 𝑆 while approaching
from Ω2 = Ω+ and from Ω1 = Ω−, respectively. It it clear that the condition 𝑢(𝑥) ∈ 𝑉 (Ω(1,2))
implies the boundedness for the embedding of spaces 𝑊 1

2 (Ω𝑘), 𝑘 = 1, 2, into spaces 𝐿2(𝜕Ω𝑘),
𝑘 = 1, 2, since Ω1 and Ω2 are domains with Lipschitz boundaries 𝜕Ω1 and 𝜕Ω2. In particular,
the condition 𝑢(𝑥) ∈ 𝑉 (Ω(1,2)) yields [𝑢(𝑥)] ∈ 𝐿2(𝑆), since here the theorem on traces [15]–[19]
holds true for each of sides 𝑆+, 𝑆− of the contact boundary 𝑆 (the restriction operator from
𝑊 1

2 (Ω±) into 𝐿2(𝑆) is continuous). We also observe that applying the theorem on traces to Ω1

and Ω2 allows us to define two traces for each function 𝑢(𝑥) ∈ 𝑉 (Ω(1,2)) by means of restriction
operators on 𝑆±. On the other hand, if 𝑢 ∈ 𝑉 (Ω(1,2)), its traces on different sides of 𝑆 (while
approaching from Ω1 and from Ω2) are different in the general situation. The restrictions of
function 𝑢(𝑥) on domains Ω𝑘, 𝑘 = 1, 2: 𝑢|Ω𝑘

,𝑘 = 1, 2, belong respectively to spaces 𝑊 1
2 (Ω𝑘),

𝑘 = 1, 2, but function 𝑢 is not an element of space 𝑊 1
2 (Ω) since it has a jump on set 𝑆 while

passing from Ω1 into Ω2: 𝛿(𝑥) = 𝑢2(𝑥) − 𝑢1(𝑥) = 𝑢+(𝑥) − 𝑢−(𝑥), 𝑥 ∈ 𝑆. We note that the
criterion of belonging 𝜗(𝑥) ∈ 𝑊 1

2 (Ω) = 𝑊 1
2 (Ω1∪Ω2∪𝑆) is the gluing condition 𝜗𝑘(𝑥) ∈ 𝑊 1

2 (Ω𝑘),
𝑘 = 1, 2; 𝜗1(𝑥)|𝑆 = 𝜗2(𝑥)|𝑆 (see, for instance, [19]).

Since Ω𝑘 are domains with Lipshitz boundaries 𝜕Ω𝑘, 𝑘 = 1, 2, and Γ1 and Γ2 are respectively
their open parts (pieces of boundaries 𝜕Ω1 and 𝜕Ω2) of positive measures mes Γ𝑘 > 0, 𝑘 = 1, 2,
then [20] there exist some constants 𝐶1 and 𝐶2 depending only on domains Ω𝑘, 𝑘 = 1, 2, and
pieces Γ1 and Γ2, respectively, so that for each function 𝑢𝑘(𝑥) ∈ 𝑊 1

2 (Ω𝑘), 𝑘 = 1, 2, the relations

‖𝑢𝑘‖2𝑊 1
2 (Ω𝑘)

6 𝐶2
𝑘

[︂∫︁
Ω𝑘

2∑︁
𝛼=1

(︂
𝜕𝑢𝑘
𝜕𝑥𝛼

)︂2

𝑑Ω𝑘 +

∫︁
Γ𝑘

𝑢2𝑘𝑑Γ𝑘

]︂
, 𝑘 = 1, 2, (4)

hold true. Since for considered domains Ω𝑘, 𝑘 = 1, 2, the embeddings of spaces 𝑊 1
2 (Ω𝑘), 𝑘 =

1, 2, into spaces 𝐿2(𝜕Ω𝑘), 𝑘 = 1, 2, are bounded, there exist constants 𝐶3 and 𝐶4 independent
of function 𝑢𝑘(𝑥) such that for each function 𝑢𝑘(𝑥) ∈ 𝑊 1

2 (Ω𝑘) the estimates

‖𝑢𝑘‖2𝐿2(𝜕Ω𝑘)
6 𝐶2

𝑘+2‖𝑢𝑘‖2𝑊 1
2 (Ω𝑘)

, 𝑘 = 1, 2,
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hold true [16], [17] and these estimates are implied by the theorems on embedding of 𝑊 1
2 (Ω𝑘)

into 𝐿2(𝜕Ω𝑘).

Let
∘
Γ𝑘 be a part of 𝜕Ω𝑘. By 𝑊 1

2

(︁
Ω𝑘;

∘
Γ𝑘

)︁
we denote the closed subspace of space 𝑊 1

2 (Ω𝑘),

whose dense set is that of functions in 𝐶1(Ω𝑘) vanishing in the vicinity of
∘
Γ𝑘⊂ 𝜕Ω𝑘, 𝑘 =

1, 2. As
∘
Γ𝑘, we choose some pieces of boundary 𝜕Ω𝑘; of course, we do not consider the case

when one of pieces
∘
Γ𝑘 degenerates to a point; 𝑊 1

2

(︁
Ω𝑘;

∘
Γ𝑘

)︁
coincides with 𝑊 1

2 (Ω𝑘) as
∘
Γ𝑘= ∅;

𝑊 1
2

(︁
Ω𝑘;

∘
Γ𝑘

)︁
=

0

𝑊 1
2 (Ω𝑘) as

∘
Γ𝑘= 𝜕Ω𝑘. We note that for elements 𝑢𝑘(𝑥) ∈ 𝑊 1

2

(︁
Ω𝑘;

∘
Γ𝑘

)︁
the

inequality ∫︁
Ω𝑘

𝑢2𝑘(𝑥)𝑑Ω𝑘 6 𝐶𝑘+4(Ω𝑘,
∘
Γ𝑘)

∫︁
Ω𝑘

2∑︁
𝛼=1

(︀𝜕𝑢𝑘
𝜕𝑥𝛼

)︀2
𝑑Ω𝑘, 𝑘 = 1, 2,

holds true [16] with a constant 𝐶𝑘+4(Ω𝑘,
∘
Γ𝑘) depending only on Ω𝑘 and

∘
Γ𝑘. At that, the area

of piece
∘
Γ𝑘 of surface 𝜕Ω𝑘 must be positive: mes

∘
Γ𝑘> 0.

We introduce the space
∘
𝑉 Γ1,Γ2 (Ω(1,2)) of pairs of functions 𝑢(𝑥) = (𝑢1(𝑥), 𝑢2(𝑥)):

∘
𝑉 Γ1,Γ2

(Ω(1,2)) = {𝑢(𝑥) = (𝑢1(𝑥), 𝑢2(𝑥)) ∈ 𝑊 1
2 (Ω1; Γ1) ×𝑊 1

2 (Ω2; Γ2)} with the norm

‖𝑢‖2∘
𝑉 Γ1,Γ2

=
2∑︁

𝑘=1

∫︁
Ω𝑘

2∑︁
𝛼=1

(︂
𝜕𝑢𝑘
𝜕𝑥𝛼

)︂2

𝑑Ω𝑘 +

∫︁
𝑆

[𝑢]2 𝑑𝑆.

By a solution to direct problem (1) for a fixed control 𝑔(𝑥) = 𝜃(𝑥) ∈ 𝑈 we mean a function

𝑢(𝑥) ≡ 𝑢(𝑥; 𝑔) ∈
∘
𝑉 Γ1,Γ2 (Ω(1,2)) satisfying the identity

𝑄(𝑢, 𝜗) =

∫︁
Ω1∪Ω2

[︂ 2∑︁
𝛼=1

𝑘𝛼(𝑥)
𝜕𝑢

𝜕𝑥𝛼

𝜕𝜗

𝜕𝑥𝛼
+ 𝑑(𝑥) 𝑞(𝑢)𝜗

]︂
𝑑Ω0 +

∫︁
𝑆

𝜃(𝑥)[𝑢][𝜗]𝑑𝑆

=

∫︁
Ω1∪Ω2

𝑓(𝑥)𝜗𝑑Ω0 = 𝑙(𝜗).

(5)

for each 𝜗 ∈
∘
𝑉 Γ1,Γ2 (Ω(1,2)).

The following theorem holds true.

Theorem 1. For each 𝑔 ∈ 𝑈 there exists the unique generalized solution 𝑢(𝑥) =

𝑢(𝑥; 𝑔) ∈
∘
𝑉 Γ1,Γ2 (Ω(1,2)) to problem (1) determined by integral identity (5). At that,

‖𝑢(𝑥, 𝑔)‖ ∘
𝑉 Γ1,Γ2

6 𝐶11

2∑︁
𝑘=1

‖𝑓𝑘(𝑥)‖𝐿2(Ω𝑘)
= 𝐶12, ∀𝑔 ∈ 𝑈, (6)

where 𝐶11 = 𝐶𝑜𝑛𝑠𝑡 > 0.

Proof. The proof of the theorem is based on the theory of monotone operators [17], [18], [21]. At

that, one should employ substantially above introduced Hilbert spaces 𝑉 (Ω(1,2)),
∘
𝑉 Γ1Γ2 (Ω(1,2))

and the equivalent norms as well as the inequalities.
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We begin with identity (5). It is easy to make sure that the chain of inequalities

|𝑄(𝑢, 𝜗)| 6
∫︁

Ω1∪Ω2

[︂
𝜈

2∑︁
𝛼=1

⃒⃒⃒⃒
𝜕𝑢

𝜕𝑥𝛼

⃒⃒⃒⃒ ⃒⃒⃒⃒
𝜕𝜗

𝜕𝑥𝛼

⃒⃒⃒⃒
+ 𝑑0𝐿𝑞 |𝑢| |𝜗|

]︂
𝑑Ω0 + 𝜃0

∫︁
𝑆

⃒⃒[︀
𝑢
]︀⃒⃒ ⃒⃒

[𝜗]
⃒⃒
𝑑𝑆

6max{𝜈, 𝑑0𝐿𝑞, 𝑔0}
[︂ 2∑︁
𝛼=1

∫︁
Ω1∪Ω2

⃒⃒⃒⃒
𝜕𝑢

𝜕𝑥𝛼

⃒⃒⃒⃒2
𝑑Ω0 +

∫︁
Ω1∪Ω2

𝑢2𝑑Ω0 +

∫︁
𝑆

[︀
𝑢
]︀2
𝑑𝑆

]︂1/2

·
[︂ 2∑︁
𝛼=1

∫︁
Ω1∪Ω2

⃒⃒⃒⃒
𝜕𝜗

𝜕𝑥𝛼

⃒⃒⃒⃒2
𝑑Ω0 +

∫︁
Ω1∪Ω2

𝜗2𝑑Ω0 +

∫︁
𝑆

[︀
𝜗
]︀2
𝑑𝑆

]︂1/2
(7)

hold true. Employing inequality (4), one can easily establish the estimate

2∑︁
𝛼=1

∫︁
Ω1∪Ω2

⃒⃒⃒⃒
𝜕𝑢

𝜕𝑥𝛼

⃒⃒⃒⃒2
𝑑Ω0 +

∫︁
Ω1∪Ω2

𝑢2𝑑Ω0 +

∫︁
𝑆

[︀
𝑢
]︀2
𝑑𝑆 =

2∑︁
𝑘=1

‖𝑢𝑘‖2𝑊 1
2 (Ω𝑘)

+

∫︁
𝑆

[︀
𝑢
]︀2
𝑑𝑆

6𝐶2
7

[︂ 2∑︁
𝑘=1

∫︁
Ω𝑘

2∑︁
𝛼=1

⃒⃒⃒⃒
𝜕𝑢𝑘
𝜕𝑥𝛼

⃒⃒⃒⃒2
𝑑Ω𝑘 +

2∑︁
𝑘=1

∫︁
Γ𝑘

𝑢2𝑘𝑑Γ𝑘 +

∫︁
𝑆

[︀
𝑢
]︀2
𝑑𝑆

]︂
= 𝐶2

7‖𝑢‖2*,
(8)

where 𝐶2
7 = max{1, max(𝐶2

1 , 𝐶
2
2}. Taking into consideration (8) and since 𝑢𝑘(𝑥) = 0 on Γ𝑘,

𝑘 = 1, 2, by (7) we obtain the estimate

|𝑄(𝑢, 𝜗)| 6 max{𝜈, 𝑑0𝐿𝑞, 𝑔0}𝐶2
7‖𝑢‖ ∘

𝑉 Γ1,Γ2

‖𝜗‖ ∘
𝑉 Γ1,Γ2

, ∀𝑢, 𝜗 ∈
∘
𝑉 Γ1,Γ2 .

Hence, for each fixed 𝑢 ∈
∘
𝑉 Γ1,Γ2 form 𝑄(𝑢, 𝜗) defines a linear functional in Hilbert space

∘
𝑉 Γ1,Γ2

boundary w.r.t. 𝜗 ∈
∘
𝑉 Γ1,Γ2 depending on function 𝑢 ∈

∘
𝑉 Γ1,Γ2 . We indicate this functional as

Φ = 𝐴𝑢 ∈
∘
𝑉 Γ1,Γ2 . It is defined by the relation

⟨Φ, 𝜗⟩ = ⟨𝐴𝑢, 𝜗⟩ = (𝐴𝑢, 𝜗) ∘
𝑉 Γ1,Γ2

= 𝑄(𝑢, 𝜗), ∀𝜗 ∈
∘
𝑉 Γ1,Γ2 (9)

where operator 𝐴 :
∘
𝑉 Γ1,Γ2→

∘
𝑉 Γ1,Γ2 maps each element 𝑢 ∈

∘
𝑉 Γ1,Γ2 into a linear continuous func-

tional Φ = 𝐴𝑢 in space
∘
𝑉 Γ1,Γ2 so that the value of functional Φ = 𝐴𝑢 on element 𝜗 ∈

∘
𝑉 Γ1,Γ2 is

defined by relation (9).
Let us consider the right hand side of identity (5). We let ⟨𝐹, 𝜗⟩ = 𝑙(𝜗). It is easy to prove

that the estimate

|⟨𝐹, 𝜗⟩| = |𝑙(𝜗)| 6
2∑︁

𝑘=1

‖𝑓𝑘‖𝐿2(Ω𝑘) · ‖𝜗𝑘‖𝐿2(Ω𝑘) 6 𝐶8

2∑︁
𝑘=1

‖𝑓𝑘‖𝐿2(Ω𝑘) · ‖𝜗𝑘‖ ∘
𝑉 Γ1,Γ2

(10)

is valid, where 𝐶8 =
√

2 max{𝐶1, 𝐶2}. Thus, functional 𝐹 defined by means of the formula

⟨𝐹, 𝜗⟩ = 𝑙(𝜗) is bounded on
∘
𝑉 Γ1,Γ2 and moreover, this functional is linear and therefore,

𝐹 ∈
∘
𝑉 Γ1,Γ2 . Thus, identity (5) casts into the form ⟨𝐴𝑢, 𝜗⟩ = ⟨𝐹, 𝜗⟩, ∀𝜗 ∈

∘
𝑉 Γ1,Γ2 , which by

the arbitrariness of 𝜗 ∈
∘
𝑉 Γ1,Γ2 yields the equation 𝐴𝑢 = 𝐹 .

Let us show that there exists the unique solution 𝑢 ∈
∘
𝑉 Γ1,Γ2 satisfying identity (5). Thanks to

Browder theorem [21], it is sufficient to prove the continuity and strong monotonicity for oper-
ator 𝐴. It is easy to make sure that the estimate ⟨𝐴𝑢− 𝐴𝜗, 𝑢− 𝜗⟩ > min{𝜈, 𝑔0}‖𝑢− 𝜗‖2∘

𝑉 Γ1,Γ2

,

∀𝑢, 𝜗 ∈
∘
𝑉 Γ1,Γ2 , holds true. It means that operator 𝐴 :

∘
𝑉 Γ1,Γ2→

∘
𝑉 Γ1,Γ2 is strongly mono-

tone. Let us prove the continuity, namely, Lipschitz continuity for operator 𝐴. It is easy
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to make sure that the estimate
⃒⃒
⟨𝐴𝑢− 𝐴𝜗, 𝜂⟩

⃒⃒
6 𝐶9‖𝑢 − 𝜗‖ ∘

𝑉 Γ1,Γ2

‖𝜂‖ ∘
𝑉 Γ1,Γ2

, ∀𝑢, 𝜗, 𝜂 ∈
∘
𝑉 Γ1,Γ2 ,

𝐶9 = max{𝜈, 𝑑0𝐿𝑞, 𝑔0}𝐶2
7 , is valid. Hence,⃦⃦

𝐴𝑢− 𝐴𝜗
⃦⃦

∘
𝑉 Γ1,Γ2

= sup
𝜂 ̸=0

⃒⃒
⟨𝐴𝑢− 𝐴𝜗, 𝜂⟩

⃒⃒
‖𝜂‖ ∘

𝑉 Γ1,Γ2

6 𝐶9‖𝑢− 𝜗‖ ∘
𝑉 Γ1,Γ2

, ∀𝑢, 𝜗 ∈
∘
𝑉 Γ1,Γ2 ,

i.e., operator 𝐴 is Lipschitz continuous. Hence, the hypothesis of Browder theorem is satisfied,
and thus, the equation 𝐴𝑢 = 𝐹 is uniquely solvable.

Employing the coercitivity (
∘
𝑉 Γ1,Γ2 ellipticity) of form 𝑄(𝑢, 𝜗) on

∘
𝑉 Γ1,Γ2 : 𝑄(𝑢, 𝑢) >

𝐶10‖𝑢‖2∘
𝑉 Γ1,Γ2

, ∀𝑢 ∈
∘
𝑉 Γ1,Γ2 , 𝐶10 = min{𝜈, 𝑔0}, and estimate (10), we obtain 𝐶10‖𝑢‖2∘

𝑉 Γ1,Γ2

6

𝑄(𝑢, 𝑢) = 𝑙(𝑢) 6 𝐶8

2∑︀
𝑘=1

‖𝑓𝑘‖𝐿2(Ω𝑘) · ‖𝑢‖ ∘
𝑉 Γ1,Γ2

. It yields estimate (6) with constant 𝐶11 =

𝐶8 · 𝐶−1
10 .

In what follows, while studying the convergence of difference approximations w.r.t. state
for optimal control problems, we make the following assumption for the smoothness similar to
that made in work [22] in studying difference schemes for a problem with the same conjugation
conditions. We assume that the solution to boundary value problem (1) belongs to 𝑊 2

2 (Ω1) ×

𝑊 2
2 (Ω2), namely, to space

∘

𝑉 Γ1,Γ2 (Ω(1,2)) =
∘
𝑉 Γ1,Γ2 (Ω(1,2))∩

{︀
𝑢 = (𝑢1, 𝑢2) ∈ 𝑊 2

2 (Ω1)×𝑊 2
2 (Ω2)

}︀
,

and for each fixed control 𝑔 ∈ 𝑈 the estimate

2∑︁
𝑘=1

‖𝑢𝑘(𝑥, 𝑔)‖𝑊 2
2 (Ω𝑘) 6𝑀

2∑︁
𝑘=1

‖𝑓𝑘(𝑥)‖𝐿2(Ω𝑘), ∀𝑔 ∈ 𝑈, where 𝑀 = 𝐶𝑜𝑛𝑠𝑡 > 0,

is valid.

Remark 1. Hereinafter by 𝐶, 𝐶𝑘, 𝑘 = 1, 7, 𝑀 we denote various positive constants inde-
pendent of solution 𝑢(𝑟) ≡ 𝑢(𝑟; 𝑔) and control 𝑔 ∈ 𝑈 (of grid solution 𝑦(𝑥) ≡ 𝑦(𝑥; Φℎ) and grid
control Φℎ ∈ 𝑈ℎ).

3. Difference approximation of optimization problems. Apriori estimates
for errors and convergence rate of grid extremum problem w.r.t. state

Because of numerical solving of optimal control problems an essential interest is arisen by the
issue on approximations of infinite-dimensional optimization problems (1)–(3) by a sequence
of finite-dimensional optimal control problems. In what follows we construct approximations
for problems on the base of the grid method (see [5], [6]) and study the convergence of these
approximation w.r.t. state as the step ℎ of the discretization mesh tends to zero. To approxi-
mate problems (1)–(3), we shall employ some grids on [0, 𝑙𝛼], 𝛼 = 1, 2, and in Ω. We introduce

one-dimensional non-uniform grids w.r.t. 𝑥1 and 𝑥2: ̂︀𝜔𝛼 =
{︀
𝑥
(𝑖𝛼)
𝛼 ∈ [0, 𝑙𝛼] : 𝑖𝛼 = 0, 𝑁𝛼, 𝑥

(0)
𝛼 =

0, 𝑥
(𝑁𝛼)
𝛼 = 𝑙𝛼, ℎ𝛼𝑖𝛼 = 𝑥

(𝑖𝛼)
𝛼 −𝑥(𝑖𝛼−1)

𝛼 , 𝑖𝛼 = 1, 𝑁𝛼

}︀
, 𝛼 = 1, 2, as well as the non-uniform grid w.r.t.

𝑥1 and 𝑥2 in the domain Ω = Ω1 ∪ Ω2: ̂︀𝜔 = ̂︀𝜔1 × ̂︀𝜔2. It is clear that one can always construct
grid ̂︀𝜔1 on [0, 𝑙1] so that the point 𝑥1 = 𝜉 is its node.

While solving practical problems, it is reasonable to choose uniform steps ℎ
(1)
1 and ℎ

(2)
1 in

domains Ω1 and Ω2, respectively, and basing on the position of the point 𝑥1 = 𝜉, the number

of nodes should be fixed by the assumption ℎ
(1)
1 ≈ ℎ

(2)
1 . We let 𝑥

(𝑖1)
1 − 𝑥

(𝑖1−1)
1 = ℎ1, 𝑖1 = 1, 𝑁1

and 𝑥
(𝑖2)
2 − 𝑥

(𝑖2−1)
2 = ℎ2, 𝑖2 = 1, 𝑁2. Value 𝑥1 at the point 𝑥1 = 𝜉 is denoted by 𝑥𝜉, and the

corresponding index of node is indicated by 𝑁1𝜉, 1 < 𝑁1𝜉 < 𝑁1 − 1.
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We introduce the grids:

𝜔
(1)
1 =

{︀
𝑥
(𝑖1)
1 = 𝑖1ℎ1 ∈ [0, 𝜉] : 𝑖1 = 0, 𝑁1𝜉, 𝑁1𝜉ℎ1 = 𝜉

}︀
,

𝜔
(2)
1 =

{︀
𝑥
(𝑖1)
1 = 𝑖1ℎ1 ∈ [𝜉, 𝑙1] : 𝑖1 = 𝑁1𝜉, 𝑁1, 𝑁1𝜉ℎ1 = 𝑙1

}︀
,

𝜔
(1)
1 = 𝜔

(1)
1 ∖ {𝑥1 = 0, 𝑥1 = 𝜉}, 𝜔

(2)
1 = 𝜔

(2)
1 ∖ {𝑥1 = 𝜉, 𝑥1 = 𝑙1};

𝜔2 = {𝑥(𝑖2)2 = 𝑖2ℎ2 ∈ [0, 𝑙2] : 𝑖2 = 0, 𝑁2, 𝑁2ℎ2 = 𝑙2}, 𝜔2 = 𝜔2 ∖ {𝑥2 = 0, 𝑥2 = 𝑙2};

𝜔1 = 𝜔
(1)
1 ∪ 𝜔(2)

1 ; 𝜔1 = 𝜔
(1)
1 ∪ 𝜔(2)

1 ; 𝜔(1) = 𝜔
(1)
1 × 𝜔2;

𝜔(2) = 𝜔
(2)
1 × 𝜔2; 𝜔(1) = 𝜔

(1)
1 × 𝜔2; 𝜔(2) = 𝜔

(2)
1 × 𝜔2;

𝜔 ≡ 𝜔(1,2) = 𝜔(1) ∪ 𝜔(2) =
(︀
𝜔
(1)
1 ∪ 𝜔(2)

1

)︀
× 𝜔2

=
{︀
𝑥
(𝑖1)
1 = 𝑖1ℎ1, 𝑖1 = 0, 𝑁1, 𝑁1𝜉ℎ1 = 𝜉, (𝑁1 −𝑁1𝜉)ℎ1 = 𝑙1 − 𝜉, 1 < 𝑁1𝜉 < 𝑁1 − 1

}︀
× 𝜔2,

𝜔 ≡ 𝜔(1,2) = 𝜔(1) × 𝜔(2); 𝜔
(1)+
1 = 𝜔

(1)
1 ∩ (0, 𝜉], 𝜔

(1)−
1 = 𝜔

(1)
1 ∩ [0, 𝜉),

𝜔
(2)−
1 = 𝜔

(2)
1 ∩ [𝜉, 𝑙1), 𝜔(1)(+1) = 𝜔

(1)+
1 × 𝜔2;

𝛾𝑆 =
{︀
𝑥1 = 𝜉, 𝑥2 = ℎ2, 2ℎ2, . . . , (𝑁2 − 1)ℎ2

}︀
=

{︀
𝑥1 = 𝜉, 𝑥

(𝑖2)
2 = 𝑖2ℎ2, 𝑖2 = 1, 𝑁2 − 1

}︀
;

𝛾(𝑘) = 𝜕𝜔(𝑘) ∖ 𝛾𝑆; 𝜔
(1)+
1 × 𝜔2 = 𝜔(1) ∪ 𝛾𝑆 = 𝜔(1) ∖ 𝛾(1);

and 𝜕𝜔(𝑘) = 𝜔(𝑘) ∖ 𝜔(𝑘) is the set of boundary nodes of grids 𝜔(𝑘), 𝑘 = 1, 2. For studying
convergence of difference approximations we shall make use of scalar products, norms, and
semi-norms of grid functions defined on various grids. The set of grid functions 𝑦1(𝑥) defined

on the grid 𝜔(1) = 𝜔
(1)
1 ×𝜔2 ⊂ Ω1 ≡ Ω

−
is denoted by 𝐻

(1)
ℎ (𝜔(1)), while the set of grid functions

𝑦2(𝑥) defined on the grid 𝜔(2) = 𝜔
(2)
1 ×𝜔2 ⊂ Ω2 ≡ Ω

+
is indicated by 𝐻

(2)
ℎ (𝜔(2)). Set 𝐻

(𝑘)
ℎ (𝜔(𝑘)),

𝑘 = 1, 2, equipped by the scalar product and norm

(𝑦𝑘, 𝜈𝑘)𝐿2(𝜔(𝑘)) =
∑︁
𝜔(𝑘)

𝑦𝑘(𝑥) 𝜈𝑘(𝑥) ~1~2, ‖𝑦𝑘‖𝐿2(𝜔(𝑘)) = (𝑦𝑘, 𝑦𝑘)
1/2

𝐿2(𝜔(𝑘))

is denoted by 𝐿2(𝜔
(𝑘)), 𝑘 = 1, 2. Here ~1 = ~1(𝑥1) is the mean step of grid 𝜔

(1)
1 and 𝜔

(2)
1 , and

~2 = ~2(𝑥2) is the mean step of grid 𝜔2, [6]. By 𝑊 1
2 (𝜔(1)) and 𝑊 1

2 (𝜔(2)) we denote the spaces of
grid functions defined on grids 𝜔(1) and 𝜔(2), respectively, with the scalar products and norms:

(𝑦𝑘, 𝜈𝑘)𝑊 1
2 (𝜔

(𝑘)) =
∑︁

𝜔
(𝑘)+
1 ×𝜔2

𝑦𝑘𝑥1𝜈𝑘𝑥1ℎ1~2 +
∑︁

𝜔
(𝑘)
1 ×𝜔+

2

𝑦𝑘𝑥2𝜈𝑘𝑥2~1ℎ2 + (𝑦𝑘, 𝜈𝑘)𝐿2(𝜔(𝑘)),

‖𝑦𝑘‖2𝑊 1
2 (𝜔

(𝑘))
= ‖∇𝑦𝑘‖2 + ‖𝑦𝑘‖2𝐿2(𝜔(𝑘))

, 𝑘 = 1, 2,

where

‖∇𝑦𝑘‖2 =
∑︁

𝜔
(𝑘)+
1 ×𝜔2

𝑦2𝑘𝑥1
ℎ1~2 +

∑︁
𝜔
(𝑘)
1 ×𝜔+

2

𝑦2𝑘𝑥2
~1ℎ2, 𝑘 = 1, 2.

We introduce space 𝑉 (𝜔(1,2)) of pairs of grid functions 𝑦(𝑥) = (𝑦1(𝑥), 𝑦2(𝑥)) by the identity
𝑉 (𝜔(1,2)) =

{︀
𝑦(𝑥) = (𝑦1(𝑥), 𝑦2(𝑥)) ∈ 𝑊 1

2 (𝜔(1)) ×𝑊 1
2 (𝜔(2))

}︀
. Being equipped with the scalar

product and norm

(𝑦, 𝜈)𝑉 (𝜔(1,2)) =
2∑︁

𝑘=1

(𝑦𝑘, 𝜈𝑘)𝑊 1
2 (𝜔

(𝑘)), ‖𝑦‖2
𝑉 (𝜔(1,2))

=
2∑︁

𝑘=1

‖𝑦𝑘‖2𝑊 1
2 (𝜔

(𝑘))
,

𝑉 (𝜔(1,2)) is a Hilbert space.
We define grid analogues of scalar products for the traces of grid functions 𝑦𝑘(𝑥) and 𝜈𝑘(𝑥),

𝑥 ∈ 𝜔(𝑘), on boundaries 𝜕𝜔(𝑘) of grids 𝜔(𝑘), 𝑘 = 1, 2, by the formulae (𝑦𝑘, 𝜈𝑘)𝐿2(𝜕𝜔(𝑘)) =
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𝑥∈𝜕𝜔(𝑘)

𝑦𝑘(𝑥)𝜈𝑘(𝑥)𝜏𝑘(𝑥), 𝑘 = 1, 2, as well as grid analogues of the norms in 𝐿2(𝜕𝜔
(𝑘)) gener-

ated by the scalar products

‖𝑦𝑘‖2𝐿2(𝜕𝜔(𝑘)) = (𝑦𝑘, 𝑦𝑘)𝐿2(𝜕𝜔(𝑘)) =
∑︁
𝜕𝜔(𝑘)

𝑦2𝑘(𝑥)𝜏𝑘(𝑥), 𝑘 = 1, 2,

𝜏1(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ℎ1(𝑥1), 𝑥1 ∈ 𝜔

(1)
1 , 𝑥2 = 0, 𝑙2;

ℎ2(𝑥2), 𝑥2 ∈ 𝜔2, 𝑥1 = 0, 𝜉;

ℎ1(𝑥1) + ℎ2(𝑥2)

2
, 𝑥 ∈

�
𝛾 (1),

𝜏2(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ℎ1(𝑥1), 𝑥1 ∈ 𝜔

(1)
1 , 𝑥2 = 0, 𝑙2;

ℎ2(𝑥2), 𝑥2 ∈ 𝜔2, 𝑥1 = 𝜉, 𝑙1;

ℎ1(𝑥1) + ℎ2(𝑥2)

2
, 𝑥 ∈

�
𝛾 (2),

and
�
𝛾 (𝑘) is the set of the corner points of rectangle Ω𝑘, 𝑘 = 1, 2. For instance, written in all

the details, the grid analogue of the norm in 𝐿2(𝜕𝜔
(1)) is defined by the identity

‖𝑦1‖2𝐿2(𝜕𝜔(1)) =
∑︁
𝑥2∈𝜔2

[︀
𝑦21(0, 𝑥2) + 𝑦21(𝜉, 𝑥2)

]︀
~2(𝑥2) +

∑︁
𝑥1∈𝜔1

[︀
𝑦21(𝑥1, 0) + 𝑦21(𝑥1, 𝑙2)

]︀
~1(𝑥1).

Suppose now that
∘
𝛾
(𝑘)

= 𝜕𝜔(𝑘)∩
∘
Γ𝑘≡ 𝛾(𝑘) = 𝜕𝜔(𝑘) ∖ 𝛾𝑠 is the subset of boundary nodes 𝜕𝜔(𝑘)

of grid 𝜔(𝑘) ⊂ Ω𝑘, 𝑘 = 1, 2. By 𝐿2(𝜔
(𝑘); 𝛾(𝑘)) we denote the normed subspace of space of grid

functions 𝐿2(𝜔
(𝑘)) vanishing on 𝛾(𝑘), 𝑘 = 1, 2, with the norms

‖𝑦𝑘‖2𝐿2(𝜔(𝑘);𝛾(𝑘))
=

∑︁
𝑥∈𝜔(𝑘)

𝑦2𝑘(𝑥)ℎ1ℎ2 +
1

2

∑︁
𝑥∈𝛾𝑆

𝑦2𝑘(𝑥)ℎ1ℎ2

=
∑︁

𝑥∈𝜔(𝑘)

𝑦2𝑘(𝑥)ℎ1ℎ2 +
1

2

∑︁
𝑥2∈𝜔2

𝑦2𝑘(𝜉, 𝑥2)ℎ1ℎ2, 𝑘 = 1, 2,

induced by the scalar products

(𝑦𝑘, 𝑣𝑘)𝐿2(𝜔(𝑘);𝛾(𝑘)) =
∑︁

𝑥∈𝜔(𝑘)

𝑦𝑘(𝑥)𝑣𝑘(𝑥)ℎ1ℎ2 +
1

2

∑︁
𝑥∈𝛾𝑆

𝑦𝑘(𝑥)𝑣𝑘(𝑥)ℎ1ℎ2, 𝑘 = 1, 2.

It is easy to see that

(𝑦1, 𝑣1)𝐿2(𝜔(1);𝛾(1)) = (𝑦1, 𝑣1)𝐿2(𝜔
(1)+
1 ×𝜔2)

, (𝑦2, 𝑣2)𝐿2(𝜔(2);𝛾(2)) = (𝑦2, 𝑣2)𝐿2(𝜔
(2)−
2 ×𝜔2)

.

By 𝑊 1
2 (𝜔(𝑘); 𝛾(𝑘)) we indicate the subspace of space of grid functions 𝑊 1

2 (𝜔(𝑘)) vanishing on
𝛾(𝑘), 𝑘 = 1, 2.

We introduce spaces
∘
𝐻𝛾(1)𝛾(2) (𝜔(1,2)) and

∘
𝑉 𝛾(1)𝛾(2) (𝜔(1,2)) of pairs of grid functions 𝑦(𝑥) =

(𝑦1(𝑥), 𝑦2(𝑥)):

∘
𝐻𝛾(1)𝛾(2) (𝜔(1,2)) =

{︀
𝑦(𝑥) = (𝑦1(𝑥), 𝑦2(𝑥)) ∈ 𝐿2(𝜔

(1); 𝛾(1)) × 𝐿2(𝜔
(2); 𝛾(2))

}︀
,

∘
𝑉 𝛾(1)𝛾(2) (𝜔(1,2)) =

{︀
𝑦(𝑥) = (𝑦1(𝑥), 𝑦2(𝑥)) ∈ 𝑊 1

2 (𝜔(1); 𝛾(1)) ×𝑊 1
2 (𝜔(2); 𝛾(2))

}︀
with the norms

‖𝑦‖2∘
𝐻

𝛾(1)𝛾(2)

=
2∑︁

𝑘=1

‖𝑦𝑘‖2𝐿2(𝜔(𝑘);𝛾(𝑘))
, ‖𝑦‖2∘

𝑉
𝛾(1)𝛾(2)

= ‖∇𝑦𝑘‖2 + ‖[𝑦]‖2𝐿2(𝛾𝑆)
.
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By 𝑒
(1)
1 (𝑥1) we denote elementary sells of the segment [0, 𝜉]:

𝑒
(1)
1 (𝑥1) = {𝑟1 : 𝑥1 − 0.5ℎ1 6 𝑟1 6 𝑥1 + 0.5ℎ1}, 𝑥1 ∈ 𝜔

(1)
1 ⊂ [0, 𝜉],

𝑒
(1)
1 (0) = {𝑟1 : 0 6 𝑟1 6 0.5ℎ1}, 𝑒

(1)
1 (𝜉) = {𝑟1 : 𝜉 − 0.5ℎ1 6 𝑟1 6 𝜉},

while 𝑒
(2)
1 (𝑥1) stands for the elementary sells of the segment [𝜉, 𝑙1]:

𝑒
(2)
1 (𝑥1) = {𝑟1 : 𝑥1 − 0.5ℎ1 6 𝑟1 6 𝑥1 + 0.5ℎ1}, 𝑥1 ∈ 𝜔

(2)
1 ⊂ [𝜉, 𝑙1],

𝑒
(2)
1 (𝜉) = {𝑟1 : 𝜉 6 𝑟1 6 𝜉 + 0.5ℎ1}, 𝑒

(2)
1 (𝑙1) = {𝑟1 : 𝑙1 − 0.5ℎ1 6 𝑟1 6 𝑙1}.

We also introduce elementary sells of the segment [0, 𝑙2]:

𝑒2(𝑥2) = {𝑟2 : 𝑥2 − 0.5ℎ2 6 𝑟2 6 𝑥2 + 0.5ℎ2}, 𝑥2 ∈ 𝜔2 ⊂ [0, 𝑙2],

𝑒2(0) = {𝑟2 : 0 6 𝑟2 6 0.5ℎ2}, 𝑒2(𝑙2) = {𝑟2 : 𝑙2 − 0.5ℎ2 6 𝑟2 6 𝑙2}.

By 𝑒(1)(𝑥) ≡ 𝑒(1)(𝑥1, 𝑥2) = 𝑒
(1)
1 (𝑥1) × 𝑒2(𝑥2), 𝑥 ∈ 𝜔(1) = 𝜔

(1)
1 × 𝜔2 ⊂ Ω1 we denote elementary

sells of domain Ω1, while 𝑒(2)(𝑥) ≡ 𝑒(2)(𝑥1, 𝑥2) = 𝑒
(2)
1 (𝑥1) × 𝑒2(𝑥2), 𝑥 ∈ 𝜔(2) = 𝜔

(2)
1 × 𝜔2 ⊂ Ω2

are the elementary sells of domain Ω2. Let 𝑣(𝑥) = 𝑣1(𝑥), 𝑥 ∈ Ω1. For functions 𝑣1(𝑥), 𝑥 ∈ Ω1

we define Steklov averaging operators 𝑆𝑥𝛼 w.r.t. variables 𝑥𝛼, 𝛼 = 1, 2:

𝑆𝑥1𝑣1(𝑥) =
1

~1

∫︁
𝑒
(1)
1 (𝑥1)

𝑣1(𝑟1, 𝑥2) 𝑑𝑟1, 𝑥1 ∈ 𝜔
(1)
1 , ~1 = ~1(𝑥1) =

{︃
ℎ1, 𝑥1 ∈ 𝜔

(1)
1 ,

0.5ℎ1, 𝑥1 = 0, 𝜉,

𝑆𝑥2𝑣1(𝑥) =
1

~2

∫︁
𝑒2(𝑥2)

𝑣1(𝑥1, 𝑟2) 𝑑𝑟2, 𝑥2 ∈ 𝜔2, ~2 = ~2(𝑥2) =

{︂
ℎ2, 𝑥2 ∈ 𝜔2,

0.5ℎ2, 𝑥2 = 0, 𝑙2.

By means of one-dimensional operators 𝑆𝑥𝛼 acting in the direction of 𝑥𝛼, 𝛼 = 1, 2, we define
the averaging operator 𝑆𝑥 = 𝑆𝑥1𝑆𝑥2 as the product of one-dimensional averaging operators.
In the same way we define Steklov averaging operators for functions 𝑣(𝑥) = 𝑣2(𝑥), 𝑥 ∈ Ω2.

In what follows by 𝐻
(1)
ℎ (𝜔(1) ∪ 𝛾𝑆) ≡ 𝐿2(𝜔

(1) ∪ 𝛾𝑆) we denote the set of grid functions 𝑣1ℎ(𝑥),
𝑥 ∈ 𝜔(1) ∪ 𝛾𝑆 defined on the grid 𝜔(1) ∪ 𝛾𝑆 with the scalar product and norm

(𝑣1ℎ, 𝑣1ℎ)
𝐻

(1)
ℎ (𝜔(1)∪𝛾𝑆)

=
∑︁

𝑥∈𝜔(𝑘)

𝑣1ℎ(𝑥)𝑣1ℎ(𝑥)ℎ1ℎ2 +
1

2

∑︁
𝑥∈𝛾𝑆

𝑣1ℎ(𝑥)𝑣1ℎ(𝑥)ℎ1ℎ2,

‖𝑣1ℎ(𝑥)‖2
𝐻

(1)
ℎ (𝜔(1)∪𝛾𝑆)

= (𝑣1ℎ, 𝑣1ℎ)
𝐻

(1)
ℎ (𝜔(1)∪𝛾𝑆)

.

In the same way we define the space of grid functions 𝐻
(2)
ℎ (𝜔(2) ∪ 𝛾𝑆) ≡ 𝐿2(𝜔

(2) ∪ 𝛾𝑆).
To optimal control problem (1)-(3) we associate the following difference approximations: to

minimize the grid functional

𝐽ℎ(Φℎ) =
∑︁

𝑥∈𝜔(1)

⃒⃒
𝑦(𝑥,Φℎ) − 𝑢

(1)
0ℎ (𝑥)

⃒⃒2~1~2 = ‖𝑦(𝑥,Φℎ) − 𝑢
(1)
0ℎ (𝑥)‖2

𝐿2(𝜔(1))
(11)

under the conditions that grid function 𝑦(𝑥) ≡ 𝑦(𝑥,Φℎ) = (𝑦1(𝑥,Φℎ), 𝑦2(𝑥,Φℎ)) ∈
∘
𝑉 𝛾(1)𝛾(2)

(𝜔(1,2)) called the solution to the difference boundary value problems (difference scheme) for
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problem (1) satisfies the summation identity

𝑄ℎ(𝑦, 𝑣) =

⎧⎪⎨⎪⎩
∑︁
𝜔
(1)+
1

∑︁
𝜔2

𝑎
(1)
1ℎ 𝑦1𝑥1𝑣1𝑥1ℎ1ℎ2 +

(︂∑︁
𝜔
(1)
1

∑︁
𝜔+
2

𝑎
(1)
2ℎ 𝑦1𝑥2𝑣1𝑥2ℎ1ℎ2

+
1

2

∑︁
𝜔+
2

𝑎
(1)
2ℎ (𝜉, 𝑥2)𝑦1𝑥2(𝜉, 𝑥2)𝑣1𝑥2(𝜉, 𝑥2)ℎ1ℎ2

)︂⎫⎬⎭ +

⎧⎪⎨⎪⎩
∑︁
𝜔
(2)+
1

∑︁
𝜔2

𝑎
(2)
1ℎ 𝑦2𝑥1𝑣2𝑥1ℎ1ℎ2

+

(︂∑︁
𝜔
(2)
1

∑︁
𝜔+
2

𝑎
(2)
2ℎ 𝑦2𝑥2𝑣2𝑥2ℎ1ℎ2 +

1

2

∑︁
𝜔+
2

𝑎
(2)
2ℎ (𝜉, 𝑥2)𝑦2𝑥2(𝜉, 𝑥2)𝑣2𝑥2(𝜉, 𝑥2)ℎ1ℎ2

)︂⎫⎪⎬⎪⎭
+
∑︁
𝜔2

Φℎ(𝑥)
[︀
𝑦(𝜉, 𝑥2)

]︀[︀
𝑣(𝜉, 𝑥2)

]︀
ℎ2 +

{︃(︂∑︁
𝜔(1)

𝑑1ℎ(𝑥)𝑞1(𝑦1(𝑥))𝑣1(𝑥)ℎ1ℎ2

+
1

2

∑︁
𝜔2

𝑑1ℎ(𝜉, 𝑥2)𝑞1(𝑦1(𝜉, 𝑥2))𝑣1(𝜉, 𝑥2)ℎ1ℎ2

)︂
+

(︂∑︁
𝜔(2)

𝑑2ℎ(𝑥)𝑞2(𝑦2(𝑥))𝑣2(𝑥)ℎ1ℎ2

+
1

2

∑︁
𝜔2

𝑑2ℎ(𝜉, 𝑥2)𝑞2(𝑦2(𝜉, 𝑥2))𝑣2(𝜉, 𝑥2)ℎ1ℎ2

)︂}︃

=

{︃(︂∑︁
𝜔(1)

𝑓1ℎ(𝑥)𝑣1(𝑥)ℎ1ℎ2 +
1

2

∑︁
𝜔2

𝑓1ℎ(𝜉, 𝑥2)𝑣1(𝜉, 𝑥2)ℎ1ℎ2

)︂
+

+

(︂∑︁
𝜔(2)

𝑓2ℎ(𝑥)𝑣2(𝑥)ℎ1ℎ2 +
1

2

∑︁
𝜔2

𝑓2ℎ(𝜉, 𝑥2)𝑣2(𝜉, 𝑥2)ℎ1ℎ2

)︂}︃
= 𝑙ℎ(𝑣),

(12)

for each grid function 𝑣(𝑥) = (𝑣1(𝑥,Φℎ), 𝑣2(𝑥,Φℎ)) ∈
∘
𝑉 𝛾(1)𝛾(2) (𝜔(1,2)), while grid controls Φℎ(𝑥),

𝑥 ∈ 𝛾𝑆 are so that

Φℎ(𝑥) ∈ 𝑈ℎ =
{︀

Φℎ ∈ 𝐿2(𝛾𝑆) = 𝐻ℎ : 0 < 𝑔0 6 Φℎ(𝑥) 6 𝑔0, 𝑥 ∈ 𝛾𝑆
}︀
, (13)

where 𝐿2(𝛾𝑆) = 𝐻ℎ is the space of grid controls Φℎ defined on grid 𝛾𝑆 ⊂ 𝑆 with the scalar
product and norm(︀

Φℎ, Φ̃ℎ

)︀
𝐿2(𝛾𝑆)

=
∑︁
𝑥∈𝛾𝑆

ℎ2Φℎ(𝑥)Φ̃ℎ(𝑥), ‖Φℎ(𝑥)‖2𝐿2(𝛾𝑆)
=

(︀
Φℎ,Φℎ

)︀
𝐿2(𝛾𝑆)

.

By 𝑎
(1)
𝛼ℎ(𝑥), 𝑎

(2)
𝛼ℎ(𝑥), 𝑑𝛼ℎ(𝑥), 𝛼 = 1, 2, 𝑓1ℎ(𝑥), 𝑓2ℎ(𝑥), 𝑢

(1)
0ℎ (𝑥) we denote grid approximations

for functions 𝑘
(1)
𝛼 (𝑟), 𝑘

(2)
𝛼 (𝑟), 𝑑𝛼(𝑟), 𝛼 = 1, 2, 𝑓1(𝑟), 𝑓2(𝑟), 𝑢

(1)
0 (𝑟) defined by Steklov averages:

𝑎
(𝛼)
1ℎ (𝑥1, 𝑥2) =

1

ℎ2

∫︁
𝑒2(𝑥2)

𝑘
(𝛼)
1 (𝑥1 − 0.5ℎ1, 𝑟2) 𝑑𝑟2, 𝑥 ∈ 𝜔

(𝛼)+
1 × 𝜔2, 𝛼 = 1, 2;

𝑎
(𝛼)
2ℎ (𝑥1, 𝑥2) =

1

ℎ1

∫︁
𝑒
(𝛼)
1 (𝑥1)

𝑘
(𝛼)
2 (𝑟1, 𝑥2 − 0.5ℎ2) 𝑑𝑟1, 𝑥 ∈ 𝜔

(𝛼)
1 × 𝜔+

2 , 𝛼 = 1, 2;

𝑎
(1)
2ℎ (𝜉, 𝑥2) =

2

ℎ1

𝜉∫︁
𝜉−0.5ℎ1

𝑘
(1)
2 (𝑟1, 𝑥2 − 0.5ℎ2) 𝑑𝑟1, 𝑥2 ∈ 𝜔+

2 ;
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𝑎
(2)
2ℎ (𝜉, 𝑥2) =

2

ℎ1

𝜉+0.5ℎ1∫︁
𝜉

𝑘
(2)
2 (𝑟1, 𝑥2 − 0.5ℎ2) 𝑑𝑟1, 𝑥2 ∈ 𝜔+

2 ;

𝑑𝛼ℎ(𝑥) =
1

ℎ1ℎ2

∫︁∫︁
𝑒𝛼(𝑥)

𝑑𝛼(𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2, 𝑥 ∈ 𝜔(𝛼), 𝛼 = 1, 2;

𝑑1ℎ(𝜉, 𝑥2) =
2

ℎ1ℎ2

𝜉∫︁
𝜉−0.5ℎ1

∫︁
𝑒2(𝑥2)

𝑑1(𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2, 𝑥2 ∈ 𝜔2;

𝑑2ℎ(𝜉, 𝑥2) =
2

ℎ1ℎ2

𝜉+0.5ℎ1∫︁
𝜉

∫︁
𝑒2(𝑥2)

𝑑2(𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2, 𝑥2 ∈ 𝜔2;

𝑓𝛼ℎ(𝑥) =
1

ℎ1ℎ2

∫︁∫︁
𝑒(𝛼)(𝑥)

𝑓𝛼(𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2, 𝑥 ∈ 𝜔(𝛼), 𝛼 = 1, 2;

𝑓1ℎ(𝜉, 𝑥2) =
2

ℎ1ℎ2

𝜉∫︁
𝜉−0.5ℎ1

∫︁
𝑒2(𝑥2)

𝑓1(𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2, 𝑥2 ∈ 𝜔2;

𝑓2ℎ(𝜉, 𝑥2) =
2

ℎ1ℎ2

𝜉+0.5ℎ1∫︁
𝜉

∫︁
𝑒2(𝑥2)

𝑓2(𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2, 𝑥2 ∈ 𝜔2;

𝑢
(1)
0ℎ (𝑥) =

1

~1~2

∫︁∫︁
𝑒(1)(𝑥)

𝑢
(1)
0 (𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2, 𝑥 ∈ 𝜔(1) = 𝜔

(1)
1 × 𝜔2.

Theorem 2. Problem on solving difference scheme (12) for each fixed control Φℎ ∈ 𝑈ℎ is
equivalent to solving operator equation 𝐴ℎ𝑦 = 𝐹ℎ, where difference operator 𝐴ℎ acting from
∘
𝑉 𝛾(1)𝛾(2) (𝜔(1,2)) into

∘
𝑉 𝛾(1)𝛾(2) (𝜔(1,2)) and grid function 𝐹ℎ ∈

∘
𝑉 𝛾(1)𝛾(2) (𝜔(1,2)) are defined by the

identities(︀
𝐴ℎ𝑦, 𝑣

)︀
∘
𝑉

𝛾(1)𝛾(2)
(𝜔(1,2))

= 𝑄ℎ(𝑦, 𝑣),
(︀
𝐹ℎ, 𝑣

)︀
∘
𝑉

𝛾(1)𝛾(2)
(𝜔(1,2))

= 𝑙ℎ(𝑣),∀𝑦, 𝑣 ∈
∘
𝑉 𝛾(1)𝛾(2) . (14)

Problem (difference scheme) (12) is uniquely solvable for each grid control Φℎ ∈ 𝑈ℎ. At that,
the apriori estimate

‖𝑦(𝑥; Φℎ)‖ ∘
𝑉

𝛾(1)𝛾(2)
(𝜔(1,2))

6𝑀

2∑︁
𝑘=1

‖𝑓𝑘ℎ‖𝐿2(𝜔(𝑘)∪𝛾𝑆), ∀Φℎ ∈ 𝑈ℎ, (15)

holds true.

Proof. Employing the restrictions for the initial data in boundary value problem (1), Cauchy-
Schwarz and Hölder inequalities, difference analogues of the embedding theorems, one can

make sure that for each fixed 𝑦 ∈
∘
𝑉 𝛾(1)𝛾(2) (𝜔(1,2)) and for each Φℎ ∈ 𝑈ℎ, form 𝑄ℎ(𝑦, 𝑣) and 𝑙ℎ(𝑣)

determine linear bounded functionals in the space of grid functions
∘
𝑉 𝛾(1)𝛾(2) (𝜔(1,2)) and thus,

they are uniquely represented by identities (14). Together with (12) and by the arbitrariness of
𝑣 it implies that identity (12) defines operator equation 𝐴ℎ𝑦 = 𝐹ℎ, i.e., the difference scheme.
Moreover, one can make sure that operator 𝐴ℎ of difference scheme (12) preserves the main
properties of differential operator in original problem (1), namely, its strong monotonicity and
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Lipschitz continuity. Therefore, the hypothesis of Browder theorem [21] is obeyed, and thus,
equation 𝐴ℎ𝑦 = 𝐹ℎ is uniquely solvable. Estimate (15) follows from the coercitivity of operator
𝐴ℎ. The proof is complete.

Problem (12) is a grid analogue of original problem for state (1) with discontinuous coefficients
and solution (state).

Let us find a relatinop between solution 𝑢(𝑟; 𝑔) to direct problem (1) with discontinuous
coefficients and solution 𝑦(𝑥,Φℎ) = (𝑦1(𝑥; Φℎ), 𝑦2(𝑥; Φℎ)) to approximating difference problem
for state (12) as ℎ → 0 for each fixed control 𝑔 ∈ 𝑈 and Φℎ ∈ 𝑈ℎ, where 𝑈 and 𝑈ℎ are
the sets of admissible controls in optimal control problems (1)-(3) and (11)-(13), respectively.

Let 𝑢(𝑟; 𝑔) = (𝑢1(𝑟; 𝑔), 𝑢2(𝑟; 𝑔)) ∈
̂︀∘
𝑉 Γ1Γ2(Ω

(1,2)) be the solution to direct problem (1) associated

an admissible control 𝑔 ∈ 𝑈 , and 𝑦(𝑥,Φℎ) = (𝑦1(𝑥; Φℎ), 𝑦2(𝑥; Φℎ)) ∈
∘
𝑉 𝛾(1)𝛾(2) (𝜔(1,2)) be the

solution to problem (12) associated with an admissible control Φℎ ∈ 𝑈ℎ. we denote by𝑧(𝑥) ≡
𝑧(𝑥; 𝑔,Φℎ) = (𝑧1(𝑥; 𝑔,Φℎ), 𝑧2(𝑥; 𝑔,Φℎ)) = (𝑦1(𝑥; Φℎ) − 𝑢1(𝑟; 𝑔), 𝑦2(𝑥; Φℎ) − 𝑢2(𝑟; 𝑔)) the error of
the method w.r.t. state.

To find error 𝑧(𝑥) of difference problem (12), we obviously obtain the equation 𝐴ℎ𝑦−𝐴ℎ𝑢 =
𝜓ℎ, where grid function 𝜓ℎ is the error of approximation by difference scheme (12) is determined
by the identity

(𝜓ℎ, 𝑣) ∘
𝑉 𝛾1𝛾2 (𝜔

(1,2))
= (𝐹ℎ − 𝐴ℎ𝑢, 𝑣) ∘

𝑉 𝛾1𝛾2 (𝜔
(1,2))

= 𝑙ℎ(𝑣) −𝑄ℎ(𝑢, 𝑣), ∀𝑣 ∈
∘
𝑉 𝛾1𝛾2 (𝜔(1,2)).

The next theorem provides an apriori estimate for the error of the method.

Theorem 3. Let 𝑔 ∈ 𝑈 and Φℎ ∈ 𝑈ℎ be arbitrary control, 𝑢(𝑟; 𝑔) and 𝑦(𝑥,Φℎ) be the asso-
ciated solutions to state problems in extremum problems (1)–(3) and (11)–(13). Then for each
ℎ > 0 the estimate for the rate of convergence of grid method w.r.t. state

‖𝑦(𝑥; Φℎ) − 𝑢(𝑥; 𝑔)‖ ∘
𝑉 𝛾1𝛾2 (𝜔

(1,2))
6 𝐶

{︂
|ℎ|

[︂ 2∑︁
𝛼=1

(︂
‖𝑘(𝛼)1 ‖𝐿∞(Ω𝛼)+

+‖𝑘(𝛼)2 ‖𝐿∞(Ω𝛼) + 𝐿‖𝑑𝛼‖𝐿∞(Ω𝛼)

)︂
‖𝑢𝛼‖𝑊 2

2 (Ω𝛼)

+‖𝜃‖𝐿∞(0,𝑙2)

2∑︁
𝛼=1

‖𝑢𝛼‖𝑊 2
2 (Ω𝛼)

]︂
+ ‖𝑆𝑥2𝜃(𝑥2) − Φℎ(𝑥2)‖𝐿∞(𝜔2)

2∑︁
𝛼=1

‖𝑢𝛼‖𝑊 2
2 (Ω𝛼)

}︂
.

holds true for extremum problem (1)–(3).

Proof. We employ difference Green formula and formula for difference integration by parts and
ideas of works [1]–[5], [10]–[13] to rewrite approximation error 𝜓ℎ(𝑥) by rather cumbersome
transformations to the special form:

(𝜓ℎ, 𝑣) ∘
𝑉 𝛾1𝛾2 (𝜔

(1,2))
= −

2∑︁
𝛼=1

∑︁
𝜔
(𝛼)+
1

∑︁
𝜔2

𝜂
(𝛼)
1 (𝑥)𝑣𝛼𝑥1ℎ1ℎ2 −

2∑︁
𝛼=1

∑︁
𝜔
(𝛼)
1

∑︁
𝜔+
2

𝜂
(𝛼)
2 (𝑥)𝑣𝛼𝑥2ℎ1ℎ2

− 1

2

∑︁
𝜔+
2

𝜂
(1)
2 (𝜉, 𝑥2)𝑣1𝑥2(𝜉, 𝑥2)ℎ1ℎ2 −

1

2

∑︁
𝜔+
2

𝜂
(2)
2 (𝜉, 𝑥2)𝑣2𝑥2(𝜉, 𝑥2)ℎ1ℎ2

+
2∑︁

𝛼=1

∑︁
𝜔(𝛼)

𝜂
(𝛼)
3 (𝑥)𝑣𝛼(𝑥)ℎ1ℎ2 +

1

2

∑︁
𝜔2

𝜂
(1)
3 (𝜉, 𝑥2)𝑣1(𝜉, 𝑥2)ℎ1ℎ2

+
1

2

∑︁
𝜔2

𝜂
(2)
3 (𝜉, 𝑥2)𝑣2(𝜉, 𝑥2)ℎ1ℎ2 −

∑︁
𝜔2

𝜂4(𝑥2)[𝑣(𝜉, 𝑥2)] · ℎ2,

(16)
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where

𝜂
(𝛼)
1 (𝑥) = 𝑎

(𝛼)
1ℎ (𝑥)𝑢𝛼𝑥1(𝑥) − 1

ℎ2

∫︁
𝑒2(𝑥2)

𝑘
(𝛼)
1 (𝑥1 − 0.5ℎ1, 𝑟2)

· 𝜕𝑢𝛼(𝑥1 − 0.5ℎ1, 𝑟2)

𝜕𝑟1
𝑑𝑟2, 𝑥 ∈ 𝜔

(𝛼)+
1 × 𝜔2, 𝛼 = 1, 2;

𝜂
(𝛼)
2 (𝑥) = 𝑎

(𝛼)
2ℎ (𝑥)𝑢𝛼𝑥2(𝑥) − 1

ℎ1

∫︁
𝑒
(𝛼)
1 (𝑥1)

𝑘
(𝛼)
2 (𝑟1, 𝑥2 − 0.5ℎ2)

· 𝜕𝑢𝛼(𝑟1, 𝑥2 − 0.5ℎ2)

𝜕𝑟2
𝑑𝑟1, 𝑥 ∈ 𝜔

(𝛼)
1 × 𝜔+

2 , 𝛼 = 1, 2;

𝜂
(1)
2 (𝜉, 𝑥2) = 𝑎

(1)
2ℎ (𝜉, 𝑥2)𝑢1𝑥2(𝜉, 𝑥2) −

2

ℎ1

𝜉∫︁
𝜉−0.5ℎ1

𝑘
(1)
2 (𝑟1, 𝑥2 − 0.5ℎ2)

· 𝜕𝑢1(𝑟1, 𝑥2 − 0.5ℎ2)

𝜕𝑟2
𝑑𝑟1, 𝑥2 ∈ 𝜔+

2 ;

(17)

and

𝜂
(2)
2 (𝜉, 𝑥2) = 𝑎

(2)
2ℎ (𝜉, 𝑥2)𝑢2𝑥2(𝜉, 𝑥2) −

2

ℎ1

𝜉+0.5ℎ1∫︁
𝜉

𝑘
(2)
2 (𝑟1, 𝑥2 − 0.5ℎ2)

𝜕𝑢1(𝑟1, 𝑥2 − 0.5ℎ2)

𝜕𝑟2
𝑑𝑟1, 𝑥2 ∈ 𝜔+

2 ;

𝜂
(𝛼)
3 (𝑥) = 𝑑𝛼ℎ(𝑥)𝑞𝛼(𝑢𝛼(𝑥)) − 1

ℎ1ℎ2

∫︁∫︁
𝑒(𝛼)(𝑥)

𝑑𝛼(𝑟)𝑞𝛼(𝑢𝛼(𝑟))𝑑𝑟, 𝑥 ∈ 𝜔(𝛼), 𝛼 = 1, 2;

𝜂
(1)
3 (𝜉, 𝑥2) = 𝑑1ℎ(𝜉, 𝑥2)𝑞1(𝑢1(𝜉, 𝑥2)) −

2

ℎ1ℎ2

𝜉∫︁
𝜉−0.5ℎ1

∫︁
𝑒2(𝑥2)

𝑑1(𝑟)𝑞1(𝑢1(𝑟))𝑑𝑟, 𝑥2 ∈ 𝜔2;

𝜂
(2)
3 (𝜉, 𝑥2) = 𝑑2ℎ(𝜉, 𝑥2)𝑞2(𝑢2(𝜉, 𝑥2)) −

2

ℎ1ℎ2

𝜉+0.5ℎ1∫︁
𝜉

∫︁
𝑒2(𝑥2)

𝑑2(𝑟)𝑞2(𝑢2(𝑟))𝑑𝑟, 𝑥2 ∈ 𝜔2;

𝜂4(𝑥2) = Φℎ(𝑥2)
[︀
𝑢(𝜉, 𝑥2)

]︀
− 2

ℎ2

∫︁
𝑒2(𝑥2)

𝜃(𝑟2)
[︀
𝑢(𝜉, 𝑥2)

]︀
𝑑𝑟2, 𝑥2 ∈ 𝜔2.

Taking into consideration the equation for the error 𝐴ℎ𝑦−𝐴ℎ𝑢 = 𝜓ℎ, representation (16), as well
as difference analogues of Sobolev embedding theorems, equivalent norms in space 𝑉𝛾1𝛾2(𝜔(1,2))

(see above), Cauchy-Schwarz and Hölder inequalities, we obtain the estimate

‖𝑧(𝑥; 𝑔,Φℎ)‖ ∘
𝑉 𝛾1𝛾2 (𝜔

(1,2))
= ‖𝑦(𝑥; Φℎ) − 𝑢(𝑥; 𝑔)‖ ∘

𝑉 𝛾1𝛾2 (𝜔
(1,2))

6𝑀

{︃
2∑︁

𝛼=1

[︂(︂ ∑︁
𝜔
(𝛼)+
1

∑︁
𝜔2

(𝜂
(𝛼)
1 (𝑥))2ℎ1ℎ2

)︂1/2

+

(︂∑︁
𝜔
(𝛼)
1

∑︁
𝜔+
2

(𝜂
(𝛼)
2 (𝑥))2ℎ1ℎ2

)︂1/2

+

(︂∑︁
𝜔+
2

(𝜂
(𝛼)
2 (𝜉, 𝑥2))

2ℎ1ℎ2

)︂1/2

+

(︂∑︁
𝜔(𝛼)

(𝜂
(𝛼)
3 (𝑥))2ℎ1ℎ2

)︂1/2

+

(︂∑︁
𝜔2

(𝜂
(𝛼)
3 (𝜉, 𝑥2))

2ℎ1ℎ2

)︂1/2]︂
+

(︂∑︁
𝜔2

(𝜂4(𝑥2))
2ℎ1ℎ2

)︂1/2
}︃
.

(18)
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To estimate the left hand side of the latter inequality in terms of parameter ℎ and to obtain
an estimate for the convergence rate of approximations w.r.t. state, it is sufficient to estimate
quantities (17):∑︁

𝜔
(𝛼)+
1

∑︁
𝜔2

(︀
𝜂
(𝛼)
1 (𝑥)

)︀2
ℎ1ℎ2 6𝑀2‖𝑘(𝛼)1 ‖2𝐿∞(Ω𝛼)|ℎ|

2‖𝑢𝛼‖2𝑊 2
2 (Ω𝛼)

, 𝛼 = 1, 2;

∑︁
𝜔
(𝛼)
1

∑︁
𝜔+
2

(︀
𝜂
(𝛼)
2 (𝑥)

)︀2
ℎ1ℎ2 6𝑀2‖𝑘(𝛼)2 ‖2𝐿∞(Ω𝛼)|ℎ|

2‖𝑢𝛼‖2𝑊 2
2 (Ω𝛼)

, 𝛼 = 1, 2;

∑︁
𝜔+
2

(︀
𝜂
(𝛼)
2 (𝜉, 𝑥2)

)︀2
ℎ1ℎ2 6𝑀2‖𝑘(𝛼)2 ‖2𝐿∞(Ω𝛼)|ℎ|

2‖𝑢𝛼‖2𝑊 2
2 (Ω𝛼)

, 𝛼 = 1, 2;

∑︁
𝜔(𝛼)

(︀
𝜂
(𝛼)
3 (𝑥)

)︀2
ℎ1ℎ2 6𝑀2𝐿2‖𝑑𝛼‖2𝐿∞(Ω𝛼)|ℎ|

2‖𝑢𝛼‖2𝑊 2
2 (Ω𝛼)

, 𝛼 = 1, 2;∑︁
𝜔2

(︀
𝜂
(𝛼)
3 (𝜉, 𝑥2)

)︀2
ℎ1ℎ2 6𝑀2𝐿2‖𝑑𝛼‖2𝐿∞(Ω𝛼)|ℎ|

2‖𝑢𝛼‖2𝑊 2
2 (Ω𝛼)

, 𝛼 = 1, 2;

∑︁
𝜔2

𝜂24(𝑥2)ℎ2 6𝑀2
[︀
ℎ22‖𝜃‖2𝐿∞(0,𝑙2)

+ ‖𝑆𝑥2𝜃 − Φℎ‖2𝐿∞(𝜔2)

]︀ 2∑︁
𝑘=1

‖𝑢𝑘‖2𝑊 2
2 (Ω𝛼)

.

(19)

They are based on some cumbersome calculations and this is why we restrict ourselves by
proving, say, the first of the estimates as 𝛼 = 1. It follows from the chain of inequalities

⃒⃒⃒
𝜂
(1)
1 (𝑥)

⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒⃒ 1

ℎ1ℎ2

𝑥1∫︁
𝑥1−ℎ1

∫︁
𝑒2(𝑥2)

𝑘
(1)
1 (𝑥1 − 0.5ℎ1, 𝑟2)

[︂ 𝑟1∫︁
𝑥1−0.5ℎ1

𝜕2𝑢1(𝑚, 𝑟2)

𝜕𝑚2
𝑑𝑚

−
𝑟2∫︁

𝑥2

𝜕2𝑢1(𝑟1, 𝑠)

𝜕𝑟1𝜕𝑠
𝑑𝑠

]︂
𝑑𝑟1𝑑𝑟2

⃒⃒⃒⃒
⃒⃒ 6 (ℎ1ℎ2)

−1/2‖𝑘(1)1 ‖𝐿∞(Ω1)

[︂
ℎ1

(︂ 𝑥1∫︁
𝑥1−ℎ1∫︁

𝑒2(𝑥2)

⃒⃒⃒⃒
𝜕2𝑢1(𝑚, 𝑟2)

𝜕𝑚2

⃒⃒⃒⃒2
𝑑𝑚𝑑𝑟2

)︂1/2

+ ℎ2

(︂ 𝑥1∫︁
𝑥1−ℎ1

∫︁
𝑒2(𝑥2)

⃒⃒⃒⃒
𝜕2𝑢1(𝑟1, 𝑠)

𝜕𝑟1𝜕𝑠

⃒⃒⃒⃒2
𝑑𝑟1𝑑𝑠

)︂1/2]︂
621/2‖𝑘(1)1 ‖𝐿∞(Ω1)|ℎ|(ℎ1ℎ2)−1/2‖𝑢1‖𝑊 2

2 ((𝑥1−ℎ1,𝑥2)×𝑒2(𝑥2)), 𝑥 ∈ 𝜔
(1)+
1 × 𝜔2

which can be easily proved. The proof is complete.

Remark 2. On the basis of accuracy estimates for approximations w.r.t. state established
in the present work, in future we shall study convergence of approximations w.r.t. functional,
control, approximations regularizations.
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