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SINGULAR INTEGRAL OPERATORS ON A MANIFOLD
WITH A DISTINGUISHED SUBMANIFOLD

YU.A. KORDYUKOV, V.A. PAVLENKO

Abstract. Let 𝑋 be a compact manifold without boundary and 𝑋0 its smooth submanifold
of codimension one. In this work we introduce classes of integral operators on 𝑋 with
kernels 𝐾𝐴(𝑥, 𝑦), being smooth functions for 𝑥 /∈ 𝑋0 and 𝑦 /∈ 𝑋0, and admitting an
asymptotic expansion of certain type, if 𝑥 or 𝑦 approaches 𝑋0. For operators of these
classes we prove theorems about action in spaces of conormal functions and composition.
We show that the trace functional can be extended to a regularized trace functional r-Tr
defined on some algebra 𝒦(𝑋,𝑋0) of singular integral operators described above. We prove
a formula for the regularized trace of the commutator of operators from this class in terms
of associated operators on 𝑋0. The proofs are based on theorems about pull-back and push-
forward of conormal functions under maps of manifolds with distinguished codimension one
submanifolds.
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1. Introduction

This paper is devoted to constructing and investigating of some classes of singular integral
operators on a closed smooth manifold 𝑋 with a distinguished smooth codimension one
submanifold 𝑋0. A specific feature of the operators in these classes is that their kernels,
𝐾𝐴(𝑥, 𝑦), are smooth functions for 𝑥 /∈ 𝑋0 and 𝑦 /∈ 𝑋0 admitting an asymptotic expansion of
a certain type as 𝑥 or 𝑦 approaches 𝑋0.

First of all, we prove theorems on action in spaces of conormal functions and theorems
on compositions for the operators in these classes. Then we construct an algebra 𝒦(𝑋,𝑋0)
of singular integral operators of this kind and a regularized trace functional r-Tr on it, which
coincides with the trace functional on the operators with smooth kernel. Though the constructed
functional does not have the trace property, we prove a formula for the regularized trace
r-Tr[𝐴,𝐵] of the commutator of operators 𝐴 and 𝐵 belonging to 𝒦(𝑋,𝑋0) in terms of certain
integral operators with smooth kernel on 𝑋0 associated with 𝐴 and 𝐵.

One of the main motivations for our constructions is the desire to generalize the Lefschetz
formula for a flow on a compact manifold preserving a codimension one foliation. In the case
when the flow has no fixed points and its orbits are transversal to the leaves of the foliations,
such a formula was proved in [1]. The essential role in [1] is played by the following analytic
result.

Let 𝑀 be a closed manifold and ℱ be a smooth codimension one foliation on 𝑀 . Suppose that
𝑋𝑡 : 𝑀 → 𝑀 , 𝑡 ∈ R is a flow on 𝑀 which maps each leaf of ℱ into a (possibly another) leaf.
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Let 𝐾 be a leafwise smoothing operator on 𝑀 , that is, an operator in the space 𝐶∞(𝑀) given
by a family of integral operators with smooth kernel acting along the leaves of the foliation.

For each 𝑓 ∈ 𝐶∞
0 (R), we define an operator 𝐴𝑓 in the space 𝐶∞(𝑀) by the formula

𝐴𝑓 =

∫︁
R

𝑋*
𝑡 · 𝑓(𝑡) 𝑑𝑡 ∘𝐾 ,

where 𝑋*
𝑡 is the operator in 𝐶∞(𝑀) induced by the action of flow 𝑋𝑡, 𝑋*

𝑡 𝑓(𝑥) = 𝑓(𝑋𝑡(𝑥)). It is
shown in [1] that, if the orbits of flow 𝑋𝑡 are transversal to the leaves, then, for each function
𝑓 ∈ 𝐶∞

0 (R), operator 𝐴𝑓 is a trace class operator in the Hilbert space 𝐿2(𝑀). Moreover, the
functional 𝑓 ↦→ tr𝐴𝑓 defines a distribution on R. The use of distributions of such type allows
us to define the Lefschetz number of flow 𝑋𝑡 as a distribution on R.

In the case when flow 𝑋𝑡 has finitely many non-degenerate fixed points, belonging to compact
leaves {𝐿𝑖}, and the orbits of flow 𝑋𝑡 are transversal to all leaves except {𝐿𝑖}, operator 𝐴𝑓

is not, generally speaking, a trace class operator. One can show that in this case operator
𝐴𝑓 belongs to the algebra 𝒦(𝑀,𝑀0), where 𝑀0 = ∪𝐿𝑖, and, therefore, its regularized trace
r-Tr(𝐴𝑓 ) is well-defined. This fact allows us to define the Lefschetz number of flow 𝑋𝑡 in the
case under consideration. These results are a part of our joint project with J. Alvarez Lopez
and E. Leichtnam and will be discussed in subsequent papers.

Operator algebras associated with a compact manifold with a distinguished submanifold
have been earlier constructed in papers of B.Yu. Sternin, V.E. Shatalov and A.Yu. Savin in
connection with the study of boundary value problems for elliptic equations on a compact
manifold, where the boundary conditions are given both on the boundary of the manifold
and on smooth submanifolds (of codimension > 1) not being the boundary. Problems of such
kind were considered for the first time by Sobolev [2]. A general setting of such problems and
their study were given in [3] and, following this work, they are often called Sobolev problems.
The operator algebra corresponding to Sobolev problems was constructed in [4]. It is obtained
as an extension of the algebra of pseudodifferential operators by means of a special class of
operators associated with the submanifold which are Green operators. It was shown in [5] that
the theory of Sobolev problems can be represented as a relative theory, i.e., it is associated with
the smooth embedding 𝑖 : 𝑋 →˓ 𝑀 of closed manifold. Relative theories are simpler and more
elegant than theories which do not have this property. For instance, the computation of the
index in a relative theory reduces to the computation of the index on smooth closed manifolds
𝑀 and 𝑋. On the contrary, in the theory of classical boundary value problems which is not
relative (since it is associated with a manifold with boundary) the computation of the index
is rather cumbersome. In [6, 7, 8], B.Yu. Sternin generalized the relative elliptic theory to the
case when the submanifold is a stratified one presented as a union of transversally intersecting
smooth submanifolds (see also [9, 10]).

The theory constructed in this paper is also a relative theory in the sense of B.Yu. Sternin
[5]. To construct it, we make use of the methods of papers by Melrose [11, 12, 13], in particular,
the geometric approach to constructing and studying algebras of singular integral operators
suggested in these papers. The classes of operators and the notion of regularized trace introduced
by us are analogues of the corresponding objects introduced earlier by Melrose for manifolds
with corners.

The outline of the paper is as follows. In Section 2 we give the definition of conormal functions
and conormal densities on a manifold 𝑍 with a distinguished submanifold 𝑍0 and describe their
basic properties. Submanifold 𝑍0 is not necessarily smooth, but it is represented as a union of
smooth connected submanifolds of codimension 1 intersecting transversally. Such submanifolds
will be called stratified. One of the main examples for us is as follows: 𝑍 = 𝑋 × 𝑋, 𝑍0 =
(𝑋0 × 𝑋) ∪ (𝑋 × 𝑋0), where 𝑋 is a smooth manifold and 𝑋0 is its smooth codimension
one submanifold. The notion of conormal function introduced by us is a generalization of the
classical notion of conormal function on a smooth submanifold introduced by Hörmander. A
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similar notion was introduced by Melrose for manifolds with corners. In Section 3 we construct
various classes of singular integral operators and formulate theorems about action in spaces
of conormal functions and about composition for operators of these classes. The proofs of
these theorems are given in Section 4. They use theorems about pull-back and push-forward for
conormal functions under maps of manifolds with distinguished submanifolds and constructions
of some auxiliary manifolds. In Section 5, we define the regularized trace functional and prove
its basic properties, in particular, theorem about the regularized trace of the commutator. In
Appendices A and B, we give the proofs of pull-back and push-forward theorems.

The authors express their gratitude to the referee for useful remarks.

2. Conormal densities and their properties

In this section, we introduce the class of conormal functions on an arbitrary manifold 𝑋 with
a distinguished stratified codimension one submanifold 𝑋0.

2.1. Stratified submanifolds. Let 𝑋 be a smooth manifold of dimension 𝑛. A subset 𝑋0 ⊂
𝑋 will be called a stratified (codimension one) submanifold of manifold 𝑋, if 𝑋0 is represented
as a union of finitely many smooth submanifolds 𝑋1, 𝑋2, . . . , 𝑋𝑟 of dimension 𝑛−1 intersecting
transversally. We shall assume that submanifolds 𝑋1, 𝑋2, . . . , 𝑋𝑟 are connected and we shall
call them components of stratified submanifold 𝑋0.

Here the transversal intersection has the following meaning. Let 𝑝 ∈ 𝑋0. Suppose that 𝑝
belongs to exactly ℓ components of the submanifold 𝑋0, ℓ > 1. Then there exists a local
coordinate system κ : 𝑈 ⊂ 𝑋 → Rℓ × R𝑛−ℓ with coordinates (𝑥, 𝑥0) ∈ Rℓ × R𝑛−ℓ defined in
a neighborhood of 𝑝 such that the intersections of the components of 𝑋0 containing 𝑝 with 𝑈
are given by the equations 𝑥𝑑 = 0 for each 𝑑 ∈ {1, . . . , ℓ}. Each such coordinate system will be
called adapted at 𝑝. Without loss of generality, we can assume that κ(𝑈) = 𝐷1 × 𝐷2, where
𝐷1 ⊂ Rℓ and 𝐷2 ⊂ R𝑛−ℓ are some open subsets. To be specific we will often assume that
𝑝 ∈ 𝑋1 ∩ . . .∩𝑋ℓ and 𝑝 /∈ 𝑋ℓ+1 ∪ . . .∪𝑋𝑟, and adapted at 𝑝 coordinated system is chosen such
that for any 𝑑 ∈ {1, . . . , ℓ} the intersection 𝑋𝑑 ∩ 𝑈 is given by the equation 𝑥𝑑 = 0. We will
always consider regular local coordinate systems, that is, coordinate systems κ : 𝑈 ⊂ 𝑋 → R𝑛

such that there exists a coordinate system κ̄ : 𝑉 ⊂ 𝑋 → R𝑛 defined in an open set 𝑉 such
that 𝑈 ⊂ 𝑉 .

2.2. Index sets and families. Denote by Q1 the set of rational numbers represented in the
form 𝑧 = 𝑝

𝑞
, where 𝑝, 𝑞 ∈ Z are coprime and 𝑞 is odd and by Z+ the set of non-positive integers.

Definition 1. An index set is a set 𝐸 ⊂ Q1 × Z+ satisfying the following conditions:
1. 𝐸 is bounded from below, i.e., there exists 𝑁1 ∈ Q1 such that, for each (𝑧, 𝑝) ∈ 𝐸, we have
𝑧 > 𝑁1;

2. (𝑧, 𝑝) ∈ 𝐸, 𝑝 > 𝑞 ⇒ (𝑧, 𝑞) ∈ 𝐸;
3. for each 𝑁2 ∈ Q1, the set 𝐸

⋂︀
{(𝑧, 𝑝) : 𝑧 6 𝑁2} is finite;

4. (𝑧, 𝑝) ∈ 𝐸, 𝑗 ∈ N ⇒ (𝑧 + 𝑗, 𝑝) ∈ 𝐸.

Definition 2. An index family ℰ is said to be defined on a stratified submanifold 𝑋0 =
𝑋1∪ . . .∪𝑋𝑟 if an index set ℰ(𝑋𝑗) = 𝐸𝑗, 𝑗 = 1, . . . , 𝑟 is assigned to each of its components 𝑋𝑗.

2.3. Conormal functions and their properties. Let 𝑋 be a smooth manifold and 𝑋0 =
𝑋1∪ . . .∪𝑋𝑟 its stratified submanifold. Let ℰ = (𝐸1, . . . , 𝐸𝑟) be some index family on 𝑋0. The
definition of a conormal function at 𝑝0 ∈ 𝑋0 will be given by induction by the number ℓ of
components of 𝑋0 containing 𝑝0.

Basis of induction: ℓ = 1. Suppose that 𝑝0 belongs to exactly one component, to be
specific 𝑝0 ∈ 𝑋1, 𝑝0 /∈ 𝑋2 ∪ . . . ∪𝑋𝑟. Take an adapted at 𝑝0 coordinate κ : 𝑈 ⊂ 𝑋 → κ(𝑈) =
𝐷1 ×𝐷2 ⊂ R×R𝑛−1.
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Definition 3. A function 𝑢 is said to be conormal at 𝑝0 with respect to an index family ℰ if
there exists a neighborhood 𝑉 ⊂ 𝑈 of 𝑝0, κ(𝑉 ) = (−𝜀, 𝜀)× 𝑉2, where 𝑉2 ⊂ R𝑛−1, such that 𝑢 is
defined and smooth on 𝑉 ∖𝑋0, and

𝑢 ∼
∑︁

(𝑧,𝑞)∈𝐸1

𝑎𝑧,𝑞(𝑥
0)𝑥𝑧 ln𝑞 |𝑥|,

where 𝑎𝑧,𝑞 ∈ 𝐶∞(𝑉2). Here the symbol ∼ means that, for each 𝛼 ∈ Z+, 𝛽 ∈ Z𝑛−1
+ and 𝑁 ∈ N,

there exists a constant 𝐶 = 𝐶𝛼𝛽𝑁 such that:⃒⃒⃒⃒
(𝑥𝜕𝑥)𝛼𝜕𝛽𝑥0

(︂
𝑢(𝑥, 𝑥0) −

∑︁
(𝑧,𝑞)∈𝐸1
𝑧6𝑁

𝑎𝑧,𝑞(𝑥
0)𝑥𝑧 ln𝑞 |𝑥|

)︂⃒⃒⃒⃒
< 𝐶|𝑥|𝑁+1, (𝑥, 𝑥0) ∈ (−𝜀, 𝜀) × 𝑉2, 𝑥 ̸= 0.

Step of induction. Let ℓ > 2. Suppose that the definition of conormal function at a point
is given for each smooth manifold 𝑌 with a distinguished stratified submanifold 𝑌 0 on which
an index family ℰ0 is introduced and for each point 𝑝1 ∈ 𝑌 0 under assumption that 𝑝1 belongs
to exactly 𝑘 components of 𝑌 0 with 𝑘 < ℓ.

Suppose that 𝑋 is a smooth manifold with a distinguished stratified submanifold 𝑋0, and
𝑝0 ∈ 𝑋0, moreover, 𝑝0 belongs to exactly ℓ components of 𝑋0. To be specific we shall assume
that 𝑝0 ∈ 𝑋1 ∩ . . . ∩ 𝑋ℓ and 𝑝0 /∈ 𝑋ℓ+1 ∪ . . . ∪ 𝑋𝑟. We introduce an adapted at 𝑝0 coordinate
system κ : 𝑈 ⊂ 𝑋 → κ(𝑈) = 𝐷1 × 𝐷2 ⊂ Rℓ × R𝑛−ℓ such that 𝑋𝑗 is given by the equation
𝑥𝑗 = 0.

Consider the manifold 𝑍 = Rℓ−1 × R𝑛−ℓ with coordinates (𝑥2, . . . , 𝑥ℓ, 𝑥
0), where 𝑥𝑗 ∈ R,

𝑗 = 2, . . . , ℓ, 𝑥0 ∈ R𝑛−ℓ, equipped with the stratified submanifold 𝑍0 = {𝑥2 = 0}∪. . .∪{𝑥ℓ = 0}.
We define an index set ℰ ′ on 𝑍0 by ℰ ′({𝑥𝑗 = 0}) = 𝐸𝑗, where 𝑗 = 2, . . . , ℓ. 𝑍0 consists of exactly
(ℓ − 1) components. Therefore, the notion of conormal function at an arbitrary point of 𝑍0 is
well-defined by the induction hypothesis.

Definition 4. A function 𝑢 is said to be conormal at 𝑝0 with respect to an index family ℰ
if there exists a neighborhood 𝑉 of 𝑝0, κ(𝑉 ) = (−𝜀, 𝜀)ℓ × 𝑉2, where 𝑉2 ⊂ R𝑛−ℓ such that 𝑢 is
defined and smooth on 𝑉 ∖𝑋0, and

𝑢 ∼
∑︁

(𝑧,𝑞)∈𝐸1

𝑎𝑧,𝑞(𝑥2, . . . , 𝑥ℓ, 𝑥
0)𝑥𝑧1 ln𝑞 |𝑥1|, (1)

where the functions 𝑎𝑧,𝑞 are conormal functions on (−𝜀, 𝜀)ℓ−1×𝑉2 ⊂ 𝑍 with respect to the index
family ℰ ′.

The symbol ∼ means that there are 𝑀2, . . . ,𝑀ℓ ∈ R such that for each 𝛼 ∈ Zℓ
+ and 𝛽 ∈ Z𝑛−ℓ

+

and for each 𝑁 ∈ N there exists a constant 𝐶 = 𝐶𝛼𝛽𝑁 such that:⃒⃒⃒⃒
(𝑥𝜕𝑥)𝛼𝜕𝛽𝑥0

(︂
𝑢(𝑥1, 𝑥2, . . . , 𝑥ℓ, 𝑥

0) −
∑︁

(𝑧,𝑞)∈𝐸1
𝑧6𝑁1

𝑎𝑧,𝑞(𝑥2, . . . , 𝑥ℓ, 𝑥
0)𝑥𝑧1 ln𝑞 |𝑥1|

)︂⃒⃒⃒⃒

< 𝐶|𝑥2|𝑀2 · . . . · |𝑥ℓ|𝑀ℓ |𝑥1|𝑁+1, (𝑥, 𝑥0) ∈ (−𝜀, 𝜀)ℓ × 𝑉2, 𝑥𝑗 ̸= 0.

One can show that the definition of a conormal function at a point is independent of the
choice of local coordinate system. In particular, the expansion of type (1) holds for each of
variables 𝑥2, . . . , 𝑥ℓ.

Definition 5. A function 𝑢 is said to be a conormal function on a manifold 𝑋 with a
stratified submanifold 𝑋0 with respect to an index family ℰ, if it is smooth on 𝑋 ∖ 𝑋0 and
conormal at each point 𝑝0 ∈ 𝑋0 with respect to ℰ.

The class of conormal functions on a manifold 𝑋 with a distinguished submanifold 𝑋0 with
respect to an index family ℰ will be denoted by 𝒜ℰ

𝑝ℎ𝑔(𝑋,𝑋
0).
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Remark 1. (1) If ℰ is the trivial index family, i.e. ℰ(𝑋𝑗) = {(ℓ, 0) : ℓ ∈ Z+} for each
𝑗 = 1, . . . , 𝑟, then 𝒜ℰ

𝑝ℎ𝑔(𝑋,𝑋
0) = 𝐶∞(𝑋).

(2) For each function 𝑢 ∈ 𝒜ℰ1
𝑝ℎ𝑔(𝑋,𝑋

0) and for each function 𝑣 ∈ 𝒜ℰ2
𝑝ℎ𝑔(𝑋,𝑋

0) the inclusions
𝑢+ 𝑣 ∈ 𝒜ℰ1∪ℰ2

𝑝ℎ𝑔 (𝑋,𝑋0) hold true as well as 𝑢𝑣 ∈ 𝒜ℰ1+ℰ2
𝑝ℎ𝑔 (𝑋,𝑋0).

Example 1. In the simplest example 𝑋 = R2 and 𝑋0 = (R×{0})∪ ({0}×R) the function
𝑢(𝑥, 𝑦) =

√︀
𝑥2 + 𝑦2 on 𝑋 is not conormal at (0, 0).

The notion of conormality is easily generalized to sections of a vector bundle.

Definition 6. Let 𝑋 be a smooth manifold, 𝑋0 be a stratified submanifold, 𝐺 be a smooth
vector bundle on 𝑋. A section 𝜇 is said to be a conormal section, 𝜇 ∈ 𝒜ℰ

𝑝ℎ𝑔(𝑋,𝑋
0, 𝐺), if in

each trivialization 𝐺 |𝑈 ∼= 𝑈 × C𝑟 of 𝐺 over the coordinate neighborhood 𝑈 ⊂ 𝑋 the section 𝜇
reads as 𝜇(𝑥) = (𝑥, (𝑢1(𝑥), . . . , 𝑢𝑟(𝑥)), 𝑥 ∈ 𝑈 , where 𝑢𝑗 ∈ 𝒜ℰ

𝑝ℎ𝑔(𝑋,𝑋
0), 𝑗 = 1, . . . , 𝑟.

2.4. Conormal densities. We shall consider operators acting on half-densities. We recall
that a smooth 𝑠-density 𝜇 on a smooth manifold𝑀 of dimension 𝑛 is written in an arbitrary local
coordinate system as 𝜇 = 𝑢(𝑥1, . . . , 𝑥𝑛)|𝑑𝑥1 . . . 𝑑𝑥𝑛|𝑠, where 𝑢 is a smooth function. Smooth 𝑠-
densities are smooth sections of a certain line bundle Ω𝑠

𝑀 on 𝑀 . We shall denote by 𝐶∞(𝑀,Ω𝑠
𝑀)

the space of smooth 𝑠-densities on 𝑀 .

Definition 7. Let 𝑋 be a smooth manifold and 𝑋0 = 𝑋1 ∪ . . . ∪ 𝑋𝑟 be its stratified
submanifold. An 𝑠-density 𝜇 on 𝑋 is said to be conormal with respect to an index family ℰ
if in each adapted local coordinate system with coordinates (𝑥, 𝑥0) ∈ Rℓ ×R𝑛−ℓ it reads as

𝜇 =
𝑢(𝑥, 𝑥0)

|𝑥|𝑠
|𝑑𝑥𝑑𝑥0|𝑠 = 𝑢(𝑥, 𝑥0)

⃒⃒⃒⃒
𝑑𝑥

𝑥
𝑑𝑥0
⃒⃒⃒⃒𝑠
,

where 𝑢 is a conormal function with respect to ℰ.

The space of conormal 𝑠-densities on 𝑋 with respect to an index family ℰ is naturally
isomorphic to the space 𝒜ℰ

𝑝ℎ𝑔(𝑋,𝑋
0,Ω𝑠

𝑋,𝑋0
) of conormal sections of a certain line bundle Ω𝑠

𝑋,𝑋0

on 𝑋. The construction of Ω𝑠
𝑋,𝑋0

is similar to the construction of the bundle of 𝑏-densities on
a manifold with corners suggested by Melrose and will be omitted.

3. Singular integral operators

In this section, we introduce classes of singular integral operators on a manifold with a
distinguished submanifold.

3.1. Classes 𝒦ℰ1,ℰ2(𝑋,𝑋0;𝑌, 𝑌 0). Let 𝑋 and 𝑌 be compact smooth manifolds, dim𝑋 = 𝑛,
dim𝑌 = 𝑚, 𝑋0, 𝑌 0 be smooth codimension 1 submanifolds of 𝑋 and 𝑌 , respectively.

A half-density 𝑘𝐴 ∈ 𝐶∞
(︁

(𝑋 × 𝑌 ) ∖ ({𝑋0 × 𝑌 } ∪ {𝑋 × 𝑌 0}),Ω
1
2
𝑋×𝑌

)︁
defines an operator

𝐴 : 𝐶∞
0 (𝑌 ∖ 𝑌 0,Ω

1
2
𝑌 ) → 𝐶∞(𝑋 ∖𝑋0,Ω

1
2
𝑋),

whose action on a half-density 𝜇 ∈ 𝐶∞
0 (𝑌 ∖ 𝑌 0,Ω

1
2
𝑌 ) is given by the formula

𝐴𝜇 =

∫︁
𝑌

𝑘𝐴𝜇. (2)

Half-density 𝑘𝐴 is called the kernel of the operator 𝐴.
Let us explain the meaning of the expression in the right-hand side of (2). Kernel 𝑘𝐴 and

half-density 𝜇 can be written as

𝑘𝐴 = 𝐾𝐴(𝑝1, 𝑝2)|𝑑𝑣𝑋(𝑝1)𝑑𝑣𝑌 (𝑝2)|
1
2 , 𝜇 = 𝑢(𝑝2)|𝑑𝑣𝑌 (𝑝2)|

1
2 ,
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where 𝐾𝐴 ∈ 𝐶∞ ((𝑋 × 𝑌 ) ∖ ({𝑋0 × 𝑌 } ∪ {𝑋 × 𝑌 0})), 𝑢 ∈ 𝐶∞
0 (𝑌 ∖ 𝑌 0), |𝑑𝑣𝑋 | is a positive

smooth density on 𝑋 and |𝑑𝑣𝑌 | is a positive smooth density on 𝑌 . Then their product

𝑘𝐴𝜇 = 𝐾𝐴(𝑝1, 𝑝2)𝑢(𝑝2)|𝑑𝑣𝑋(𝑝1)|
1
2 |𝑑𝑣𝑌 (𝑝2)|

is a density on 𝑌 . It can be integrated over 𝑌 resulting in a half-density on 𝑋:∫︁
𝑌

𝑘𝐴𝜇 =

⎛⎝∫︁
𝑌

𝐾𝐴(𝑝1, 𝑝2)𝑢(𝑝2)|𝑑𝑣𝑌 (𝑝2)|

⎞⎠ |𝑑𝑣𝑋(𝑝1)|
1
2 .

It is easy to see that formula (2) agrees with the standard expression for the integral operator
with kernel 𝐾𝐴:

𝐴𝜇 = 𝐴𝑢(𝑝1)|𝑑𝑣𝑋(𝑝1)|
1
2 , 𝐴𝑢(𝑝1) =

∫︁
𝑌

𝐾𝐴(𝑝1, 𝑝2)𝑢(𝑝2)𝑑𝑣𝑌 (𝑝2).

If 𝑝1 /∈ 𝑋0, the integral in the right-hand side converges.
Consider the stratified submanifold {𝑋0×𝑌 }∪{𝑋×𝑌 0} of the manifold 𝑋×𝑌 . Each index

family ℰ on {𝑋0 × 𝑌 } ∪ {𝑋 × 𝑌 0} is written as ℰ = (ℰ1, ℰ2), where ℰ1 is an index family on
𝑋0×𝑌 and ℰ2 an index family on 𝑋 ×𝑌 0. In what follows, we shall also consider index family
ℰ1 as an index family on 𝑋0 and ℰ2 as an index family on 𝑌 0.

Definition 8. Let ℰ1 be an index family on 𝑋0, ℰ2 be an index family on 𝑌 0 and (ℰ1, ℰ2) the
corresponding index family on {𝑋0 × 𝑌 } ∪ {𝑋 × 𝑌 0}. We shall say that an integral operator 𝐴
given by (2) belongs to the class 𝒦ℰ1,ℰ2(𝑋,𝑋0;𝑌, 𝑌 0) if

𝑘𝐴 ∈ 𝒜(ℰ1,ℰ2)
𝑝ℎ𝑔

(︁
𝑋 × 𝑌, {𝑋0 × 𝑌 } ∪ {𝑋 × 𝑌 0},Ω

1
2

𝑋×𝑌,{𝑋0×𝑌 }∪{𝑋×𝑌 0}

)︁
.

It is clear that 𝒦ℰ1,ℰ2(𝑋,𝑋0;𝑌, 𝑌 0) is a linear space.

Example 2. In the simplest example 𝑋 = 𝑌 = R and 𝑋0 = 𝑌 0 = {0}, integral operator 𝐴
with kernel

𝑘𝐴 = 𝐶𝑥𝛼𝑦𝛽 ln𝑝 |𝑥| ln𝑞 |𝑦|
⃒⃒⃒⃒
𝑑𝑥

𝑥

𝑑𝑦

𝑦

⃒⃒⃒⃒1/2
, 𝑥, 𝑦 ∈ R ∖ {0},

belongs to the class 𝒦ℰ1,ℰ2(𝑋,𝑋0;𝑌, 𝑌 0) with ℰ1(𝑋0) = {(𝛼 + 𝑗, 𝑘) : 𝑗 ∈ Z+, 𝑘 = 0, 1, . . . , 𝑝},
ℰ2(𝑌 0) = {(𝛽 + 𝑗, 𝑘) : 𝑗 ∈ Z+, 𝑘 = 0, 1, . . . , 𝑞}.

For an index set 𝐸, we let inf 𝐸 := inf{𝑧 : (𝑧, 𝑝) ∈ 𝐸}. If ℰ is an index family on a stratified
submanifold 𝑋0 = 𝑋1 ∪ . . . ∪𝑋𝑟 of manifold 𝑋, we denote inf ℰ = inf

𝑗=1,...,𝑟
inf ℰ(𝑋𝑗).

Theorem 1. Let 𝐴 ∈ 𝒦ℰ1,ℰ2(𝑋,𝑋0;𝑌, 𝑌 0). Then, for each index family ℱ on 𝑌 0, satisfying
the condition inf(ℰ2 + ℱ) > 0, operator 𝐴 can be extended to the operator

𝐴 : 𝒜ℱ
𝑝ℎ𝑔(𝑌, 𝑌

0,Ω
1
2

𝑌,𝑌 0) → 𝒜ℰ1
𝑝ℎ𝑔(𝑋,𝑋

0,Ω
1
2

𝑋,𝑋0).

Theorem 2. If 𝐴 ∈ 𝒦ℰ1,ℰ2(𝑋,𝑋0;𝑌, 𝑌 0) and 𝐵 ∈ 𝒦ℱ2,ℱ3(𝑌, 𝑌 0;𝑍,𝑍0), then under condition
inf(ℰ2 + ℱ2) > 0 their composition 𝐶 = 𝐴 ∘ 𝐵 is well-defined and belongs to the class
𝒦ℰ1,ℱ3(𝑋,𝑋0;𝑍,𝑍0).

3.2. Normal coordinates near a submanifold. Let 𝑀 be a compact manifold, 𝑀0 be its
smooth submanifold. We choose a Riemannian metric 𝑔𝑀 on 𝑀 and consider the normal bundle
𝑁(𝑀0) := 𝑇𝑀/𝑇𝑀0 ∼= (𝑇𝑀0)⊥. We recall that the exponential map exp : 𝑁(𝑀0) → 𝑀 of
Riemannian metric 𝑔𝑀 for submanifold 𝑀0 is defined as follows. Let 𝑣 ∈ 𝑁𝑥(𝑀0), 𝑥 ∈ 𝑀 .
There exists the unique geodesic 𝛾 : (−∞,+∞) → 𝑀 , passing through 𝑥 with the velocity
vector 𝑣, that is, such that 𝛾(0) = 𝑥, 𝛾̇(0) = 𝑣. Then exp(𝑣) := 𝛾(1).
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One can identify 𝑀0 with the zero section of bundle 𝑁(𝑀0) that allows us to consider 𝑀0

both as a submanifold of 𝑀 and as a submanifold of 𝑁(𝑀0). The following proposition holds.

Proposition 1. There exists a neighborhood 𝑈 ⊃ 𝑀0 in 𝑁(𝑀0) such that the restriction
exp |𝑈 to 𝑈 is a diffeomorphism of 𝑈 on some neighborhood exp(𝑈) of submanifold 𝑀0.

The set exp(𝑈) is called a tubular neighborhood of 𝑀0 in 𝑀 . Without loss of generality, we
can assume that exp(𝑈) is an 𝜀-neighborhood of 𝑀0 for some 𝜀 > 0.

We suppose that submanifold 𝑀0 is of codimension one, and normal bundle 𝑁(𝑀0) is trivial.
Assume that 𝑈 ⊃𝑀0 is as in Proposition 1 and choose 𝑝 ∈ exp𝑈 . This point is in a one-to-one
correspondence with a pair (𝑥, 𝑥0) ∈ 𝑁(𝑀0), where 𝑥0 ∈ 𝑀0 and 𝑥 ∈ 𝑁𝑥0(𝑀0), exp(𝑥) = 𝑝.
Since the Riemannian metric determines an isomorphism 𝑁𝑥0(𝑀0) ∼= R, one can consider
𝑥 ∈ R. Thus, each point 𝑝 in the tubular neighborhood exp(𝑈) is uniquely determined by a
pair (𝑥, 𝑥0), where 𝑥 ∈ R and 𝑥0 ∈ 𝑀0. The map exp(𝑈) → (−𝜀, 𝜀) ×𝑀0, 𝑝 ↦→ (𝑥, 𝑥0) will be
called a normal coordinate system near 𝑀0.

3.3. Classes 𝒦ℰ1,ℰ2,ℰ𝑂 . Let 𝑋 be a compact smooth manifold of dimension 𝑛, 𝑔𝑋 be a
Riemannian metric on 𝑋, 𝑋0 = 𝑋1∪. . .∪𝑋𝑟 be its smooth codimension one submanifold. Thus,
submanifolds 𝑋1, . . . , 𝑋𝑟 are mutually disjoint. Suppose that the normal bundles of 𝑋1, . . . , 𝑋𝑟

are trivial.
Consider an operator 𝐴 : 𝐶∞

0 (𝑋 ∖𝑋0,Ω
1
2
𝑋) → 𝐶∞(𝑋 ∖𝑋0,Ω

1
2
𝑋) with a kernel

𝑘𝐴 ∈ 𝐶∞
(︁

(𝑋 ×𝑋) ∖ ({𝑋0 ×𝑋} ∪ {𝑋 ×𝑋0}),Ω
1
2
𝑋×𝑋

)︁
.

Hereafter |𝑑𝑥0| is a fixed positive smooth density on 𝑋0.
We choose a normal coordinate system with coordinates (𝑥, 𝑥0) ∈ (−𝜀, 𝜀) ×𝑋0 in a tubular

neighborhood exp(𝑈) = 𝑉 of 𝑋0. Let (𝑥1, 𝑥2, 𝑥
0
1, 𝑥

0
2) be the corresponding coordinates on 𝑉 ×𝑉 .

We denote Π𝜀 = {(𝑥, 𝑠) ∈ R2 : 0 < |𝑥| < 𝜀,
⃒⃒
𝑥
𝑠

⃒⃒
< 𝜀} and introduce a coordinate system

(𝑥, 𝑠, 𝑥01, 𝑥
0
2) ∈ Π𝜀 ×𝑋0 ×𝑋0 on the set (𝑉 ∖𝑋0) × (𝑉 ∖𝑋0) by the formulae

𝑥 = 𝑥1, 𝑠 =
𝑥1
𝑥2
. (3)

Then the half-density

𝑘𝐴 = 𝐾𝐴(𝑥1, 𝑥2, 𝑥
0
1, 𝑥

0
2)

⃒⃒⃒⃒
𝑑𝑥1
𝑥1

𝑑𝑥2
𝑥2

𝑑𝑥01𝑑𝑥
0
2

⃒⃒⃒⃒ 1
2

in the local coordinate system (𝑥, 𝑠, 𝑥01, 𝑥
0
2) is written as

𝑘𝐴 = 𝐾𝐴(𝑥,
𝑥

𝑠
, 𝑥01, 𝑥

0
2)

⃒⃒⃒⃒
𝑑𝑥

𝑥

𝑑𝑠

𝑠
𝑑𝑥01𝑑𝑥

0
2

⃒⃒⃒⃒ 1
2

.

We define a function ̃︀𝐾𝐴 on Π𝜀 ×𝑋0 ×𝑋0 bỹ︀𝐾𝐴(𝑥, 𝑠, 𝑥01, 𝑥
0
2) = 𝐾𝐴(𝑥,

𝑥

𝑠
, 𝑥01, 𝑥

0
2). (4)

Let 𝜇 ∈ 𝐶∞
0 (𝑋,Ω

1
2
𝑋), supp𝜇 ⊂ 𝑉 . We write 𝜇 = 𝑢(𝑥, 𝑥0)

⃒⃒
𝑑𝑥
𝑥
𝑑𝑥0
⃒⃒ 1
2 , where 𝑢 ∈ 𝐶∞

0 (𝑉 ) ∼=
𝐶∞

0 ((−𝜀, 𝜀) ×𝑋0). Then

𝐴𝜇

⃒⃒⃒⃒
𝑉

=

⎛⎝∫︁
𝑋0

+∞∫︁
−∞

̃︀𝐾𝐴(𝑥, 𝑠, 𝑥01, 𝑥
0
2)𝑢
(︁𝑥
𝑠
, 𝑥02

)︁ 𝑑𝑠
𝑠
𝑑𝑥02

⎞⎠ ⃒⃒⃒⃒𝑑𝑥
𝑥
𝑑𝑥01

⃒⃒⃒⃒ 1
2

.

Definition 9. Let ℰ1, ℰ2 be index families on 𝑋0, ℰ𝑂 = {ℰ𝑂,𝑖𝑗 : 𝑖, 𝑗 = 1, . . . , 𝑟}, where
ℰ𝑂,𝑖𝑗 is an index set for each 𝑖, 𝑗 = 1, . . . , 𝑟 . We say that an operator 𝐴 belongs to the class
𝒦ℰ1,ℰ2,ℰ𝑂(𝑋,𝑋0) if
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(1) Kernel 𝑘𝐴 is a conormal half-density on (𝑋×𝑋)∖(𝑋0×𝑋0) with distinguished submanifold
{𝑋0 × (𝑋 ∖𝑋0)} ∪ {(𝑋 ∖𝑋0) ×𝑋0} with respect to the index family ̂︀𝐸1 = (ℰ1, ℰ2):̂︀𝐸1(𝑋𝑖 × (𝑋 ∖𝑋0)) = ℰ1(𝑋𝑖), ̂︀𝐸1((𝑋 ∖𝑋0) ×𝑋𝑗) = ℰ2(𝑋𝑗).

(2) Function ̃︀𝐾𝐴(𝑥, 𝑠, 𝑥01, 𝑥
0
2) on Π𝜀 × 𝑋0 × 𝑋0 is conormal at the submanifold {0} × (R ∖

{0}) ×𝑋0 ×𝑋0 with respect to index family ̂︀𝐸2:̂︀𝐸2({0} × (R ∖ {0}) ×𝑋𝑖 ×𝑋𝑗) = ℰ𝑂,𝑖𝑗.

(3) Function ̂︀𝐾𝐴 on {(𝑥, 𝜏) ∈ R2 : |𝑥| < 𝜀, |𝑥𝜏 | < 𝜀} ×𝑋0 ×𝑋0 defined bŷ︀𝐾𝐴(𝑥, 𝜏, 𝑥01, 𝑥
0
2) = 𝐾𝐴(𝑥, 𝑥𝜏, 𝑥01, 𝑥

0
2),

is conormal at the submanifold ({0} ×R×𝑋0 ×𝑋0) ∪ ((−𝜀, 𝜀) × {0} ×𝑋0 ×𝑋0) with respect
to the index family ̂︀𝐸3 = (ℰ𝑂, ℰ2)̂︀𝐸3({0} ×R×𝑋𝑖 ×𝑋𝑗) = ℰ𝑂,𝑖𝑗, ̂︀𝐸3((−𝜀, 𝜀) × {0} ×𝑋𝑖 ×𝑋𝑗) = ℰ2(𝑋𝑗).

(4) Function ̂︀̃︀𝐾𝐴 on {(𝑡, 𝑥) ∈ R2 : |𝑡𝑥| < 𝜀, |𝑥| < 𝜀} ×𝑋0 ×𝑋0 defined bŷ︀̃︀𝐾𝐴(𝑡, 𝑥, 𝑥01, 𝑥
0
2) = 𝐾𝐴

(︀
𝑡𝑥, 𝑥, 𝑥01, 𝑥

0
2

)︀
,

is conormal at the submanifold ({0} × (−𝜀, 𝜀) ×𝑋0 ×𝑋0) ∪ (R× {0} ×𝑋0 ×𝑋0) with respect
to the index family ̂︀𝐸4 = (ℰ1, ℰ𝑂)̂︀𝐸4({0} × (−𝜀, 𝜀) ×𝑋𝑖 ×𝑋𝑗) = ℰ1(𝑋𝑖), ̂︀𝐸4(R× {0} ×𝑋𝑖 ×𝑋𝑗) = ℰ𝑂,𝑖𝑗.

It is clear that the class 𝒦ℰ1,ℰ2,ℰ𝑂(𝑋,𝑋0) is a linear space.

Remark 2. One can show that 𝒦ℰ1,ℰ2(𝑋,𝑋0) ⊂ 𝒦ℰ1,ℰ2,ℰ𝑂(𝑋,𝑋0), where ℰ𝑂,𝑖𝑗 = ℰ1(𝑋𝑖) +
ℰ2(𝑋𝑗).

Example 3. In the simplest example 𝑋 = R and 𝑋0 = {0} the integral operator 𝐴 with the
kernel

𝑘𝐴 = 𝑥𝛼𝑦𝛽(𝑥2 + 𝑦2)
𝛾
2 ln𝑝 |𝑥| ln𝑞 |𝑦| ln𝑟(𝑥2 + 𝑦2)

⃒⃒⃒⃒
𝑑𝑥

𝑥

𝑑𝑦

𝑦

⃒⃒⃒⃒1/2
,

belongs to the class 𝒦ℰ1,ℰ2,ℰ𝑂(𝑋,𝑋0), where ℰ1(𝑋0) = {(𝛼 + 𝑗, 𝑘) : 𝑗 ∈ Z+, 𝑘 = 0, 1, . . . , 𝑝},
ℰ2(𝑋0) = {(𝛽 + 𝑗, 𝑘) : 𝑗 ∈ Z+, 𝑘 = 0, 1, . . . , 𝑞} and ℰ𝑂 = {(𝛼 + 𝛽 + 𝛾 + 𝑗, 𝑘) : 𝑗 ∈ Z+, 𝑘 =
0, 1, . . . , 𝑝+ 𝑞 + 𝑟}.

Let 𝐸1, 𝐸2 be arbitrary index sets. We let

𝐸1∪𝐸2 = 𝐸1 ∪ 𝐸2 ∪ {(𝑧, 𝑝1 + 𝑝2 + 1) : (𝑧, 𝑝1) ∈ 𝐸1, (𝑧, 𝑝2) ∈ 𝐸2}.

Theorem 3. Let 𝐴 ∈ 𝒦ℰ1,ℰ2,ℰ𝑂(𝑋,𝑋0). Then, for each index family ℱ satisfying the
condition inf(ℰ2 + ℱ) > 0, operator 𝐴 can be extended to the operator

𝐴 : 𝒜ℱ
𝑝ℎ𝑔(𝑋,𝑋

0,Ω
1
2

𝑋,𝑋0) → 𝒜𝒢
𝑝ℎ𝑔(𝑋,𝑋

0,Ω
1
2

𝑋,𝑋0),

where

𝒢(𝑋𝑖) = ℰ1(𝑋𝑖)
⋃︁(︂⋃︁

𝑗
(ℱ(𝑋𝑗) + ℰ𝑂,𝑖𝑗)

)︂
, 𝑖 = 1, . . . , 𝑟.
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Theorem 4. Let 𝐴 ∈ 𝒦ℰ𝐴
1 ,ℰ𝐴

2 ,ℰ𝐴
𝑂 (𝑋,𝑋0) and 𝐵 ∈ 𝒦ℰ𝐵

1 ,ℰ𝐵
2 ,ℰ𝐵

𝑂 (𝑋,𝑋0), and moreover inf(ℰ𝐴
2 +

ℰ𝐵
1 ) > 0. Then the composition 𝐶 = 𝐴 ∘ 𝐵 is well-defined and belongs to the class

𝒦ℰ𝐶
1 ,ℰ𝐶

2 ,ℰ𝐶
𝑂 (𝑋,𝑋0), where

ℰ𝐶
1 (𝑋𝑖) = ℰ𝐴

1 (𝑋𝑖)
⋃︁(︁⋃︁

𝑘

(︀
ℰ𝐴
𝑂,𝑖𝑘 + ℰ𝐵

1 (𝑋𝑘)
)︀)︁
,

ℰ𝐶
2 (𝑋𝑗) = ℰ𝐵

2 (𝑋𝑗)
⋃︁(︁⋃︁

𝑘

(︀
ℰ𝐴
2 (𝑋𝑘) + ℰ𝐵

𝑂,𝑘𝑗

)︀)︁
,

ℰ𝐶
𝑂,𝑖𝑗 =

(︁⋃︁
𝑘

(︀
ℰ𝐴
𝑂,𝑖𝑘 + ℰ𝐵

𝑂,𝑘𝑗

)︀)︁⋃︁(︀
ℰ𝐴
1 (𝑋𝑖) + ℰ𝐵

2 (𝑋𝑗)
)︀
.

Remark 3. The results obtained in the paper are likely to be extended to the case when the
normal bundle of 𝑋0 is nontrivial. In order to do it, one needs to pass to the corresponding
double covering and to work with Z2-invariant operators. An appropriate technique was
developed for manifolds with corners in [14].

4. Proofs of main theorems

In this section we provide the proofs of Theorems 1, 2, 3 and 4. As it has been already said in
Introduction, our approach to constructing and studying classes of singular integral operators
is a generalization of the geometric approach suggested by Melrose ([11, 12, 13], see also [15]).
A specific feature of Melrose’s approach is that classes of operators are defined by means of
certain conditions on a kernel 𝑘𝐴 of an operator 𝐴 in a given class. These conditions are either
the conormality conditions for kernel 𝑘𝐴 or for some half-density 𝑘𝐴 being the pull-back of
kernel 𝑘𝐴 to an auxiliary manifold associated with 𝑋 ×𝑋. In order to relate operator 𝐴 with
the kernel 𝑘𝐴, the action of the integral operator 𝐴 on half-densities is expressed in terms of
pull-back and push-forward operators. Thus, the study of the given class of integral operators
is reduced to employing pull-back and push-forward operators and their properties. Therefore,
we begin with a discussion of pull-back and push-forward operators.

4.1. Pull-backs. Let us recall the definitions of the pull-back operator associated with a
map of smooth manifolds.

Let 𝑋 and 𝑌 be smooth manifolds, 𝑓 : 𝑋 → 𝑌 a smooth map. For each vector bundle
𝑝 : 𝐺→ 𝑌 on 𝑌 , we define a vector bundle 𝑝1 : 𝑓 *𝐺→ 𝑋 as follows:

𝑓 *𝐺 := {(𝑥, 𝑣)|𝑥 ∈ 𝑋; 𝑣 ∈ 𝐺𝑓(𝑥)}, 𝑝1(𝑥, 𝑣) := 𝑥.

Definition 10. The pull-back operator is a linear operator

𝑓 * : 𝐶∞(𝑌,𝐺) → 𝐶∞(𝑋, 𝑓 *𝐺)

given for each 𝑠 ∈ 𝐶∞(𝑌,𝐺) by the identity

𝑓 *𝑠(𝑥) = (𝑥, 𝑠(𝑓(𝑥))), 𝑥 ∈ 𝑋.

Let 𝑋 and 𝑌 be smooth manifolds of dimension 𝑛 and 𝑚 respectively, 𝑋0 = 𝑋1 ∪ . . . ∪𝑋𝑟

and 𝑌 0 = 𝑌1 ∪ . . . ∪ 𝑌𝑟0 stratified submanifolds of 𝑋 and 𝑌 respectively.

Definition 11. A smooth map 𝑓 : 𝑋 → 𝑌 is said to be relative if for each 𝑝 ∈ 𝑋0 the
following condition holds. To be specific we suppose that 𝑝 ∈ 𝑋1 ∩ . . .∩𝑋ℓ, 𝑝 ̸∈ 𝑋ℓ+1 ∪ . . .∪𝑋𝑟

and 𝑓(𝑝) ∈ 𝑌1 ∩ . . .∩𝑌ℓ0, 𝑓(𝑝) ∈ 𝑌ℓ0+1 ∪ . . .∪𝑌𝑟0. We choose an adapted at 𝑝 coordinate system
with coordinates (𝑥, 𝑥0) ∈ Rℓ × R𝑛−ℓ defined in a neighborhood 𝑈𝑝, and an adapted at 𝑓(𝑝)
coordinate system with coordinates (𝑦, 𝑦0) ∈ Rℓ0 ×R𝑚−ℓ0. In these coordinates map 𝑓 is written
as

𝑦𝑖 = 𝑓𝑖(𝑥, 𝑥
0), 𝑖 = 1, . . . , ℓ0; 𝑦0𝑖 = 𝑓𝑖(𝑥, 𝑥

0), 𝑖 = ℓ0 + 1, . . . ,𝑚.
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Then there exist smooth functions 𝑎𝑖, 𝑖 = 1, . . . , ℓ0, such that 𝑎𝑖(𝑥, 𝑥0) ̸= 0 and in some
neighborhood of 𝑝 we have a representation:

𝑓𝑖(𝑥1, . . . , 𝑥ℓ, 𝑥
0) = 𝑎𝑖(𝑥, 𝑥

0)
ℓ∏︁

𝑗=1

𝑥
𝛾𝑖𝑗
𝑗 ,

where 𝛾𝑖𝑗 are non-negative integers, 𝑖 = 1, . . . , ℓ0, 𝑗 = 1, . . . , ℓ.

Numbers 𝛾𝑖𝑗 depend only on components𝑋𝑗 and 𝑌𝑖 and will be denoted by 𝑒𝑓 (𝑋𝑗, 𝑌𝑖). Observe
that the definition of relative map implies that 𝑓−1(𝑌 0) ⊂ 𝑋0.

Theorem 5. Let 𝐺 be a line bundle on 𝑌 , ℰ0 be an index family on a submanifold 𝑌 0. Then
for each relative map 𝑓 : (𝑋,𝑋0) → (𝑌, 𝑌 0) operator 𝑓 * can be extended to an operator

𝑓 * : 𝒜ℰ0

𝑝ℎ𝑔(𝑌, 𝑌
0, 𝐺) → 𝒜ℰ

𝑝ℎ𝑔(𝑋,𝑋
0, 𝑓 *𝐺),

where index family ℰ on 𝑋0 reads as

ℰ(𝑋𝑗) =

{︂(︂
𝜂 +

∑︁
𝑖

𝑒𝑓 (𝑋𝑗, 𝑌𝑖)𝑧𝑖,
∑︁
𝑖

𝑞𝑖

)︂⃒⃒⃒⃒
(𝑧𝑖, 𝑞𝑖) ∈ ℰ0(𝑌𝑖), 𝜂 ∈ Z+

}︂
, (5)

the sum is taken over all 𝑖 = 1, . . . , 𝑟0 such that 𝑒𝑓 (𝑋𝑗, 𝑌𝑖) ̸= 0.

The proof of Theorem 5 will be given in Appendix A.

4.2. Push-forwards. Let us recall the definitions of the push-forward operator associated
with a map of smooth manifolds.

We denote
𝒟′(𝑌,𝐺) = 𝐶∞

0 (𝑌,𝐺*)′.

The inclusion
𝐶∞

0 (𝑌,𝐺⊗ Ω𝑌 ) ⊂ 𝒟′(𝑌,𝐺)

holds true. For each 𝑢 ∈ 𝐶∞
0 (𝑌,𝐺⊗Ω𝑌 ) given by 𝑢 = 𝑠⊗𝜇, where 𝑠 ∈ 𝐶∞

0 (𝑌,𝐺), 𝜇 ∈ 𝐶∞
0 (𝑌,Ω𝑌 ),

the corresponding functional on 𝐶∞
0 (𝑌,𝐺*) is defined by the formula

⟨𝑢, 𝜙⟩ =

∫︁
𝑌

⟨𝑠(𝑦), 𝜙(𝑦)⟩𝜇(𝑦) ∈ C, 𝜙 ∈ 𝐶∞
0 (𝑌,𝐺*),

where ⟨𝑠(𝑦), 𝜙(𝑦)⟩ ∈ C denotes a value of functional 𝜙(𝑦) ∈ 𝐺*
𝑦 on 𝑠(𝑦) ∈ 𝐺𝑦.

Definition 12. Let 𝑋, 𝑌 be compact smooth manifolds, 𝐺 be a vector bundle on 𝑌 . Given
a smooth map 𝑓 : 𝑋 → 𝑌 , the push-forward operator is a linear operator

𝑓* : 𝒟′(𝑋, 𝑓 *𝐺) → 𝒟′(𝑌,𝐺)

defined for each 𝜇 ∈ 𝒟′(𝑋, 𝑓 *𝐺) by

⟨𝑓*𝜇, 𝜙⟩ = ⟨𝜇, 𝑓 *𝜙⟩, 𝜙 ∈ 𝐶∞(𝑌,𝐺*).

Let𝑋, 𝑌 be compact smooth manifolds of dimension 𝑛 and𝑚 respectively,𝑋0 = 𝑋1∪. . .∪𝑋𝑟

and 𝑌 0 = 𝑌1 ∪ . . . ∪ 𝑌𝑟0 be stratified submanifolds of 𝑋 and 𝑌 , respectively.

Definition 13. A smooth map 𝑓 : 𝑋 → 𝑌 is said to be a relative fibration if it satisfies the
following conditions:

1. 𝑓 is a relative map;
2. 𝑓 is surjective;
3. For each component 𝑋𝑗 of 𝑋0 there exists at most one component 𝑌𝑖 of 𝑌 0 such that
𝑒𝑓 (𝑋𝑗, 𝑌𝑖) ̸= 0;



SINGULAR INTEGRAL OPERATORS. . . 45

4. Let 𝑝 ∈ 𝑋0 be such that 𝑓(𝑝) = 𝑝0 /∈ 𝑌 0. To be specific we suppose that 𝑝 ∈ 𝑋1

⋂︀
. . .
⋂︀
𝑋ℓ

and 𝑝 /∈ 𝑋ℓ+1

⋃︀
. . .
⋃︀
𝑋𝑟. As in Definition 11, we write map 𝑓 in local coordinates:

𝑦0𝑖 = 𝑓𝑖(𝑥, 𝑥
0), (𝑥, 𝑥0) ∈ Rℓ ×R𝑛−ℓ, 𝑖 = 1, . . . ,𝑚.

Then the rank of Jacobi matrix 𝜕(𝑓1,...,𝑓𝑚)

𝜕(𝑥0
1,...,𝑥

0
𝑛−ℓ)

is equal to 𝑚.

Theorem 6. Let ℰ be an index family on 𝑋0 such that, for each 𝑗 = 1, . . . , 𝑟 obeying
𝑒𝑓 (𝑋𝑗, 𝑌𝑖) = 0 for each 𝑖 = 1, . . . , 𝑟0, the inequality inf ℰ(𝑋𝑗) > 0 holds true. Then for each
relative fibration 𝑓 : (𝑋,𝑋0) → (𝑌, 𝑌 0) and for each line bundle 𝐺 on 𝑌 push-forward operator
𝑓* restricts to the operator

𝑓* : 𝒜ℰ
𝑝ℎ𝑔(𝑋,𝑋

0, 𝑓 *𝐺⊗ Ω𝑋,𝑋0) → 𝒜ℰ0

𝑝ℎ𝑔(𝑌, 𝑌
0, 𝐺⊗ Ω𝑌,𝑌 0),

where index family ℰ0 on 𝑌 0 reads as

ℰ0(𝑌𝑖) =
⋃︁

𝑗:𝑒𝑓 (𝑋𝑗 ,𝑌𝑖) ̸=0

{︂(︂
𝑧

𝑒𝑓 (𝑋𝑗, 𝑌𝑖)
, 𝑞

)︂
: (𝑧, 𝑞) ∈ ℰ(𝑋𝑗)

}︂
, 𝑖 = 1, . . . , 𝑟0.

The proof of Theorem 6 will be given in Appendix B.

4.3. Proofs of Theorems 1 and 2. Let us prove Theorem 1. By a straightforward
calculation it is easy to check that the map

𝐴 : 𝐶∞
0 (𝑌 ∖ 𝑌 0,Ω

1
2
𝑌 ) → 𝐶∞(𝑋 ∖𝑋0,Ω

1
2
𝑋)

defined by operator 𝐴 ∈ 𝒦ℰ1,ℰ2(𝑋,𝑋0;𝑌, 𝑌 0) can be represented as

𝐴𝜇 = 𝜋1*(𝑘𝐴𝜋
*
2𝜇), 𝜇 ∈ 𝐶∞

0 (𝑌 ∖ 𝑌 0,Ω
1
2
𝑌 ),

where maps 𝜋1 : 𝑋 × 𝑌 → 𝑋, 𝜋2 : 𝑋 × 𝑌 → 𝑌 are given by

𝜋1(𝑥, 𝑦) = 𝑥; 𝜋2(𝑥, 𝑦) = 𝑦. (6)

Suppose that an index family ℱ on 𝑌 0 satisfies the condition inf(ℰ2 + ℱ) > 0 and 𝜇 ∈
𝒜ℱ

𝑝ℎ𝑔(𝑌, 𝑌
0,Ω

1
2

𝑌,𝑌 0). One can show that 𝜋2 is a relative map and moreover 𝑒𝜋2(𝑋
0 × 𝑌, 𝑌 0) = 0,

𝑒𝜋2(𝑋 × 𝑌 0, 𝑌 0) = 1. Therefore, by Theorem 5 we have:

𝜋*
2𝜇 ∈ 𝒜0,ℱ

𝑝ℎ𝑔(𝑋 × 𝑌, {𝑋 × 𝑌 0} ∪ {𝑋0 × 𝑌 }, 𝜋*
2Ω

1
2

𝑌,𝑌 0).

By the properties of conormal functions observed in Remark 1, it follows that

𝑘𝐴𝜋
*
2𝜇 ∈ 𝒜ℰ1,ℰ2+ℱ

𝑝ℎ𝑔 (𝑋 × 𝑌, {𝑋 × 𝑌 0} ∪ {𝑋0 × 𝑌 },Ω
1
2

𝑋×𝑌,{𝑋×𝑌 0}∪{𝑋0×𝑌 } ⊗ 𝜋*
2Ω

1
2

𝑌,𝑌 0).

The isomorphism of vector bundles

Ω
1
2

𝑋×𝑌,{𝑋×𝑌 0}∪{𝑋0×𝑌 }
∼= 𝜋*

1Ω
1
2

𝑋,𝑋0 ⊗ 𝜋*
2Ω

1
2

𝑌,𝑌 0

holds true. Hence,

𝑘𝐴𝜋
*
2𝜇 ∈ 𝒜ℰ,ℰ2+ℱ

𝑝ℎ𝑔 (𝑋 × 𝑌, {𝑋 × 𝑌 0} ∪ {𝑋0 × 𝑌 }, 𝜋*
1Ω

− 1
2

𝑋,𝑋0 ⊗ Ω𝑋×𝑌,{𝑋×𝑌 0}∪{𝑋0×𝑌 }).

Since inf(ℰ2 +ℱ) > 0 and one can show that 𝜋1 is a relative fibration with 𝑒𝜋1(𝑋
0×𝑌,𝑋0) = 1,

𝑒𝜋1(𝑋 × 𝑌 0, 𝑋0) = 0, by applying Theorem 6 with 𝐺 = Ω
− 1

2

𝑋,𝑋0 , 𝑓 = 𝜋1 we obtain that 𝐴𝜇 ∈

𝒜ℰ1
𝑝ℎ𝑔(𝑋,𝑋

0,Ω
1
2

𝑋,𝑋0). It completes the proof of Theorem 1.
Theorem 2 can be proved in a similar way. The kernel of the composition 𝐶 = 𝐴 ∘ 𝐵 is

represented as
𝑘𝐶 = 𝜋2*(𝜋

*
3𝑘𝐴𝜋

*
1𝑘𝐵),
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where the maps 𝜋1 : 𝑋 ×𝑌 ×𝑍 → 𝑌 ×𝑍, 𝜋2 : 𝑋 ×𝑌 ×𝑍 → 𝑋 ×𝑍, 𝜋3 : 𝑋 ×𝑌 ×𝑍 → 𝑋 ×𝑌
are defined by

𝜋1(𝑥, 𝑦, 𝑧) = (𝑦, 𝑧); 𝜋2(𝑥, 𝑦, 𝑧) = (𝑥, 𝑧); 𝜋3(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦). (7)

Now it remains to apply Theorems 5 and 6.

4.4. Proof of Theorem 3. Let 𝑋 be a compact smooth manifold with a distinguished
submanifold 𝑋0 of codimension 1. We suppose that 𝑋 is equipped with a Riemannian metric
𝑔𝑋 and the normal bundle of 𝑋0 is trivial.

We will use the stretched product 𝑋2
𝑏 obtained from 𝑋×𝑋 by the blow-up of the submanifold

𝑋0 × 𝑋0 ⊂ 𝑋 × 𝑋. Let us recall its definition. First of all, we introduce the normal bundle
𝑁(𝑋0 ×𝑋0) = 𝑇 (𝑋 ×𝑋)/𝑇 (𝑋0 ×𝑋0) of 𝑋0 ×𝑋0. We observe that rank𝑁(𝑋0 ×𝑋0) = 2.

The projectivization of the bundle 𝑁(𝑋0×𝑋0) is the bundle 𝑃 (𝑁(𝑋0×𝑋0)) over 𝑋0×𝑋0,
whose fiber at 𝑝 ∈ 𝑋0 ×𝑋0 consists of one-dimensional linear subspaces in 𝑁𝑝(𝑋

0 ×𝑋0). We
define the set

𝑉 (𝑁(𝑋0 ×𝑋0)) =
⨆︁

ℓ∈𝑃 (𝑁(𝑋0×𝑋0))

𝑉 (ℓ),

where 𝑉 (ℓ) ⊂ 𝑁(𝑋0 ×𝑋0) is a one-dimensional linear space corresponding to a line ℓ. Thus,
elements of 𝑉 (𝑁(𝑋0 × 𝑋0)) are collections (𝑥01, 𝑥

0
2, ℓ, 𝑣), where 𝑝 = (𝑥01, 𝑥

0
2) ∈ 𝑋0 × 𝑋0, ℓ ⊂

𝑁𝑝(𝑋
0 × 𝑋0), 𝑣 ∈ 𝑉 (ℓ). One can prove that set 𝑉 (𝑁(𝑋0 × 𝑋0)) has a structure of smooth

manifold. We introduce a map 𝛽𝑁 : 𝑉 (𝑁(𝑋0 ×𝑋0)) → 𝑁(𝑋0 ×𝑋0) by the formula

𝛽𝑁 : (𝑥01, 𝑥
0
2, ℓ, 𝑣) ↦→ (𝑥01, 𝑥

0
2, 𝑣).

Let 𝑔𝑋×𝑋 be the Riemannian metric on 𝑋 × 𝑋 coinciding with metric 𝑔𝑋 on 𝑇𝑋 × {0} and
on {0} × 𝑇𝑋, which are subsets of 𝑇𝑋 × 𝑇𝑋 = 𝑇 (𝑋 ×𝑋). Moreover, the sets 𝑇𝑋 × {0} and
{0} × 𝑇𝑋 are mutually orthogonal.

By Proposition 1, there exists a neighborhood 𝑈 of 𝑋0 ×𝑋0 in 𝑁(𝑋0 ×𝑋0) such that the
following map is a diffeomorphism:

exp𝑋×𝑋

⃒⃒
𝑈

: 𝑈
∼→ exp(𝑈).

We introduce an equivalence relation on [(𝑋 × 𝑋) ∖ (𝑋0 × 𝑋0)] ⊔ 𝛽−1
𝑁 (𝑈) letting points

(𝑝1, 𝑝2) ∈ (𝑋 × 𝑋) ∖ (𝑋0 × 𝑋0) and (𝑥01, 𝑥
0
2, ℓ, 𝑣) ∈ 𝛽−1

𝑁 (𝑈) to be equivalent if and only if
(𝑝1, 𝑝2) ∈ exp(𝑈) and the identity exp(𝛽𝑁(𝑥01, 𝑥

0
2, ℓ, 𝑣)) = (𝑝1, 𝑝2) holds true.

The stretched product 𝑋2
𝑏 is defined as the set of equivalence classes on [(𝑋 × 𝑋) ∖ (𝑋0 ×

𝑋0)] ⊔ 𝛽−1
𝑁 (𝑈):

𝑋2
𝑏 = [(𝑋 ×𝑋) ∖ (𝑋0 ×𝑋0)] ⊔ 𝛽−1

𝑁 (𝑈)
⧸︀
∼,

Set 𝑋2
𝑏 is naturally endowed with a structure of smooth manifold.

Let us define a map 𝛽 : 𝑋2
𝑏 → 𝑋 ×𝑋 as follows: if (𝑝1, 𝑝2) ∈ (𝑋 ×𝑋) ∖ (𝑋0 ×𝑋0), then

𝛽(𝑝1, 𝑝2) = (𝑝1, 𝑝2);

if (𝑥01, 𝑥
0
2, ℓ, 𝑣) ∈ 𝛽−1

𝑁 (𝑈), then

𝛽(𝑥01, 𝑥
0
2, ℓ, 𝑣) = exp(𝛽𝑁(𝑥01, 𝑥

0
2, ℓ, 𝑣)).

There is a submanifold in 𝑋2
𝑏 :

𝑋2
𝑂𝑏 = {(𝑥01, 𝑥

0
2, ℓ, 𝑣) ∈ 𝛽−1

𝑁 (𝑈) : 𝑣 ≡ 0}.
We let

𝑋2
1𝑏 = 𝑋0 × (𝑋 ∖𝑋0) ⊔ {(𝑥01, 𝑥

0
2, ℓ, 𝑣) ∈ 𝛽−1

𝑁 (𝑈) : ℓ = ℓ1},
where ℓ1 is the one-dimensional subspace in𝑁(𝑋0×𝑋0) consisting of vectors (𝑣1, 𝑣2) ∈ 𝑇𝑋×𝑇𝑋
such that 𝑣1 ∈ 𝑇𝑋0. In the same way we define

𝑋2
2𝑏 = (𝑋 ∖𝑋0) ×𝑋0 ⊔ {(𝑥01, 𝑥

0
2, ℓ, 𝑣) ∈ 𝛽−1

𝑁 (𝑈) : ℓ = ℓ2},



SINGULAR INTEGRAL OPERATORS. . . 47

where ℓ2 is the one-dimensional subspace in𝑁(𝑋0×𝑋0) consisting of vectors (𝑣1, 𝑣2) ∈ 𝑇𝑋×𝑇𝑋
such that 𝑣2 ∈ 𝑇𝑋0.

It is easy to see that 𝑋2
1𝑏, 𝑋2

2𝑏 and 𝑋2
𝑂𝑏 are smooth submanifolds in 𝑋2

𝑏 . These submanifolds
intersect transversally, and their union is a stratified submanifold 𝒳 2

𝑏 of manifold 𝑋2
𝑏 .

A fundamental property of 𝑋2
𝑏 is provided in the following statement.

Lemma 1. An operator 𝐴 belongs to class 𝒦ℰ1,ℰ2,ℰ𝑂(𝑋,𝑋0) if and only if the push-forward
𝑘𝐴 = 𝛽*𝑘𝐴 of the kernel 𝑘𝐴 under map 𝛽 : 𝑋2

𝑏 → 𝑋 × 𝑋 is a conormal function on 𝑋2
𝑏 with

respect to the index family (ℰ1, ℰ2, ℰ𝑂) on 𝒳 2
𝑏 = 𝑋2

1𝑏 ∪𝑋2
2𝑏 ∪𝑋2

𝑂𝑏.

We prove Theorem 3 by using Lemma 1. We introduce the maps 𝛽1 : 𝑋2
𝑏 → 𝑋, 𝛽2 : 𝑋2

𝑏 → 𝑋
by 𝛽1 = 𝜋1∘𝛽, 𝛽2 = 𝜋2∘𝛽, where 𝜋1 and 𝜋2 are defined in (6). It can be shown by straightforward
calculations that operator 𝐴 ∈ 𝒦ℰ1,ℰ2,ℰ𝑂(𝑋,𝑋0) can be represented as

𝐴𝜇 = 𝛽1*(𝑘𝐴𝛽
*
2𝜇), 𝜇 ∈ 𝐶∞

0 (𝑌 ∖ 𝑌 0,Ω
1
2
𝑌 ), (8)

where 𝑘𝐴 is defined in Lemma 1. Now the proof of Theorem 3 can be completed in the same
way as the proof of Theorem 1 by employing Theorems 5 and 6.

4.5. Proof of Theorem 4. We prove Theorem 4 as follows. First, we define a manifold 𝑋3
𝑏 ,

which is the blow-up of the stratified submanifold ̂︀𝑋0 = (𝑋×𝑋0×𝑋0)∪(𝑋0×𝑋×𝑋0)∪(𝑋0×
𝑋0×𝑋) in 𝑋 ×𝑋 ×𝑋. Then we introduce the maps 𝛾𝑖 : 𝑋3

𝑏 → 𝑋2
𝑏 , 𝑖 = 1, 2, 3 being analogues

of projections 𝜋𝑖, 𝑖 = 1, 2, 3 (cf. (7)). One can show that the kernel 𝑘𝐶 of the composition can
be represented in the form

𝑘𝐶 = 𝛾2*(𝛾
*
3𝑘𝐴𝛾

*
1𝑘𝐵),

where 𝛾*3𝑘𝐴, 𝛾*1𝑘𝐵 are the lifts of the kernels to 𝑋3
𝑏 . An important fact is the statement that

there exists a stratified submanifold 𝒳 3
𝑏 in 𝑋3

𝑏 such that maps 𝛾𝑖 : (𝑋3
𝑏 ,𝒳 3

𝑏 ) → (𝑋2
𝑏 ,𝒳 2

𝑏 ) are
relative fibrations. Then the proof is completed by using Theorems 5 and 6.

Let us describe the constructions of manifold 𝑋3
𝑏 , submanifold 𝒳 3

𝑏 and maps 𝛾𝑖. We consider
the normal bundle 𝑁(𝑋0 ×𝑋0 ×𝑋0) = 𝑇 (𝑋 ×𝑋 ×𝑋)/𝑇 (𝑋0 ×𝑋0 ×𝑋0) of the submanifold
𝑋0 × 𝑋0 × 𝑋0 of rank 3. The projectivization of bundle 𝑁(𝑋0 × 𝑋0 × 𝑋0) is the bundle
𝑃 (𝑁(𝑋0 × 𝑋0 × 𝑋0)) over 𝑋0 × 𝑋0 × 𝑋0, whose fiber at 𝑝 ∈ 𝑋0 × 𝑋0 × 𝑋0 consists of
one-dimensional linear subspaces in 𝑁𝑝(𝑋

0 ×𝑋0 ×𝑋0). We introduce the set

𝑉 (𝑁(𝑋0 ×𝑋0 ×𝑋0)) =
⨆︁

ℓ∈𝑃 (𝑁(𝑋0×𝑋0×𝑋0))

𝑉 (ℓ),

where 𝑉 (ℓ) ⊂ 𝑁(𝑋0 × 𝑋0 × 𝑋0) is the one-dimensional linear subspace corresponding to ℓ
as an element of 𝑁(𝑋0 × 𝑋0 × 𝑋0). Thus, elements of 𝑉 (𝑁(𝑋0 × 𝑋0 × 𝑋0)) are collections
(𝑝, ℓ, 𝑣), where 𝑝 ∈ 𝑋0 × 𝑋0 × 𝑋0, ℓ ⊂ 𝑁𝑝(𝑋

0 × 𝑋0 × 𝑋0) and 𝑣 ∈ 𝑉 (ℓ). It is easy to show
that the set 𝑉 (𝑁(𝑋0 ×𝑋0 ×𝑋0)) has a structure of a smooth manifold.

We define a submanifold 𝑉0 in 𝑉 (𝑁(𝑋0 ×𝑋0 ×𝑋0)) by

𝑉0 = {(𝑝, ℓ, 𝑣) ∈ 𝑉 (𝑁(𝑋0 ×𝑋0 ×𝑋0)) : 𝑣 = 0}.
We introduce a map 𝛾𝑁 : 𝑉 (𝑁(𝑋0 ×𝑋0 ×𝑋0)) → 𝑁(𝑋0 ×𝑋0 ×𝑋0) by the formula

𝛾𝑁 : (𝑥01, 𝑥
0
2, 𝑥

0
3, ℓ, 𝑣) ↦→ (𝑥01, 𝑥

0
2, 𝑥

0
3, 𝑣).

It is easy to show that the restriction of 𝛾𝑁 to 𝑉 ∖ 𝑉0 defines the diffeomorphism

𝛾𝑁

⃒⃒⃒⃒
𝑉 ∖𝑉0

: 𝑉 (𝑁(𝑋0 ×𝑋0 ×𝑋0)) ∖ 𝑉0
∼→ 𝑁(𝑋0 ×𝑋0 ×𝑋0) ∖ (𝑋0 ×𝑋0 ×𝑋0).

As in the two-dimensional case, one can introduce the notion of blow-up of submanifoldŝ︀𝑋1 = 𝑋 ×𝑋0 ×𝑋0, ̂︀𝑋2 = 𝑋0 ×𝑋 ×𝑋0 and ̂︀𝑋3 = 𝑋0 ×𝑋0 ×𝑋 of the manifold 𝑋 ×𝑋 ×𝑋.
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We consider the normal bundle 𝑁( ̂︀𝑋1) of submanifold ̂︀𝑋1, whose fiber at 𝑝 ∈ ̂︀𝑋1 is 𝑁𝑝( ̂︀𝑋1) =

𝑇𝑝(𝑋 ×𝑋 ×𝑋)/𝑇𝑝( ̂︀𝑋1) for each 𝑝 = (𝑥1, 𝑥
0
2, 𝑥

0
3) ∈ ̂︀𝑋1. The map

𝑝𝑟1 : 𝑁( ̂︀𝑋1) → 𝑁(𝑋0 ×𝑋0), (𝑥1, 𝑥
0
2, 𝑥

0
3, 𝑣1) ↦→ (𝑥02, 𝑥

0
3, 𝑣1),

defines an isomorphism 𝑁𝑝( ̂︀𝑋1) ∼= 𝑁(𝑥0
2,𝑥

0
3)

(𝑋0 ×𝑋0).
We introduce the bundle 𝑃 (𝑁( ̂︀𝑋1)) over ̂︀𝑋1, whose fiber at 𝑝 = (𝑥1, 𝑥

0
2, 𝑥

0
3) ∈ ̂︀𝑋1 consists of

one-dimensional linear subspaces in 𝑁𝑝( ̂︀𝑋1). We define the set

𝑉 (𝑁( ̂︀𝑋1)) =
⨆︁

ℓ∈𝑃 (𝑁( ̂︀𝑋1))

𝑉 (ℓ),

where 𝑉 (ℓ) ⊂ 𝑁( ̂︀𝑋1) is the one-dimensional linear subspace corresponding to ℓ as an element
of 𝑁( ̂︀𝑋1). Thus, elements of 𝑉 (𝑁( ̂︀𝑋1)) are collections (𝑝, ℓ, 𝑣), where 𝑝 = (𝑥1, 𝑥

0
2, 𝑥

0
3) ∈ ̂︀𝑋1,

ℓ ⊂ 𝑁𝑝( ̂︀𝑋1) and 𝑣 ∈ 𝑉 (ℓ).
We define the map

𝛾𝑁1 : 𝑉 (𝑁( ̂︀𝑋1)) → 𝑁( ̂︀𝑋1), (𝑥1, 𝑥
0
2, 𝑥

0
3, ℓ1, 𝑣1) ↦→ (𝑥1, 𝑥

0
2, 𝑥

0
3, 𝑣1).

Similar objects can be introduced for the submanifolds ̂︀𝑋2 and ̂︀𝑋3. In particular, there are
defined maps 𝛾𝑁𝑖

: 𝑉 (𝑁( ̂︀𝑋𝑖)) → 𝑁( ̂︀𝑋𝑖) and 𝑝𝑟𝑖 : 𝑁( ̂︀𝑋𝑖) → 𝑁(𝑋0 ×𝑋0), 𝑖 = 2, 3.
We introduce the submanifold 𝑉𝑖 in 𝑉 (𝑁( ̂︀𝑋𝑖)), 𝑖 = 1, 2, 3, by the formula

𝑉𝑖 = {(𝑝, ℓ, 𝑣) ∈ 𝑉 (𝑁( ̂︀𝑋𝑖)) : 𝑣 = 0}.
It is easy to show that the restriction of 𝛾𝑁𝑖

to 𝑉 ∖ 𝑉𝑖, 𝑖 = 1, 2, 3, defines the diffeomorphism

𝛾𝑁1

⃒⃒⃒⃒
𝑉 ∖𝑉𝑖

: 𝑉 (𝑁( ̂︀𝑋𝑖)) ∖ 𝑉𝑖
∼→ 𝑁( ̂︀𝑋𝑖) ∖ ̂︀𝑋𝑖.

Let 𝑔𝑋×𝑋×𝑋 be the Riemannian metric on𝑋×𝑋×𝑋 coinciding with metric 𝑔𝑋 on subbundles
𝑇𝑋 × {0} × {0}, {0} × 𝑇𝑋 × {0}, {0} × {0} × 𝑇𝑋 of 𝑇𝑋 × 𝑇𝑋 × 𝑇𝑋 = 𝑇 (𝑋 ×𝑋 ×𝑋). By
Proposition 1, there exists a neighborhood 𝑈 of 𝑋0 ×𝑋0 ×𝑋0 in 𝑁(𝑋0 ×𝑋0 ×𝑋0) such that
the map

exp := exp𝑋×𝑋×𝑋

⃒⃒
𝑈

: 𝑈
∼→ exp𝑋×𝑋×𝑋(𝑈) ⊂ 𝑋 ×𝑋 ×𝑋,

is a diffeomorphism, as well as there exists a neighborhood 𝑈1 of 𝑋0 ×𝑋0 in 𝑁(𝑋0 ×𝑋0) such
that the map

exp𝑋×𝑋

⃒⃒
𝑈1

: 𝑈1
∼→ exp𝑋×𝑋(𝑈1) ⊂ 𝑋 ×𝑋

is a diffeomorphism. For each 𝑖 = 1, 2, 3, the composition of map exp𝑋×𝑋 with 𝑝𝑟𝑖 is a
diffeomorphism

exp𝑖 : 𝑝𝑟−1
𝑖 (𝑈1) ⊂ 𝑁( ̂︀𝑋𝑖)

∼→ exp𝑖(𝑝𝑟
−1
𝑖 (𝑈1)) ⊂ 𝑋 ×𝑋 ×𝑋.

We introduce an equivalence relation ∼ on (𝑋×𝑋×𝑋 ∖ ̂︀𝑋0)⊔𝛾−1
𝑁 (𝑈)⊔𝛾−1

𝑁1
(𝑈1)⊔𝛾−1

𝑁2
(𝑈1)⊔

𝛾−1
𝑁3

(𝑈1) letting

∙ Points (𝑝1, 𝑝2, 𝑝3) ∈ 𝑋 ×𝑋 ×𝑋 ∖ ̂︀𝑋0 and (𝑥01, 𝑥
0
2, 𝑥

0
3, ℓ, 𝑣) ∈ 𝛾−1

𝑁 (𝑈) are equivalent if and
only if (𝑝1, 𝑝2, 𝑝3) ∈ exp(𝑈) and

exp(𝛾𝑁(𝑥01, 𝑥
0
2, 𝑥

0
3, ℓ, 𝑣)) = (𝑝1, 𝑝2, 𝑝3).

∙ For each 𝑖 = 1, 2, 3, points (𝑝1, 𝑝2, 𝑝3) ∈ 𝑋 × 𝑋 × 𝑋 ∖ ̂︀𝑋0 and (𝑝, ℓ1, 𝑣1) ∈ 𝛾−1
𝑁𝑖

(𝑈1) are
equivalent if and only if (𝑝1, 𝑝2, 𝑝3) ∈ exp𝑖(𝑝𝑟

−1
𝑖 (𝑈1)) and

exp𝑖(𝛾𝑁𝑖
(𝑝, ℓ1, 𝑣1)) = (𝑝1, 𝑝2, 𝑝3).
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∙ For each 𝑖 = 1, 2, 3, points (𝑥01, 𝑥
0
2, 𝑥

0
3, ℓ, 𝑣) ∈ 𝛾−1

𝑁 (𝑈) and (𝑝, ℓ1, 𝑣1) ∈ 𝛾−1
𝑁𝑖

(𝑈1) are equivalent
if and only if

(𝑥01, 𝑥
0
2, 𝑥

0
3) = 𝑝,

and (ℓ, 𝑣) is mapped to (ℓ1, 𝑣1) under the natural map 𝑁(𝑋) → 𝑁( ̂︀𝑋𝑖).
We define set 𝑋3

𝑏 as the set of equivalence classes:

𝑋3
𝑏 = (𝑋 ×𝑋 ×𝑋 ∖ ̂︀𝑋0) ⊔ 𝛾−1

𝑁 (𝑈) ⊔ 𝛾−1
𝑁1

(𝑈1) ⊔ 𝛾−1
𝑁2

(𝑈1) ⊔ 𝛾−1
𝑁3

(𝑈1)
⧸︀
∼ .

It is easy to check that 𝑋3
𝑏 is a smooth manifold.

We introduce the following subsets in 𝑋3
𝑏 :

𝑋3
0 = {(𝑝, ℓ, 𝑣) ∈ 𝑉 (𝑁(𝑋0 ×𝑋0 ×𝑋0)) : 𝑣 = 0} ⊂ 𝛾−1

𝑁 (𝑈),

𝑋3
𝑂𝑖 = {(𝑝, ℓ, 𝑣) ∈ 𝑉 (𝑁( ̂︀𝑋𝑖)) : 𝑣 = 0} ⊂ 𝛾−1

𝑁𝑖
(𝑈1), 𝑖 = 1, 2, 3.

We define subset 𝑋3
1 in 𝑋3

𝑏 by its intersections with the components of 𝑋3
𝑏 :

𝑋3
1 ∩ (𝑋 ×𝑋 ×𝑋 ∖ ̂︀𝑋0) = 𝑋0 × (𝑋 ∖𝑋0) × (𝑋 ∖𝑋0),

𝑋3
1 ∩ 𝛾−1

𝑁 (𝑈) = {(𝑝, ℓ, 𝑣) ∈ 𝑉 (𝑁(𝑋0 ×𝑋0 ×𝑋0)) : ℓ ⊂ 𝑇𝑋0 × 𝑇𝑋 × 𝑇𝑋},

𝑋3
1 ∩ 𝛾−1

𝑁1
(𝑈1) = {(𝑝, ℓ, 𝑣) ∈ 𝑉 (𝑁( ̂︀𝑋1)) : 𝑝 ∈ 𝑋0 ×𝑋0 ×𝑋0},

𝑋3
1 ∩ 𝛾−1

𝑁2
(𝑈1) = {(𝑝, ℓ, 𝑣) ∈ 𝑉 (𝑁( ̂︀𝑋2)) : ℓ ⊂ 𝑇𝑋0 × 𝑇𝑋 × 𝑇𝑋},

𝑋3
1 ∩ 𝛾−1

𝑁3
(𝑈1) = {(𝑝, ℓ, 𝑣) ∈ 𝑉 (𝑁( ̂︀𝑋3)) : ℓ ⊂ 𝑇𝑋0 × 𝑇𝑋 × 𝑇𝑋}.

In the same way we define subsets 𝑋3
2 and 𝑋3

3 .
It is easy to see that all the subsets introduced above are smooth submanifolds in 𝑋3

𝑏 . These
submanifolds intersect transversally, and their union is a stratified submanifold in 𝑋3

𝑏 , which
we denote by 𝒳 3

𝑏 :
𝒳 3

𝑏 = 𝑋3
0 ∪𝑋3

1 ∪𝑋3
2 ∪𝑋3

3 ∪𝑋3
𝑂1 ∪𝑋3

𝑂2 ∪𝑋3
𝑂3.

Maps 𝛾𝑖 : 𝑋3
𝑏 → 𝑋2

𝑏 , 𝑖 = 1, 2, 3, are defined as follows.
For (𝑝1, 𝑝2, 𝑝3) ∈ 𝑋 ×𝑋 ×𝑋 ∖ ̂︀𝑋0

𝛾𝑖(𝑝1, 𝑝2, 𝑝3) = 𝜋𝑖(𝑝1, 𝑝2, 𝑝3),

where maps 𝜋𝑖 : 𝑋 ×𝑋 ×𝑋 → 𝑋 ×𝑋 are defined by (7).
For (𝑥01, 𝑥

0
2, 𝑥

0
3, ℓ, 𝑣) ∈ 𝛾−1

𝑁 (𝑈)

𝛾1 : (𝑥01, 𝑥
0
2, 𝑥

0
3, ℓ, 𝑣) ↦→ (𝑥02, 𝑥

0
3, ℓ1, 𝑣2, 𝑣3),

𝛾2 : (𝑥01, 𝑥
0
2, 𝑥

0
3, ℓ, 𝑣) ↦→ (𝑥01, 𝑥

0
3, ℓ2, 𝑣1, 𝑣3),

𝛾3 : (𝑥01, 𝑥
0
2, 𝑥

0
3, ℓ, 𝑣) ↦→ (𝑥01, 𝑥

0
2, ℓ3, 𝑣1, 𝑣2),

where ℓ1, ℓ2, ℓ3 are the images of ℓ under the projections 𝑁(𝑋0 ×𝑋0 ×𝑋0) on 𝑁(𝑋0 ×𝑋0):
(𝑥01, 𝑥

0
2, 𝑥

0
3, 𝑣) ↦→ (𝑥02, 𝑥

0
3, 𝑣2, 𝑣3), (𝑥01, 𝑥

0
2, 𝑥

0
3, 𝑣) ↦→ (𝑥01, 𝑥

0
3, 𝑣1, 𝑣3), (𝑥01, 𝑥

0
2, 𝑥

0
3, 𝑣) ↦→ (𝑥01, 𝑥

0
2, 𝑣1, 𝑣2)

respectively.
For (𝑝, ℓ, 𝑣) ∈ 𝛾−1

𝑁1
(𝑈1), where 𝑝 = (𝑥1, 𝑥

0
2, 𝑥

0
3) ∈ ̂︀𝑋1, ℓ ⊂ 𝑁𝑝( ̂︀𝑋1) and 𝑣 ∈ 𝑉 (ℓ), we let

𝛾1 : (𝑥1, 𝑥
0
2, 𝑥

0
3, ℓ, 𝑣) ↦→ (𝑥02, 𝑥

0
3, 𝑝𝑟1(ℓ), 𝑝𝑟1(𝑣)),

𝛾2 : (𝑥1, 𝑥
0
2, 𝑥

0
3, ℓ, 𝑣) ↦→ (𝑥1, exp𝑋(𝑣3)),

𝛾3 : (𝑥1, 𝑥
0
2, 𝑥

0
3, ℓ, 𝑣) ↦→ (𝑥1, exp𝑋(𝑣2)).

For (𝑝, ℓ, 𝑣) ∈ 𝛾−1
𝑁𝑖

(𝑈1), maps 𝛾1, 𝛾2, 𝛾3 are defined in the same way.
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5. Regularized trace

Operators in class 𝒦ℰ1,ℰ2,ℰ𝑂(𝑋,𝑋0) are not, in general, of trace class. It turns out that, if
index set ℰ𝑂 satisfies the condition:

inf ℰ𝑂 > 0, and, in addition, if (0, 𝑞) ∈ ℰ𝑂, then 𝑞 = 0, (9)

one can introduce a functional on 𝒦ℰ1,ℰ2,ℰ𝑂(𝑋,𝑋0) called the regularized trace functional, which
coincides with the trace functional on trace class operators.

Before giving the definition of the regularized trace, we introduce the notion of regularized
integral for conormal densities.

5.1. Regularized integral. Let 𝜇 be a density defined on a compact manifold 𝑋 with
a distinguished smooth submanifold 𝑋0 of codimension 1 and this density is conormal with
respect to an index family ℰ and. We suppose that the conormal bundle of 𝑋0 is trivial, and
index family ℰ satisfies the condition (9). We fix a Riemannian metric 𝑔𝑋 on 𝑋 and define
continuous function 𝑟 on 𝑋 by 𝑟(𝑝) = 𝜚(𝑝,𝑋0), where 𝜚 is the geodesic distance from 𝑝 to
submanifold 𝑋0.

Definition 14. The regularized integral of density 𝜇 over 𝑋 is defined by the formula
𝑟∫︁

𝑋

𝜇 = lim
𝜀→0

(︂ ∫︁
𝑋

𝑟(𝑝)>𝜀

𝜇+ 2 ln 𝜀

∫︁
𝑋0

𝜇 |𝑋0

)︂
. (10)

Here 𝜇 |𝑋0 is a density on 𝑋0 defined as follows. In the normal coordinate system exp(𝑈) →
(−𝜀, 𝜀)×𝑋0, 𝑝 ↦→ (𝑥, 𝑥0) near 𝑋0, we write 𝜇 = 𝑢(𝑥, 𝑥0)

⃒⃒
𝑑𝑥
𝑥
𝑑𝑥0
⃒⃒
, where 𝑢 is a conormal function

on (−𝜀, 𝜀) × 𝑋0 with distinguished submanifold {0} × 𝑋0, |𝑑𝑥0| is the fixed smooth density
on 𝑋0. Since index family ℰ satisfies (9), it is easy to see that 𝑢 is extended to a continuous
function on (−𝜀, 𝜀) ×𝑋0. We let

𝜇 |𝑋0 = 𝑢(0, 𝑥0)|𝑑𝑥0|.
It is easy to check that 𝜇 |𝑋0 is independent of the choice of density |𝑑𝑥0|.

One can show that the limit at the right-hand side of (10) exists. One should note that the
regularized integral depends on the choice of Riemannian metric 𝑔𝑋 .

5.2. Regularized trace. Let 𝑋 be a compact manifold and 𝐴 : 𝐶∞(𝑋,Ω
1
2
𝑋) → 𝐶∞(𝑋,Ω

1
2
𝑋)

be an integral operator with smooth kernel 𝑘𝐴 ∈ 𝐶∞(𝑋 ×𝑋,Ω
1
2
𝑋×𝑋), whose action on a half-

density 𝜇 ∈ 𝐶∞(𝑋,Ω
1
2 ) is given by formula (2). We recall that such an operator 𝐴 determines

a bounded operator in the space 𝐿2(𝑋,Ω
1
2
𝑋). This operator is trace class, and

Tr(𝐴) =

∫︁
𝑋

𝑘𝐴 |Δ , (11)

where ∆ = {(𝑥, 𝑥) ∈ 𝑋 ×𝑋 : 𝑥 ∈ 𝑋}.
Here smooth density 𝑘𝐴 |Δ on 𝑋 is defined as follows. Let 𝑑𝑣𝑋 be a smooth positive density

on 𝑋. We write
𝑘𝐴 = 𝐾𝐴(𝑝1, 𝑝2)|𝑑𝑣𝑋(𝑝1)|

1
2 |𝑑𝑣𝑋(𝑝2)|

1
2 , 𝑝1, 𝑝2 ∈ 𝑋,

where 𝐾𝐴 ∈ 𝐶∞(𝑋 ×𝑋), and let

𝑘𝐴 |Δ = 𝐾𝐴(𝑝, 𝑝)|𝑑𝑣𝑋(𝑝)|.
It is easy to check that this definition is independent of the choice of density 𝑑𝑣𝑋 .

Let 𝑋 be a compact manifold, 𝑋0 be its smooth submanifold of codimension 1, 𝑔𝑋 be a
Riemannian metric on 𝑋. We suppose that the normal bundle of 𝑋0 is trivial and consider an
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operator 𝐴 ∈ 𝒦ℰ1,ℰ2,ℰ𝑂(𝑋,𝑋0) with kernel 𝑘𝐴 ∈ 𝐶∞(𝑋 ×𝑋 ∖ (𝑋0 ×𝑋) ∪ (𝑋 ×𝑋0),Ω
1
2

𝑋2). We
assume that index family ℰ𝑂 satisfies (9).

Definition 15. The regularized trace of operator 𝐴 is defined by the formula

r-Tr(𝐴) =

𝑟∫︁
𝑋

𝑘𝐴 |Δ .

One can show that 𝑘𝐴 |Δ is a conormal density on (𝑋,𝑋0) with respect to index family ℰ𝑂,
and, therefore, the regularized integral of 𝑘𝐴 |Δ over 𝑋 is well-defined.

5.3. Regularized trace of the commutator. As above, let 𝑋 be a compact manifold, 𝑋0

be its smooth submanifold of codimension 1, 𝑔𝑋 be a Riemannian metric on𝑋. Suppose that the
normal bundle of 𝑋0 is trivial. The regularized trace functional r-Tr on algebra 𝒦ℰ1,ℰ2,ℰ𝑂(𝑋,𝑋0)
is not a trace functional, i.e., the regularized trace r-Tr([𝐴,𝐵]) of the commutator of operators
𝐴 ∈ 𝒦ℰ1,ℰ2,ℰ𝑂(𝑋,𝑋0) and 𝐵 ∈ 𝒦ℰ1,ℰ2,ℰ𝑂(𝑋,𝑋0), in general, is nonzero. The main result of
this section is a formula providing an expression for the regularized trace of the commutator
r-Tr([𝐴,𝐵]) in terms of certain integral operators on submanifold 𝑋0 associated with 𝐴 and 𝐵.

We begin with the de
nition of a class of operators, for which the aforementioned formula holds true.

Definition 16. We say that 𝐴 ∈ 𝒦(𝑋,𝑋0) if 𝐴 ∈ 𝒦ℰ1,ℰ2,ℰ𝑂(𝑋,𝑋0) for some index families
ℰ1, ℰ2, ℰ𝑂 and the following conditions hold:

1. For each 𝜀 > 0, there exists 𝛿 > 0 such that, if 𝜚(𝑥,𝑋0) > 𝜀, 𝜚(𝑦,𝑋0) < 𝛿 or 𝜚(𝑦,𝑋0) > 𝜀,
𝜚(𝑥,𝑋0) < 𝛿, then 𝑘𝐴(𝑥, 𝑦) = 0.

2. ℰ𝑂 satisfies condition (9).
3. Choose a normal coordinate system with coordinates (𝑥, 𝑥0) ∈ (−𝜀, 𝜀)×𝑋0 in some tubular

neighborhood of 𝑋0. There exist 𝑚, 𝑀 , 0 < 𝑚 < 𝑀 < ∞, such that function ̃︀𝐾𝐴 defined
by (4) is supported in the set of all (𝑥, 𝑠, 𝑥01, 𝑥

0
2) ∈ Π𝜀 ×𝑋0 ×𝑋0 such that 𝑚 < |𝑠| < 𝑀 .

Using Theorem 4, it is easy to show that 𝒦(𝑋,𝑋0) is an algebra.
Before we formulate the statement on the regularized trace of the commutator, we introduce

the notions of indicial operator and indicial family associated with an operator 𝐴 ∈ 𝒦(𝑋,𝑋0),
which we need to formulate this theorem.

Condition (2) of Definition 16 implies that, for an operator 𝐴 ∈ 𝒦(𝑋,𝑋0), there exists the
limit

lim
𝑥→0

̃︀𝐾𝐴(𝑥, 𝑠, 𝑥01, 𝑥
0
2) =: ̃︀𝐾𝐴(0, 𝑠, 𝑥01, 𝑥

0
2), (12)

where ̃︀𝐾𝐴 is the function given by formula (4).

Definition 17. The indicial operator associated with an operator 𝐴 ∈ 𝒦(𝑋,𝑋0) is the
operator

𝐼(𝐴) : 𝐶∞
0 ((R ∖ {0}) ×𝑋0,Ω

1
2

R∖{0}×𝑋0) → 𝐶∞
0 ((R ∖ {0}) ×𝑋0,Ω

1
2

R∖{0}×𝑋0),

whose action on the half-density

𝜇 = 𝑢(𝑥, 𝑥0)

⃒⃒⃒⃒
𝑑𝑥

𝑥
𝑑𝑥0
⃒⃒⃒⃒ 1
2

∈ 𝐶∞
0 ((R ∖ {0}) ×𝑋0,Ω

1
2

(𝑅∖{0})×𝑋0)

is

𝐼(𝐴)𝜇 = 𝐼(𝐴)𝑢(𝑥, 𝑥0)

⃒⃒⃒⃒
𝑑𝑥

𝑥
𝑑𝑥0
⃒⃒⃒⃒ 1
2

,
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where

𝐼(𝐴)𝑢(𝑥, 𝑥0) =

∫︁
𝑋0

+∞∫︁
−∞

̃︀𝐾𝐴(0, 𝑠, 𝑥0, 𝑥01)𝑢
(︁𝑥
𝑠
, 𝑥01

)︁ 𝑑𝑠
𝑠
𝑑𝑥01, 𝑥 ∈ R ∖ {0}, 𝑥0 ∈ 𝑋0.

The following notion is an analogue of the known notion of the conormal symbol (cf., for
instance, [13, 16]) in the situation under consideration.

Definition 18. The indicial families of an operator 𝐴 ∈ 𝒦(𝑋,𝑋0) are the families
{𝐼±(𝐴, 𝜆) : 𝜆 ∈ C} of integral operators on 𝑋0 with smooth kernels given by:

𝐾𝐼+(𝐴,𝜆)(𝑥
0
1, 𝑥

0
2) =

+∞∫︁
0

𝑠−𝑖𝜆 ̃︀𝐾𝐴(0, 𝑠, 𝑥01, 𝑥
0
2)
𝑑𝑠

𝑠
,

𝐾𝐼−(𝐴,𝜆)(𝑥
0
1, 𝑥

0
2) =

0∫︁
−∞

|𝑠|−𝑖𝜆 ̃︀𝐾𝐴(0, 𝑠, 𝑥01, 𝑥
0
2)
𝑑𝑠

|𝑠|
.

The function 𝜆 ↦→ 𝐾𝐼+(𝐴,𝜆)(𝑥
0
1, 𝑥

0
2) (resp. 𝜆 ↦→ 𝐾𝐼−(𝐴,𝜆)(𝑥

0
1, 𝑥

0
2)) is the Mellin transform of

function ̃︀𝐾𝐴(0, 𝑠, 𝑥01, 𝑥
0
2) (resp. ̃︀𝐾𝐴(0,−𝑠, 𝑥01, 𝑥02)) with respect to variable 𝑠 on the semi-axis

(0,+∞). Since ̃︀𝐾𝐴(0, 𝑠, 𝑥01, 𝑥
0
2) is a smooth compactly supported function of 𝑠 ∈ (−∞, 0) ∪

(0,+∞) for fixed 𝑥01, 𝑥02 ∈ 𝑋0, by the Paley-Wiener theorem, functions 𝐾𝐼±(𝐴,𝜆)(𝑥
0
1, 𝑥

0
2) are

well-defined for each 𝜆 ∈ C and are entire functions.
The following properties of the indicial operators hold:
1. 𝐼(𝐴 ∘𝐵) = 𝐼(𝐴) ∘ 𝐼(𝐵).
2. 𝐼+(𝐴 ∘𝐵, 𝜆) = 𝐼+(𝐴, 𝜆) ∘ 𝐼+(𝐵, 𝜆) + 𝐼−(𝐴, 𝜆) ∘ 𝐼−(𝐵, 𝜆).
3. 𝐼−(𝐴 ∘𝐵, 𝜆) = 𝐼+(𝐴, 𝜆) ∘ 𝐼−(𝐵, 𝜆) + 𝐼−(𝐴, 𝜆) ∘ 𝐼+(𝐵, 𝜆).

Theorem 7. If 𝐴 ∈ 𝒦(𝑋,𝑋0) and 𝐵 ∈ 𝒦(𝑋,𝑋0), then

r-Tr([𝐴,𝐵]) = − 1

𝜋𝑖

+∞∫︁
−∞

tr(𝜕𝜆𝐼
+(𝐴, 𝜆) ∘ 𝐼+(𝐵, 𝜆) + 𝜕𝜆𝐼

−(𝐴, 𝜆) ∘ 𝐼−(𝐵, 𝜆))𝑑𝜆,

where the symbol tr stands for the trace of an integral operator on 𝑋0.

Доказательство. By definition we have:

r-Tr[(𝐴,𝐵)] = lim
𝜀→0

(︂ ∫︁
𝑋

𝑟(𝑝)>𝜀

(𝑘𝐴𝐵 − 𝑘𝐵𝐴) |Δ + 2 ln 𝜀

∫︁
𝑋0

((𝑘𝐴𝐵 − 𝑘𝐵𝐴) |Δ )

⃒⃒⃒⃒
𝑋0

)︂
.

We define map 𝑅 : 𝑋 ×𝑋 → 𝑋 ×𝑋 by 𝑅(𝑝1, 𝑝2) = (𝑝2, 𝑝1). Then one can write∫︁
𝑋

𝑟(𝑝1)>𝜀

(𝑘𝐴𝐵) |Δ =

∫︁
𝑋

𝑟(𝑝1)>𝜀

⎛⎝∫︁
𝑋

𝑘𝐴(𝑝1, 𝑝2)𝑘𝐵(𝑝2, 𝑝1)

⎞⎠ =

∫︁
𝑋×𝑋
𝑟(𝑝1)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2),

where the last integral should be understood as the integral of the density 𝑘𝐴𝑅*𝑘𝐵 on 𝑋 ×𝑋
over the set {(𝑝1, 𝑝2) ∈ 𝑋 ×𝑋 : 𝑟(𝑝1) > 𝜀}. In the same way,∫︁

𝑋
𝑟(𝑝1)>𝜀

(𝑘𝐵𝐴) |Δ =

∫︁
𝑋×𝑋
𝑟(𝑝1)>𝜀

𝑘𝐵𝑅
*𝑘𝐴(𝑝1, 𝑝2) =

∫︁
𝑋×𝑋
𝑟(𝑝2)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2).
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We choose a normal coordinate system with coordinates (𝑥, 𝑥0) ∈ (−𝜀1, 𝜀1) × 𝑋0 in some
tubular neighborhood 𝑉 = exp(𝑈) of 𝑋0. In particular, 𝑉 = {𝑝 ∈ 𝑋 : 𝑟(𝑝) < 𝜀1}. We obtain
that ∫︁

𝑋
𝑟(𝑝1)>𝜀

(𝑘𝐵𝐴 − 𝑘𝐵𝐴) |Δ =

∫︁
𝑋×𝑋
𝑟(𝑝1)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2) −

∫︁
𝑋×𝑋
𝑟(𝑝2)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2)

=

∫︁
𝑉×𝑉

𝑟(𝑝1)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2) −

∫︁
𝑉×𝑉

𝑟(𝑝2)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2)

+

∫︁
𝑉×(𝑋∖𝑉 )
𝑟(𝑝1)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2) −

∫︁
(𝑋∖𝑉 )×𝑉
𝑟(𝑝2)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2)

+

∫︁
(𝑋∖𝑉 )×𝑋
𝑟(𝑝1)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2) −

∫︁
𝑋×(𝑋∖𝑉 )
𝑟(𝑝2)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2).

It is easy to see that for each 0 < 𝜀 < 𝜀1∫︁
(𝑋∖𝑉 )×𝑋
𝑟(𝑝1)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2) =

∫︁
(𝑋∖𝑉 )×𝑋

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2),

∫︁
𝑋×(𝑋∖𝑉 )
𝑟(𝑝2)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2) =

∫︁
𝑋×(𝑋∖𝑉 )

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2).

By Condition (1) of Definition 16, there exists 𝜀2 > 0 such that, if 𝑝1 /∈ 𝑉 and 𝑟(𝑝2) < 𝜀2 or
𝑟(𝑝1) < 𝜀2 and 𝑝2 /∈ 𝑉 , then 𝑘𝐴(𝑝1, 𝑝2) = 𝑘𝐵(𝑝1, 𝑝2) = 0. Hence, for each 0 < 𝜀 < min(𝜀1, 𝜀2)∫︁

(𝑋∖𝑉 )×𝑉
𝑟(𝑝2)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2) =

∫︁
(𝑋∖𝑉 )×𝑉

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2).

∫︁
𝑉×(𝑋∖𝑉 )
𝑟(𝑝1)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2) =

∫︁
𝑉×(𝑋∖𝑉 )

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2).

Therefore, we obtain that∫︁
𝑋

𝑟(𝑝1)>𝜀

(𝑘𝐵𝐴 − 𝑘𝐵𝐴) |Δ =

∫︁
𝑉×𝑉

𝑟(𝑝1)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2) −

∫︁
𝑉×𝑉

𝑟(𝑝2)>𝜀

𝑘𝐴𝑅
*𝑘𝐵(𝑝1, 𝑝2). (13)

We introduce the local coordinate system (𝑥, 𝑠, 𝑥01, 𝑥
0
2) ∈ Π𝜀 ×𝑋0 ×𝑋0 in the neighborhood

(𝑉 ∖𝑋0) × (𝑉 ∖𝑋0) given by (3). In these coordinates, map 𝑅 is written as

𝑅(𝑥, 𝑠, 𝑥01, 𝑥
0
2) =

(︂
𝑥

𝑠
,
1

𝑠
, 𝑥02, 𝑥

0
1

)︂
.
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Identity (13) becomes

∫︁
𝑋

𝑟(𝑝1)>𝜀

(𝑘𝐵𝐴 − 𝑘𝐵𝐴) |Δ =

∫︁
𝑋0×𝑋0

+∞∫︁
−∞

⎛⎝ 𝜀|𝑠|∫︁
𝜀

̃︀𝐾𝐴(𝑥, 𝑠, 𝑥01, 𝑥
0
2) ̃︀𝐾𝐵

(︂
𝑥

𝑠
,
1

𝑠
, 𝑥02, 𝑥

0
1

)︂
𝑑𝑥

|𝑥|

⎞⎠ 𝑑𝑠

|𝑠|
𝑑𝑥01𝑑𝑥

0
2,

where functions ̃︀𝐾𝐴 and ̃︀𝐾𝐵 are defined by (4).
By Conditions (2) and (3) of Definition 16, it implies easily that the limit

lim
𝜀→0

∫︁
𝑋

𝑟(𝑝1)>𝜀

(𝑘𝐵𝐴 − 𝑘𝐵𝐴) |Δ =

∫︁
𝑋0×𝑋0

+∞∫︁
−∞

⎛⎝ 𝜀|𝑠|∫︁
𝜀

̃︀𝐾𝐴(0, 𝑠, 𝑥01, 𝑥
0
2) ̃︀𝐾𝐵

(︂
0,

1

𝑠
, 𝑥02, 𝑥

0
1

)︂
𝑑𝑥

|𝑥|

⎞⎠ 𝑑𝑠

|𝑠|
𝑑𝑥01𝑑𝑥

0
2

=2

∫︁
𝑋0×𝑋0

+∞∫︁
−∞

ln |𝑠| ̃︀𝐾𝐴(0, 𝑠, 𝑥01, 𝑥
0
2) ̃︀𝐾𝐵(0,

1

𝑠
, 𝑥02, 𝑥

0
1)
𝑑𝑠

|𝑠|
𝑑𝑥01𝑑𝑥

0
2

is well-defined. In particular, it yields∫︁
𝑋0

(︂
(𝑘𝐴𝐵 − 𝑘𝐵𝐴)

⃒⃒⃒⃒
Δ

)︂ ⃒⃒⃒⃒
𝑋0

= 0.

Using the relation between the Mellin transform and the Fourier transform and the Parceval
identity for the Fourier transform, one can prove that, if 𝑓1, 𝑓2 ∈ 𝐿2((0,+∞), 𝑑𝑠

𝑠
), Mellin

transforms 𝑀(𝑓1), 𝑀(𝑓2) belong to 𝐿2(R), and we have the formula

+∞∫︁
0

𝑓1(𝑠)𝑓2(𝑠)
𝑑𝑠

𝑠
=

1

2𝜋

+∞∫︁
−∞

[𝑀(𝑓1)](𝜆)[𝑀(𝑓2)](𝜆)𝑑𝜆.

Applying this formula in the case

𝑓1(𝑠) = ln |𝑠| ̃︀𝐾𝐴(0, 𝑠, 𝑥01, 𝑥
0
2), 𝑓2(𝑠) = ̃︀𝐾𝐵(0,

1

𝑠
, 𝑥02, 𝑥

0
1), 𝑠 > 0,

we obtain that

+∞∫︁
0

ln |𝑠| ̃︀𝐾𝐴(0, 𝑠, 𝑥01, 𝑥
0
2) ̃︀𝐾𝐵(0,

1

𝑠
, 𝑥02, 𝑥

0
1)
𝑑𝑠

𝑠
= − 1

2𝜋𝑖

+∞∫︁
−∞

𝜕𝜆𝐾𝐼+(𝐴,𝜆)(𝑥
0
1, 𝑥

0
2)𝐾𝐼+(𝐵,𝜆)(𝑥

0
2, 𝑥

0
1)𝑑𝜆.

In the same way we have

0∫︁
−∞

ln |𝑠| ̃︀𝐾𝐴(0, 𝑠, 𝑥01, 𝑥
0
2) ̃︀𝐾𝐵(0,

1

𝑠
, 𝑥02, 𝑥

0
1)
𝑑𝑠

|𝑠|
= − 1

2𝜋𝑖

+∞∫︁
−∞

𝜕𝜆𝐾𝐼−(𝐴,𝜆)(𝑥
0
1, 𝑥

0
2)𝐾𝐼−(𝐵,𝜆)(𝑥

0
2, 𝑥

0
1)𝑑𝜆.
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Thus, we obtain that

r-Tr([𝐴,𝐵]) = lim
𝜀→0

∫︁
𝑋

𝑟(𝑝1)>𝜀

(𝑘𝐵𝐴 − 𝑘𝐵𝐴) |Δ

= − 1

𝜋𝑖

∫︁
𝑋0×𝑋0

+∞∫︁
−∞

(𝜕𝜆𝐾𝐼+(𝐴,𝜆)(𝑥
0
1, 𝑥

0
2)𝐾𝐼+(𝐵,𝜆)(𝑥

0
2, 𝑥

0
1)

+ 𝜕𝜆𝐾𝐼−(𝐴,𝜆)(𝑥
0
1, 𝑥

0
2)𝐾𝐼−(𝐵,𝜆)(𝑥

0
2, 𝑥

0
1))𝑑𝜆𝑑𝑥

0
1𝑑𝑥

0
2

= − 1

𝜋𝑖

+∞∫︁
−∞

tr(𝜕𝜆𝐼
+(𝐴, 𝜆) ∘ 𝐼+(𝐵, 𝜆) + 𝜕𝜆𝐼

−(𝐴, 𝜆) ∘ 𝐼−(𝐵, 𝜆))𝑑𝜆.

A. Proof of Theorem 5

Let 𝑢 ∈ 𝒜ℰ0

𝑝ℎ𝑔(𝑌, 𝑌
0, 𝐺). We need to show that 𝑓 *𝑢 ∈ 𝒜ℰ

𝑝ℎ𝑔(𝑋,𝑋
0, 𝑓 *𝐺).

Firsi of all, note that the restriction of map 𝑓 to 𝑓−1(𝑌 ∖ 𝑌 0) determines the map 𝑓 :
𝑓−1(𝑌 ∖ 𝑌 0) → 𝑌 ∖ 𝑌 0. Since 𝑢 is a smooth section on 𝑌 ∖ 𝑌 0, 𝑓 *𝑢 is smooth on 𝑓−1(𝑌 ∖ 𝑌 0),
in particular, on 𝑋 ∖𝑋0, since 𝑓−1(𝑌 0) ⊂ 𝑋0.

It remains to prove that the section 𝑓 *𝑢 is conormal at an arbitrary point 𝑝 ∈ 𝑋0. To be
specific we suppose that 𝑝 ∈ 𝑋1∩ . . .∩𝑋ℓ and 𝑝 /∈ 𝑋ℓ+1∪ . . .∪𝑋𝑟. Let 𝑓(𝑝) = 𝑝0. Suppose that
𝑝0 ∈ 𝑌1∩ . . .∩𝑌ℓ0 and 𝑝0 /∈ 𝑌ℓ0+1∪ . . .∪𝑌𝑟0 . We choose an adapted at 𝑝 coordinate system with
coordinates (𝑥1, . . . , 𝑥ℓ, 𝑥

0) ∈ 𝐷1×𝐷2 and an adapted at 𝑝0 coordinate system with coordinates
(𝑦1, . . . , 𝑦ℓ0 , 𝑦

0) ∈ 𝐷0
1 ×𝐷0

2, where 𝐷1 ⊂ Rℓ; 𝐷2 ⊂ R𝑚−ℓ; 𝐷0
1 ⊂ Rℓ0 ; 𝐷0

2 ⊂ R𝑛−ℓ0 . Without loss
of generality, we can assume that the restriction of bundle 𝐺 to the given neighborhood of
𝑝0 is trivial, hence, we can identify the restriction of 𝑢 to this neighborhood with a function.
Therefore, in what follows, we shall regard 𝑢 as a scalar function.

The case ℓ0 = ℓ = 0 has been already treated in the beginning of the proof. In this case
𝑝0 ∈ 𝑌 ∖ 𝑌 0 and 𝑝 ∈ 𝑋 ∖𝑋0.

Consider the case ℓ0 = 0 and ℓ > 0. In this case 𝑝0 ∈ 𝑌 ∖ 𝑌 0 and 𝑝 ∈ 𝑋0. Since 𝑝0 ∈ 𝑌 ∖ 𝑌 0,
the identities

𝑒𝑓 (𝑋𝑗, 𝑌𝑖) = 0; ∀𝑖 = 1, . . . , 𝑟0; ∀𝑗 = 1, . . . , ℓ, (14)

hold true. Since 𝑓 *𝑢 ∈ 𝐶∞(𝑓−1(𝑌 ∖ 𝑌 0), 𝑓 *𝐺), 𝑓 *𝑢 is smooth at 𝑝, therefore, 𝑓 *𝑢 is conormal
at 𝑝 with respect to the trivial index family. Due to (14) it agrees with formula (5).

The further proof is given by the induction on ℓ0 > 1. Since 𝑓−1(𝑌 0) ⊂ 𝑋0, ℓ > 0.
Basis of induction: ℓ0 = 1. In this case we have:

𝑒𝑓 (𝑋𝑗, 𝑌1) = 0; ∀𝑗 = ℓ+ 1, . . . , 𝑟;

𝑒𝑓 (𝑋𝑗, 𝑌𝑖) = 0; ∀𝑖 = 2, . . . , 𝑟0; ∀𝑗 = 1, . . . , 𝑟.
(15)

Since 𝑢 is conormal at 𝑝0 with respect to index family ℰ0, an expansion

𝑢(𝑦1, 𝑦
0) ∼

∑︁
(𝑧,𝑞)∈𝐸0

1

𝑎𝑧,𝑞(𝑦
0)𝑦𝑧1 ln𝑞 |𝑦1|,

holds true, where 𝑎𝑧,𝑞 ∈ 𝐶∞(𝐷0
2), 𝐸0

1 = ℰ0(𝑌1).
Since 𝑓 is a relative map, map 𝑓 is written in local coordinates as

𝑓 : 𝐷1 ×𝐷2 ⊂ Rℓ ×R𝑛−ℓ → 𝐷0
1 ×𝐷0

2 ⊂ R×R𝑚−1, 𝑓 : (𝑥, 𝑥0) ↦→ (𝑦1, 𝑦
0),
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where

𝑦1 = 𝑏1(𝑥, 𝑥
0)

ℓ∏︁
𝑗=1

𝑥
𝛾1𝑗
𝑗 , 𝑦0 = 𝑔(𝑥, 𝑥0), (16)

𝑏1 is a smooth non-vanishing function on 𝐷1 ×𝐷2 and 𝑔 : 𝐷1 ×𝐷2 → 𝐷0
2 is a smooth map.

Let 𝑁 be a natural number to be chosen later. We denote 𝑢 = 𝑢𝑁 + 𝑟𝑁 , where:

𝑢𝑁(𝑦1, 𝑦
0) =

∑︁
(𝑧,𝑞)∈𝐸0

1
𝑧6𝑁

𝑎𝑧,𝑞(𝑦
0)𝑦𝑧1 ln𝑞 |𝑦1|.

Thus, we obtain 𝑓 *𝑢 = 𝑓 *𝑢𝑁 + 𝑓 *𝑟𝑁 . We have:

𝑓 *𝑢𝑁(𝑥1, . . . , 𝑥ℓ, 𝑥
0) =

∑︁
(𝑧,𝑞)∈𝐸0

1
𝑧6𝑁

(𝑔*𝑎𝑧,𝑞)(𝑥, 𝑥
0)𝑏𝑧1(𝑥, 𝑥

0)𝑥𝛾11𝑧1 . . . 𝑥𝛾1ℓ𝑧ℓ

×
(︀
ln |𝑏1(𝑥, 𝑥0)| + 𝛾11 ln |𝑥1| + . . .+ 𝛾1ℓ ln |𝑥ℓ|

)︀𝑞
.

Since 𝑔 : 𝐷1 ×𝐷2 → 𝐷0
2 is a smooth map and 𝑎𝑧,𝑞 ∈ 𝐶∞(𝐷0

2), we have 𝑔*𝑎𝑧,𝑞 ∈ 𝐶∞(𝐷1 ×𝐷2).
Therefore, 𝑓 *𝑢𝑁 can be written as

𝑓 *𝑢𝑁(𝑥1, . . . , 𝑥ℓ, 𝑥
0) =

∑︁
(𝑧,𝑞)∈𝐸0

1
𝑧6𝑁

𝑑𝑧,𝑞(𝑥, 𝑥
0)

ℓ∏︁
𝑗=1

𝑥
𝛾1𝑗𝑧
𝑗 ln𝑞 |𝑥𝑗|,

where 𝑑𝑧,𝑞 ∈ 𝐶∞(𝐷1×𝐷2). It implies immediately that 𝑓 *𝑢𝑁 is conormal with respect to index
family ℰ given by (5).

By assumption, for each 𝛼0 ∈ Z+, 𝛽0 ∈ Z𝑚−1
+ , there exists a constant 𝐶1 such that⃒⃒⃒

(𝑦1𝜕𝑦1)
𝛼0𝜕𝛽0

𝑦0 𝑟𝑁(𝑦1, 𝑦
0)
⃒⃒⃒
6 𝐶1|𝑦1|𝑁+1.

By representation (16) it yields that for each 𝛼 ∈ Zℓ
+ and 𝛽 ∈ Z𝑛−ℓ

+ there exists a constant 𝐶3

such that ⃒⃒⃒
(𝑥𝜕𝑥)𝛼𝜕𝛽𝑥0𝑓

*𝑟𝑁

⃒⃒⃒
6 𝐶3|𝑥1|𝛾11(𝑁+1). (17)

Let 𝑁1 be an arbitrary natural number. Since 𝑓 *𝑢𝑁 is conormal at 𝑝 with respect to ℰ , we
have the representation

𝑓 *𝑢𝑁(𝑥1, . . . , 𝑥ℓ, 𝑥
0) =

∑︁
(𝑧,𝑞)∈𝐸1
𝑧6𝑁1

ℎ𝑁𝑧,𝑞(𝑥2, . . . , 𝑥ℓ, 𝑥
0)𝑥𝑧1 ln𝑞 |𝑥1| + 𝜚𝑁,𝑁1 ,

where ℎ𝑁𝑧,𝑞 are conormal functions with respect to ℰ ′ = (ℰ(𝑋2), . . . , ℰ(𝑋𝑟)) and 𝜚𝑁,𝑁1 satisfies
the estimates ⃒⃒⃒

(𝑥𝜕𝑥)𝛼𝜕𝛽𝑥0𝜚𝑁,𝑁1

⃒⃒⃒
6 𝐶6|𝑥2|𝑀2 . . . |𝑥ℓ|𝑀ℓ |𝑥1|𝑁1+1 (18)

Given 𝑁1, we choose 𝑁 so that the inequality

𝑁1 + 1 < 𝛾11(𝑁 + 1) (19)

holds true. By (17), (18), (19) we have⃒⃒⃒
(𝑥𝜕𝑥)𝛼𝜕𝛽𝑥0 (𝑓 *𝑟𝑁 + 𝜚𝑁,𝑁1)

⃒⃒⃒
6 𝐶7|𝑥2|𝑀

0
2 . . . |𝑥ℓ|𝑀

0
ℓ |𝑥1|𝑁1+1,

where 𝑀0
𝑗 = min(0,𝑀𝑗) ∀𝑗 = 2, . . . , ℓ. Finally, we obtain that

𝑓 *𝑢 =
∑︁

(𝑧,𝑞)∈𝐸1
𝑧6𝑁1

ℎ𝑁𝑧,𝑞(𝑥2, . . . , 𝑥ℓ, 𝑥
0)𝑥𝑧1 ln𝑞 |𝑥1| + 𝑓 *𝑟𝑁 + 𝜚𝑁,𝑁1 .
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It implies that ℎ𝑁𝑧,𝑞 is independent of 𝑁 for 𝑁1 + 1 < 𝛾11(𝑁 + 1). Denote ℎ𝑁𝑧,𝑞(𝑥2, . . . , 𝑥ℓ, 𝑥0) =

ℎ𝑧,𝑞(𝑥2, . . . , 𝑥ℓ, 𝑥
0). Hence,

𝑓 *𝑢 ∼
∑︁

(𝑧,𝑞)∈𝐸1

ℎ𝑧,𝑞(𝑥2, . . . , 𝑥ℓ, 𝑥
0)𝑥𝑧1 ln𝑞 |𝑥1|,

and, therefore, 𝑓 *𝑢 is a conormal function with respect to ℰ .
Step of induction. Fix ℓ > 1. We assume that the following statement is true. Let 𝑍 and

𝑊 be smooth manifolds, 𝑍0 and 𝑊 0 be stratified submanifolds of 𝑍 and 𝑊 , respectively. We
suppose that we are given a relative map ℎ : (𝑍,𝑍0) → (𝑊,𝑊 0), an arbitrary vector bundle
𝐻 on 𝑊 , and an index family ℱ0 on 𝑊 0 is given. We assume also that 𝑝 ∈ 𝑍1 ∩ . . . ∩ 𝑍ℓ and
𝑝 /∈ 𝑍ℓ+1 ∪ . . . ∪ 𝑍𝑟. Let ℎ(𝑝) = 𝑝0. Let 𝑝0 ∈ 𝑊1 ∩ . . . ∩𝑊𝑘0 and 𝑝0 /∈ 𝑊𝑘0+1 ∪ . . . ∪𝑊𝑟0 , and
moreover 𝑘0 < ℓ0. We suppose that 𝑢 is conormal at 𝑝0 with respect to index family ℱ0, then
ℎ*𝑢 is conormal at 𝑝 with respect to an index family ℱ , where each index set ℱ(𝑍𝑗) of index
family ℱ on 𝑍0 reads as

ℱ(𝑍𝑗) =

{︂(︂
𝜂 +

∑︁
𝑖

𝑒ℎ(𝑍𝑗,𝑊𝑖)𝑧𝑖,
∑︁
𝑖

𝑞𝑖

)︂⃒⃒⃒⃒
(𝑧𝑖, 𝑞𝑖) ∈ ℱ0(𝑊𝑖), 𝜂 ∈ Z+

}︂
,

where the sum is taken over all 𝑖 = 1, . . . , 𝑟0 such that 𝑒𝑓 (𝑍𝑗,𝑊𝑖) ̸= 0.
Suppose that a function 𝑢, a map 𝑓 , points 𝑝 and 𝑝0 are as in the formulation of the theorem.

Let us prove that 𝑓 *𝑢 is a conormal function at 𝑝. By the assumption we have
𝑒𝑓 (𝑋𝑗, 𝑌𝑖) = 0; ∀𝑖 = 1, . . . , ℓ0; ∀𝑗 = ℓ+ 1, . . . , 𝑟;

𝑒𝑓 (𝑋𝑗, 𝑌𝑖) = 0; ∀𝑖 = ℓ0 + 1, . . . , 𝑟0; ∀𝑗 = 1, . . . , 𝑟.
(20)

Since 𝑢 is conormal at 𝑝0 with respect to ℰ0, there exists a neighborhood 𝑉 of 𝑝0, κ0(𝑉 ) =
(−𝜀, 𝜀)ℓ0 × 𝑉2, where 𝑉2 ⊂ R𝑚−ℓ0 , such that 𝑢 is defined and smooth on 𝑉 ∖𝑋0, and, for each
(𝑦2, . . . , 𝑦ℓ0 , 𝑦

0) ∈ (−𝜀, 𝜀)ℓ0−1 × 𝑉2, the asymptotic expansion

𝑢(𝑦, 𝑦0) ∼
∑︁

(𝑧,𝑞)∈𝐸0
1

𝑎𝑧,𝑞(𝑦2, . . . , 𝑦ℓ0 , 𝑦
0)𝑦𝑧1 ln𝑞 |𝑦1|

is valid as 𝑦1 → 0, where 𝐸0
1 = ℰ0(𝑌1), functions 𝑎𝑧,𝑞 are conormal on (−𝜀, 𝜀)ℓ0−1×𝑉2 ⊂ 𝑍 with

respect to ℰ ′
0.

Here we consider 𝑍 = Rℓ0−1 × R𝑚−ℓ0 with coordinates (𝑦2, . . . , 𝑦ℓ0 , 𝑦
0), where 𝑦𝑗 ∈ R, 𝑗 =

2, . . . , ℓ0, 𝑦0 ∈ R𝑚−ℓ0 , equipped with a stratified submanifold 𝑍0 = {𝑦2 = 0} ∪ . . . ∪ {𝑦ℓ0 = 0}.
An index family ℰ ′

0 on 𝑍0 is introduced as ℰ ′
0({𝑦𝑗 = 0}) = 𝐸0

𝑗 , where 𝑗 = 2, . . . , ℓ0.
Since 𝑓 is a relative map, in local coordinates the map 𝑓 is written as

𝑓 : 𝐷1 ×𝐷2 ⊂ Rℓ ×R𝑛−ℓ → Rℓ0 ×R𝑚−ℓ0 , (𝑥, 𝑥0) ↦→ (𝑦1, . . . , 𝑦ℓ0 , 𝑦
0),

where

𝑦𝑖 = 𝑏𝑖(𝑥, 𝑥
0)

ℓ∏︁
𝑗=1

𝑥
𝛾𝑖𝑗
𝑗 , 𝑖 = 1, . . . , ℓ0, 𝑦0 = 𝐹 (𝑥, 𝑥0),

𝑏𝑖 are smooth non-vanishing functions on 𝑋.
We introduce the map

𝑔 : 𝐷1 ×𝐷2 ⊂ Rℓ ×R𝑛−ℓ → Rℓ0−1 ×R𝑚−ℓ0 , (𝑥, 𝑥0) ↦→ (𝑦2, . . . , 𝑦ℓ0 , 𝑦
0),

where

𝑦𝑖 = 𝑏𝑖(𝑥, 𝑥
0)

ℓ∏︁
𝑗=1

𝑥
𝛾𝑖𝑗
𝑗 , 𝑖 = 2, . . . , ℓ0, 𝑦0 = 𝐹 (𝑥, 𝑥0).

We observe that 𝑔 is a relative map, and moreover,

𝑒𝑔(𝑋𝑗, 𝑌𝑖) = 𝑒𝑓 (𝑋𝑗, 𝑌𝑖); ∀𝑗 = 1, . . . , ℓ; ∀𝑖 = 2, . . . , ℓ0. (21)
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Let 𝑁 be a natural number to be chosen later. We denote 𝑢 = 𝑢𝑁 + 𝑟𝑁 , where

𝑢𝑁(𝑦, 𝑦0) =
∑︁

(𝑧,𝑞)∈𝐸0
1

𝑧6𝑁

𝑎𝑧,𝑞(𝑦2, . . . , 𝑦ℓ0 , 𝑦
0)𝑦𝑧1 ln𝑞 |𝑦1|.

Hence, we obtain 𝑓 *𝑢 = 𝑓 *𝑢𝑁 + 𝑓 *𝑟𝑁 . We have

𝑓 *𝑢𝑁(𝑥1, . . . , 𝑥ℓ, 𝑥
0) =

∑︁
(𝑧,𝑞)∈𝐸0

1
𝑧6𝑁

(𝑔*𝑎𝑧,𝑞)(𝑥, 𝑥
0)𝑏𝑧1(𝑥, 𝑥

0)𝑥𝛾11𝑧1 . . . 𝑥𝛾1ℓ𝑧ℓ

×
(︀
ln |𝑏1(𝑥, 𝑥0)| + 𝛾11 ln |𝑥1| + . . .+ 𝛾1ℓ ln |𝑥ℓ|

)︀𝑞
.

There exists a neighborhood 𝑈 of 𝑝, κ(𝑈) = (−𝛿, 𝛿)ℓ × 𝑈2, where 𝑈2 ⊂ R𝑛−ℓ, such that
𝑔(𝑈) ⊂ 𝑉 . Since 𝑔 is a relative map, 𝑎𝑧,𝑞 ∈ 𝒜ℰ ′

𝑝ℎ𝑔((−𝜀, 𝜀)ℓ0−1 × 𝑉2), by (21) and the induction
hypothesis, we obtain that 𝑔*𝑎𝑧,𝑞 ∈ 𝒜ℰ̃

𝑝ℎ𝑔((−𝛿, 𝛿)ℓ × 𝑈2), where index set ℰ̃(𝑋𝑗) of index family
ℰ̃ reads as

ℰ̃(𝑋𝑗) =

{︃(︃
𝜂 +

𝑟0∑︁
𝑖=2

𝑒𝑓 (𝑋𝑗, 𝑌𝑖)𝑧𝑖,

𝑟0∑︁
𝑖=2

𝑞𝑖

)︃ ⃒⃒⃒⃒
(𝑧𝑖, 𝑞𝑖) ∈ ℰ0(𝑌𝑖), 𝜂 ∈ Z+

}︃
,

where the sum is taken over all 𝑖 = 2, . . . , 𝑟0 such that 𝑒𝑓 (𝑋𝑗, 𝑌𝑖) ̸= 0.
Hence, 𝑓 *𝑢𝑁 can be written as

𝑓 *𝑢𝑁(𝑥1, . . . , 𝑥ℓ, 𝑥
0) =

∑︁
(𝑧,𝑞)∈𝐸0

1
𝑧6𝑁

𝑑𝑧,𝑞(𝑥, 𝑥
0)

ℓ∏︁
𝑗=1

𝑥
𝛾1𝑗𝑧
𝑗 ln𝑞 |𝑥𝑗|,

where 𝑑𝑧,𝑞 ∈ 𝒜ℰ̃
𝑝ℎ𝑔((−𝛿, 𝛿)ℓ × 𝑈2). It implies that 𝑓 *𝑢𝑁 is conormal with respect to ℰ .

By assumption, there exist real numbers 𝑀2, . . . ,𝑀ℓ0 such that for each 𝛼 ∈ Zℓ0
+ and 𝛽 ∈

Z𝑚−ℓ0
+ there exists a constant 𝐶 = 𝐶𝛼𝛽𝑁 such that⃒⃒⃒

(𝑦𝜕𝑦)
𝛼𝜕𝛽𝑦0𝑟𝑁(𝑦, 𝑦0)

⃒⃒⃒
6 𝐶|𝑦2|𝑀2 · . . . · |𝑦ℓ0 |𝑀ℓ0 |𝑦1|𝑁+1.

It yields that for |𝑥𝑗| < 1⃒⃒
𝑓 *𝑟𝑁(𝑥, 𝑥0)

⃒⃒
6𝐶1|𝑥2|𝑀

0
2+𝛾12(𝑁+1) . . . |𝑥ℓ|𝑀

0
ℓ +𝛾1ℓ(𝑁+1)|𝑥1|𝛾11(𝑁+1)+𝑀0

1

6𝐶4|𝑥2|𝑀
0
2 . . . |𝑥ℓ|𝑀

0
ℓ |𝑥1|𝛾11(𝑁+1)+𝑀0

1 ,

where

𝑀0
𝑗 =

ℓ0∑︁
𝑖=2

𝛾𝑖𝑗𝑀𝑖, 𝑗 = 1, . . . , ℓ.

Similar estimates hold for derivatives⃒⃒⃒
(𝑥𝜕𝑥)𝛼𝜕𝛽𝑥0𝑓

*𝑟𝑁

⃒⃒⃒
6 𝐶5|𝑥2|𝑀

0
2 . . . |𝑥ℓ|𝑀

0
ℓ |𝑥1|𝛾11(𝑁+1)+𝑀0

1 . (22)

As in the case ℓ = 1, by the above relations one can conclude that 𝑓 *𝑢 is a conormal function
with respect to index set ℰ .

B. Proof of Theorem 6

Let 𝜇 ∈ 𝒜ℰ
𝑝ℎ𝑔(𝑋,𝑋

0, 𝑓 *𝐺 ⊗ Ω𝑋). Let us show that 𝑓*𝜇 is well-defined and 𝑓*𝜇 ∈
𝒜ℰ0

𝑝ℎ𝑔 (𝑌, 𝑌 0, 𝐺⊗ Ω𝑌 ).
Let 𝑝0 /∈ 𝑌 0. Let us show that 𝑓*𝜇 is a smooth density at 𝑝0. We choose a local coordinate

system with coordinates 𝑦0 ∈ 𝐷0
2 ⊂ R𝑚 in a neighborhood of 𝑝0 and take an arbitrary point

𝑝 ∈ 𝑋 such that 𝑓(𝑝) = 𝑝0. We suppose that 𝑝 ∈ 𝑋1∩. . .∩𝑋ℓ and 𝑝 /∈ 𝑋ℓ+1∪. . .∪𝑋𝑟. We choose
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an adapted at 𝑝 coordinate system with coordinates (𝑥, 𝑥0) ∈ 𝐷1 ×𝐷2 ⊂ Rℓ ×R𝑛−ℓ. Since 𝑓 is
a relative fibration, in local coordinates map 𝑓 reads as 𝑦0 = 𝑓(𝑥, 𝑥0), where rank

(︀
𝜕𝑓
𝜕𝑥0

)︀
= 𝑚.

Hence, one can choose an adapted at 𝑝 coordinate system such that 𝑓 becomes a projection:

𝑦0 = 𝑓(𝑥, 𝑥0) = (𝑥01, . . . , 𝑥
0
𝑚), 𝑥 ∈ 𝐷1, 𝑥0 ∈ 𝐷2. (23)

By compactness of 𝑋, there exists a finite family of neighborhoods 𝑉𝑝𝑠 , 𝑠 = 1, . . . , 𝑑, such

that 𝑋 = (𝑋 ∖ 𝑓−1(𝑝0))
⋃︀ 𝑑⋃︀

𝑠=1

𝑉𝑝𝑠 . Let 𝜓𝑠 ∈ 𝐶∞(𝑋), 𝑠 = 0, . . . , 𝑑, be a smooth partition of

unity subordinated to this covering: supp𝜓0 ⊂ 𝑋 ∖ 𝑓−1(𝑝0), supp𝜓𝑠 ⊂ 𝑉𝑝𝑠 for 𝑠 = 1, . . . , 𝑑,

𝜓𝑠 > 0,
𝑑∑︀

𝑠=0

𝜓𝑠 = 1. There exists a neighborhood 𝑈𝑝0 of 𝑝0 such that
𝑑∑︀

𝑠=1

𝜓𝑠(𝑚) = 1 for each

𝑚 ∈ 𝑓−1(𝑈𝑝0).
As in the proof of Theorem 5, without loss of generality one can assume that bundle 𝐺 is

trivial and 𝜇 is a density on 𝑋. In coordinate neighborhood 𝑉𝑝𝑠 , density 𝜇 is written as

𝜇 = 𝜇(𝑥, 𝑥0)

⃒⃒⃒⃒
𝑑𝑥

𝑥
𝑑𝑥0
⃒⃒⃒⃒
.

We choose 𝜙 ∈ 𝐶∞
0 (𝑌 ) such that supp𝜙 ⊂ 𝑈𝑝0 . Then 𝑓 *𝜙 ∈ 𝐶∞(𝑋), moreover,

⟨𝑓*𝜇, 𝜙⟩ = ⟨𝜇, 𝑓 *𝜙⟩ =

∫︁
𝑓−1(𝑈𝑝0 )

𝜇(𝑚)𝜙(𝑓(𝑚)).

Using the partition of unity and the local coordinates, we obtain

⟨𝑓*𝜇, 𝜙⟩ =
𝑑∑︁

𝑠=1

∫︁
𝐷1×𝐷2

𝜓𝑠(𝑥, 𝑥
0)𝜇(𝑥, 𝑥0)𝜙(𝑓(𝑥, 𝑥0))

𝑑𝑥

𝑥
𝑑𝑥0. (24)

Taking into consideration formula (23), the latter identity can re-written as

⟨𝑓*𝜇, 𝜙⟩ =

∫︁
𝑈𝑝0

𝐹 (𝑦0)𝜙(𝑦0)𝑑𝑦0, (25)

where 𝐹 is given by

𝐹 (𝑦0) =
𝑑∑︁

𝑠=1

∫︁
Rℓ×R𝑛−ℓ−𝑚

𝜓𝑠(𝑥, 𝑦
0, 𝑥0𝑚+1, . . . , 𝑥

0
𝑛−ℓ)

× 𝜇(𝑥, 𝑦0, 𝑥0𝑚+1, . . . , 𝑥
0
𝑛−ℓ)

𝑑𝑥

𝑥
𝑑𝑥0𝑚+1 . . . 𝑑𝑥

0
𝑛−ℓ.

(26)

Since 𝑝 ∈ 𝑋1∩. . .∩𝑋ℓ, 𝑝 /∈ 𝑋ℓ+1∪. . .∪𝑋𝑟, and 𝑓(𝑝) /∈ 𝑌 0, we have 𝑒𝑓 (𝑋𝑗, 𝑌𝑖) = 0 if 𝑗 = 1, . . . , ℓ,
𝑖 = 1, . . . , 𝑟0. It yields that inf ℰ(𝑋𝑗) > 0 for each 𝑗 = 1, . . . , ℓ. Hence, the estimate

|𝜇(𝑥, 𝑦0, 𝑥0𝑚+1, . . . , 𝑥
0
𝑛−ℓ)| < 𝐶|𝑥1|𝜀1 · . . . · |𝑥ℓ|𝜀ℓ

holds true, where 𝜀1, . . . , 𝜀ℓ are positive numbers. It implies that the integral in the right-hand
side of (26) converges uniformly, and therefore, function 𝐹 is smooth in a neighborhood of 𝑝0.
According to (25), the restriction of density 𝑓*𝜇 to 𝑈𝑝0 is well-defined and coincides with the
smooth density 𝐹 (𝑦0)|𝑑𝑦0|. Therefore, 𝑓*𝜇 is well-defined as a smooth density on 𝑌 ∖ 𝑌 0.

Let 𝑝0 ∈ 𝑌 0 and suppose that 𝑝0 ∈ 𝑌1
⋃︀
. . .
⋃︀
𝑌ℓ0 and 𝑝0 /∈ 𝑌ℓ0+1

⋃︀
. . .
⋃︀
𝑌𝑟0 , ℓ0 ̸= 0. Let us

prove that 𝑓*𝜇 is conormal at 𝑝0.
The case ℓ0 = 1. We choose an adapted at 𝑝0 coordinate system with coordinates (𝑦1, 𝑦

0) ∈
𝐷0

1 ×𝐷0
2 ⊂ R×R𝑚−1 and 𝑝 ∈ 𝑋 such that 𝑓(𝑝) = 𝑝0. We assume that 𝑝 ∈ 𝑋1 ∩ . . . ∩𝑋ℓ and

𝑝 /∈ 𝑋ℓ+1 ∪ . . . ∪𝑋𝑟. We choose an adapted at 𝑝 coordinate system with coordinates (𝑥, 𝑥0) ∈
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𝐷1 × 𝐷2 ⊂ Rℓ × R𝑛−ℓ. In these coordinate systems, map 𝑓 is written as (𝑦1, 𝑦
0) = 𝑓(𝑥, 𝑥0),

where 𝑦1 = 𝑏1(𝑥, 𝑥
0)𝑥𝛾111 . . . 𝑥𝛾1ℓℓ , function 𝑏1 is smooth and non-vanishing; 𝑦0 = 𝑔(𝑥, 𝑥0). Since

𝑓(𝑝) = 𝑝0, at least one of 𝛾11, 𝛾12, . . . , 𝛾1ℓ is positive. To be specific let 𝛾11 > 0. Then, without
loss of generality one can assume that 𝑏1(𝑥, 𝑥0) ≡ 1, because one can make a change of variables
in a neighborhood of zero:̃︀𝑥1 = 𝑏1(𝑥, 𝑥

0)
1

𝛾11 𝑥1; ̃︀𝑥𝑗 = 𝑥𝑗, ∀𝑗 = 2, . . . , ℓ; ̃︀𝑥0 = 𝑥0.

The Jacobian of this change will be denoted by 𝑤(𝑥, 𝑥0). It is easy to see that 𝑤(0, 𝑥0) ̸= 0 for
each 𝑥0 ∈ 𝐷2.

By Condition (4) of Definition 13 we have rank
(︀

𝜕𝑔
𝜕𝑥0

)︀
= 𝑚 − 1. Hence, one can choose an

adapted at 𝑝 coordinate system such that 𝑔 becomes a projection:

𝑦0 = 𝑔(𝑥, 𝑥0) = (𝑥01, . . . , 𝑥
0
𝑚−1), 𝑥 ∈ 𝐷1, 𝑥0 ∈ 𝐷2.

By compactness of 𝑋, there exists a finite family of neighborhoods 𝑉𝑝𝑠 , 𝑠 = 1, . . . , 𝑑, such

that 𝑋 = (𝑋 ∖ 𝑓−1(𝑝0))
⋃︀ 𝑑⋃︀

𝑠=1

𝑉𝑝𝑠 . Let 𝜓𝑠 ∈ 𝐶∞(𝑋), 𝑠 = 0, . . . , 𝑑 be a smooth partition of

unity subordinated to this covering: supp𝜓0 ⊂ 𝑋 ∖ 𝑓−1(𝑝0), supp𝜓𝑠 ⊂ 𝑉𝑝𝑠 for 𝑠 = 1, . . . , 𝑑,

𝜓𝑠 > 0,
𝑑∑︀

𝑠=0

𝜓𝑠 = 1. There exists a neighborhood 𝑈𝑝0 of 𝑝0 such that
𝑑∑︀

𝑠=1

𝜓𝑠(𝑚) = 1 for any

𝑚 ∈ 𝑓−1(𝑈𝑝0).
As above, we will assume that bundle 𝐺 is trivial and 𝜇 is a density on 𝑋. In coordinate

neighborhood 𝑉𝑝𝑠 , density 𝜇 is written as

𝜇 = 𝜇(𝑥, 𝑥0)

⃒⃒⃒⃒
𝑑𝑥

𝑥
𝑑𝑥0
⃒⃒⃒⃒
.

We choose 𝜙 ∈ 𝐶∞
0 (𝑌 ) such that supp𝜙 ⊂ 𝑈𝑝0 . Then 𝑓 *𝜙 ∈ 𝐶∞(𝑋), moreover,

⟨𝑓*𝜇, 𝜙⟩ = ⟨𝜇, 𝑓 *𝜙⟩ =

∫︁
𝑓−1(𝑈𝑝0 )

𝜇(𝑚)𝜙(𝑓(𝑚)).

Employing the partition of unity and the local coordinates, we obtain that

⟨𝑓*𝜇, 𝜙⟩ =
𝑑∑︁

𝑠=1

∫︁
Rℓ×R𝑛−ℓ

𝜓𝑠(𝑥, 𝑥
0)𝜇(𝑥, 𝑥0)𝜙(𝑥𝛾111 . . . 𝑥𝛾1ℓℓ , 𝑥01, . . . , 𝑥

0
𝑚−1)

𝑑𝑥

𝑥
𝑑𝑥0. (27)

Since ℓ0 = 1, by Definition 11 at least one of 𝛾11, 𝛾12, . . . , 𝛾1ℓ is positive. To be specific
let 𝛾11, 𝛾12, . . . , 𝛾1𝑘1 > 0, 𝛾1,𝑘1+1 = . . . = 𝛾1ℓ = 0, where 𝑘1 6 ℓ. Denote 𝜇𝑠(𝑥, 𝑥

0) =
1
𝛾11
𝜓𝑠(𝑥, 𝑥

0)𝜇(𝑥, 𝑥0). Identity (27) casts into the form

⟨𝑓*𝜇, 𝜙⟩ = 𝛾11

𝑑∑︁
𝑠=1

∫︁
Rℓ×R𝑛−ℓ

𝜇𝑠(𝑥, 𝑥
0)𝜙(𝑥𝛾111 𝑥𝛾122 . . . 𝑥

𝛾1𝑘1
𝑘1

, 𝑥01, . . . , 𝑥
0
𝑚−1)

𝑑𝑥

𝑥
𝑑𝑥0.

Making the change of variables

𝑦1 = 𝑥𝛾111 . . . 𝑥
𝛾1𝑘1
𝑘1

, 𝑡𝑗 = 𝑥𝑗 ∀𝑗 = 2, . . . ℓ; 𝑦0 = (𝑥01, . . . , 𝑥
0
𝑚−1)

in the integral, we obtain that

⟨𝑓*𝜇, 𝜙⟩ =
𝑑∑︁

𝑠=1

∫︁
Rℓ×R𝑛−ℓ

𝜇𝑠(𝑦
1

𝛾11
1 𝑡

−𝛾12
𝛾11

2 . . . 𝑡
−

𝛾1𝑘1
𝛾11

𝑘1
, 𝑡2, . . . , 𝑡ℓ, 𝑦

0, 𝑥0𝑚, . . . , 𝑥
0
𝑛−ℓ)

× 𝜙(𝑦1, 𝑦
0)
𝑑𝑦1
𝑦1

𝑑𝑡2
𝑡2
. . .

𝑑𝑡ℓ
𝑡ℓ
𝑑𝑦0𝑑𝑥0𝑚 . . . 𝑑𝑥

0
𝑛−ℓ.
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Hence, for each (𝑦1, 𝑦
0) in some neighborhood of 𝑝0, density 𝑓*𝜇 is given by

𝑓*𝜇 =
𝑑∑︁

𝑠=1

𝜈𝑠(𝑦1, 𝑦
0)

⃒⃒⃒⃒
𝑑𝑦1
𝑦1
𝑑𝑦0
⃒⃒⃒⃒
,

where functions 𝜈𝑠(𝑦1, 𝑦0) read as

𝜈𝑠(𝑦1, 𝑦
0) =

∫︁
Rℓ−1×R𝑛−𝑚−ℓ+1

𝜇𝑠(𝑦
1

𝛾11
1 𝑡

− 𝛾12
𝛾11

2 . . . 𝑡
−

𝛾1𝑘1
𝛾11

𝑘1
, 𝑡2, . . . , 𝑡ℓ, 𝑦

0, 𝑥0𝑚, . . . , 𝑥
0
𝑛−ℓ)

𝑑𝑡2
𝑡2
. . .

𝑑𝑡ℓ
𝑡ℓ
𝑑𝑥0𝑚 . . . 𝑑𝑥

0
𝑛−ℓ,

Since for 𝑗 = 𝑘1 + 1, . . . , ℓ we have inf 𝐸𝑗 > 0, the integral in the last formula converges,
therefore, 𝜈𝑠 is a smooth function for 𝑦1 ̸= 0.

Fix 𝑠. Let us prove that function 𝜈𝑠 is conormal at 𝑦1 = 0 with respect to index set 𝐸0
1 . We

write

𝜈𝑠(𝑦1, 𝑦
0) =

∫︁
Rℓ−𝑘1

𝜇1
𝑠(𝑦1, 𝑡𝑘1+1, . . . , 𝑡ℓ, 𝑦

0)
𝑑𝑡𝑘1+1

𝑡𝑘1+1

. . .
𝑑𝑡ℓ
𝑡ℓ
, (28)

where

𝜇1
𝑠(𝑦1, 𝑡𝑘1+1, . . . , 𝑡ℓ, 𝑦

0)=

∫︁
R𝑘1−1×R𝑛−𝑚−ℓ+1

𝜇𝑠(𝑦
1

𝛾11
1 𝑡

− 𝛾12
𝛾11

2 . . .𝑡
−

𝛾1𝑘1
𝛾11

𝑘1
, 𝑡2, . . . , 𝑡ℓ, 𝑦

0, 𝑥0𝑚, . . . , 𝑥
0
𝑛−ℓ)

𝑑𝑡2
𝑡2
. . .

𝑑𝑡𝑘1
𝑡𝑘1

𝑑𝑥0𝑚 . . . 𝑑𝑥
0
𝑛−ℓ.

(29)

The proof of Theorem 6 for ℓ0 = 1 is completed by means of the following statement.

Proposition 2. If a function 𝜇𝑠(𝑥1, . . . , 𝑥ℓ, 𝑦
0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−ℓ) is compactly supported and

conormal in variables (𝑥1, . . . , 𝑥ℓ) with respect to an index family (𝐸1, . . . , 𝐸ℓ) and
𝛾11, 𝛾12, . . . , 𝛾1𝑘1 > 0, then function 𝜇1

𝑠 given by formula (29) is conormal in variables
(𝑦1, 𝑡𝑘1+1, . . . , 𝑡ℓ) with respect to index family (𝐸0

1 , 𝐸𝑘1+1, . . . , 𝐸ℓ), where

𝐸0
1 =

⋃︁
𝑗=1,...,𝑘1

{︂(︂
𝑧

𝛾1𝑗
, 𝑞

)︂
: (𝑧, 𝑞) ∈ 𝐸𝑗

}︂
.

Once Proposition 2 is proved, by applying Theorem 6 to function 𝜇1
𝑠 in the case ℓ0 = 0 and

taking into consideration that, for 𝑗 = 𝑘1 + 1, . . . , ℓ we have inf 𝐸𝑗 > 0, it follows from (28)
that the function 𝜈𝑠 is conormal at 𝑦1 = 0 that completes the proof of Theorem 6 for ℓ0 = 1.

Proof of Proposition 2. Since for 𝑦1 ̸= 0 the integrand is a smooth compactly supported
function, the integral converges absolutely, and 𝜇1

𝑠 is a smooth function.
Let us prove that function 𝜇1

𝑠 is conormal at 𝑦1 = 0.
The case 𝑘1 = ℓ = 1. In this case, function 𝜇1

𝑠 reads as

𝜇1
𝑠(𝑦1, 𝑦

0) =

∫︁
R𝑛−𝑚

𝜇𝑠(𝑦
1

𝛾11
1 , 𝑦0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−1)𝑑𝑥

0
𝑚 . . . 𝑑𝑥

0
𝑛−1. (30)

Since 𝜇𝑠 is a conormal function at 𝑥1 = 0 with respect to index set 𝐸1, we have:

𝜇𝑠(𝑥1, 𝑥
0) ∼

∑︁
(𝑧,𝑞)∈𝐸1

𝑎𝑧,𝑞(𝑥
0)𝑥𝑧1 ln𝑞 |𝑥1|,
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where 𝑎𝑧,𝑞 are smooth functions. Denote 𝜇𝑠 = 𝜇𝑁 + 𝑟𝑁 , where

𝜇𝑁(𝑥1, 𝑥
0) =

∑︁
(𝑧,𝑞)∈𝐸1
𝑧6𝑁

𝑎𝑧,𝑞(𝑥
0)𝑥𝑧1 ln𝑞 |𝑥1|,

𝑁 is a natural number to be chosen later. By (30), function 𝜇1
𝑠 is represented as 𝜇1

𝑠 = 𝜈𝑁 + 𝑟𝑁 ,
where

𝜈𝑁(𝑦1, 𝑦
0) =

1

𝛾𝑞11

∑︁
(𝑧,𝑞)∈𝐸1
𝑧6𝑁

∫︁
R𝑛−𝑚

𝑎𝑧,𝑞(𝑦
0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−1)𝑦

𝑧
𝛾11
1 ln𝑞 |𝑦1|𝑑𝑥0𝑚 . . . 𝑑𝑥0𝑛−1

and
𝑟𝑁(𝑦1, 𝑦

0) =

∫︁
R𝑛−𝑚

𝑟𝑁(𝑦
1

𝛾11
1 , 𝑦0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−1)𝑑𝑥

0
𝑚 . . . 𝑑𝑥

0
𝑛−1.

We have
𝜈𝑁(𝑦1, 𝑦

0) =
∑︁

(𝑧,𝑞)∈𝐸1
𝑧6𝑁

ℎ𝑧,𝑞(𝑦
0)𝑦

𝑧
𝛾11
1 ln𝑞 |𝑦1|,

where
ℎ𝑧,𝑞(𝑦

0) =
1

𝛾𝑞11

∫︁
R𝑛−𝑚

𝑎𝑧,𝑞(𝑦
0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−1)𝑑𝑥

0
𝑚 . . . 𝑑𝑥

0
𝑛−1.

Since 𝑎𝑧,𝑞 are smooth compactly supported functions, function 𝜈𝑁 is conormal at 𝑦1 = 0 with
respect to the index set 𝐸0

1 = {( 𝑧
𝛾11
, 𝑞) : (𝑧, 𝑞) ∈ 𝐸1}.

By definition, for each 𝛼0 ∈ Z+ and for each multi-index 𝛽0, there exists a constant 𝐶1 such
that ⃒⃒⃒⃒(︂

𝑥1
𝜕

𝜕𝑥1

)︂𝛼0

𝜕𝛽0

𝑥0 𝑟𝑁(𝑥1, 𝑥
0)

⃒⃒⃒⃒
< 𝐶1|𝑥1|𝑁+1.

Therefore, for each 𝛼 ∈ Z+ and for each multi-index 𝛽, there exists a constant 𝐶2 such that⃒⃒⃒⃒(︂
𝑦1

𝜕

𝜕𝑦1

)︂𝛼

𝜕𝛽0

𝑦0 𝑟𝑁(𝑦1, 𝑦
0)

⃒⃒⃒⃒
< 𝐶2|𝑦1|

𝑁+1
𝛾11 .

It implies immediately that

𝜇1
𝑠(𝑦1, 𝑦

0) ∼
∑︁

(𝑧,𝑞)∈𝐸0
1

ℎ𝑧,𝑞(𝑦
0)𝑦𝑧1 ln𝑞 |𝑦1|.

The case 𝑘1 = ℓ = 2. In this case, the function 𝜇1
𝑠 reads as

𝜇1
𝑠(𝑦1, 𝑦

0) =

∫︁
R×R𝑛−𝑚−1

𝜇𝑠(𝑦
1

𝛾11
1 𝑡

−𝛾12
𝛾11 , 𝑡, 𝑦0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−2)

𝑑𝑡

𝑡
𝑑𝑥0𝑚 . . . 𝑑𝑥

0
𝑛−2. (31)

Since function 𝜇𝑠(𝑥1, 𝑥2, 𝑥
0) is conormal at (𝑥1, 𝑥2) = (0, 0) with respect to the index family

(𝐸1, 𝐸2), we have:
𝜇𝑠(𝑥1, 𝑥2, 𝑥

0) ∼
∑︁

(𝑧1,𝑞1)∈𝐸1

𝑎𝑧1,𝑞1(𝑥2, 𝑥
0)𝑥𝑧11 ln𝑞1 |𝑥1|,

where 𝑎𝑧1,𝑞1(𝑥2, 𝑥0) are conormal functions at 𝑥2 = 0 with respect to index set 𝐸2. By definition,
for each natural 𝑁1 the representation

𝜇𝑠(𝑥1, 𝑥2, 𝑥
0) =

∑︁
(𝑧1,𝑞1)∈𝐸1
𝑧16𝑁1

𝑎𝑧1,𝑞1(𝑥2, 𝑥
0)𝑥𝑧11 ln𝑞1 |𝑥1| + 𝑟𝑁1(𝑥1, 𝑥2, 𝑥

0)

is valid.
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Function 𝑎𝑧1,𝑞1(𝑥2, 𝑥0) admits the asymptotic expansion

𝑎𝑧1,𝑞1 ∼
∑︁

(𝑧2,𝑞2)∈𝐸2

𝑏𝑧1,𝑞1,𝑧2,𝑞2(𝑥
0)𝑥𝑧22 ln𝑞2 |𝑥2|,

𝑏𝑧1,𝑞1,𝑧2,𝑞2 are smooth functions. Therefore, for each natural 𝑁2 the representation

𝑎𝑧1,𝑞1(𝑥2, 𝑥
0) = 𝑎𝑧1𝑞1𝑁2(𝑥2, 𝑥

0) + 𝑟𝑧1𝑞1𝑁2(𝑥2, 𝑥
0)

holds true, where
𝑎𝑧1𝑞1𝑁2 =

∑︁
(𝑧2,𝑞2)∈𝐸2
𝑧26𝑁2

𝑏𝑧1,𝑞1,𝑧2,𝑞2(𝑥
0)𝑥𝑧22 ln𝑞2 |𝑥2|.

Thus, we arrive at the representation

𝜇𝑠(𝑥1, 𝑥2, 𝑥
0) = 𝜇𝑁1𝑁2(𝑥1, 𝑥2, 𝑥

0) + 𝑟𝑁1𝑁2(𝑥1, 𝑥2, 𝑥
0),

where

𝜇𝑁1𝑁2(𝑥1, 𝑥2, 𝑥
0) =

∑︁
(𝑧1,𝑞1)∈𝐸1
𝑧16𝑁1

∑︁
(𝑧2,𝑞2)∈𝐸2
𝑧26𝑁2

𝑏𝑧1,𝑞1,𝑧2,𝑞2(𝑥
0)𝑥𝑧22 𝑥

𝑧1
1 ln𝑞2 |𝑥2| ln𝑞1 |𝑥1|,

𝑟𝑁1𝑁2(𝑥1, 𝑥2, 𝑥
0) = 𝑟𝑁1(𝑥1, 𝑥2, 𝑥

0) +
∑︁

(𝑧1,𝑞1)∈𝐸1
𝑧16𝑁1

𝑟𝑧1𝑞1𝑁2(𝑥2, 𝑥
0)𝑥𝑧11 ln𝑞1 |𝑥1|,

𝑁1, 𝑁2 are natural numbers to be chosen later.
By assumption, there exists 𝑀1 such that for each 𝛼1, 𝛼2 ∈ Z+ and for each multi-index 𝛽2,

there exists a constant 𝐶1 such that⃒⃒⃒
(𝑥1𝜕𝑥1)

𝛼1 (𝑥2𝜕𝑥2)
𝛼2 𝜕𝛽2

𝑥0 𝑟𝑁1(𝑥1, 𝑥2, 𝑥
0)
⃒⃒⃒
< 𝐶1|𝑥1|𝑀1 |𝑥2|𝑁2+1.

Moreover, for each 𝛼2 ∈ Z+ and for each multi-index 𝛽2, there exists a constant 𝐶2 such that⃒⃒⃒
(𝑥2𝜕𝑥2)

𝛼2 𝜕𝛽2

𝑥0 𝑟𝑧1𝑞1𝑁2(𝑥2, 𝑥
0)
⃒⃒⃒
< 𝐶2|𝑥2|𝑁2+1.

It implies that there exists 𝑀̃1 such that for each 𝛼1, 𝛼2 ∈ Z+ and for each multi-index 𝛽2,
there exists a constant 𝐶1 such that⃒⃒⃒

(𝑥1𝜕𝑥1)
𝛼1 (𝑥2𝜕𝑥2)

𝛼2 𝜕𝛽2

𝑥0 𝑟𝑁1𝑁2(𝑥1, 𝑥2, 𝑥
0)
⃒⃒⃒
< 𝐶1|𝑥1|𝑀̃1|𝑥2|𝑁2+1. (32)

Taking into consideration the fact that 𝜇𝑠(𝑥1, 𝑥2, 𝑥
0) = 0 for |𝑥1| > 𝜀 or |𝑥2| > 𝜀, by (31) we

get the representation
𝜇1
𝑠(𝑦1, 𝑦

0) = 𝜈𝑁1𝑁2(𝑦1, 𝑦
0) + 𝑟𝑁1𝑁2(𝑦1, 𝑦

0),

where

𝜈𝑁1𝑁2(𝑦1, 𝑦
0) =

∑︁
(𝑧1,𝑞1)∈𝐸1
𝑧16𝑁1

∑︁
(𝑧2,𝑞2)∈𝐸2
𝑧26𝑁2

∫︁
R𝑛−𝑚−1

(︂ 𝜀∫︁
𝑦

1
𝛾12
1 𝜀

− 𝛾11
𝛾12

𝑏𝑧1,𝑞1,𝑧2,𝑞2(𝑦
0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−2)

𝑡
𝑧2− 𝑧1𝛾12

𝛾11 𝑦
𝑧1
𝛾11
1 ln𝑞2 |𝑡|

(︂
𝛾11 ln |𝑦1| −

𝛾12
𝛾11

ln |𝑡|
)︂𝑞1 𝑑𝑡

𝑡

)︂
𝑑𝑥0𝑚 . . . 𝑑𝑥

0
𝑛−2,

𝑟𝑁1𝑁2(𝑦1, 𝑦
0) =

∫︁
R𝑛−𝑚−1

(︂ 𝜀∫︁
𝑦

1
𝛾12
1 𝜀

− 𝛾11
𝛾12

𝑟𝑁1𝑁2(𝑦
1

𝛾11
1 𝑡

−𝛾12
𝛾11 , 𝑡, 𝑦0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−2)

𝑑𝑡

𝑡

)︂
𝑑𝑥0𝑚 . . . 𝑑𝑥

0
𝑛−2
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Calculating explicitly the integral over 𝑡, one can show that function 𝜈𝑁1𝑁2(𝑦1, 𝑦
0) is written as

𝜈𝑁1𝑁2(𝑦1, 𝑦
0) =

∑︁
(𝑧1,𝑞1)∈𝐸1
𝑧16𝑁1

𝑑1𝑧1,𝑞1(𝑦
0)𝑦

𝑧1
𝛾11
1 ln𝑞1 |𝑦1| +

∑︁
(𝑧2,𝑞2)∈𝐸2
𝑧26𝑁2

𝑑2𝑧2,𝑞2(𝑦
0)𝑦

𝑧2
𝛾12
1 ln𝑞2 |𝑦1|

+
∑︁

𝑑3𝑧1,𝑞1,𝑧2,𝑞2(𝑦
0)𝑦

𝑧2
𝛾12
1 ln𝑞1+𝑞2+1 |𝑦1|,

where the third sum is taken over all collections (𝑧1, 𝑞1) ∈ 𝐸1, 𝑧1 6 𝑁1, (𝑧2, 𝑞2) ∈ 𝐸2, 𝑧2 6 𝑁2

such that 𝑧1
𝛾11

= 𝑧2
𝛾12

.
Let us estimate 𝑟𝑁1𝑁2 . Splitting the integral over 𝑡 into a sum of two integrals, we obtain

𝑟𝑁1𝑁2(𝑦1, 𝑦
0) = 𝑟1𝑁1𝑁2

(𝑦1, 𝑦
0) + 𝑟2𝑁1𝑁2

(𝑦1, 𝑦
0),

where

𝑟1𝑁1𝑁2
(𝑦1, 𝑦

0) =

∫︁
R𝑛−𝑚−1

(︂ 𝑦
1

𝛾11+𝛾12
1∫︁

𝑦
1

𝛾12
1 𝜀

− 𝛾11
𝛾12

𝑟𝑁1𝑁2(𝑦
1

𝛾11
1 𝑡

−𝛾12
𝛾11 , 𝑡, 𝑦0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−2)

𝑑𝑡

𝑡

)︂
𝑑𝑥0𝑚 . . . 𝑑𝑥

0
𝑛−2

𝑟2𝑁1𝑁2
(𝑦1, 𝑦

0) =

∫︁
R𝑛−𝑚−1

(︂ 𝜀∫︁
𝑦

1
𝛾11+𝛾12
1

𝑟𝑁1𝑁2(𝑦
1

𝛾11
1 𝑡

−𝛾12
𝛾11 , 𝑡, 𝑦0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−2)

𝑑𝑡

𝑡

)︂
𝑑𝑥0𝑚 . . . 𝑑𝑥

0
𝑛−2.

Using (32), we get

|𝑟1𝑁1𝑁2
(𝑦1, 𝑦

0)| < 𝐶

(︂
|𝑦1|

𝑀̃1+𝑁2+1
𝛾11+𝛾12 + |𝑦1|

𝑁2+1
𝛾12

)︂
.

To estimate 𝑟2𝑁1𝑁2
, we make use of the similar representation

𝑟𝑁1𝑁2(𝑥1, 𝑥2, 𝑥
0) = 𝑟𝑁2(𝑥1, 𝑥2, 𝑥

0) +
∑︁

(𝑧2,𝑞2)∈𝐸2
𝑧26𝑁2

𝑟𝑧2𝑞2𝑁1(𝑥1, 𝑥
0)𝑥𝑧22 ln𝑞2 |𝑥2|,

which implies that there exists 𝑀̃2 such that for each 𝛼1, 𝛼2 ∈ Z+ and for each multi-index 𝛽2
there exists a constant 𝐶1 such that⃒⃒⃒

(𝑥1𝜕𝑥1)
𝛼1 (𝑥2𝜕𝑥2)

𝛼2 𝜕𝛽2

𝑥0 𝑟𝑁1𝑁2(𝑥1, 𝑥2, 𝑥
0)
⃒⃒⃒
6 𝐶1|𝑥1|𝑁1+1|𝑥2|𝑀̃2 . (33)

Employing (33), we get

|𝑟2𝑁1𝑁2
(𝑦1, 𝑦

0)| < 𝐶

(︂
|𝑦1|

𝑀̃2+𝑁1+1
𝛾11+𝛾12 + |𝑦1|

𝑁1+1
𝛾12

)︂
.

Thus, we have

|𝑟𝑁1𝑁2(𝑦1, 𝑦
0)| < 𝐶

(︂
|𝑦1|

𝑀̃1+𝑁2+1
𝛾11+𝛾12 + |𝑦1|

𝑁2+1
𝛾12 + |𝑦1|

𝑀̃2+𝑁1+1
𝛾11+𝛾12 + |𝑦1|

𝑁1+1
𝛾12

)︂
.

It implies easily that function 𝜇1
𝑠(𝑦1, 𝑦

0) is conormal at 𝑦1 = 0 with respect to the index set

𝐸0
1 =

{︂(︂
𝑧

𝛾11
, 𝑞

)︂
: (𝑧, 𝑞) ∈ 𝐸1

}︂⋃︁{︂(︂
𝑧

𝛾12
, 𝑞

)︂
: (𝑧, 𝑞) ∈ 𝐸2

}︂
.

The case 𝑘1 = 2, ℓ > 𝑘. First, we assume that 𝑘1 = 2, ℓ = 3. In this case, function 𝜇1
𝑠 reads

as

𝜇1
𝑠(𝑦1, 𝑡3, 𝑦

0) =

∫︁
R×R𝑛−𝑚−2

𝜇𝑠(𝑦
1

𝛾11
1 𝑡

−𝛾12
𝛾11

2 , 𝑡2, 𝑡3, 𝑦
0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−3)

𝑑𝑡2
𝑡2
𝑑𝑥0𝑚 . . . 𝑑𝑥

0
𝑛−3. (34)
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Since function 𝜇𝑠(𝑥1, 𝑥2, 𝑥3, 𝑥
0) is conormal at (𝑥1, 𝑥2, 𝑥3) = (0, 0, 0) with respect to the index

family (𝐸1, 𝐸2, 𝐸3), we have

𝜇𝑠(𝑥1, 𝑥2, 𝑥3, 𝑥
0) ∼

∑︁
(𝑧3,𝑞3)∈𝐸3

𝑎𝑧3,𝑞3(𝑥1, 𝑥2, 𝑥
0)𝑥𝑧33 ln𝑞3 |𝑥3|,

where 𝑎𝑧3,𝑞3(𝑥1, 𝑥2, 𝑥0) are conormal functions at (𝑥1, 𝑥2) = (0, 0) with respect to the index
family (𝐸1, 𝐸2). By definition, for each natural 𝑁 the representation

𝜇𝑠(𝑥1, 𝑥2, 𝑥3, 𝑥
0) =

∑︁
(𝑧3,𝑞3)∈𝐸3

𝑧36𝑁

𝑎𝑧3,𝑞3(𝑥1, 𝑥2, 𝑥
0)𝑥𝑧33 ln𝑞3 |𝑥3| + 𝑟𝑁(𝑥1, 𝑥2, 𝑥3, 𝑥

0)

holds true. In accordance with (34), 𝜇1
𝑠 is represented as 𝜇1

𝑠 = 𝜈𝑁 + 𝑟𝑁 , where

𝜈𝑁(𝑦1, 𝑡3, 𝑦
0) =

∑︁
(𝑧3,𝑞3)∈𝐸3

𝑧36𝑁

𝑏𝑧3,𝑞3(𝑦1, 𝑦
0)𝑡𝑧33 ln𝑞3 |𝑡3|,

where

𝑏𝑧3,𝑞3(𝑦1, 𝑦
0) =

∫︁
R×R𝑛−𝑚−2

𝑎𝑧3,𝑞3(𝑦
1

𝛾11
1 𝑡

−𝛾12
𝛾11

2 , 𝑡2, 𝑦
0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−3)

𝑑𝑡2
𝑡2
𝑑𝑥0𝑚 . . . 𝑑𝑥

0
𝑛−3.

and

𝑟𝑁(𝑦1, 𝑡3, 𝑦
0) =

∫︁
R×R𝑛−𝑚−2

𝑟𝑁(𝑦
1

𝛾11
1 𝑡

−𝛾12
𝛾11

2 , 𝑡2, 𝑡3, 𝑦
0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−3)

𝑑𝑡2
𝑡2
𝑑𝑥0𝑚 . . . 𝑑𝑥

0
𝑛−3.

By Proposition 2 in the case 𝑘1 = ℓ = 2, functions 𝑏𝑧3,𝑞3(𝑦1, 𝑦0) are conormal at 𝑦1 = 0 with
respect to index set 𝐸0

1 . Therefore, function 𝜈𝑁(𝑦1, 𝑡3, 𝑦
0) is conormal at (𝑦1, 𝑡3) = (0, 0) with

respect to the index set (𝐸0
1 , 𝐸3).

By definition, there exist 𝑀1 and 𝑀2 such that, for each 𝛼1, 𝛼2, 𝛼3 ∈ Z+ and for each multi-
index 𝛽2, there exists a constant 𝐶1 such that⃒⃒⃒

(𝑥1𝜕𝑥1)
𝛼1 (𝑥2𝜕𝑥2)

𝛼2 (𝑥3𝜕𝑥3)
𝛼3 𝜕𝛽2

𝑥0 𝑟𝑁(𝑥1, 𝑥2, 𝑥3, 𝑥
0)
⃒⃒⃒
< 𝐶1|𝑥1|𝑀1 |𝑥2|𝑀2|𝑥3|𝑁+1.

Using these estimates, one can show that there exists a constant 𝑀 such that for each 𝛼1, 𝛼2 ∈
Z+ and for each multi-index 𝛽, there exists a constant 𝐶1 such that⃒⃒⃒

(𝑦1𝜕𝑦1)
𝛼1 (𝑡3𝜕𝑡3)

𝛼2 𝜕𝛽𝑦0𝑟𝑁(𝑦1, 𝑡3, 𝑦
0)
⃒⃒⃒
< 𝐶1|𝑦1|𝑀 |𝑡3|𝑁+1.

It completes the proof of Proposition 2 in the case 𝑘1 = 2, ℓ = 3.
The case 𝑘1 = 2 and arbitrary ℓ > 𝑘 is proved in the same way by induction in ℓ.
The proof of Proposition 2 for arbitrary 𝑘1 and ℓ > 𝑘1 is completed by induction in 𝑘1.
Suppose that Proposition 2 is valid for each 𝑘1 < 𝑘, for each ℓ > 𝑘1, and for each function

𝜇𝑠. Let us prove Proposition 2 for 𝑘1 = 𝑘, for each ℓ > 𝑘1, and for each function 𝜇𝑠.
To begin with, we consider the case 𝑘1 = ℓ = 𝑘. In this case, we represent function 𝜇1

𝑠 given
by (29) as follows:

𝜇1
𝑠(𝑦1, 𝑦

0) =

∫︁
R

̃︀𝜇(𝑦1𝑡
−𝛾1𝑘
𝑘 , 𝑡𝑘, 𝑦

0)
𝑑𝑡𝑘
𝑡𝑘
,

where

̃︀𝜇(𝑧1, 𝑡𝑘, 𝑦
0) =

∫︁
R𝑘−2×R𝑛−𝑚−𝑘+1

𝜇𝑠(𝑧
1

𝛾11
1 𝑡

− 𝛾12
𝛾11

2 . . . 𝑡
−

𝛾1,𝑘−1
𝛾11

𝑘−1 ,𝑡2, . . . , 𝑡𝑘, 𝑦
0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−𝑘)

𝑑𝑡2
𝑡2
. . .

𝑑𝑡𝑘−1

𝑡𝑘−1

𝑑𝑥0𝑚 . . . 𝑑𝑥
0
𝑛−𝑘.
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Proposition 2 in the case 𝑘1 = 𝑘 − 1, ℓ = 𝑘 implies that function ̃︀𝜇(𝑧1, 𝑡𝑘) is conormal in
(𝑧1, 𝑡𝑘) with respect to the index family ( ̃︀𝐸0

1 , 𝐸𝑘), where

̃︀𝐸0
1 =

⋃︁
𝑗=1,...,𝑘−1

{︂(︂
𝑧

𝛾1𝑗
, 𝑞

)︂
: (𝑧, 𝑞) ∈ 𝐸𝑗

}︂
.

Applying Proposition 2 in the case 𝑘1 = ℓ = 2, we obtain that function 𝜈𝑠(𝑦1, 𝑦0) is conormal
in 𝑦1 with respect to the index set

̃︀𝐸0
1

⋃︁{︂(︂
𝑧

𝛾1𝑘
, 𝑞

)︂
: (𝑧, 𝑞) ∈ 𝐸𝑘

}︂
= 𝐸0

1 .

The case 𝑘1 = 𝑘 and arbitrary ℓ > 𝑘1 is proved as above by induction in ℓ. The proof of
Proposition 2 is completed.

Proof of Theorem 6 in the case ℓ0 = 2. We choose an adapted at 𝑝0 coordinate system
with coordinates (𝑦1, 𝑦2, 𝑦

0) ∈ 𝐷0
1×𝐷0

2 ⊂ R2×R𝑚−2 and 𝑝 ∈ 𝑋 such that 𝑓(𝑝) = 𝑝0. We suppose
that 𝑝 ∈ 𝑋1 ∩ . . . ∩𝑋ℓ and 𝑝 /∈ 𝑋ℓ+1 ∪ . . . ∪𝑋𝑟. We choose an adapted at 𝑝 coordinate system
with coordinates (𝑥, 𝑥0) ∈ 𝐷1 ×𝐷2 ⊂ Rℓ ×R𝑛−ℓ. By assumption, without loss of generality we
can assume that in these coordinate systems map 𝑓 is written as (𝑦1, 𝑦2, 𝑦

0) = 𝑓(𝑥, 𝑥0), where
𝑦1 = 𝑏1(𝑥, 𝑥

0)𝑥𝛾111 . . . 𝑥
𝛾1𝑘1
𝑘1

, 𝑦2 = 𝑏2(𝑥, 𝑥
0)𝑥

𝛾2,𝑘1+1

𝑘1+1 . . . 𝑥
𝛾2𝑘2
𝑘2

; functions 𝑏1 and 𝑏2 are smooth and
non-vanishing; 𝛾11, . . . , 𝛾1𝑘1 , 𝛾2,𝑘1+1, . . . , 𝛾2,𝑘2 > 0, 𝑘1 < 𝑘2 6 ℓ; 𝑦0 = 𝑔(𝑥, 𝑥0). As in the case
ℓ0 = 1, without loss of generality we can assume that 𝑏1(𝑥, 𝑥0) ≡ 𝑏2(𝑥, 𝑥

0) ≡ 1.
By Condition (4) of Definition 13, we have rank ( 𝜕𝑔

𝜕𝑥0 ) = 𝑚 − 2. Hence, one can choose an
adapted at 𝑝0 coordinate system such that map 𝑔 becomes a projection:

𝑔(𝑥, 𝑥0) = (𝑥01, . . . , 𝑥
0
𝑚−2), 𝑥 ∈ 𝐷1, 𝑥0 ∈ 𝐷2.

By compactness of 𝑋, there exists a finite family of neighborhoods 𝑉𝑝𝑠 , 𝑠 = 1, . . . , 𝑑, such

that 𝑋 = (𝑋 ∖ 𝑓−1(𝑝0))
⋃︀ 𝑑⋃︀

𝑠=1

𝑉𝑝𝑠 . Let 𝜓𝑠 ∈ 𝐶∞(𝑋), 𝑠 = 0, . . . , 𝑑 be a smooth partition of

unity subordinated to this covering: supp𝜓0 ⊂ 𝑋 ∖ 𝑓−1(𝑝0), supp𝜓𝑠 ⊂ 𝑉𝑝𝑠 for 𝑠 = 1, . . . , 𝑑,

𝜓𝑠 > 0,
𝑑∑︀

𝑠=0

𝜓𝑠 = 1. There exists a neighborhood 𝑈𝑝0 of 𝑝0 such that
𝑑∑︀

𝑠=1

𝜓𝑠(𝑚) = 1 for each

𝑚 ∈ 𝑓−1(𝑈𝑝0).
As above, we assume that bundle 𝐺 is trivial and 𝜇 is a density on 𝑋. In coordinate

neighborhood 𝑉𝑝𝑠 , density 𝜇 is written as

𝜇 = 𝜇(𝑥, 𝑥0)

⃒⃒⃒⃒
𝑑𝑥

𝑥
𝑑𝑥0
⃒⃒⃒⃒
.

We choose 𝜙 ∈ 𝐶∞
0 (𝑌 ) such that supp𝜙 ⊂ 𝑈𝑝0 . Denoting

𝜇𝑠(𝑥, 𝑥
0) =

1

𝛾11𝛾2,𝑘1+1

𝜓𝑠(𝑥, 𝑥
0)𝜇(𝑥, 𝑥0),

we get

⟨𝑓*𝜇, 𝜙⟩ = 𝛾11𝛾2,𝑘1+1

𝑑∑︁
𝑠=1

∫︁
Rℓ×R𝑛−ℓ

𝜇𝑠(𝑥, 𝑥
0)

× 𝜙(𝑥𝛾111 . . . 𝑥
𝛾1𝑘1
𝑘1

, 𝑥
𝛾2,𝑘1+1

𝑘1+1 . . . 𝑥
𝛾2,𝑘2
ℓ , 𝑥01, . . . , 𝑥

0
𝑚−2)

𝑑𝑥

𝑥
𝑑𝑥0.

Making the change of variables

𝑦1 = 𝑥𝛾111 . . . 𝑥
𝛾1𝑘1
𝑘1

; 𝑦2 = 𝑥
𝛾2,𝑘1+1

𝑘1+1 . . . 𝑥
𝛾2𝑘2
𝑘2

; 𝑦0 = (𝑥01, . . . , 𝑥
0
𝑚−2); (35)

𝑡𝑗 = 𝑥𝑗 ∀𝑗 = 2, . . . , 𝑘1, 𝑘1 + 2, . . . , ℓ; (36)
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in the integral, we obtain

⟨𝑓*𝜇, 𝜙⟩ =
𝑑∑︁

𝑠=1

∫︁
Rℓ×R𝑛−ℓ

𝜇𝑠(𝑦
1

𝛾11
1 𝑡

−𝛾12
𝛾11

2 . . . 𝑡
−

𝛾1𝑘1
𝛾11

𝑘1
, 𝑡2, . . . , 𝑡𝑘1 ,

𝑦
1

𝛾2,𝑘1+1

2 𝑡
−

𝛾2,𝑘1+2
𝛾2,𝑘1+1

𝑘1+2 . . . 𝑡
−

𝛾2𝑘2
𝛾2,𝑘1+1

𝑘2
, 𝑡𝑘1+2, . . . , 𝑡ℓ, 𝑦

0, 𝑥0𝑚, . . . , 𝑥
0
𝑛−ℓ)𝜙(𝑦1, 𝑦2, 𝑦

0)

𝑑𝑦1
𝑦1

𝑑𝑦2
𝑦2

𝑑𝑡2
𝑡2
. . .

𝑑𝑡𝑘1
𝑡𝑘1

𝑑𝑡𝑘1+2

𝑡𝑘1+2

. . .
𝑑𝑡ℓ
𝑡ℓ
𝑑𝑦0𝑑𝑥0𝑚 . . . 𝑑𝑥

0
𝑛−ℓ.

Hence, for each (𝑦1, 𝑦2, 𝑦
0), density 𝑓*𝜇 is given by

𝑓*𝜇 =
𝑑∑︁

𝑠=1

𝜈𝑠(𝑦1, 𝑦2, 𝑦
0)

⃒⃒⃒⃒
𝑑𝑦1
𝑦1

𝑑𝑦2
𝑦2
𝑑𝑦0
⃒⃒⃒⃒
,

where functions 𝜈𝑠(𝑦1, 𝑦2, 𝑦0) read as

𝜈𝑠(𝑦1, 𝑦2, 𝑦
0) =

∫︁
Rℓ−2×R𝑛−𝑚−ℓ+1

𝜇𝑠(𝑦
1

𝛾11
1 𝑡

−𝛾12
𝛾11

2 . . . 𝑡
−

𝛾1𝑘1
𝛾11

𝑘1
, 𝑡2, . . . , 𝑡𝑘1 ,

𝑦
1

𝛾2,𝑘1+1

2 𝑡
−

𝛾2,𝑘1+2
𝛾2,𝑘1+1

𝑘1+2 . . . 𝑡
−

𝛾2𝑘2
𝛾2,𝑘1+1

𝑘2
, 𝑡𝑘1+2, . . . , 𝑡ℓ, 𝑦

0, 𝑥0𝑚, . . . , 𝑥
0
𝑛−ℓ)

𝑑𝑡2
𝑡2
. . .

𝑑𝑡𝑘1
𝑡𝑘1

𝑑𝑡𝑘1+2

𝑡𝑘1+2

. . .
𝑑𝑡ℓ
𝑡ℓ
𝑑𝑥0𝑚 . . . 𝑑𝑥

0
𝑛−ℓ.

Since for 𝑗 = 𝑘2 + 1, . . . , ℓ we have inf 𝐸𝑗 > 0, the integral in the last formula converges,
therefore, 𝜈𝑠(𝑦1, 𝑦2, 𝑦0) is a smooth function for 𝑦1𝑦2 ̸= 0.

Let us prove that function 𝜈𝑠(𝑦1, 𝑦2, 𝑦0) is conormal at (0, 0) with respect to the index family
(𝐸0

1 , 𝐸
0
2). We write the function 𝜈𝑠(𝑦1, 𝑦2, 𝑦0) as

𝜈𝑠(𝑦1, 𝑦2, 𝑦
0) =

∫︁
Rℓ−𝑘2

𝜒1(𝑦1, 𝑦2, 𝑡𝑘2+1, . . . , 𝑡ℓ, 𝑦
0)
𝑑𝑡𝑘2+1

𝑡𝑘2+1

. . .
𝑑𝑡ℓ
𝑡ℓ
,

where

𝜒1(𝑦1, 𝑦2, 𝑡𝑘2+1, . . . , 𝑡ℓ, 𝑦
0)

=

∫︁
R𝑘2−𝑘1−1

𝜒

(︃
𝑦1, 𝑦

1
𝛾2,𝑘1+1

2 𝑡
−

𝛾2,𝑘1+2
𝛾2,𝑘1+1

𝑘1+2 . . . 𝑡
− 𝛾2ℓ

𝛾2,𝑘1+1

ℓ , 𝑡𝑘1+2, . . . , 𝑡ℓ, 𝑦
0

)︃
𝑑𝑡𝑘1+2

𝑡𝑘1+2

. . .
𝑑𝑡𝑘2
𝑡𝑘2

,

and

𝜒(𝑦1, 𝜏𝑘1+1, . . . , 𝜏ℓ, 𝑦
0) =

∫︁
R𝑘1−1×R𝑛−𝑚−ℓ+1

𝜇𝑠(𝑦
1

𝛾11
1 𝑡

−𝛾12
𝛾11

2 . . . 𝑡
−

𝛾1𝑘1
𝛾11

𝑘1
, 𝑡2, . . . , 𝑡𝑘1 ,

𝜏𝑘1+1, . . . , 𝜏ℓ, 𝑦
0, 𝑥0𝑚, . . . , 𝑥

0
𝑛−ℓ)

𝑑𝑡2
𝑡2
. . .

𝑑𝑡𝑘1
𝑡𝑘1

𝑑𝑥0𝑚 . . . 𝑑𝑥
0
𝑛−ℓ.

It follows from Proposition 2 that 𝜒(𝑦1, 𝜏𝑘1+1, 𝜏𝑘1+2, . . . , 𝜏ℓ, 𝑦
0) is conormal in the

variables (𝑦1, 𝜏𝑘1+1, . . . , 𝜏ℓ) with respect to the index family (𝐸0
1 , 𝐸𝑘1+1, . . . , 𝐸ℓ), and

𝜒1(𝑦1, 𝑦2, 𝑡𝑘2+1, . . . , 𝑡ℓ, 𝑦
0) is conormal in the variables (𝑦1, 𝑦2, 𝑡𝑘2+1, . . . , 𝑡ℓ) with respect to the

index family (𝐸0
1 , 𝐸

0
2 , 𝐸𝑘2+1, . . . , 𝐸ℓ). The conormality of function 𝜈𝑠(𝑦1, 𝑦2, 𝑦

0) at (𝑦1, 𝑦2) =
(0, 0) with respect to the index family (𝐸0

1 , 𝐸
0
2) follows from Theorem 6 in the case ℓ0 = 0 in

view of the condition inf 𝐸𝑗 > 0, ∀𝑗 = 𝑘2 + 1, . . . , ℓ. Thus, the case ℓ0 = 2 is proved.
The proof of Theorem 6 in the case of arbitrary ℓ0 > 2 is given in the same way by induction

in ℓ0.
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