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SINGULAR INTEGRAL OPERATORS ON A MANIFOLD
WITH A DISTINGUISHED SUBMANIFOLD

YU.A. KORDYUKOV, V.A. PAVLENKO

Abstract. Let X be a compact manifold without boundary and X° its smooth submanifold
of codimension one. In this work we introduce classes of integral operators on X with
kernels K4(z,y), being smooth functions for x ¢ X° and y ¢ X°, and admitting an
asymptotic expansion of certain type, if = or y approaches X 0. For operators of these
classes we prove theorems about action in spaces of conormal functions and composition.
We show that the trace functional can be extended to a regularized trace functional r-Tr
defined on some algebra K(X, X°) of singular integral operators described above. We prove
a formula for the regularized trace of the commutator of operators from this class in terms
of associated operators on X°. The proofs are based on theorems about pull-back and push-
forward of conormal functions under maps of manifolds with distinguished codimension one
submanifolds.
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1. INTRODUCTION

This paper is devoted to constructing and investigating of some classes of singular integral
operators on a closed smooth manifold X with a distinguished smooth codimension one
submanifold X% A specific feature of the operators in these classes is that their kernels,
K a(z,y), are smooth functions for z ¢ X° and y ¢ X° admitting an asymptotic expansion of
a certain type as x or y approaches X°.

First of all, we prove theorems on action in spaces of conormal functions and theorems
on compositions for the operators in these classes. Then we construct an algebra (X, X?)
of singular integral operators of this kind and a regularized trace functional r-Tr on it, which
coincides with the trace functional on the operators with smooth kernel. Though the constructed
functional does not have the trace property, we prove a formula for the regularized trace
r-Tr[A, B] of the commutator of operators A and B belonging to K(X, X°) in terms of certain
integral operators with smooth kernel on X associated with A and B.

One of the main motivations for our constructions is the desire to generalize the Lefschetz
formula for a flow on a compact manifold preserving a codimension one foliation. In the case
when the flow has no fixed points and its orbits are transversal to the leaves of the foliations,
such a formula was proved in [I]. The essential role in [I] is played by the following analytic
result.

Let M be a closed manifold and F be a smooth codimension one foliation on M. Suppose that
Xy M — M, te€Risaflowon M which maps each leaf of F into a (possibly another) leaf.
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Let K be a leafwise smoothing operator on M, that is, an operator in the space C*°(M) given
by a family of integral operators with smooth kernel acting along the leaves of the foliation.
For each f € C§°(R), we define an operator A in the space C°°(M) by the formula

Af:/Xf-f(t)dtoK,
R

where X} is the operator in C*°(M) induced by the action of flow X;, X/ f(x) = f(Xi(z)). It is
shown in [I] that, if the orbits of flow X are transversal to the leaves, then, for each function
[ € C3°(R), operator A; is a trace class operator in the Hilbert space L*(M). Moreover, the
functional f +— tr A; defines a distribution on R. The use of distributions of such type allows
us to define the Lefschetz number of flow X; as a distribution on R.

In the case when flow X, has finitely many non-degenerate fixed points, belonging to compact
leaves {L;}, and the orbits of flow X, are transversal to all leaves except {L;}, operator Ay
is not, generally speaking, a trace class operator. One can show that in this case operator
Ay belongs to the algebra IC(M, M?), where M° = UL;, and, therefore, its regularized trace
r-Tr(Ay) is well-defined. This fact allows us to define the Lefschetz number of flow X; in the
case under consideration. These results are a part of our joint project with J. Alvarez Lopez
and E. Leichtnam and will be discussed in subsequent papers.

Operator algebras associated with a compact manifold with a distinguished submanifold
have been earlier constructed in papers of B.Yu. Sternin, V.E. Shatalov and A.Yu. Savin in
connection with the study of boundary value problems for elliptic equations on a compact
manifold, where the boundary conditions are given both on the boundary of the manifold
and on smooth submanifolds (of codimension > 1) not being the boundary. Problems of such
kind were considered for the first time by Sobolev [2]. A general setting of such problems and
their study were given in [3] and, following this work, they are often called Sobolev problems.
The operator algebra corresponding to Sobolev problems was constructed in [4]. It is obtained
as an extension of the algebra of pseudodifferential operators by means of a special class of
operators associated with the submanifold which are Green operators. It was shown in [5] that
the theory of Sobolev problems can be represented as a relative theory, i.e., it is associated with
the smooth embedding i : X — M of closed manifold. Relative theories are simpler and more
elegant than theories which do not have this property. For instance, the computation of the
index in a relative theory reduces to the computation of the index on smooth closed manifolds
M and X. On the contrary, in the theory of classical boundary value problems which is not
relative (since it is associated with a manifold with boundary) the computation of the index
is rather cumbersome. In [6] [7, [§], B.Yu. Sternin generalized the relative elliptic theory to the
case when the submanifold is a stratified one presented as a union of transversally intersecting
smooth submanifolds (see also 9] 10]).

The theory constructed in this paper is also a relative theory in the sense of B.Yu. Sternin
[5]. To construct it, we make use of the methods of papers by Melrose [11], 12} T3], in particular,
the geometric approach to constructing and studying algebras of singular integral operators
suggested in these papers. The classes of operators and the notion of regularized trace introduced
by us are analogues of the corresponding objects introduced earlier by Melrose for manifolds
with corners.

The outline of the paper is as follows. In Section 2 we give the definition of conormal functions
and conormal densities on a manifold Z with a distinguished submanifold Z° and describe their
basic properties. Submanifold Z° is not necessarily smooth, but it is represented as a union of
smooth connected submanifolds of codimension 1 intersecting transversally. Such submanifolds
will be called stratified. One of the main examples for us is as follows: Z = X x X, Z° =
(X% x X) U (X x X9, where X is a smooth manifold and X is its smooth codimension
one submanifold. The notion of conormal function introduced by us is a generalization of the
classical notion of conormal function on a smooth submanifold introduced by Hérmander. A
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similar notion was introduced by Melrose for manifolds with corners. In Section 3 we construct
various classes of singular integral operators and formulate theorems about action in spaces
of conormal functions and about composition for operators of these classes. The proofs of
these theorems are given in Section 4. They use theorems about pull-back and push-forward for
conormal functions under maps of manifolds with distinguished submanifolds and constructions
of some auxiliary manifolds. In Section 5, we define the regularized trace functional and prove
its basic properties, in particular, theorem about the regularized trace of the commutator. In
Appendices [A] and [B] we give the proofs of pull-back and push-forward theorems.
The authors express their gratitude to the referee for useful remarks.

2. CONORMAL DENSITIES AND THEIR PROPERTIES

In this section, we introduce the class of conormal functions on an arbitrary manifold X with
a distinguished stratified codimension one submanifold X°.

2.1. Stratified submanifolds. Let X be a smooth manifold of dimension n. A subset X° C
X will be called a stratified (codimension one) submanifold of manifold X, if X° is represented
as a union of finitely many smooth submanifolds X, Xs, ..., X, of dimension n —1 intersecting
transversally. We shall assume that submanifolds X, X5, ..., X, are connected and we shall
call them components of stratified submanifold X?°.

Here the transversal intersection has the following meaning. Let p € X°. Suppose that p
belongs to exactly ¢ components of the submanifold X° ¢ > 1. Then there exists a local
coordinate system s : U C X — R’ x R"* with coordinates (z,2°) € R x R"¢ defined in
a neighborhood of p such that the intersections of the components of X° containing p with U
are given by the equations x4 = 0 for each d € {1,...,¢}. Each such coordinate system will be
called adapted at p. Without loss of generality, we can assume that s»(U) = D; x Dy, where
D; C Rf and D, C R"* are some open subsets. To be specific we will often assume that
peXinN..NXyand p ¢ X, U...UX,, and adapted at p coordinated system is chosen such
that for any d € {1,...,¢} the intersection X, N U is given by the equation z; = 0. We will
always consider regular local coordinate systems, that is, coordinate systems s : U C X — R"
such that there exists a coordinate system > : V' C X — R"™ defined in an open set V' such
that U C V.

2.2. Index sets and families. Denote by QQ; the set of rational numbers represented in the
form z = §, where p, q € Z are coprime and ¢ is odd and by Z, the set of non-positive integers.

Definition 1. An index set is a set E C Qy X Z, satisfying the following conditions:

1. E is bounded from below, i.e., there exists Ny € Qy such that, for each (z,p) € E, we have
z 2 Ny;

2. (z,p) €EE, p=>q=(z,q) € E;

3. for each Ny € Qq, the set E({(z,p) : 2 < Na} is finite;

4. (z,p) € E,jeN= (z+j,p) € E.

Definition 2. An index family € is said to be defined on a stratified submanifold X° =
XiU...UX, if an index set E(X;) = E;, j =1,...,r is assigned to each of its components X;.

2.3. Conormal functions and their properties. Let X be a smooth manifold and X° =
X1 U...UX, its stratified submanifold. Let £ = (E}, ..., E,) be some index family on X°. The
definition of a conormal function at py € X° will be given by induction by the number ¢ of
components of X containing p.

Basis of induction: ¢/ = 1. Suppose that py belongs to exactly one component, to be
specific pg € X1, po ¢ Xo U ... U X,. Take an adapted at py coordinate s : U C X — »(U) =
D1 X D2 C R x Rn_l.
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Definition 3. A function u is said to be conormal at py with respect to an index family € if
there exists a neighborhood V-C U of py, #(V) = (—¢,&) x Vs, where Vo C R"™!, such that u is
defined and smooth on V' \ X°, and

U~ Z a, o(z%)2* In? 2],
(Z,q)EE1

where a,, € C™(V,). Here the symbol ~ means that, for each a € Z, € Zi‘l and N € N,
there ewists a constant C' = Cugn such that:

(xax)aafo (u(x, 2Y) — Z a, q(z%)2* In ]w|)
(z,q)€E1
2<N

< Clz|N* (2,2°) € (—¢,€) x Vo, x # 0.

Step of induction. Let ¢ > 2. Suppose that the definition of conormal function at a point
is given for each smooth manifold Y with a distinguished stratified submanifold Y° on which
an index family £° is introduced and for each point p; € Y° under assumption that p; belongs
to exactly k components of Y with k < /.

Suppose that X is a smooth manifold with a distinguished stratified submanifold X°, and
po € X, moreover, py belongs to exactly ¢ components of X°. To be specific we shall assume
that pp € X3 N...N X, and pg ¢ Xy U... U X,. We introduce an adapted at py coordinate
system » : U C X — »#(U) = Dy x Dy C R* x R"* such that X; is given by the equation
CL’j = 0.

Consider the manifold Z = R*! x R"* with coordinates (ws,..., 2., 2"), where z; € R,
j=2,...,0,2° € R"* equipped with the stratified submanifold Z° = {z, = 0}U...U{x, = 0}.
We define an index set £ on Z° by £'({z; = 0}) = E;, where j = 2,..., (. Z° consists of exactly
(¢ — 1) components. Therefore, the notion of conormal function at an arbitrary point of Z° is
well-defined by the induction hypothesis.

Definition 4. A function u is said to be conormal at py with respect to an index family €
if there exists a meighborhood V' of py, #(V) = (—¢,e)t x Vi, where Vo C R™* such that u is
defined and smooth on V '\ X°, and

U ~ Z A q(T2, .. g, 20)2f In? |24, (1)
(qu)eEl

where the functions a, , are conormal functions on (—e, )1 x Vo C Z with respect to the index
family &£'.

The symbol ~ means that there are M, ..., M, € R such that for each o € Zfr and 8 € err_é
and for each N € N there exists a constant C = Cygn such that:

(xax)aafo (u(azl, Ty ..., Tg,10) — Z aq(za, ... 20, 2°)2F In? \x1|) ’

(qu)eEl
Z<N1

-

< Clxg |z M N, (2,20) € (—e,6) x Vo, a5 # 0.

One can show that the definition of a conormal function at a point is independent of the
choice of local coordinate system. In particular, the expansion of type holds for each of
variables xo, ..., xy.

Definition 5. A function u is said to be a conormal function on a manifold X with a
stratified submanifold X° with respect to an index family €, if it is smooth on X \ X° and
conormal at each point py € X° with respect to £.

The class of conormal functions on a manifold X with a distinguished submanifold X° with
respect to an index family £ will be denoted by .Af)hg(X , X0).
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Remark 1. (1) If € is the trivial index family, i.e. E(X;) = {((,0) : ¢ € Zy} for each
j=1,...,r, then Aghg(X, X0 = C*=(X).
(2) For each function u € Ai,llg(X, X% and for each function v € Aﬁig(X, X0 the inclusions

u+v e A;,{LL;EQ(X, X9) hold true as well as uv € Ai}g&(X, X9).

Example 1. In the simplest example X = R? and X° = (R x {0}) U ({0} x R) the function
u(z,y) = /22 +y% on X is not conormal at (0,0).

The notion of conormality is easily generalized to sections of a vector bundle.

Definition 6. Let X be a smooth manifold, X° be a stratified submanifold, G be a smooth
vector bundle on X. A section p is said to be a conormal section, | € Aghg(X, X G), if in
each trivialization G |y = U x C" of G over the coordinate neighborhood U C X the section

reads as p(x) = (z, (ur(z), ..., u(z)), 2 € U, where u; € A5, (X, X0), j=1,...,r.

2.4. Conormal densities. We shall consider operators acting on half-densities. We recall
that a smooth s-density p on a smooth manifold M of dimension n is written in an arbitrary local
coordinate system as pu = u(xy,...,x,)|dzr ... dr,|*, where u is a smooth function. Smooth s-
densities are smooth sections of a certain line bundle €25, on M. We shall denote by C*°(M, Q3,)
the space of smooth s-densities on M.

Definition 7. Let X be a smooth manifold and X° = X, U ... U X, be its stratified
submanifold. An s-density p on X is said to be conormal with respect to an index family &
if in each adapted local coordinate system with coordinates (x,x°) € R x R"™* it reads as

dx

—da®
x

0 s
= u(|x,|x )|da:dx0|s = u(z,2%)
x S

)

where u is a conormal function with respect to &£.

The space of conormal s-densities on X with respect to an index family £ is naturally
isomorphic to the space Agh o(X, X0,0% ) of conormal sections of a certain line bundle Q%
on X. The construction of Q% y, is similar to the construction of the bundle of b-densities on
a manifold with corners suggested by Melrose and will be omitted.

3. SINGULAR INTEGRAL OPERATORS

In this section, we introduce classes of singular integral operators on a manifold with a
distinguished submanifold.

3.1. Classes K& (X, X% Y, Y?). Let X and Y be compact smooth manifolds, dim X = n,
dimY =m, X° Y° be smooth codimension 1 submanifolds of X and Y, respectively.

A half-density ks € C*™ ((X xY)\ ({X°xY}U{X xY"}), Q)%(xy) defines an operator
AL CE(Y\Y?,02) = CF(X \ X°,03),
whose action on a half-density u € C5°(Y \ Y°, Qé) is given by the formula
A= [ ha 2)

Y

Half-density k4 is called the kernel of the operator A.
Let us explain the meaning of the expression in the right-hand side of . Kernel k4 and
half-density p can be written as

kg = KA(plap2>|dUX<p1)dUY(p2>|%’ = U(p2)|dvy(p2)|%;
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where Ky € C®° (X xY)\ ({X°xY}U{X xY°})), u € C°(Y \ Y?), |dvx| is a positive
smooth density on X and |dvy| is a positive smooth density on Y. Then their product

kap = Ka(pr, p2)u(pa)|dvx (p)|F |dvy (po)|

is a density on Y. It can be integrated over Y resulting in a half-density on X:

/MW=/KMWM%WW%HWWmW

Y

It is easy to see that formula agrees with the standard expression for the integral operator
with kernel K 4:

Ap = Au(pl)\dvx(pl)ﬁ, Au(p) = /KA(p1,p2)U(p2)dUY(p2)'

If p; ¢ X, the integral in the right-hand side converges.

Consider the stratified submanifold { X x Y} U{X x Y} of the manifold X x Y. Each index
family £ on {X° x Y} U{X x Y} is written as £ = (&;,&,), where &) is an index family on
X%xY and & an index family on X x Y. In what follows, we shall also consider index family
&) as an index family on X° and &, as an index family on Y.

Definition 8. Let £ be an index family on X, & be an index family on Y° and (&, &,) the
corresponding index family on {X° x Y} U{X x Y°}. We shall say that an integral operator A
given by belongs to the class K2 (X, XY, YY) if

ba € AGH (X 5 Y {X0 X YHU{X x Y0}, Q2 ).

P XXY{XOxY}U{XxYO0}
It is clear that K%2(X, XY, Y?) is a linear space.

Example 2. In the simplest ezample X =Y = R and X° = Y° = {0}, integral operator A
with kernel "
dx dy
—— € R\ {0},
rvnl BREY \ {0}

belongs to the class K& (X, XY, Y) with £(X°) = {(a + j,k) : j € Z,,k =0,1,...,p},
82<YO) :{(6+]7k) :j€Z+7k:0717"'7Q}'

For an index set £, we let inf E :=inf{z: (z,p) € E}. If £ is an index family on a stratified

submanifold X° = X; U...U X, of manifold X, we denote inf £ = ilnf inf £(X;).
j=1,..., r

Theorem 1. Let A € K&%2(X, X% Y,Y"). Then, for each index family F on Y°, satisfying
the condition inf(E + F) > 0, operator A can be extended to the operator

ks = Caz®y’ In? |2| In? |y|

A AL (VY002 o) = AS (X X0, Q2 o).
Theorem 2. If A € K&%(X, X% Y,Y") and B € K™>73(Y,Y"; Z, Z°), then under condition
inf(& + F) > 0 their composition C = A o B is well-defined and belongs to the class
Kérs (X, X0 7, 79).

3.2. Normal coordinates near a submanifold. Let M be a compact manifold, M be its
smooth submanifold. We choose a Riemannian metric gy on M and consider the normal bundle
N(M®) := TM/TM° = (TM°)+. We recall that the exponential map exp : N(M°) — M of
Riemannian metric gy, for submanifold M? is defined as follows. Let v € N,(M°), x € M.
There exists the unique geodesic v : (—oo0, +00) — M, passing through x with the velocity
vector v, that is, such that (0) = z, (0) = v. Then exp(v) := v(1).
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One can identify M with the zero section of bundle N(M?°) that allows us to consider M°
both as a submanifold of M and as a submanifold of N(M?). The following proposition holds.

Proposition 1. There exists a neighborhood U > M° in N(M?P) such that the restriction
exp |y to U is a diffeomorphism of U on some neighborhood exp(U) of submanifold M°.

The set exp(U) is called a tubular neighborhood of M in M. Without loss of generality, we
can assume that exp(U) is an e-neighborhood of M" for some & > 0.

We suppose that submanifold MY is of codimension one, and normal bundle N (M?) is trivial.
Assume that U D M? is as in Proposition [1| and choose p € exp U. This point is in a one-to-one
correspondence with a pair (z,2%) € N(M?), where 2° € M° and x € N,o(M?), exp(z) = p.
Since the Riemannian metric determines an isomorphism N, (M%) = R, one can consider
z € R. Thus, each point p in the tubular neighborhood exp(U) is uniquely determined by a
pair (z,2°), where * € R and 2° € M°. The map exp(U) — (—¢,&) x M°, p — (z,z°) will be
called a normal coordinate system near M.

3.3. Classes K¢, Let X be a compact smooth manifold of dimension n, gy be a
Riemannian metric on X, X° = X;U...UX, be its smooth codimension one submanifold. Thus,
submanifolds X7, ..., X, are mutually disjoint. Suppose that the normal bundles of X;,..., X,
are trivial.

Consider an operator A : C§°(X \ X, Q)%() — C™(X \ X°, Q)%() with a kernel
ka € 0 ((X x X))\ ({X° x X}U{X x XO}),Q)%(X)() .

Hereafter |dz°| is a fixed positive smooth density on X°.

We choose a normal coordinate system with coordinates (z,z°) € (—¢,¢) x X° in a tubular
neighborhood exp(U) = V of X°. Let (z1, 22, 2%, 23) be the corresponding coordinates on V x V.
We denote II. = {(z,s) € R* : 0 < |2| < ¢, |%| < €} and introduce a coordinate system
(z,5,29,29) € TI. x X9 x X0 on the set (V '\ X°) x (V' \ X°) by the formulae

T
f— pu— —_—. 3
r=i, =2 ®)
Then the half-density
drid 2
ka= KA(xl,xg,:E(f,:Ug) ﬂﬂdw?dw%
Tr1 T2

in the local coordinate system (z, s, 29, 29) is written as

x dx ds
0 ,.0 074,.0
]{IA :KA(QZ',E,JTD[L'Q) 7?d$1d$2

We define a function K4 on IL. x X° x X by

~ x
KA(m,s,x[l),mg) = KA(x,g,x(l),mg). (4)

1 1
Let p € C°(X,Q%), suppu C V. We write p = u(x,2°) [2£da’|?, where u € C§o(V) =
Cs°((—e,¢) x X9). Then

—+o0
~ T ds
0 .0 0 0
= / / Ka(z,s,27, x5)u <—a$2> —du
X0 S S
— 00

Definition 9. Let &, & be index families on X°, Eo = {€o4j : i,j = 1,...,r}, where
Eo.j is an index set for each 1,5 = 1,...,r . We say that an operator A belongs to the class
KEre2fo (X, XO) if

Ap

\%4
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(1) Kernel k 4 is a conormal half-density on (X x X)\ (X" x X°) with distinguished submanifold
{XOx (X \ XO}U{(X\ XY x X} with respect to the index family Ey = (&1,&,):

Ey(X; < (X\ X)) =&(X,), Ei((X\X") x X;) = &(X;).

(2) Function K (x,s,2%,29) on II. x X° x X is conormal at the submanifold {0} x (R \
{0}) x XO x X with respect to index family Es:

E>({0} x (R\ {0}) x X; x X;) = Eo.;-
(3) Function K on {(z,7) € R : |z| < ¢, |z7| < e} x X° x XO defined by
KA(:C T, x?,xQ) Ka(z, xT, x?,mg)

is conormal at the submanifold ({0} x R x X% x X% U ((—¢,¢) x {0} x X% x X) with respect
to the index family Es = (Eo, &)

E\g({O} x R x XZ X X]) = SO,U, Eg((—&‘,&‘) X {0} X Xz X X]) = 82(XJ)
(4) Function K 4 on {(t,z) € R?: |tz] < e, |z| < e} x X° x X° defined by

KA(t z,2),29) = K4 (tw,z,29,29) ,

is conormal at the submanifold ({0} x (—e,e) x X° x X%) U (R x {0} x X° x X°) with respect
to the index family Ey = (£1,&0)

./E\4({0} X (—5,5) X Xz X X]) = gl(Xz), ./E\4(R X {O} X Xz X X]) = gO,ij'
It is clear that the class K120 (X X0) is a linear space.

Remark 2. One can show that K&¢2(X, X%) C K& (X X0) where o5 = E1(X;) +
&(X;).

Example 3. In the simplest example X = R and X° = {0} the integral operator A with the

kernel
b= a4 ) a2+ ) [
Ty
belongs to the class K€% (X X0) where £(X°) = {(a +j,k) : j € Zy,k = 0,1,...,p},

E(XY) ={(B+4k):j€Zik=0,1,....q} and Eo = {(a+B+v+j,k):j € Lk =
0,1,....p4+q+r}.

Let Ei, E5 be arbitrary index sets. We let
E\UE, = EyUE, U{(2,p1 +p2+1):(2,p1) € By, (2,p2) € Ea}.
Theorem 3. Let A € K&%2f (X X0). Then, for each index family F satisfying the
condition inf(E + F) > 0, operator A can be extended to the operator

A AL (X XO Q;XO) — A7

phyg

(X,X° Q2

XXO)

where

g(X G(O +SOU)), i=1,...,r
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Theorem 4. Let A € K&665(X, X0) and B € K& 4 €5 (X, X°), and moreover inf(E4* +
EB) > 0. Then the composition C = A o B is well-defined and belongs to the class
KET €565 (X, X0), where

ef(x) =& U (U, (€8 + €800
&g (x;) = &P (U, (&8 x + €84)

Eg,ij = (Uk (gg,ik + 5g,kj)> U (5{4()(1‘) + 523(Xj)) .

Remark 3. The results obtained in the paper are likely to be extended to the case when the
normal bundle of X° is nontrivial. In order to do it, one needs to pass to the corresponding
double covering and to work with Zs-invariant operators. An appropriate technique was
developed for manifolds with corners in [14].

4. PROOFS OF MAIN THEOREMS

In this section we provide the proofs of Theorems|I], 2] [3|and [4] As it has been already said in
Introduction, our approach to constructing and studying classes of singular integral operators
is a generalization of the geometric approach suggested by Melrose (|11}, 12, [13], see also [15]).
A specific feature of Melrose’s approach is that classes of operators are defined by means of
certain conditions on a kernel k4 of an operator A in a given class. These conditions are either
the conormality conditions for kernel k4 or for some half-density kia being the pull-back of
kernel k4 to an auxiliary manifold associated with X x X. In order to relate operator A with
the kernel /%A, the action of the integral operator A on half-densities is expressed in terms of
pull-back and push-forward operators. Thus, the study of the given class of integral operators
is reduced to employing pull-back and push-forward operators and their properties. Therefore,
we begin with a discussion of pull-back and push-forward operators.

4.1. Pull-backs. Let us recall the definitions of the pull-back operator associated with a
map of smooth manifolds.

Let X and Y be smooth manifolds, f : X — Y a smooth map. For each vector bundle
p: G —Y onY, we define a vector bundle p, : f*G — X as follows:

G ={(z,v)|lr € X;v € Gy}, mlz,v) =2
Definition 10. The pull-back operator is a linear operator
[ O=(Y,G) = CF(X, [1G)
given for each s € C*(Y,G) by the identity
frs(@) = (z,5(f(2), zeX

Let X and Y be smooth manifolds of dimension n and m respectively, X° = X; U... U X,
and Y? =Y, U...UY,o stratified submanifolds of X and Y respectively.

Definition 11. A smooth map f : X — Y is said to be relative if for each p € X the
following condition holds. To be specific we suppose thatp € X1 N...NXy, p& Xp U...UX,
and f(p) e Yin...NYy, f(p) € Yepu1U...UY,,. We choose an adapted at p coordinate system
with coordinates (x,2°) € RY x R"¢ defined in a neighborhood U,, and an adapted at f(p)
coordinate system with coordinates (y,y°) € R x R™~%. In these coordinates map f is written
as

yi:fi(:ﬁ,xo), i=1,...,4; y?:f,;(x,xo), 1=b+1,...,m.
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Then there exist smooth functions a;, i = 1,...,4y, such that a;(z,z°) # 0 and in some
neighborhood of p we have a representation:

filz, ... ,ili'e,l‘o) = ai(x,xo) H;L’;.ﬁj’

Jj=1
where v;; are non-negative integers, i =1,...,4y, j =1,..., L.

Numbers 7;; depend only on components X; and Y; and will be denoted by e (X}, Y;). Observe
that the definition of relative map implies that f~1(Y?) c X°.

Theorem 5. Let G be a line bundle on'Y, E° be an index family on a submanifold Y°. Then
for each relative map f: (X, X%) — (Y, Y?) operator f* can be extended to an operator

froAG (VY0 G) — AL (X, X0, G,

P

where index family € on X° reads as

£(X;) = { (77 + ; er(X;,Y5)z, Z Qi)

)

(zi,q:) € E°(Ys),m € Z+}7 (5)

the sum is taken over all i =1,...,ry such that e;(X;,Y;) # 0.
The proof of Theorem 5| will be given in Appendix [A]

4.2. Push-forwards. Let us recall the definitions of the push-forward operator associated
with a map of smooth manifolds.
We denote

D’(Y, G) = C5°(Y, G*)’.
The inclusion
C(Y,G®Qy) CD(Y,G)

holds true. For each u € C§°(Y, GRSy ) given by u = s®@u, where s € C3°(Y,G), p € C*(Y, Qy ),
the corresponding functional on C§°(Y, G*) is defined by the formula

(up) = [{s) e €, p € CFY.C)
Y
where (s(y), ¢(y)) € C denotes a value of functional ¢(y) € Gy on s(y) € G,.
Definition 12. Let X, Y be compact smooth manifolds, G be a vector bundle on Y. Given
a smooth map f : X — Y, the push-forward operator is a linear operator
f«: DX, [*G) = D(Y,G)
defined for each p € D'(X, f*G) by

(fett, 0) =, [F@), w0 € C(Y,G").

Let X, Y be compact smooth manifolds of dimension n and m respectively, X = X U...UX,
and Y =Y U...UY,0 be stratified submanifolds of X and Y, respectively.

Definition 13. A smooth map f: X — Y 1is said to be a relative fibration if it satisfies the
following conditions:

1. f is a relative map;

2. f is surjective;

3. For each component X; of X° there exists at most one component Y; of Y° such that
ef(XjJ YZ) # 0,
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4. Let p € X be such that f(p) = po & Y°. To be specific we suppose that p € X1()...[)Xe
andp & Xep1 ... UX,. As in Definition we write map f in local coordinates:

y = filz.a?), (v2”) eR' xR, i=1....m.

Then the rank of Jacobi matrix g?i{?’#{:’") 15 equal to m.
100 n—=~e

Theorem 6. Let £ be an index family on X° such that, for each j = 1,...,r obeying
er(X;,Y;) = 0 for each i = 1,...,7¢, the inequality inf £(X;) > 0 holds true. Then for each
relative fibration f: (X, X°) — (Y, Y?) and for each line bundle G on'Y push-forward operator
f« restricts to the operator

For Ao (X, X0, G ® Qo xo) — A5 (Y, Y0, G @ Qyyo),
where index family E° on Y° reads as

z

0 . :_ —_— M - ':
(V) Uj:ef(Xj,Yi#O{(ef<Xj,Yi),q).(z,q)ES(XJ)}, i=1,...,70.

The proof of Theorem [6] will be given in Appendix [B]

4.3. Proofs of Theorems [1] and [2| Let us prove Theorem [I] By a straightforward
calculation it is easy to check that the map

1 1
A CEY Y08 - 0 (X \ X°,04)
defined by operator A € K&:¢2(X, X0 Y, Y?) can be represented as
1
Ap = WI*(kAﬂ-;:U')a HE C’(‘]X’(Y \ Y07 Q}Q/)v
where maps 71 : X XY — X, 1 : X XY — Y are given by
m(z,y) =z m(zr,y) =Y. (6)
Suppose that an index family F on Y?° satisfies the condition inf(& + F) > 0 and p €

1
AL, (Y, Y, 27 y0). One can show that 75 is a relative map and moreover en, (X0 x Y, YY) =0,

ery(X x YO Y9) = 1. Therefore, by Theorem [5| we have:
1
wyi € AN (X X Y {X x YO U{X? x Y}, 7302 o).

By the properties of conormal functions observed in Remark [T} it follows that

. £1,E 3 *O)3
kamip € Ap}llg2+-7:(X XY, {X x Y U{X° x Y}7Q)2(><Y,{X><Y0}U{XO><Y} ® 15805 o).
The isomorphism of vector bundles
1 1 1
Q)Q(XY,{XXYO}U{XO <y} = T Xx0 ® 7TQQ§2/,Y0

holds true. Hence,
1
kamsp € AL (X x VX x YOLU{X® x Y} 7100 %0 ® Qxsr,(xxv0)ufxoxyy)-
Since inf (€ +F) > 0 and one can show that 7, is a relative fibration with e,, (X°x Y, X%) =1,
e (X x Y0 X% = 0, by applying Theorem @ with G = Q,%,, f = m we obtain that Ay €

X, X0
1
A;}LQ(X, XY, Q% xo)- It completes the proof of Theorem

Theorem [2| can be proved in a similar way. The kernel of the composition C' = A o B is
represented as
ko = mo, (m3kamikp),
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where the maps m : X XY X Z =Y X Z, my . X XY XZ > XXZ m3: XXYXZ—XXY
are defined by

7"—1('177y72) = (y,Z), 7T2(IL‘,y,Z) = (1},2)7 7T3(ZL‘7y,Z) = (xay) (7)
Now it remains to apply Theorems [5| and [6]

4.4. Proof of Theorem [3| Let X be a compact smooth manifold with a distinguished
submanifold XY of codimension 1. We suppose that X is equipped with a Riemannian metric
gx and the normal bundle of X0 is trivial.

We will use the stretched product X? obtained from X x X by the blow-up of the submanifold
X% x X% C X x X. Let us recall its definition. First of all, we introduce the normal bundle
N(X?x X% =T(X x X)/T(X° x X°) of X° x X We observe that rank N(X° x X) = 2.

The projectivization of the bundle N(X? x X°) is the bundle P(N (X x X?)) over X° x X0,
whose fiber at p € X° x X" consists of one-dimensional linear subspaces in N,(X° x X?). We
define the set

V(N(X? x X)) = | | V(0),
(e P(N(X0x X0))
where V(£) € N(X° x X?) is a one-dimensional linear space corresponding to a line ¢. Thus,
elements of V(N(X? x XY)) are collections (z9,29,¢,v), where p = (29, 29) € X° x X% ¢ C
N,y(X? x X9, v € V(£). One can prove that set V(N(X° x X)) has a structure of smooth
manifold. We introduce a map By : V(N(X? x X9)) — N(X? x X9) by the formula

By : (xl,:vg,ﬂ V) — (x(l),xg,v).

Let gxxx be the Riemannian metric on X x X coinciding with metric gx on TX x {0} and
on {0} x T'X, which are subsets of TX x TX = T(X x X). Moreover, the sets TX x {0} and
{0} x T'X are mutually orthogonal.

By Proposition [1, there exists a neighborhood U of X° x X? in N(X° x X°) such that the
following map is a diffeomorphism:

eXPy x x |U U = exp(U).

We introduce an equivalence relation on [(X x X) \ (X° x X)] U B85 (U) letting points
(p1,p2) € (X x X)\ (X° x X% and (29,29,¢,v) € By (U) to be equivalent if and only if
(p1,p2) € exp(U) and the identity exp(fBx(z?,29,¢,v)) = (p1, p2) holds true.

The stretched product X7 is defined as the set of equivalence classes on [(X x X)\ (X x

X0 U B (V)
X2 = [(X % X))\ (X0 x X)L B3AU)/ ~,

Set X7 is naturally endowed with a structure of smooth manifold.

Let us define a map 8 : X2 — X x X as follows: if (p1, p2) € (X x X)\ (X° x X9), then

Bprp2) = (p1,p2);
if (29,29,¢,v) € By (U), then
B2V, x5, 0,v) = exp(By(2?, 25, £, v)).
There is a submanifold in X?:
X2, = {(29,29,¢,v) € B5H(U) : v = 0}.
We let
X3 =X x (X \ X u{(a}, 29, 0,v) € By (U) : £ =1},

where ¢; is the one-dimensional subspace in N (X%x X?) consisting of vectors (vy,v9) € TX xTX
such that v; € TXY. In the same way we define

Xop = (XN X") x XP U {(27, 25, 6,v) € By (U) : £ = b},
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where /5 is the one-dimensional subspace in N (X%x X?) consisting of vectors (vy,vy) € TX xTX
such that vy, € TXO.

It is easy to see that X3, X3, and X2, are smooth submanifolds in X?. These submanifolds
intersect transversally, and their union is a stratified submanifold X? of manifold X?.

A fundamental property of X7 is provided in the following statement.

~ Lemma 1. An operator A belongs to class K€-2€0(X, X9) if and only if the push-forward
ka = B*ka of the kernel ka under map 8 : X} — X x X is a conormal function on X? with
respect to the index family (£1,&,E0) on X2 = X3, U X3, U X3,.

We prove Theorem [3] by using Lemma[l] We introduce the maps 8, : X2 — X, o1 X7 — X
by 81 = w00, By = meo3, where m; and 7y are defined in @ It can be shown by straightforward
calculations that operator A € K-€2€0 (X, X9) can be represented as

Ap = Bu,(kaBip), 1€ CRY\Y,00), (8)

where k4 is defined in Lemma [1] Now the proof of Theorem [3| can be completed in the same
way as the proof of Theorem [I] by employing Theorems [5| and [6]

4.5. Proof of Theorem . We prove Theorem as follows. First, we define a manifold X},
which is the blow-up of the stratified submanifold X = (X x X9 x X?)U(X%x X x X?)U(X? x
X%x X)in X x X x X. Then we introduce the maps v; : X7 — X2, i = 1,2, 3 being analogues
of projections m;, i = 1,2,3 (cf. @) One can show that the kernel ko of the composition can
be represented in the form
ke = v2.(vskaviks),

where v3ka, vikp are the lifts of the kernels to X. An important fact is the statement that
there exists a stratified submanifold X in X} such that maps v; : (X2, A?) — (X2, &7?) are
relative fibrations. Then the proof is completed by using Theorems [5] and [6]

Let us describe the constructions of manifold X}, submanifold A;> and maps 7;. We consider
the normal bundle N(X? x X0 x X0) = T(X x X x X)/T(X° x X% x X) of the submanifold
X% x X0 x X9 of rank 3. The projectivization of bundle N(X° x X? x X0) is the bundle
P(N(X% x X% x X9)) over X? x X% x X% whose fiber at p € X? x X° x X consists of
one-dimensional linear subspaces in N,(X" x X? x X?). We introduce the set

V(N(X? x X0 x X0)) = | ] V(0),
0EP(N(XOx X0x X0))
where V(¢) C N(X? x X% x X) is the one-dimensional linear subspace corresponding to ¢
as an element of N(X? x X0 x XY). Thus, elements of V(N(X® x X% x X)) are collections
(p,€,v), where p € X x X% x X% ¢ C N,(X? x X° x X0) and v € V(). It is easy to show
that the set V(N(X? x X? x X)) has a structure of a smooth manifold.
We define a submanifold V4 in V(N (X? x X° x X)) by
Vo ={(p,4,v) € V(N(X° x X x X)) :v =0}

We introduce a map vy : V(N(X? x X9 x X9)) = N(X? x X% x X by the formula

IYN : (m(;?xg’xg?E’v) ’_> (x?7xg7xg7v)'

It is easy to show that the restriction of vy to V' \ V4 defines the diffeomorphism
N VINXOx XOx XN\ Vo 5 N(X? x X% x X%\ (XY x X% x X°).
V\Vo

AAS in the two-dimensional case, one can introduce the notion of blow-up of submanifolds
X1 =X x X% X% X5 = X% X x XY and X35 = X° x X?x X of the manifold X x X x X.
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We consider the normal bundle N ()A( 1) of submanifold Xi, whose fiber at p € X, is Np()? 1) =
T,(X x X x X)/T,(X,) for each p = (x1,29,23) € X;. The map

pri i N(Xp) = N(X0 x X0, (21,29, 29, 01) — (29, 29, v1),

defines an isomorphism Np()A(I) = Nagat) (X0 x X0).
We introduce the bundle P(N(X;)) over X;, whose fiber at p = (21,23, 23) € X; consists of
one-dimensional linear subspaces in N,(X7). We define the set

VINED)) = L] v

(eP(N(X)1))

where V(¢) C N ()?1) is the one-dimensional linear subspace corresponding to ¢ as an element
of N(X;). Thus, elements of V(N(X})) are collections (p,¢,v), where p = (x1,29,23) € Xi,
¢ C Ny(X;) and v € V(¢).
We define the map
TN, V(N()?l)) — N()AQ), (z1, 29,23, 01,v1) V> (21,25, 23, 11).

Similar objects can be introduced for the submanifolds )/(\'2 and )/(\'3. In particular, there are

A~ -~ ~

defined maps vy, : V(N(X;)) = N(X;) and pr; : N(X;) = N(X? x X0),7=2,3.
We introduce the submanifold V; in V/(N(Xj;)), i = 1,2,3, by the formula

~

Vi=A(p.t,v) e VIN(X;)) : v = 0}.
It is easy to show that the restriction of vy, to V '\ V;, i = 1,2, 3, defines the diffeomorphism
| s VINX))\ Vi S N(X)\ X
VAV

Let gxx xxx be the Riemannian metric on X x X x X coinciding with metric gx on subbundles
TX x {0} x {0}, {0} xTX x {0}, {0} x {0} x TX of TX xTX xTX =T(X x X x X). By
Proposition [l there exists a neighborhood U of X% x X% x X% in N(X? x X% x X?) such that
the map

eXP 1= €XPxx ¥ x X !U U S expyyxex(U) CX x X x X,

is a diffeomorphism, as well as there exists a neighborhood U; of X% x X% in N(X? x X?) such
that the map

eXP y « x |U1 U = expyyx(U) C X x X

is a diffeomorphism. For each ¢+ = 1,2,3, the composition of map expy,y with pr; is a
diffeomorphism

exp, : pr; H(Uy) C N()/(\'Z) 5 exp,(pr; 1(U1)) € X x X x X,
We introduce an equivalence relation ~ on (X x X X X\)A(O) Uy () |_|7;,11(U1) I_I%QJ(Ul) W
Y, (U1) letting

e Points (p1,p2, p3) € X x X x X \ X° and (29,29, 29, £,v) € vy (U) are equivalent if and
only if (p1,p2,ps3) € exp(U) and

eXp(vN(xﬁJ? 3587 xga g? U)) = (p17p27p3)'

e For each i = 1,2,3, points (p1,ps,p3) € X X X x X\ X0 and (p,l1,v1) € Wﬁj(Ul) are
equivalent if and only if (py, p2, p3) € exp,(pr; '(U1)) and

exp; (N, (P, 01, v1)) = (P1, D2, P3).-



SINGULAR INTEGRAL OPERATORS. .. 49

e Foreachi =1,2,3, points (29,29, 29,¢,v) € 7' (U) and (p, €1, v1) € vy, (U) are equivalent
if and only if

(56(1], xgv 1'3) p;
and (£,v) is mapped to (£1,v;) under the natural map N(X) — N(X;).
We define set X} as the set of equivalence classes:
X = (X % X x X\ X%) Uy (U) Uyl (U1) Uy (U0) U (Th) ) ~

It is easy to check that X is a smooth manifold.
We introduce the following subsets in X7

X3 ={(p,t,v) € V(N(X" x X° x X)) : v =0} Cc 75" (U),
X3, ={(p.t,v) € V(N(X))) s v =0} C 3 (Th), i=1,2,3.
We define subset X3 in X} by its intersections with the components of X}
XPN(X x X x X\ X% =X% (X\ X% x (X\ X,
X3y 0) = {(p, 4,v) e VIN(X° x XOx X)) : 4 c TX" x TX x TX},

XN a0 = {(p,t,v) € V(N(X1)) :p € X° x X0 x X°},
X3 Nk (Uh) = {(p, £.v) € V(N(X2)) : € € TX® x TX x TX},
X3y ) = {(p, ,0) € V(N(X3)) : € C TX® x TX x TX}.

In the same way we define subsets X3 and X3.

It is easy to see that all the subsets introduced above are smooth submanifolds in X;’. These
submanifolds intersect transversally, and their union is a stratified submanifold in X7, which
we denote by A:

AP =XUXUXJUXZUX, UXS,UXS,.
Maps 7; : X7 — XZ, i =1,2,3, are defined as follows.
For (p1,pa,p3) € X x X x X\ XY

’Yi(plvp27p3) = 7Ti(php%pii))

where maps m; : X x X x X — X x X are defined by .
For (Z’l,$2,l’3,€ U) S 7N (U)

Tt (IL‘[l),ZL“g,ZL’g,E,U) = (:L‘(2)7xg7€17v271}3)a

Ve (I(l)7x(2)7'rg7£’v) = (95(1]%2752701;@3),

LR (ﬁﬂgﬁgagav) = ($(1],I(2),£3,U1,U2),

where £y, {5, 5 are the images of £ under the projections N(X°? x X x X%) on N(X° x X0):

(w?,xg,azg,v) = (Ig,xg,’l)z,vg), (ﬂf?»xgaﬂfgav) = (33(1),513%,1)1,1)3), (x(l]’x&mgvv) = ('I(l)axg7vl>v2)

respectively.
For (p,¢,v) € VJ_V}(Ul), where p = (xq,29,23) € Xl, ¢ C N, ( 1) and v € V({), we let
Tt ($1,$8,$3,€, U) = (372,373,[)7’1<€),p7’1('0)),
Y2t (xhxgaxgv& U) = (mbeXpX(vL’)))a

V3 : (a:l,xg,xg,ﬁ, v) = (21, expx(ve)).

For (p,¢,v) € vﬁj(Ul), maps Vi, V2,73 are defined in the same way.
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5. REGULARIZED TRACE

Operators in class K20 (X, X9) are not, in general, of trace class. It turns out that, if
index set &p satisfies the condition:

inf o > 0, and, in addition, if (0,q) € &, then ¢ =0, 9)

one can introduce a functional on K-€2€0 (X, X0) called the regularized trace functional, which
coincides with the trace functional on trace class operators.

Before giving the definition of the regularized trace, we introduce the notion of regularized
integral for conormal densities.

5.1. Regularized integral. Let y be a density defined on a compact manifold X with
a distinguished smooth submanifold X° of codimension 1 and this density is conormal with
respect to an index family £ and. We suppose that the conormal bundle of X is trivial, and
index family &£ satisfies the condition @ We fix a Riemannian metric gx on X and define

continuous function r on X by r(p) = o(p, X°), where g is the geodesic distance from p to
submanifold X?°.

Definition 14. The reqularized integral of density u over X is defined by the formula

/u:hm( / ,u+2ln5/u]Xo). (10)
e—0
X X

X0
r(p)>e

Here j1|xo is a density on X defined as follows. In the normal coordinate system exp(U) —
(—&,8)x X% p > (x,2°) near X°, we write i = u(z, 2°) |“£dz° |, where u is a conormal function
on (—¢,e) x X° with distinguished submanifold {0} x X, |dz| is the fixed smooth density
on X°. Since index family £ satisfies (9)), it is easy to see that u is extended to a continuous
function on (—¢,¢) x X% We let

| xo = u(0,2%)|da".

It is easy to check that p|xo is independent of the choice of density |dz°|.
One can show that the limit at the right-hand side of exists. One should note that the

regularized integral depends on the choice of Riemannian metric gy.

5.2. Regularized trace. Let X be a compact manifold and A : C*(X, Q)%() — O>(X, Q)%()
1

be an integral operator with smooth kernel k4 € C°(X x X,Q% ), whose action on a half-
density p € C*(X, Q%) is given by formula . We recall that such an operator A determines
1

a bounded operator in the space L*(X,Q%). This operator is trace class, and

Tr(A) = /kA e (11)
X
where A = {(z,2) e X x X 1z € X}.
Here smooth density k4 |a on X is defined as follows. Let dvy be a smooth positive density
on X. We write ) )
ka = Ka(p1,p2)ldvx (p1)|2|dvx (p2)]2,  p1,p2 € X,
where K4 € C*(X x X), and let

kala = Ka(p,p)|dvx(p)|.

It is easy to check that this definition is independent of the choice of density dvx.
Let X be a compact manifold, X° be its smooth submanifold of codimension 1, gx be a
Riemannian metric on X. We suppose that the normal bundle of X? is trivial and consider an
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operator A € KE€:£0 (X, X°) with kernel ks € C®(X x X \ (X° x X) U (X x X?),02,). We
assume that index family &y satisfies @D

Definition 15. The reqularized trace of operator A is defined by the formula

T

eT(4) = [ ala

X

One can show that k| is a conormal density on (X, X°) with respect to index family &p,
and, therefore, the regularized integral of k4 |a over X is well-defined.

5.3. Regularized trace of the commutator. As above, let X be a compact manifold, X°
be its smooth submanifold of codimension 1, gx be a Riemannian metric on X. Suppose that the
normal bundle of X is trivial. The regularized trace functional r-Tr on algebra K:¢2€0 (X X0)
is not a trace functional, i.e., the regularized trace r-Tr([A, B]) of the commutator of operators
A € Kf&fo(X X9 and B € Kf#2f0(X, XY), in general, is nonzero. The main result of
this section is a formula providing an expression for the regularized trace of the commutator
r-Tr([A, B]) in terms of certain integral operators on submanifold X° associated with A and B.

We begin with the de

nition of a class of operators, for which the aforementioned formula holds true.

Definition 16. We say that A € K(X, X%) if A € K& (X, X% for some index families
&1, &, Eo and the following conditions hold:

1. For each ¢ > 0, there exists § > 0 such that, if o(x, X°) > ¢, o(y, X°) < § or o(y, X°) > ¢,
o(z, XY) < §, then ka(z,y) = 0.

2. &o satisfies condition @D

3. Choose a normal coordinate system with coordinates (z,z°) € (—e,e) x X° in some tubular
neighborhood of X°. There exist m, M, 0 < m < M < oo, such that function K, defined
by is supported in the set of all (z,s,2%,29) € . x X x X such that m < |s| < M.

Using Theorem [4] it is easy to show that (X, X°) is an algebra.

Before we formulate the statement on the regularized trace of the commutator, we introduce
the notions of indicial operator and indicial family associated with an operator A € K(X, X?),
which we need to formulate this theorem.

Condition (2) of Definition [16] implies that, for an operator A € K(X, X?), there exists the
limit
where K 4 is the function given by formula ({4]).

Definition 17. The indicial operator associated with an operator A € K(X,X°) is the
operator

1 1
I(A) : G (RN A{0}) x X°, Q2 1oy, x0) = CP((RN\ {0}) x X°, Q1 x0)s
whose action on the half-density
0 dl‘ 0 2 00 0 %
p=u(r,a%) |—da®| € CF((R\{0}) X X°, Oy gpyx0)
18
dx 2

I(A)p = I(A)u(z, 2°)

Y

—da®
T
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where

d
I(A)u //KAOSx ) < x?)—sd:c(f, r e R\ {0},2° € X°.
s
X0 —o0

The following notion is an analogue of the known notion of the conormal symbol (cf., for
instance, 13, [16]) in the situation under consideration.

Definition 18. The indicial families of an operator A € K(X,X") are the families
{I=(A,)\) : X\ € C} of integral operators on X° with smooth kernels given by:

+oo
—iN T ds
Kr(adad) = [ s Ra0,5.0809,

0

ds
[s|

The function A\ — K+ (a ) (x?,mg) (resp. A = Kj—(a(27,29)) is the Mellin transform of
function K4(0, s :1:1,952) (resp. K4(0, —s,29,29)) with respect to variable s on the semi-axis
(0, +00). Since K4(0,s,2%,29) is a smooth compactly supported function of s € (—oc,0) U
(0, +00) for fixed 22, xg € X° by the Paley-Wiener theorem, functions Kjx4 (2}, 29) are
well-defined for each A € C and are entire functions.

The following properties of the indicial operators hold:

1. I(AoB)=1I(A)oI(B).

2. IT(Ao B A\) =TT (A N) o IT(B,\)+ 1 (A, N) oI (B,\).

3. I (Ao B AN)=T"(AN) oI (B,\)+ 1 (AN oI+(B A).

Theorem 7. If A € K(X,X°) and B € K(X, XY), then

i (2, 23) = / 5[V E (0, 5, 2, 2)

—00

r-Tr([A, B]) = —% / tr(ONI (A, N) o IT(B,A) + O\ (A, X)) o I (B, \))dA,

where the symbol tr stands for the trace of an integral operator on X°.

Joxazameavcmeo. By definition we have:

r-Tr[(A, B)] = lim ( / (kap — kpa) |a + 21116/ ((kag — kpa) |a)

e—0

XO

XO) ‘
X
r(p)>e

We define map R: X x X — X x X by R(p1,p2) = (p2,p1). Then one can write

/(kAB)’A: / //fA(PbPz)/fB(pmpl) = / kaR*kp(p1,p2),

X X X XxX
r(p1)>e r(p1)>e r(p1)>e

where the last integral should be understood as the integral of the density ks R*kp on X x X
over the set {(p1,p2) € X X X :r(p1) > €}. In the same way,

/(kBA)’A: / kpR*ka(p1,p2) = / kaR*kg(p1,p2).

X XxX XxX
r(p1)>e r(p1)>e r(p2)>e
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We choose a normal coordinate system with coordinates (z,z°) € (—e1,&1) x XY in some
tubular neighborhood V' = exp(U) of X°. In particular, V = {p € X : r(p) < £,}. We obtain
that

/ (kpa — kpa)|a = / kaR*kp(p1,p2) — / kaR*kp(p1,p2)

XxX XxX

X
r(p1)>e r(p1)>e r(p2)>e
= / kAR kp(p1,p2) — / kaR kg (p1,p2)
VxV VxV
r(p1)>e r(p2)>e
+ / kaR kp(p1,p2) — / kaR kg (p1,p2)
Vx(X\V) (X\V)xV
r(p1)>e r(p2)>e

+ / kaR*kg(p1,p2) — / kaR*kp(p1,p2).

(X\V)xX Xx(X\V)
r(p1)>e r(p2)>e

It is easy to see that for each 0 < e < ¢

/ kaR*kp(p1,p2) = / kaR kp(p1,p2),

(X\V)xX (X\V)xX
r(p1)>e
/ kaR*kp(p1,p2) = / kaR"kp(p1,p2).
Xx(X\V) Xx(X\V)
T(p2)>E

By Condition (1) of Definition [16] there exists 2 > 0 such that, if p; ¢ V and r(p2) < &2 or
r(p1) < €2 and py ¢ V, then ka(p1,p2) = kp(p1,p2) = 0. Hence, for each 0 < &€ < min(ey, 2)

/ kaR*kp(p1,p2) = / kaR*kp(p1,p2)-

(X\V)xV (X\V)xV
r(p2)>e
/ kaR*kg(p1,p2) = / kaR*kp(p1,p2).
Vx(X\V) Vx(X\V)
T(p1)>€

Therefore, we obtain that

/ (ki — ksa) | = / kAR ke (py, pa) — / kAR ki (p1, pa). (13)

X VXV VxV
7(p1)>e r(p1)>e r(p2)>e

We introduce the local coordinate system (z, s, %, 29) € II. x X° x X in the neighborhood
(V\ X% x (V' \ X°) given by (3). In these coordinates, map R is written as

1 4

0,0y _
R(z, s, x},x5) = (E,g,%,xl) :
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Identity becomes

els|

1 dx \ ds
/ (kpa — kpa)|a = / / /KA 5,29, 29) Kp < x2,x1> Tl Hda:(fdxg,
X

XO0x X0 —o0
r(p1)>e

where functions K 4 and K p are defined by ({4))
By Conditions (2) and (3) of Definition (16| it implies easily that the limit

els|

1 dx \ d
lim (kpa — kpa) |a = / / /KA (0,s,2%, 29)K 5 (O :1;3,:51) ar —Sdas(l)alzzc2

e=0 [ | ls|
X XO0x X0 —o0
r(p1)>e
1 ds
=2 / /ln|s|KA (0,s,2%, 20 K5(0, = xQ,xl)‘$|dx1dx2
X0x X0 —o0

is well-defined. In particular, it yields

/ ((kAB — kpa) A)

Using the relation between the Mellin transform and the Fourier transform and the Parceval
identity for the Fourier transform, one can prove that, if fi, f> € L?*((0,400), £), Mellin
transforms M(f,), M(f,) belong to L?(R), and we have the formula

/fl (s ds:—/ IR0

Applying this formula in the case

=0.

XO

~ 1
fi(s) =In|s|K4(0,s,29,29), fa(s) = Kp(0, g,xg,x?), s> 0,

we obtain that

+oo
~ ~ 1 ds 1
/ln|s|KA(O7s,x(1],xg)KB(0,;,xg,x(l))?:—ﬁ/8,\KI+(A,)\)(x?,xg)Kﬁ(B,,\)(xg,x?)d)\.

0

In the same way we have

0
- _ 1
/ In 5| KA (0, 5,29, 29) K (0, *, 23, 2)
S

—0o0

ds

E: o /8AKI (AA)(%,%)KI (BA)(ZL‘2,$(1))d)\
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Thus, we obtain that

r-Tr([A, B]) =lim / (kpa — kpa) |a

e—0

X
r(p1)>e

+oo
1

X0x X0 —o0
+ @Kr(A,A) ($?7 $g)KI*(B,>\) ($ga m?))d/\dx?dffg

+oo
=— i / tr(OhIT (A, N) o IT(B,A) + Oz (A, X) o I (B, \)d\.
T

A. PROOF OF THEOREM [Bl

Let u € Aizg(Y, Y0, G). We need to show that f*u € A5, (X, X°, f*G).

Firsi of all, note that the restriction of map f to f~}(Y \ Y°) determines the map f :
Y\ YY) = Y\ YO Since u is a smooth section on Y \ Y, f*u is smooth on f~1(Y \ Y?),
in particular, on X \ X, since f~}(Y?) c X°.

It remains to prove that the section f*u is conormal at an arbitrary point p € X% To be
specific we suppose that p € X;N...NX,and p ¢ X, 1 U...UX,. Let f(p) = po. Suppose that
po €YiN...NYy and pg ¢ Yy, 11 U...UY,,. We choose an adapted at p coordinate system with
coordinates (1, ...,z 2") € Dy X Dy and an adapted at p, coordinate system with coordinates
(Y1, Yey, ¥°) € DY x DY, where D; C Rf; Dy € R™% DY € Rfe; D ¢ R*%. Without loss
of generality, we can assume that the restriction of bundle G to the given neighborhood of
po is trivial, hence, we can identify the restriction of u to this neighborhood with a function.
Therefore, in what follows, we shall regard u as a scalar function.

The case ¢y, = ¢ = 0 has been already treated in the beginning of the proof. In this case
po €Y \Y%and pe X\ X°.

Consider the case 5 = 0 and ¢ > 0. In this case p € Y\ Y" and p € X°. Since py € Y\ Y?,
the identities

ef(X;,Y) =0, Vi=1,...,r0; Vj=1,....4, (14)

hold true. Since f*u € C(f~1(Y \ YY), f*G), f*u is smooth at p, therefore, f*u is conormal
at p with respect to the trivial index family. Due to (14]) it agrees with formula .

The further proof is given by the induction on ¢y > 1. Since f~*(Y?) C X° ¢ > 0.

Basis of induction: /; = 1. In this case we have:

er(X;,Y1)=0; Vi=L+1,...,r;
er(X;,Y)=0; Vi=2,...,1; Vj=1,...,m

Since u is conormal at py with respect to index family £°, an expansion
u(y, o) ~ D aag(y0)yiIn? Jyal,
(2,9)€E}

holds true, where a,, € C*(D3), EY = £°(Y1).
Since f is a relative map, map f is written in local coordinates as

fiDixDyCRXxR"™ = DIx DY Cc RxR™!, f:(x,2) = (y1,9%),
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where
¢
y1 = by(z, 2°) Hx;-ﬂj, y° = g(x, 1), (16)
j=1

b1 is a smooth non-vanishing function on Dy x Dy and g : Dy X Dy — DS is a smooth map.
Let N be a natural number to be chosen later. We denote u = uy + ry, where:

un(y,y”) = Y axg(y°)yi I [y.

(2,9)€EY
2<N
Thus, we obtain f*u = f*uy + f*ry. We have:
frun(zy,. .., x02%) = Z (g% a.q)(x, 2°)0i (z, )2 ]" . )e?
(2,0)€E}
2<N

x (In[by (2, %) + v In |1 ] + ... 4 e ln |ze])

Since g : Dy x Dy — DY is a smooth map and a,, € C*(DY), we have g*a,, € C(D; X D).
Therefore, f*uy can be written as

¢
fun(xy, ... 2@ Z d,q(z, 2° H 197 In? |41,
(2,9)€E? =1
2<N

where d, , € C*(D; x D,). It implies immediately that f*uy is conormal with respect to index
family &€ given by .
By assumption, for each ag € Z, By € Z1'™ ! there exists a constant C; such that

(00 ()| < Crlyn V.

By representation it yields that for each a € Z% and 8 € Z’f:e there exists a constant Cj
such that

‘(xax)aafo f*TN‘ < Clay [+, (17)

Let N; be an arbitrary natural number. Since f*uy is conormal at p with respect to &, we
have the representation

f*uN(:Elv"wxfy Z h x?v"‘axfaxo)‘rilnq ’$1|+QN,N17
(Z,q)GEl
z<N1
where h), are conormal functions with respect to & = (£(X3),...,£(X,)) and oy x, satisfies
the estimates
‘(xax)aafogszl < Claa M2 . [arg[Me |y M1+ (18)

Given Np, we choose N so that the inequality

N +1< ’)/11(]\[ + 1) (19)

holds true. By , , we have
‘(xax)aafo (f'rn + onn)
where M) = min(0, M;) Vj =2,...,( Finally, we obtain that

< Chlaa M . || M |2y | N,

ffu= Z h xg,...,xg,xo)xflnqlxﬂ+f*7“N+QN,N1.

(Z7q)€E1
2<N1
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It implies that hi\’[q is independent of N for Ny + 1 < ~11(/NV 4 1). Denote hi\fq(:pg, ooy, 20) =
h.(z2,..., 2 12°). Hence,

fru~ Z hao(72,. .. w0, 2%) 2 In? |24],

(Z7q)eE1

and, therefore, f*u is a conormal function with respect to £.

Step of induction. Fix ¢ > 1. We assume that the following statement is true. Let Z and
W be smooth manifolds, Z° and W? be stratified submanifolds of Z and W, respectively. We
suppose that we are given a relative map h : (Z,2°) — (W, W?), an arbitrary vector bundle
H on W, and an index family F° on W? is given. We assume also that p € Z; N ... N Z, and
p & ZpiU...UZ. Let h(p) = po. Let po € Wi N...N Wy, and pg & Wy 41 U...UW,, , and
moreover ky < £5. We suppose that u is conormal at py with respect to index family F°, then
h*u is conormal at p with respect to an index family F, where each index set F(Z;) of index
family F on Z° reads as

f@ﬂ:{(n+2;%g@ww%§:%)

(2

(zi,41) € F'(W;),n € Z+},

where the sum is taken over all i = 1,...,ry such that ef(Z;, W;) # 0.
Suppose that a function u, a map f, points p and py are as in the formulation of the theorem.
Let us prove that f*u is a conormal function at p. By the assumption we have

Gf(X],Y;):O, VZ:L,EQ, V]:f—i—l,,’f’,

20
er(X;,Y;)=0; Vi=tly+1,...,m0; Vji=1,...,m (20)

Since u is conormal at p, with respect to £, there exists a neighborhood V' of py, s¢(V) =
(—¢,e)% x Vi, where Vo, C R™ % such that u is defined and smooth on V' \ X, and, for each
(Y2, - -, Yty ¥°) € (—&,2)071 x V3, the asymptotic expansion

u(y, o) ~ D azg(va -y, v0)yi In?
(z.9)€EY

is valid as y; — 0, where E? = £°(Y}), functions a, , are conormal on (—¢,¢)%~! x Vo, C Z with
respect to &.

Here we consider Z = R~ x R™% with coordinates (v, ...,ys,y"), where y; € R, j =
2,..., 0, y° € R™ % equipped with a stratified submanifold Z° = {y, = 0} U ... U {y,, = 0}.
An index family & on Z° is introduced as &i({y; = 0}) = EJ, where j = 2,... (.

Since f is a relative map, in local coordinates the map f is written as

fiDixDy CREXR" =5 R xR, (2,2%) = (Y1, .-, Yeo, ¥°),

where
¢
y; = bi(z, 2°) Hm}”, i=1,...,4, y’=F(x2°),
j=1

b; are smooth non-vanishing functions on X.
We introduce the map

g: D1 x Dy CREX R = RO R™ (2,2°) = (ya,. -, ¥eor ¥°),
where

y; = bi(z,2°) ijj, i=2,...,0, Yy’ =F(x2°).

¢
i1

J
We observe that g is a relative map, and moreover,

e (X;, ) =er(X;,Y,); Vi=1,...,0 Vi=2,... (. (21)
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Let N be a natural number to be chosen later. We denote u = uy + 7y, where

uN(Q? yD) = Z az,q(y27 <y Yo yo)yf In? ’Z/1|

(2,9)€EY
<N

Hence, we obtain f*u = f*uy + f*ry. We have

frun(xy,...,202%) = Z (g% a. q)(x, 2°)0i (z, %) ]"" . )e?

(2,9)€EY
2<N

X (I [br (2, )] 4y I fa ] 4 yae I fa])

There exists a neighborhood U of p, »(U) = (—6,5)" x Uy, where U2 C R™*, such that

g(U) C V. Since g is a relative map, a., € A5, ((—e,2)7 x V3), by (1) and the induction
hypothesis, we obtain that ¢g*a., € Aghg((—é, §)* x Uy), where index set 5( ;) of index family

£ reads as

£) - { (14 Ses0m 0530 ) |

Zm% 680( )neZ—F}

where the sum is taken over all i = 2,...,ry such that ef(X;,Y;) # 0.
Hence, f*uyn can be written as
¢
frun(zy,. .., 22" Z d,q(z, 2° H 197 In? |41,
(z.0)€EY =1
z<N

where d, , € Afhg((—é, §)* x Us). It implies that f*uy is conormal with respect to &£.
By assumption, there exist real numbers M, ..., M, such that for each a € fo and § €
ZT_ZO there exists a constant C' = C,gn such that

(W0, 0 (") < Clual™ -y Mol [V

It yields that for |z;| <1

‘f*T’N(I‘, xo)} <01|x2|M§’+v12(N+1) o |xe|Ml9+m(N+1)|x1’v11(N+1)+M9

<C4|x2|MS . |:L‘€|M49|x1|%1(N+1)+M?

9

where

Lo
=2

Similar estimates hold for derivatives

(20,)%0% f 7y

0
x V5 7
< Cslaa|M2 . Jag| M7 fapy [ VDML, (22)

As in the case ¢ = 1, by the above relations one can conclude that f*u is a conormal function
with respect to index set £.

B. PROOF OF THEOREM

Let TS Aphg(X,XO,f*G ® Qx). Let us show that f.u is well-defined and f.u €
A (V,Y0,G & Q).

p
Let po ¢ YO. Let us show that f,u is a smooth density at py. We choose a local coordinate
system with coordinates 4° € DY C R™ in a neighborhood of py and take an arbitrary point

p € X such that f(p) = po. We suppose that p € X;N...NX,and p ¢ X, 1U...UX,. We choose
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an adapted at p coordinate system with coordinates (x,2°) € D; x Dy C Rf x R"~*. Since f is
a relative fibration, in local coordinates map f reads as y° = f(x,2%), where rank (%) =m.
Hence, one can choose an adapted at p coordinate system such that f becomes a projection:

Y = fla, 2% = (2),...,2°), wxeD;, 2°€D,. (23)

rYm

By compactness of X, there exists a finite family of neighborhoods V), ,s = 1,...,d, such
d
that X = (X \ /X po))UJ U Vj.. Let s € C*(X),s = 0,...,d, be a smooth partition of
s=1
unity subordinated to this covering: suppvy C X \ f~*(po), supp s C V,, for s = 1,....,d,
d d
s = 0, > 15 = 1. There exists a neighborhood U, of py such that > ¢s(m) = 1 for each
s=0 s=1
m < f_l(Upo)-
As in the proof of Theorem [ without loss of generality one can assume that bundle G is
trivial and p is a density on X. In coordinate neighborhood V,, , density p is written as

We choose ¢ € C5°(Y') such that supp ¢ C Up,. Then f*p € C*>°(X), moreover,

Fotts @) = (g1, f70) = / u(m)o(F(m)).
f_l(Upo)

Using the partition of unity and the local coordinates, we obtain

ot o Z / bl 2, 20 f (2, %) e (24)

xz
D1 ><D2

Taking into consideration formula (23] , the latter identity can re-written as

oty ) = / F)o(y")dy (25)

where F'is given by

d
Z / ¢s<$,y0,$21+1,. s 71"27[)
s=1 ]REXRn L—m (26)

dx
0 ,.0 0
X ,LL(I’, Yy 7$m+17 sy Ty K) dem+1 dxn—é

Sincep € X1N...NXy,p & Xp1U...UX,, and f(p) ¢ Y, we have er(X;,Y;) =0ifj=1,...,¢,
i=1,...,79. It yields that inf £(X;) > 0 for each j =1,...,¢. Hence, the estimate

(@, s )] <Clx1|€1- |l

holds true, where €4, ..., e, are positive numbers. It implies that the integral in the right-hand
side of converges uniformly, and therefore, function F' is smooth in a neighborhood of py.
According to , the restriction of density f.u to U, is well-defined and coincides with the
smooth density F(y")|dy°|. Therefore, f,u is well-defined as a smooth density on Y\ Y7°.

Let po € Y and suppose that pg € Y1 J...UYs, and po € Yoo iU ..U Y5, fo # 0. Let us
prove that f,u is conormal at pg.

The case {, = 1. We choose an adapted at py coordinate system with coordinates (y,y°) €
DY x DY C R x R™! and p € X such that f(p) = py. We assume that p € X;N...N X, and
p & Xo1 U...UX,. We choose an adapted at p coordinate system with coordinates (x,2°) €
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D, x Dy C RY x R*. In these coordinate systems, map f is written as (yl,yo) = f(xz,2%),
where y; = by(z,2%)2]" ... 2)", function b; is smooth and non-vanishing; y° = g(x,2°). Since
f(p) = po, at least one of 711, 712, ..., 71 1s positive. To be specific let 717 > 0. Then, without
loss of generality one can assume that by (z, 2%) = 1, because one can make a change of variables

in a neighborhood of zero:

1 _ ,
Ty =b(z,2%)may; Ty=x, Vi=2,...,0 3°=2a"

The Jacobian of this change will be denoted by w(x,2°). It is easy to see that w(0,z°) # 0 for
each 20 € D,.
By Condition (4) of Definition |13| we have rank (%) = m — 1. Hence, one can choose an

adapted at p coordinate system such that g becomes a projection:
Y =g(x,2°) = (2%,...,2° ), xze D, 2°¢€D,.

m—1

By compactness of X, there exists a finite family of neighborhoods V, , s = 1,...,d, such
that X = (X \ f'(po)) U Ldj Vp,. Let ¢, € C*(X),s = 0,...,d be a smooth partition of
unity subordinated to this élefering: suppty C X \ fH(po), supp s C V,, for s = 1,....,d,

> 0, Z s = 1. There exists a neighborhood U, of py such that zd: s(m) = 1 for any
m e [~ (Up). -

As above we will assume that bundle G is trivial and p is a density on X. In coordinate
neighborhood Vp., density p is written as

p= p(z, )

We choose ¢ € C5°(Y') such that supp ¢ C Up,,. Then f*p € C*°(X), moreover,

otts ) = {41, f70) = / um)p(f(m)).
fﬁl(Upo)

Employing the partition of unity and the local coordinates, we obtain that

(futt, ) = Z / b, 2%, )p(a] . ap ), ) —da. (27)
s=1
RZX]R"Z

Since ¢o = 1, by Definition at least one of v11,7v12,...,71¢ is positive. To be specific

let M, %2, Mk > 0, Vg = ... = e = 0, where k&, < £ Denote jui(z,2%) =
(@, %) p(w, 2°). Identity casts into the form
d dx
(fett, 0) =11 Z / ps(z, 2%)p(a] a3 a2l ,x?nfl)?dxo.
S=1R2XRH7Z

Making the change of variables

_ 1 Viky
Y1 =2y ... Ty t;

in the integral, we obtain that

—12 _ Mk

fM QO Z / Hs y111t2w11 t o t27‘“7t€7y07x2n7"'7x?17£>
s=1

]RZXR” 14
dy, dt dt
X (Y1, yo)ﬂ—Q . —édyodmgl .. .dx?l_e.
Y1 ta ty
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Hence, for each (y,4°) in some neighborhood of py, density f.u is given by

d

dy
forn =Y vy, y°) |—dy"|
s=1 N
where functions v,(y;,y") read as
1712 _’Ylkl 0
ve(y1,y°) = ps(y Mty Lt T oy’ 2l o2,
Ré—l XR?L—m—Z+1
dt dt
- . —édasgn codad
to te
Since for j = ki + 1,...,¢ we have inf F/; > 0, the integral in the last formula converges,

therefore, vy is a smooth function for y; # 0.
Fix s. Let us prove that function v, is conormal at y; = 0 with respect to index set E?Y. We
write

dtp, 11 dty
Vs(ylayo) - / M;(ylath-&-lw-'atﬁayo)—l"'_7 (28)
Uy 41 17]
]Rl—kl
where
1 _m2 _ kg
pE(y, thy s -t y0)= ps(yi Mty Lt M o, Y0, 20 20 )
Rkl—l XRnfmfé#»l (29)
dt dt
-2 . idxgl cod2? .
ta Lk,

The proof of Theorem [g] for £, = 1 is completed by means of the following statement.

Proposition 2. If a function ps(zy,...,20y% 2%, ..., 2% ) is compactly supported and

conormal in variables (z1,...,xy) with respect to an index family (E,...,E;) and
Y11, V125 - - - Y1k, > 0, then function ui given by formula 1s conormal in wariables
(Y1, tey 11, - - -, te) with respect to index family (EY, Ey, 41, ..., Ey), where

= ENAY |
El - Uj:l,...,k;l {(71J7q) . (Z,q) - E]} .

Once Proposition [2|is proved, by applying Theorem |§| to function p! in the case £y = 0 and
taking into consideration that, for j = k; + 1,...,¢ we have inf E; > 0, it follows from (|28
that the function v, is conormal at y; = 0 that completes the proof of Theorem [g] for ¢, = 1.

Proof of Proposition[d Since for y; # 0 the integrand is a smooth compactly supported
function, the integral converges absolutely, and p! is a smooth function.

Let us prove that function p! is conormal at y; = 0.

The case k; = ¢ = 1. In this case, function u! reads as

_1
1 (y1,y°) = / ps (™ @, )da, L da) . (30)
Rnfm
Since p, is a conormal function at x; = 0 with respect to index set E;, we have:

ps(21, 2%) ~ Z a, o(2%)25 In? |14],
(Z,q)GEl
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where a, , are smooth functions. Denote ps = py + 7n, where

pn(z1, 2%) = Z . 4(2%) 2] In? |74,

(z,9)€EL
zZ2<N

N is a natural number to be chosen later. By , function ! is represented as u! = vy + 7y,
where

1 z
VN(yla yo) = —q Z / az,q(yoa Z‘?n, cee a:c?zfl)ylvu In? |y1‘d$21 . 'dngl

q
M1
( 7q)€E1
and )
N o 1.0 .0 0 0 0
(Y1, y°) = / rv(y ™y, e x, ), L dx, .
Rn—nz
We have L
11 q
y17 E h’ ,q hl |y1|a
(z,q)EEL
2<N
where

1
hz#](y[)) = ’V_q / az,q(yoa :L‘gw cee 7x9L—1)dI971 s dx?b—l'
11
Rn m

Since a, , are smooth compactly supported functions, function vy is conormal at y; = 0 with
respect to the index set EY = {(-5,4): (2,0) € Ex}
By definition, for each oy € Z, and for each multi-index [, there exists a constant C'; such

aI N 7

Therefore, for each o € Z, and for each multi-index 3, there exists a constant C'y such that

< 01|131|N+1.

N+41

o\ 4 .
(yla—yl) 8587"N(y1, )‘ < Colyy| 1.

It implies immediately that
pin %) ~ > e g (y)y In ).

(z,9)€E}

The case k; = ¢ = 2. In this case, the function u! reads as

L - dt
pi(yr,y°) = / ps(y Mt e 020 2 ) —dal, . dal . (31)
RxRn-m-1

Since function (1, T9, 2°) is conormal at (z1,75) = (0,0) with respect to the index family
(E1, Es), we have:

ﬂs(x17$2>$0) ~ Z athl(xQ,xO)xfl In?! |$1|7
(z1,q1)€Er

where a,, 4, (22, ") are conormal functions at 2 = 0 with respect to index set E. By definition,
for each natural N; the representation

fis (21, T2, 2°) = Z sy gy (T2, 20) 25 I |21 | + 7, (21, 22, 2°)

(z1,q1)€En
21<Ny

is valid.
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Function a, 4 (72, 2°) admits the asymptotic expansion
0\ ,.22 11,92
Azi,0 ™ E bZl#]l,ZQﬂQ(‘T )1'2 In |.Z'2‘,
(22,92)€E2

b.1.q1,20.q» are smooth functions. Therefore, for each natural N, the representation

Az1,q1 (x2> mo) = Oz1q1 Ny (x2> mo) T g Ny (x27 $O)
holds true, where

Gz1g1N2 = Z bz1a1,20.00 (xo)‘r;? In® [a,|.

(22,q2)€E2
22< N2

Thus, we arrive at the representation
0y _ 0 0
ps(21, T2, ) = Py Ny (T1, T2, ) + 7y, (21, T2, 20),
where

HNy N, (1'1, L2, xO) = Z Z bthhZQ,flz (1‘0)&7521"121 In |$2| In? |ZE1|,

(21,q1)€E1 (22,92)€E2
z1< N1 22< N2

TN1N2(1317$2,$0) = TN1($17$2,I0) + Z TZlQlNQ(x27'IO)‘/ET1 In™ |z4],

(21,q1)€EL
21<V1

N1, Ny are natural numbers to be chosen later.
By assumption, there exists M; such that for each oy, as € Z, and for each multi-index fs,
there exists a constant C'; such that

(@10)" (2200,)" D81, (01, 22,2%)| < Calan [y,
Moreover, for each ay € Z, and for each multi-index s, there exists a constant C5 such that

(202,) 051y 2, 2%)| < Calra] 1,

It implies that there exists Ml such that for each ay,as € Z, and for each multi-index s,
there exists a constant C such that

(@102, (2203)" DT v (@1,2,2) | < Cilar [y 2. (32)

Taking into consideration the fact that us(xq, z2,2°) = 0 for |z;| > € or |z3| > €, by we
get the representation

ui(yl, yO) = VNN, (yb yO) + fN1N2 (yh y0)7

where
I
0.0 0
VN1N2 by Z Z / ( / bzl,fILZz,fD(y 1y Ly - - - 7'rn72)
’ GE ) S n—m-—
(lelqéNl ' (22222)]\]2 R ' yﬁs_%
_zivp 2L mdt
2 Yy In® |¢] <711 In |y1| — N2 |t|> —) dx?n .. dxg 9,
Y11 t
I
~ 0 T o At 0 0
TaN, (Y1, Y) = P (e 020, $n72)7 ATy - - ATy _o

Rn—m—1 1 711
y1'712 e 712
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Calculating explicitly the integral over ¢, one can show that function v, n, (y1,y°) is written as

z2
11 q 12 q2
VN N2 (U1, Y E dzl ol In® [y1] + E sz o I |y, |
(z1,q1)€Er (22,q2)€E2
z21<NV 22< N2

z2
E 12 q1+q2+1
+ d21 q1,22,¢I2 In ’yl |’

where the third sum is taken over all collections (z1,q1) € E1,21 < Ny, (22,¢2) € Fa, 20 < Ny

such that & = 22,
Y11 Y12

Let us estimate 7y, n,. Splitting the integral over ¢ into a sum of two integrals, we obtain

fN1N2 (y17 yo) = f]lle2 (ylﬂ y0> + 7:]2V1N2(y17 y0)7

where
y1711+712
Ly dt
~1 0\ __ Y11 0 0 0
NN, (ylay ) - / ( / T N1N, (yl t ’YH t y 33' s xn—Q)? dmm s dxn—Q
Rr-m-1 L 4y
y12 ¢ 2
L dt
11 0 0 0
v, (Y1, Y / ( / TNy N, (Yt e 020 x"_Q)T dx,, ...dx, .
Rn—m= ’v11+712

Using , we get

1 0 My Nyt
Py (0, 60)] < C (| 55 + [y 2 ).
To estimate 73, y,, we make use of the similar representation

NN, (T1, T2, 20) = Ty, (21, 79, 2°) + E Fongey (21, 2°0) 252 In? |24],
(22,92)€Eo
22< N2

which implies that there exists My such that for each oy, as € Z, and for each multi-index S,
there exists a constant C'; such that

(10" (2200,)" O3, (21,03, 2°) | < g |V g (33)
Employing , we get

2+N1+
hmmmyﬂ<00mﬂmw+MMw>

Thus, we have
5 0 Mj+Ng+1 Ng+1 Mgy+Nq+1 Np+1
Pvune (1, 97)| < O | yn| i + fyg| a2 4y | e + [y oz )

It implies easily that function u!(y;,4°) is conormal at y; = 0 with respect to the index set

By = {(%Q) H(2,9) €E1}0{<%,Q) 1 (2,9) GEa}.

The case k; = 2,¢ > k. First, we assume that k; = 2,/ = 3. In this case, function ! reads

as
1 0\ _ 11 71112 0 0 dt2 0 0
ps(y1,ts,y°) = s (y Mt ts, y°, Ty ooy Tp_g)—dx, ...dzx, ;. (34)

RXRn—m—2
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Since function p(zy, To, r3, 2°) is conormal at (z1, z2, z3) = (0,0,0) with respect to the index
family (F1, Fs, F3), we have

0 0\ .2 q
MS<$1,SL’2,$3,Z’ ) ~ § : az’s,%(xhx?vx )$33 In® |.T3‘,
(#3,93)€E3
where ., 4, (71, 22,2°) are conormal functions at (z1,22) = (0,0) with respect to the index

family (F4, ). By definition, for each natural N the representation

MS(ZL'l,CL’Q,l'g,ZEO) = Z azg,q3<x1am2)x0)x§3 lnq3 |ZL’3| +TN(33175€27I3’$0)

(23,q93)€E3
z23<IN

holds true. In accordance with , ul is represented as ul = vy + 7y, where

VN (yh ts, yO) = Z bzs,qs (yh yo)t? In% ’t3|?

(23,q3)€E3
23N
where
b ( 0)_ ( %t}?ﬁ to. 0 20 0 )dt2d 0 Az
23,q3\Y1, Y ) = Uz3,43\Y1 2 202, Y Ly ooy Ty 3 t Loy« - - ALy 3.
2
RXRn7m72
and
~ t 0y __ %tigllz t t 0 0 0 dth 0 d 0
TN(yb 3>y)_ TN(yl 2 y U2, 13,Y >$m7"'vxn—3)t Ly -+« - AT _ 3.
2
RxRn—m—2

By Proposition [2|in the case k; = ¢ = 2, functions b, 4 (y1,4°) are conormal at y; = 0 with
respect to index set EY. Therefore, function vy(yy,ts,4°) is conormal at (yy,t3) = (0,0) with
respect to the index set (EY, Es).

By definition, there exist M; and M such that, for each oy, s, a3 € Z, and for each multi-
index [, there exists a constant C such that

‘(xlazl)al (xzam)(m (I3axg)a3 8f§TN($1; T2, $37$0)‘ < C1|$1|M1‘$2’M2|$3|N+1.

Using these estimates, one can show that there exists a constant M such that for each ay, ay €
Z, and for each multi-index (3, there exists a constant C} such that

(410y,)"™" (t30,,)™ afofzv(yht?n yo)’ < Gl MtV

It completes the proof of Proposition [2 in the case ky = 2, £ = 3.
The case k; = 2 and arbitrary ¢ > k is proved in the same way by induction in £.
The proof of Proposition 2 for arbitrary k; and ¢ > k; is completed by induction in k;.
Suppose that Proposition [2] is valid for each k; < k, for each ¢ > kq, and for each function
its. Let us prove Proposition 2| for k; = k, for each ¢ > k;, and for each function pu.
To begin with, we consider the case k; = £ = k. In this case, we represent function u! given

by as follows:

ps(yi,9°) = /ﬁ(ylt;”’“,tk,yo)%,
“ k
where
1 72 _ k-1
/7(217 Uk, y0> = MS(ZfH t2 P t]g_l’yn by e, 3407 :ng s 71'27]@)
Rk72><Rnfm—k+l
dty  db da? ... dx° .

o e
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Proposition [2| in the case k; = k — 1,{ = k implies that function fi(zq,tx) is conormal in
(21, ;) with respect to the index family (E?, E), where

2= =) |
b= szl,...,k—1 { (71j’q) : (Zaq) S E]} .

Applying Proposition [2|in the case k; = £ = 2, we obtain that function v,(y;,4°) is conormal
in y; with respect to the index set

ﬁ_{(in):% eE}:EQ
1U "k q):(z4q) k 1
The case k; = k and arbitrary ¢ > k; is proved as above by induction in ¢. The proof of
Proposition [2] is completed. ]

Proof of Theorem [6] in the case {, = 2. We choose an adapted at py coordinate system
with coordinates (y1,y2,y°) € D¥x Dy C R*xR™ 2 and p € X such that f(p) = py. We suppose
that pe XinN...NXyand p ¢ X1 U...UX,. We choose an adapted at p coordinate system
with coordinates (z,2°%) € Dy x Dy C Rf x R**. By assumption, without loss of generality we
can assume that in these coordinate systems map f is written as (yi,ys,9°) = f(z,2°), where

Tk 2.k Yok :

y1 = by, 2%)a " ox ™ Yy = by(x, 2®)x P x?; functions by and by are smooth and
chi o C a0 0 :

non-vanishing; yi1, ..., Yiey, V2 k41, - - > V2ke > 0, k1 < ko < 5 y° = g(x,2”). As in the case

lo = 1, without loss of generality we can assume that b;(z,2%) = by(z,2°) = 1.
By Condition (4) of Definition (13| we have rank (%) = m — 2. Hence, one can choose an
adapted at py coordinate system such that map g becomes a projection:

g(x, 2% = (2Y,...,2° ), xze Dy, 2°¢Ds,.

m—2

By compactness of X, there exists a finite family of neighborhoods V), ,s = 1,...,d, such
that X = (X \ f*(po)) U Ldj Vp,. Let ¢, € C*(X),s = 0,...,d be a smooth partition of
unity subordinated to this cs::xlfering: suppty C X \ f~H(po), supp s C V,, for s = 1,...,d,
s = 0, iows = 1. There exists a neighborhood U, of py such that iws(m) = 1 for each

m € f~H(Up,y)-
As above, we assume that bundle G is trivial and p is a density on X. In coordinate
neighborhood V,,, density p is written as

d—xdxo
T

p=p(z,z°)

We choose ¢ € C3°(Y') such that supp ¢ C U,,. Denoting

1
0 0 0
,LLS<I',[E ) = —¢5($,$ ),LL(I,ZL' )7
Y1172,k14+1
we get
d
0
(felty ) = V117200 11 E / ps(w, 27)
S=IRex R
Y11 Yiky Y2,k +1 Y2,ky 0 0 dx 0
X (™. oxy ,xl,...,xm_Q)?dx .
Making the change of variables
— Vikq . _ 2k T2k, 0_ (,0 0 .
yi =20y = sy = (T, T ); (35)

lj = Vi=2,... ki, k1 +2,...,¢ (36)
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in the integral, we obtain
d 1

2 _ kg
_ 711 711 711
<f*[1,,g0> - E / Ms(yl t2 tkl 7t2a"'7tk17
SzllRlXRn—(Z
1 _2,k142 2k
Y2,k 1, Y2k 41 72,k +1 0 .0 0 0
2 tk1+2 tk 7tk1+27”'7t€7y 7xm7"'7xn—f>90(y17y27y )

dyl dy2 dtQ dtkl dtk1+2 dtg

: dy’da® .. .dxl_,.
Y1 Y2 t2 ley Thyvo 17] i ¢

n

Hence, for each (yy,ys,y°), density f.u is given by
d

dyl dyQ 0
fer =) _vs(yr,92,9") | == ——dy"|,
; Y1 Y2
where functions v,(y1, ¥, y°) read as
1 =712 _ kg
Vs<y17y27y0) = / ,Us(yl’yntg’yn --'tklﬁl 7t27---7tk17
RZ*QXRnfmfﬂkl
1 _72,k1+2 _ 72k2
o I ety a2 )
dt dty, dt dt
J...iﬂ...—edxfn...dmg_g.
to Uky Thyt2 te
Since for j = ko + 1,...,¢ we have inf E; > 0, the integral in the last formula converges,

therefore, v(y1,92,%°) is a smooth function for yyy, # 0.
Let us prove that function vs(y1, y2, ¥o) is conormal at (0,0) with respect to the index family
(EY, EY). We write the function v,(y1, y2, yo) as

i i

Vs(y17y27y0> = / Xl(y17y27tk2+17'"7t€7y0) )
a1 le

Rl—kz

where

Xl(y17y27tk2+1a s 7t€7y0)

1 772,k1+2 _ Yor
o 72,k1+1t 72,k +1 ¢ Y2,k +1 ¢ t 0 dtk1+2 dtkz
- X | Y1,Ys k142 e ly s k425 -+ -5 U, Y . e ’

tk1+2 ‘ th
]Rk:g*klfl
and
1 —mi2 _ Mky
X<y177-k1+1a"'77—€7y0) = / :us(ylﬂ/llt;n "'tklvn ’t2?"'7t/€17
RF1—1xRn—m—£+1
dty  dty,
Thiats Ty 20, 2t )= —2dal, . dal .
lo Uiy
It follows from Proposition that  x(y1, Tk, 41, Thyt2, - - 70, 4°) is conormal in the

variables (yi,Th,41,---,7¢) Wwith respect to the index family (E? Ey i1,...,FE;), and
X1 (Y1, Y2, thos1, - - - te,y°) is conormal in the variables (y1, Y2, tk,+1,- - -, te) With respect to the

index family (EY, E9, Ex,11, ..., Es). The conormality of function v,(yi,y2,y°) at (yi,y2) =
(0,0) with respect to the index family (EY, E9) follows from Theorem [6]in the case ¢, = 0 in
view of the condition inf F; > 0, Vj = ko 4 1,...,¢. Thus, the case ¢, = 2 is proved.

The proof of Theorem [6]in the case of arbitrary ¢y > 2 is given in the same way by induction
in Eo.
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