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HELLY’S THEOREM AND SHIFTS OF SETS. I

B.N. KHABIBULLIN

Abstract. The motivation for the considered geometric problems is the study of con-
ditions under which an exponential system is incomplete in spaces of the functions holo-
morphic in a compact set 𝐶 and continuous on this compact set. The exponents of this
exponential system are zeroes for a sum (finite or infinite) of families of entire functions
of exponential type. As 𝐶 is a convex compact set, this problem happens to be closely
connected to Helly’s theorem on the intersection of convex sets in the following treatment.
Let 𝐶 and 𝑆 be two sets in a finite-dimensional Euclidean space being respectively inter-
sections and unions of some subsets. We give criteria for some parallel translation (shift)
of set 𝐶 to cover (respectively, to contain or to intersect) set 𝑆. These and similar criteria
are formulated in terms of geometric, algebraic, and set-theoretic differences of subsets
generating 𝐶 and 𝑆.

Keywords: Helly’s theorem, incompleteness of exponential systems, convexity, shift, geo-
metric, algebraic, and set-theoretic differences
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1. Introduction

1.1. The origination of our study is the following problem, which for the sake of brevity we
discuss here only in a simplified one-dimensional complex version. The detailed exposition
incluging multi-dimensional situation is provided in the concluding section of the second part
of the work.

We consider an at most countable sequence of points Λ = {𝜆𝑘}𝑘>1 on the complex plane C
with no accumulation points; in this sequence there can be repetitive points. To sequence Λ
we associate a system of (multiple) exponents

ExpΛ := {𝑧𝑝𝑒𝜆𝑘𝑧 : 𝑧 ∈ C, 0 6 𝑝 6 𝑛Λ(𝜆𝑘) − 1},
where 𝑛Λ(𝜆) is the number of repetition of point 𝜆 ∈ C in sequence Λ. By Zero𝐿 we denote a
sequence of zeroes taken counting multiplicity for a non-zero entire function 𝐿 of exponential
type. At that, Λ 6 Zero𝐿 means 𝑛Λ(𝜆) 6 𝑛Zero𝐿(𝜆) for each 𝜆 ∈ C. A growth indicator

ℎ(𝜃, 𝐿) := lim sup
𝑡>0,𝑡→+∞

log |𝐿(𝑡𝑒𝑖𝜃)|
𝑡

, 𝜃 ∈ R, (1)

is a continuous 2𝜋-periodic trigonometrically convex function [1]–[3] being the support function
for a convex compact set (indicator diagram) or being the support function ℎ𝑆(𝜃) ≡ ℎ(−𝜃, 𝐿) for
the adjoint diagram 𝑆 of function 𝐿. Let 𝐶 be a compact set in C and we are given a sequence
of non-zero entire functions {𝐿𝑘} of exponential type with adjoint diagrams 𝑆𝑘, 𝑘 = 1, 2, . . . ;
the sum

∑︀
𝑘 𝐿𝑘 is assumed to be an entire function 𝐿 of exponential type. If there exists a shift

of compact set 𝐶 covering all the sets in the family S = {𝑆1, 𝑆2, . . . } and 𝐿 is non-zero, then for
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each sequence Λ 6 Zero𝐿, system ExpΛ is incomplete in space Hol(Ω) of functions holomorphic
in domain Ω for each domain Ω ⊃ 𝐶 with the natural topology of uniform convergence on
compact sets. The question appears: under which conditions does the shift of compact set 𝐶
cover the union of adjoint diagrams

⋃︀
𝑘 𝑆𝑘? This problem happened to be solvable in various

ways by means of Helly’s theorem provided compact set 𝐶 is convex. Having a perspective
of further applications, we consider the cases when compact set 𝐶 is given as the intersection
of convex compact sets. The answers are given in terms of geometric differences of sets or in
terms of support functions. For the purpose of forthcoming applications, in particular, for the
theory of entire functions of completely regular growth, which we do not touch in the present
work, as well as for the completeness of the exposition, we consider also the situations, when
instead of geometric differences one employs algebraic or set-theoretical differences of sets.

The work is split into two parts that is natural since the first part has a pure geometric nature,
while the second part is more algebraic and first of all, is of theoretic-functional character. The
results of the work were partially announced on conferences [4]–[7].

1.2. Hereinafter N and R are the sets of natural and real numbers and for 𝑛 ∈ N, R𝑛 stands
for 𝑛-dimensional (vector or affine) Euclidean space with the usual scalar product ⟨·, ·⟩. The
elements of this space are either vectors or points. The symbol 0 indicates both zero and zero
vector, as well as the origin.

In what follows, not indicating often the precise source, we employ the conventional termi-
nology, notations and well-known facts [8]–[13]. For instance, A × B := {(𝛼, 𝛽) : 𝛼 ∈ A, 𝛽 ∈ B}
is the Cartesian product of spaces A, B. For a set 𝑆 of arbitrary nature, card𝑆 stands for
its cardinality 𝑆, i.e., for a finite set 𝑆 it is its number of elements. For 𝑆 ⊂ R𝑛, by int𝑆
and co𝑆 we denote its interior and convex hull. For 𝑥 ∈ R𝑛 we let |𝑥| :=

√︀
⟨𝑥, 𝑥⟩, 𝑥 ∈ R𝑛,

𝐵(𝑥, 𝑟) :=
{︀
𝑦 ∈ R𝑛 : |𝑦 − 𝑥| < 𝑟

}︀
is the open ball of radius 𝑟 > 0 centered at 𝑥.

Convention. Once the matter is to choose a family of elements in a set or a subfamily of
sets, it is convenient to assume that there can be repetitive elements or sets in this (sub)family.

In the first part of the work we perform studies motivated by the classical Helly’s theorem
on convex sets established in the beginning of twentieth century. In one of the simplest forms,
this theorem can be recalled as follows [8, Introduction]: Let a family S of convex sets in R𝑛

is finite or each set in this family is closed and bounded. If the intersection of each 𝑛 + 1 sets
in S is non-empty, then the total intersection of all sets in S is non-empty as well (in more
details Helly’s theorem on convex sets is formulated later in the beginning of Section 2). Some
impression (very far from complete) on immense amount of publication on Helly’s theorem can
be got from the bibliography of the paper. If a discussion of a result or a work is given in
surveys or monographs, we cite the latter. Here we develop one of key corollaries of Helly’s
theorem in various directions. Let us formulate it as a theorem.

We shall call the result of a parallel translation of a set 𝑆 ⊂ R𝑛 a shift of set 𝑆. The
following important corollary of Helly’s theorem was proven independently in various generality
by P. Vincensini (1939) and V. Klee (1953), while relative issues were considered by M. Edelstein
(1958).

VKE theorem (Vincensini–Klee–Edelstein [8, 2.1]). Assume that a family S of convex sets
is finite or contains only compact sets, and 𝐶 ⊂ R𝑛 is convex, and, in addition, is bounded and
closed if S is infinite. Then the existence of a shift of set 𝐶 covering (similarly, intersecting
or containing in) each set in S is ensured by the existence of such shift for each 𝑛 + 1 sets in
family S.

2. Helly’s theorems on convex sets

We shall need a series of modifications of classical Helly’s theorem [8]–[13].
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Definition 1. A non-zero vector 𝑦 ∈ R𝑛 is called star-shapedness direction1 for a set 𝐶 ⊂
R𝑛 (w.r.t. the infinity), or is called a recession direction if for each point 𝑐 ∈ 𝐶 the ray

𝑟𝑦(𝑐) := {𝑐 + 𝑡𝑦 : 𝑡 > 0} (2)

is contained in 𝐶. Vector 𝑦 ∈ R𝑛 is called linearity direction, if both 𝑦 and the opposite vector
−𝑦 are star-shapedness directions for set 𝐶, i.e., for each point 𝑐 ∈ 𝐶 the straight line

𝑙𝑦(𝑐) := {𝑐 + 𝑡𝑦 : 𝑡 ∈ R} = 𝑟𝑦(𝑐) ∪
(︀
𝑟−𝑦(𝑐)

)︀
= 𝑙−𝑦(𝑐)

is contained in 𝐶. Set 𝐶 is polyhedral, if 𝐶 is the intersection of a finite number of closed
half-spaces defined by a finite system of linear inequalities

⟨𝑎, 𝑥⟩ − 𝑏 6 0 for some 𝑎 ∈ R𝑛, 𝑏 ∈ R. (3)

It is clear that for the empty subset in R𝑛 and for whole R𝑛 each non-zero vector is the
star-shapedness and linearity direction. Moreover, ∅ ⊂ R𝑛 and R𝑛 are also polyhedral, since
∅ can be considered as a set of solutions to any finite inconsistent system of linear inequalities
(3), and R𝑛 = {𝑥 ∈ R𝑛 : ⟨0, 𝑥⟩ 6 0}.

Helly’s theorem (on convex sets). Suppose that a family

C := {𝐶𝛼 : 𝛼 ∈ A}, A is a set of indices, (4)

of convex sets 𝐶𝛼 in R𝑛 satisfies one of the conditions

(f) set of indices A is finite (finiteness condition [8, Introduction]);
(d) all the sets 𝐶𝛼, 𝛼 ∈ A, are closed (closedness condition) and for some finite subset A0 ⊂ A

all the sets 𝐶𝛼 are polyhedral as 𝛼 ∈ A0, and each star-shapedness direction common for
all sets 𝐶𝛼, 𝛼 ∈ A, is a linearity direction of sets 𝐶𝛼 for each 𝛼 ∈ A ∖ A0 (condition for
star-shapedness direction [9, Thm. 21.5], [14]).

If the intersection of each subfamily of 𝑛+ 1 sets (cf. Convention) in family C is non-empty,
then the intersection of all its sets is non-empty.

Remark 1. Helly’s theorem on convex sets holds true also under a simpler assumption which
is more restrictive in comparison with condition (d):

(b) all sets 𝐶𝛼, 𝛼 ∈ A, are closed (closedness condition) and for some subset A′ ⊂ A the
intersection

⋂︀
𝛼∈A′ 𝐶𝛼 is non-empty and bounded (boundedness condition [15, Thm. 5],

[16, 1.1]).

It is a particular case of condition (d) since under (b) we can choose A0 = ∅, and there is
no common star-shapedness directions for all sets 𝐶𝛼, 𝛼 ∈ A, just by boundedness condition.
Because of this, Helly’s theorem on convex sets with condition (b) is not involved in the main
formulation of Helly’s theorem.

3. Differences of sets and auxiliary results on geometric difference

Definition 2. Let 𝑆, 𝐶 be arbitrary sets in R𝑛.
Theoretic-set difference or difference of these sets is denoted in the most usual form 𝐶 ∖𝑆 :=

{𝑥 ∈ R𝑛 : 𝑥 ∈ 𝐶, 𝑥 /∈ 𝑆}.
For 𝜆 ∈ R, by 𝜆𝑆 := {𝜆𝑠 : 𝑠 ∈ 𝑆} we denote the multiplication of 𝑆 by number 𝜆. At that we

suppose −𝑆 := (−1)𝑆.

1One can also say that each point in 𝐶 is “seen from infinity in the direction of −𝑦” (cf. with the notion of
a set star-shaped w.r.t. a point in this set [10, Def. 7.1]). In other words, one says that 𝐶 goes to ∞ in the
direction of 𝑦 [9, Ch. II, Sect. 8].



98 B.N. KHABIBULLIN

Geometric sum or Minkowski sum of sets 𝑆 and 𝐶 coincides with its algebraic or vector sum
and is defined as1

𝑆 + 𝐶 := {𝑠 + 𝑐 : 𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶} ⊂ R𝑛. (5)

In particular, for 𝑥 ∈ R𝑛 by 𝑆+𝑥 := 𝑆+{𝑥} =: 𝑥+𝑆 we define the shift, or parallel translation,
of set 𝑆 by vector 𝑥.
Geometric difference, or quite often Minkowski difference [10, Def. 8.5], of these sets is

defined as

𝐶 −* 𝑆 := {𝑥 ∈ R𝑛 : 𝑆 + 𝑥 ⊂ 𝐶} ⊂ R𝑛, (6)

where we employ a widely used notation2 of L.S. Pontryagin [17], [18, Sect 2.C, Geometric
difference], [13], [19]. In particular, for 𝑥 ∈ R𝑛, by 𝐶−𝑥 := 𝐶−* {𝑥} = 𝐶 + (−𝑥) we introduced
the shift of 𝐶 by −𝑥. Then 𝐶 −* 𝑆 =

⋂︀
𝑠∈𝑆(𝐶 − 𝑠).

Algebraic or vector difference of these sets called often in contradiction with (6) Minkowski
difference3 is defined as

𝐶 − 𝑆 := 𝐶 + (−1)𝑆 = {𝑐− 𝑠 : 𝑐 ∈ 𝐶, 𝑠 ∈ 𝑆} = 𝐶 + (−𝑆). (7)

We note that as 𝐶 ̸= ∅ and card𝑆 > 1, generally speaking, 𝐶 −* 𝑆 ⊂ 𝐶 − 𝑆 ̸= 𝐶 −* 𝑆 (see
[10, Ch. I, Sect. 8, Def. 8.5, Warning], [13, Prop. 1.1.1, Rem. 1.1.1]).

In the proof of main theorem 1 we shall make use of the following elementary lemma being
of independent interest.

Lemma 3.1 (on inheritance of “minuend” properties by geometric difference). For a pair
of arbitrary sets 𝑆,𝐶 ⊂ R𝑛, if

[cl] set 𝐶 is closed, then the geometric difference 𝐶 −* 𝑆 is closed;
[bd] 𝐶 is bounded and 𝑆 ̸= ∅, then the geometric difference 𝐶 −* 𝑆 is bounded;
[co] set 𝐶 is convex, then geometric difference 𝐶 −* 𝑆 is convex;
[ds] 𝑦 is a star-shapedness direction for 𝐶, then 𝑦 is a star-shapedness direction for 𝐶 −* 𝑆;
[dl] 𝑦 is a linearity direction for 𝐶, then 𝑦 is a linearity direction for 𝐶 −* 𝑆;

[ph] 𝐶 is polyhedral, then the geometric difference 𝐶 −* 𝑆 is polyhedral.

Part of the results (but not all of them) of this Lemma under the special assumption that
set 𝐶 is convex can be proven by the simple identity for geometric differences 𝐶−* 𝑆 = 𝐶−* co𝑆
but we prefer direct proofs for all the cases.

Proof. [cl] It was proven in [19, Thm. 12.3], but we provide a slightly different proof in more
details. If 𝐶 = ∅, then 𝐶−*𝑆 = ∅ as 𝑆 ̸= ∅ and 𝐶−*𝑆 = R𝑛 as also 𝑆 = ∅, i.e., 𝐶−*𝑆 is closed
anyway. If 𝐶 ̸= ∅, and 𝑥𝑘 ∈ 𝐶 −* 𝑆, 𝑥𝑘 ∈ R𝑛, 𝑘 ∈ N, and there exists the limit lim𝑘→∞ 𝑥𝑘 = 𝑥,
for each 𝑠 ∈ 𝑆 we have 𝑠+ 𝑥𝑘 ∈ 𝐶 and 𝑠+ 𝑥 = lim𝑘→∞(𝑠+ 𝑥𝑘) ∈ 𝐶 by the closedness of set 𝐶.
It yields 𝑆 + 𝑥 ⊂ 𝐶, i.e., 𝑥 = lim𝑘→∞ 𝑥𝑘 ∈ 𝐶 −* 𝑆.

[bd] If 𝐶 = ∅, then for 𝑆 ̸= ∅ set 𝐶 −* 𝑆 = ∅ is bounded. Suppose that 𝐶 ̸= ∅. Then
𝐶 ⊂ 𝐵(0, 𝑟) for some 𝑟 > 0. We fix an element 𝑠 ∈ 𝑆. If 𝑥 ∈ 𝐶 −* 𝑆, then 𝑠 + 𝑥 ∈ 𝐵(0, 𝑟) and
𝑥 ∈ 𝐵

(︀
0, 𝑟 + |𝑠|

)︀
. It implies that 𝐶 −* 𝑆 ⊂ 𝐵

(︀
0, 𝑟 + |𝑠|

)︀
is bounded since 𝑟 and 𝑠 are fixed.

[co] It was proven in [19, Thm. 12.4], but we prove slightly more (see (9) below). If 𝑥1, 𝑥2 ∈
𝐶−*𝑆, then 𝑆+𝑥1 ⊂ 𝐶 and 𝑆+𝑥2 ⊂ 𝐶, and for each numbers 𝜆1, 𝜆2 ∈ R we have 𝜆1𝑆+𝜆1𝑥1 ⊂
𝜆1𝐶 and 𝜆2𝑆 + 𝜆2𝑥2 ⊂ 𝜆2𝐶. By the inclusion (𝜆1 + 𝜆2)𝑆 ⊂ 𝜆1𝑆 + 𝜆2𝑆 and the identity

1Some authors employ the symbol ⊕ for Minkowski sum.
2There are other widespread notations for geometric difference of sets. For instance, in [10, Def. 8.5] the

usual minus symbol − is used, the symbols ÷ in [20, S 1], [21], [22] or −⋆ in [23, Def. 1] are employed. etc.
3Sometimes the symbol ⊖ is employed to indicate the algebraic difference.
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𝜆1𝐶 + 𝜆2𝐶 = (𝜆1 + 𝜆2)𝐶 as 𝜆1 · 𝜆2 > 0 for convex 𝐶 [10, Thm. 8.2] we obtain

(𝜆1 + 𝜆2)𝑆 + (𝜆1𝑥1 + 𝜆2𝑥2) ⊂𝜆1𝑆 + 𝜆2𝑆 + 𝜆1𝑥1 + 𝜆2𝑥2 = (𝜆1𝑆 + 𝜆1𝑥1) + (𝜆2𝑆 + 𝜆2𝑥2)

⊂𝜆1𝐶 + 𝜆2𝐶 = (𝜆1 + 𝜆2)𝐶 under the condition 𝜆1 · 𝜆2 > 0.
(8)

Thus, we have proven the statement: for 𝑆 ⊂ R𝑛 and a convex set 𝐶 ⊂ R𝑛, for each 𝜆1, 𝜆2 ∈ R
as 𝜆1 · 𝜆2 > 0, the relations

𝜆1(𝐶 −* 𝑆) + 𝜆2(𝐶 −* 𝑆) ⊂ (𝜆1 + 𝜆2)𝐶 −* (𝜆1 + 𝜆2)𝑆 = (𝜆1 + 𝜆2)(𝐶 −* 𝑆), (9)

hold true, where the latter identity was provided in [13, Prop. 1.1.1, second identity after
(1.1.3)]. At that, [co] is a particular case of this statement for 𝜆1, 𝜆2 > 0 and 𝜆1 + 𝜆2 = 1.

There is one more possible proof for [co]. If 𝑆 + 𝑥 ⊂ 𝐶, then co(𝑆 + 𝑥) ⊂ co𝐶 that implies
co𝑆 + 𝑥 ⊂ co𝐶 and 𝑥 ∈ co𝐶 −* co𝑆. It yields 𝐶 −* 𝑆 ⊂ co𝐶 −* co𝑆. It is obvious that
𝐶 −* 𝑆 ⊃ 𝐶 −* co𝑆, since 𝑆 ⊂ co𝑆. Thus,

𝐶 −* co𝑆 ⊂ 𝐶 −* 𝑆 ⊂ co𝐶 −* co𝑆 for each 𝐶, 𝑆 ⊂ R𝑛

and

𝐶 −* 𝑆 = 𝐶 −* co𝑆 if 𝐶 is a convex set. (10)

The geometric difference of two convex sets is a convex set [10, 8.8] that by the latter identity
implies [co].

[ds] The comments after Definition 1 and 2 imply the statement for 𝐶 = ∅ or 𝑆 = ∅.
Suppose now that 𝑦 is the star-shapedness direction for 𝐶. In view of Definitions 1 and 2 it
means that 𝐶 + 𝑡𝑦 ⊂ 𝐶 for each number 𝑡 > 0. Then for 𝑥 ∈ 𝐶 −* 𝑆, i.e., 𝑆 + 𝑥 ⊂ 𝐶, we obtain
𝑆 + (𝑥 + 𝑡𝑦) ⊂ 𝐶 + 𝑡𝑦 ⊂ 𝐶 for each 𝑡 > 0. Therefore, 𝑥 + 𝑡𝑦 ∈ 𝐶 −* 𝑆 for each 𝑡 > 0. By
Definition 1, vector 𝑦 is the star-shapedness direction for 𝐶 −* 𝑆.

[dl] By Definition 1, this statement is an obvious implication of the previous one.
[ph] By the comments after Definition 2, if 𝐶 = ∅, then 𝐶−*𝑆 = ∅ as 𝑆 ̸= ∅, and 𝐶−*𝑆 = R𝑛

as 𝑆 = ∅. Hence, it follows from the comments after Definition 1 that as 𝐶 = ∅, the difference
∅ −* 𝑆 is polyhedral. In the same way, as 𝑆 = ∅, the difference 𝐶 −* 𝑆 = 𝐶 −* ∅ = R𝑛 is a
polyhedral set.

Suppose that 𝐶 ̸= ∅ and 𝑆 ̸= ∅. By Definition 1, polyhedral set 𝐶 is defined by a finite
system of linear inequalities (3), i.e., for some finite set of vectors 𝑎𝑘 ∈ R𝑛 and numbers 𝑏𝑘 ∈ R,
𝑘 = 1, . . . ,𝑚 ∈ N,

𝐶 =
{︀
𝑥 ∈ R𝑛 : ⟨𝑎𝑘, 𝑥⟩ − 𝑏𝑘 6 0, 𝑘 = 1, . . .𝑚

}︀
. (11)

Point 𝑥 belongs to 𝐶 −* 𝑆, i.e., 𝑆 + 𝑥 ⊂ 𝐶 if and only if 𝑥 + 𝑠 ∈ 𝐶 for some 𝑠 ∈ 𝑆. By (11),
we have 𝑥 ∈ 𝐶 −* 𝑆 if and only if

⟨𝑎𝑘, 𝑥⟩ + ⟨𝑎𝑘, 𝑠⟩ − 𝑏𝑘 6 0 for each 𝑠 ∈ 𝑆, 𝑘 = 1, . . . ,𝑚. (12)

If for at least one index 𝑘 we have sup𝑠∈𝑆⟨𝑎𝑘, 𝑠⟩ = +∞, then 𝐶−*𝑆 = ∅ is polyhedral. Otherwise
(12) is equivalent to the finite system of linear inequalities

⟨𝑎𝑘, 𝑥⟩ − 𝑏′𝑘 6 0, 𝑘 = 1, . . . ,𝑚, where 𝑏′𝑘 := 𝑏𝑘 − sup
𝑠∈𝑆

⟨𝑎𝑘, 𝑠⟩ ∈ R, (13)

since 𝑆 ̸= ∅. The latter system is determined completely by 𝐶 −* 𝑆.

In what follows we shall also need the inverse for statements [ds] and [dl] of Lemma 3.1.

Lemma 3.2. Let 𝐶 be a closed convex set in R𝑛, 𝑆 ⊂ R𝑛, 𝑆 ̸= ∅, and 𝑦 ∈ R𝑛 be a
star-shapedness direction (respectively, linearity direction) for 𝐶 −* 𝑆 ̸= ∅. Then 𝑦 is a star-
shapedness direction (respectively, linearity direction) for 𝐶.
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Proof. Due to Definition 1, it is sufficient to prove the lemma for star-shapedness directions
𝑦. The hypothesis of the lemma mean that for each point 𝑥 ∈ 𝐶 −* 𝑆 ̸= ∅, ray 𝑟𝑦(𝑥) in (2) is
contained in 𝐶−*𝑆. In other words, 𝑆+𝑥 ⊂ 𝐶 implies 𝑆+𝑟𝑦(𝑥) ⊂ 𝐶. We consider an arbitrary
element 𝑠 ∈ 𝑆 ̸= ∅. Then 𝑠 + 𝑥 ∈ 𝐶 and 𝑠 + 𝑥 + 𝑡𝑦 ∈ 𝐶 for each 𝑡 > 0. Thus, for some point
𝑠 + 𝑥 ∈ 𝐶, ray 𝑙𝑦(𝑠 + 𝑥) is contained in 𝐶.

Proposition 1 ([9, Thm. 8.3]). If 𝐶 ⊂ R𝑛 is closed and convex and for some point 𝑐 ∈ 𝐶
ray 𝑟𝑦(𝑐) (respectively, straight line 𝑙𝑦(𝑐)) is contained in 𝐶, then 𝐶 is star-shaped (respectively,
linear) in the direction of 𝑦.

In accordance with this proposition, 𝑦 is a star-shapedness direction for 𝐶.

4. Covering by shifts and geometric difference

As it will be clarified in the end of this section, as a development of an essential part of VKE
theorem [8, 1, 2.1] and as one of generalization of Helly’s theorem we can regard

Theorem 1 (on covering by shifts). Let C be a faimly of convex sets in R𝑛 in (4) and sup-
pose that we are given a family of arbitrary sets

S := {𝑆𝛽 ⊂ R𝑛 : 𝛽 ∈ B}, B is a set of indices. (14)

Assume that the finiteness condition

(F) card A < ∞ and card{𝛽 ∈ B: 𝑆𝛽 ̸= ∅} < ∞
is satisfied or for C condition (d) in Helly’s theorem holds true but with the additional restric-
tions A0 = ∅ or card B < ∞. We let

𝐶 :=
⋂︁
𝛼∈A

𝐶𝛼, 𝑆 :=
⋃︁
𝛽∈B

𝑆𝛽. (15)

The following four statements are pairwise equivalent (taking Convention into account):

(T) a shift of set 𝑆 is contained in set 𝐶;
(C) for each 𝑛+ 1 sets in C, a shift of set 𝑆 is contained in the intersection of these 𝑛+ 1 sets;
(S) for each 𝑛 + 1 sets S a shift of set 𝐶 covers (includes) all these 𝑛 + 1 sets;

(CS) for each 𝑛 + 1 indices

𝛼1, . . . , 𝛼𝑛+1 ∈ A and 𝛽1, . . . , 𝛽𝑛+1 ∈ B (16)

the intersection
𝑛+1⋂︁
𝑘=1

(︀
𝐶𝛼𝑘

−* 𝑆𝛽𝑘

)︀
(17)

of geometric differences 𝐶𝛼𝑘
−* 𝑆𝛽𝑘

is non-empty.

Due to Definition 2 of geometric difference, Condition (17) in (CS) can be replaced by each
of the following equivalent conditions:

(CSC) for each set of indices (16) there exists a vector 𝑥 ∈ R𝑛, for which the shifts 𝑆𝛽𝑘
+ 𝑥 are

contained in 𝐶𝛼𝑘
for each 𝑘 = 1, . . . , 𝑛 + 1;

(CSS) for each set of indices (16) there exists a vector 𝑥 ∈ R𝑛, for which the shift 𝐶𝛼𝑘
−𝑥 covers

𝑆𝛽𝑘
for each 𝑘 = 1, . . . , 𝑛 + 1.

Now we are in position to prove Theorem 1.

Proof of Theorem 1. If 𝑆 = ∅, then it holds 𝑆𝛽 = ∅ in (15) and each statement of the theorem
is true.

If at least one of sets 𝐶𝛼 is empty, then 𝐶 = ∅ and by Convention, each of four statements of
the theorem implies the emptiness for 𝑆 and each 𝑆𝛽. Hence, in these case all four statements
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are true. This is why in what follows in the proof, we can suppose that 𝑆 ̸= ∅ and 𝐶𝛼 ̸= ∅.
The truth of double “vertical and horizontal” implications of the sides for the “rectangle”

(T) ⇒ (C)
⇓ ↖ ⇓

(S) ⇒ (CS)

is rather obvious here even with no condition for families C and S. We just observe that the
implications (C)⇒(CS) and (S)⇒(CS) are even more transparent, if we consider (CS) as (CSC)
and (CSS), respectively. Thus, we just need to prove the “diagonal” implication (CS)→(T).
At that, empty sets 𝑆𝛽 in family S makes no influence on (17) since 𝐶𝛼 −* ∅ = R𝑛 for each
𝐶𝛼 ⊂ R𝑛. Thus, passing from the set of indices B to the subset of indices {𝛽 ∈ B: 𝑆𝛽 ̸= ∅} and
keeping the same notation B, in what follows we can assume that all sets 𝑆𝛽 are non-empty.

Let us consider the family of sets

C−* S := {𝐶𝛼,𝛽 := 𝐶𝛼 −* 𝑆𝛽 : (𝛼, 𝛽) ∈ A × B}. (18)

Lemma 4.1. If in notations (18) and (15) the intersection⋂︁
(𝛼,𝛽)∈A×B

𝐶𝛼,𝛽 (19)

is non-empty, then some shift of set 𝑆 is contained in 𝐶, i.e., statement (T) is true.

Indeed, let 𝑥 ∈ R𝑛 belongs to intersection (19). It means that

𝑆𝛽 + 𝑥 ⊂ 𝐶𝛼 for each 𝛼 ∈ A and 𝛽 ∈ B.

Hence,

𝑆𝛽 + 𝑥 ⊂
⋂︁
𝛼∈A

𝐶𝛼 for each 𝛽 ∈ B.

Therefore, ⋂︁
𝛽∈B

𝑆𝛽 + 𝑥 =
⋂︁
𝛽∈B

(𝑆𝛽 + 𝑥) ⊂
⋂︁
𝛼∈A

𝐶𝛼,

i.e., 𝑆 + 𝑥 ⊂ 𝐶, quod erat demonstrandum. In view of Lemma 4.1, to prove the implication
(CS)⇒(T), it is sufficient to justify the applicability of Helly’s theorem on convex set to family
(18).

Under (CS) and by earlier conventions in family C−* S
(!) all sets 𝐶𝛼,𝛽 are non-empty, and moreover, each intersection

⋂︀𝑛+1
𝑘=1 𝐶𝛼𝑘,𝛽𝑘

in (17) is non-
empty for arbitrary set of indices (16);

(!) all the sets 𝐶𝛼,𝛽 are convex, see Statement [co] of Lemma 3.1;
(!) all the sets 𝐶𝛼,𝛽 are closed provided all 𝐶𝛼 are closed, see Statement [cl] of Lemma 3.1;
(!) there exists at most finite number of sets 𝐶𝛼,𝛽 under finiteness condition (F), i.e.,

card(C−* S) < ∞.

Condition (F). By the above arguments, if finiteness condition (F) holds true, under our
assumptions and condition (CS) finiteness condition (f) is satisfied by family C −* S. Thus,
Helly’s theorem on convex sets is applicable to family C −* S and the implication (CS)⇒(T) is
proven in this case.

Condition (d) Let A0 = ∅ and 𝑦 be a common star-shapedness direction for 𝐶𝛼,𝛽 = 𝐶𝛼−*𝑆𝛽

for all (𝛼, 𝛽) ∈ A × B. Then by Lemma 3.2, vector 𝑦 is a common star-shapedness direction
for all 𝐶𝛼, 𝛼 ∈ A. Then by condition (d), vector 𝑦 is a linearity direction for 𝐶𝛼 for all 𝛼 ∈ A,
while Statement [dl] of Lemma 3.1 follows that vector 𝑦 is a linearity direction for all 𝐶𝛼,𝛽 as
(𝛼, 𝛽) ∈ A × B. Hence, for family the C −* S of convex closed sets in (18) condition (d) holds
true (without a finite set of indices A0). Therefore, Helly’s theorem is applicable to family C−*S
and by Lemma 4.1 we obtain desired statement (T).
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Suppose now that under condition (d) set of indices B is finite. We consider a partition of
the set of indices A × B into two disjoint subsets of indices

A × B = (A0 × B)
⋃︁(︀

(A ∖ A0) × B
)︀
.

Then by Statement [ph] of Lemma 3.1 the finite subfamily{︀
𝐶𝛼,𝛽 : (𝛼, 𝛽) ∈ A0 × B

}︀
of family C −* S is formed by polyhedral sets. Let 𝑦 be a star-shapedness direction for all sets
of family C −* S. Again by Lemma 3.2, vector 𝑦 is a common star-shapedness direction for
all 𝐶𝛼, 𝛼 ∈ A. By condition (d) vector 𝑦 is a linearity direction for 𝐶𝛼 for all 𝛼 ∈ A ∖ A0,
and by Statement [dl] of Lemma 3.1 vector 𝑦 is a common linearity direction for all 𝐶𝛼,𝛽 as
(𝛼, 𝛽) ∈ (A ∖ A0) × B. Thus, for family C −* S of convex closed sets in (18) condition (d) holds
true, where the role of A0 is played by A0 × B. Therefore, we can apply Helly’s theorem to
family C−* S and by Lemma 4.1 we obtain desired statement (T).

Remark 2. Theorem 1 on shifts holds true also under condition (b) in Remark 1 since it is
a particular case of condition (d) as A0 = ∅.

Comment 1 (on Theorem 1). Let us make sure that Helly’s theorem and the most part of
VKE theorem (concerning the statements “covering”, “containing”) are particular cases of The-
orem 1.

1. For an arbitrary one-point non-empty set 𝑆, for instance, 𝑆 = {0}, and one-element
family S = {𝑆}, the implication ()⇒(T) of Theorem 1 on covering by shifts gives exactly
Helly’s theorem on convex sets given above in the beginning of Section 2.

2. If family C has one element, i.e., it contains just one convex set 𝐶, then the implica-
tion (S)⇒(T) of Theorem 1 on covering by shifts gives VKE theorem in Introduction as
particular case of “shift of set 𝐶 covers everything”.

3. If family S has one elements and contains just one convex set 𝑆, then the implication
()⇒(T) of Theorem 1 on covering by shifts becomes a particular case of VKE theorem
concerning “contains”, one just should replace the notations: 𝑆 should be placed instead
of 𝐶, C instead of S and assume either finiteness of C or compactness of 𝑆.

4. The proof of the part “intersects everything” of VKE theorem and its generalizations is
moved to Section 4 after Theorem 2 on intersections of shifts, since surprisingly (at least,
for us), this proof happened to be related not with the geometric difference, but with the
algebraic difference of sets.

Comment 2 (previous special versions of Theorem 1). The implication ()⇒(T) of Theo-
rem 1 was established or mentioned earlier in [8] in the following three rather particular cases:

% family C of convex sets is finite, and 𝑆 is a convex set [8, 2.1] (VKE theorem);
% family C consists of convex compact sets and 𝑆 is also a convex compact set [8, 2.1] (VKE

theorem);
% family C consists of closed half-spaces having common bounded intersection, and 𝑆 is a

convex body, i.e., a convex compact set with a non-empty interior int𝑆 ̸= ∅ [8, 6.18].

In the special case when S in (14) is a family of all one-point sets {𝑠}, 𝑠 ∈ 𝑆, i.e., B := 𝑆
is also a set of indices and 𝑆𝑠 := {𝑠}, 𝑠 ∈ 𝑆, the validity of the implication (S)⇒(T) follows
easily from [8, 2.1] (one should let K = S) in the following two very special situations:

% 𝑆 is finite and family C is formed by one convex set 𝐶 [8, 2.1] (VKE theorem);
% family C consists of one convex compact set 𝐶 (for convex body 𝐶 see [8, 6.2], and as

int𝐶 = ∅, the proof follows easily from [8, 2.1] (VKE theorem)).
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5. Intersection of shifts and algebraic difference

Let us give an “algebraic” development of VKE theorem in Introduction.

Theorem 2 (on intersection of shifts). Suppose that the family

C := {𝐶𝛼 ⊂ R𝑛 : 𝛼 ∈ A}, A is a set of indices, (20)

consists of arbitrary (cf. (4)) of non-empty sets 𝐶𝛼, and the family of sets (cf. (14))

S := {𝑆𝛽 ⊂ R𝑛 : 𝛽 ∈ B}, B is a set of indices, (21)

also consists of arbitrary non-empty sets 𝑆𝛽. Assume that each algebraic, i.e., vector difference
(Definition 2, (7))

𝐶𝛼 − 𝑆𝛽 :=: 𝐶𝛼 + (−𝑆𝛽) is convex for each 𝛼 ∈ A, 𝛽 ∈ B. (22)

Suppose that one of the following two conditions holds true

(F) finiteness condition in Theorem 1, i.e., card A + card B < ∞;
(id) each algebraic difference (22) is closed, for some finite subsets A0 ⊂ A, B0 ⊂ B algebraic

differences in (22) are polyhedral for each (𝛼, 𝛽) ∈ A0 × B0, and each star-shapedness
direction common for all algebraic differences (22) for all (𝛼, 𝛽) ∈ A × B happens to be a
linearity direction for algebraic differences (22) for all (𝛼, 𝛽) ∈ (A × B) ∖ (A0 × B0).

The following statements are equivalent (cf. Convention in Introduction):

(I) the exists a vector 𝑥 ∈ R𝑛 such that for each index 𝛽 ∈ B the shift 𝑆𝛽 + 𝑥 intersects with
all 𝐶𝛼 in C;

(CSI) for each 𝑛 + 1 indices

𝛼1, . . . , 𝛼𝑛+1 ∈ A and 𝛽1, . . . , 𝛽𝑛+1 ∈ B

the intersection
𝑛+1⋂︁
𝑘=1

(︀
𝐶𝛼𝑘

− 𝑆𝛽𝑘

)︀
(23)

of algebraic differences in (22) is non-empty.

Proof. The implication (I)⇒(CSI) is obvious thanks to the definition and it is true for each
system of non-empty sets. We prove the inverse implication (CSI)⇒(I) under both condi-
tions (F) and (id). Since sets (22) are convex, we can apply Helly’s theorem on convex sets.
Here finiteness condition (f) corresponds to condition (F), while condition (d) corresponds to
condition (id). If in Helly’s theorem we consider sets of indices A × B, A0 × B0 instead of sets
of indices A, A0, respectively, and if we replace system of sets 𝐶𝛼 by the system of all possible
algebraic differences (22), then by Helly’s theorem⋂︁

(𝛼,𝛽)∈A×B

(︀
𝐶𝛼 − 𝑆𝛽

)︀
̸= ∅.

Let 𝑥 be a point in the above intersection. Id est, there always exist 𝑐𝛼 ∈ 𝐶𝛼 and 𝑠𝛽 ∈ 𝑆𝛽

satisfying 𝑥 = 𝑐𝛼 − 𝑠𝛽 or

𝑆𝛽 + 𝑥 ∋ 𝑠𝛽 + 𝑥 = 𝑐𝛼 ∈ 𝐶𝛼 for each pair (𝛼, 𝛽) ∈ A × B.

And it is the sought vector 𝑥 in (I).

We recall that in the beginning of Section 4 after Theorem 1 and Conditions (CSC)–(CSS)
the latter of four Statements (1)–(4) remained unexplained (the proof of part “intersects ev-
erything”). Now we can return back to the latter of Statements (1)–(4) in order to cover the
gap in the proof of part “intersects everything” of VKE theorem and to generalize it.
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Corollary 1. Let 𝐶 ⊂ R𝑛 be non-empty and we are given family of sets (21). Assume that
the algebraic differences 𝐶 − 𝑆𝛽 are convex for each 𝛽 ∈ B, where B is finite or, otherwise, all
these algebraic differences are closed and at least one of them is bounded. If for each 𝑛+ 1 sets{︀

𝑆𝛽1 , . . . 𝑆𝛽𝑛+1

}︀
(24)

in family (21) some shift of set 𝐶 intersects simultaneously all 𝑛 + 1 sets in (24), there exists
a shift of set 𝐶 intersecting all sets in family S.

Proof. Since family C = {𝐶} is one-point, the intersection casts into a rather simple form and
the non-emptiness of intersection (23) means the latter sentence in the formulation of the corol-
lary. If set B is infinite, the closedness of algebraic difference and, first of all, the boundedness
for at least one of these algebraic difference (cf. Section 2, Remark 1, Statement (b), right after
Helly’s theorem) implies condition (id). Thus, the hypothesis of Theorem 2 on intersection of
shifts is satisfied and the proof of the corollary is complete.

Comment 3. The following comments and remarks supplement Theorem 2 on intersection
of shifts:

* If card B = 1 and 𝑆𝛽 = {0}, Theorem 2 is precisely Helly’s theorem on convex sets
formulated above;

* Under conditions card A = 1, i.e., C consists of one convex set 𝐶, all 𝑆𝛽, 𝛽 ∈ B, are
convex and set of indices B is finite or 𝐶 and all the sets 𝑆𝛽 ∈ S are compact, Theorem 2
was proven in [8, 2.1];

* The convexity of all algebraic differences (22) can be replaced to a more restrictive condi-
tion of convexity for each 𝐶𝛼 ∈ C and each 𝑆𝛽 ∈ S since algebraic difference of two convex
sets is convex;

* the part of condition (id), “each algebraic difference in (22) is closed . . . ”, can be replaced
by a more restrictive condition “for each pair 𝐶𝛼, 𝑆𝛽 one of the sets is closed, the other
is compact” since algebraic difference of a closed set and a compact set is closed;

* the part of condition (id), “for some finite subsets A0 ⊂ A, B0 ⊂ B algebraic differences in
(22) are polyhedral for each (𝛼, 𝛽) ∈ A0 × B0, . . . ”, can be replaced by a more restrictive
condition “for some finite subsets A0 ⊂ A, B0 ⊂ B each of sets 𝐶𝛼 as 𝛼 ∈ A0 and 𝑆𝛽

as 𝛽 ∈ B0 is convex and polyhedral, . . . ”, since algebraic sum of polyhedral convex sets is
polyhedral [9, Cor. 19.3.2];

* If for some subsets A′ ⊂ A and B′ ⊂ B the intersection⋂︁
(𝛼,𝛽)∈A′×B′

(︀
𝐶𝛼 − 𝑆𝛽

)︀
is bounded, then there exists no star-shapedness directions common for all algebraic differ-
ences (22) and the concluding part of condition (id) on common star-shapedness condition
holds true immediately;

* If in pair 𝐶𝛼, 𝑆𝛽 on the sets is closed, convex, and unbounded, and the other is bounded,
then a star-shapedness direction for algebraic difference in (22) is also a star-shapedness
direction (respectively, linearity direction) for unbounded set 𝐶𝛼 or 𝑆𝛽 (cf. Proposition 1).
This can simplify the seek of common star-shapedness directions while checking condi-
tion (id) of Theorem 2.

6. Set-theoretical differences

For the completeness of exposition we provide an analogue in a sense of Theorem 1 and 2
for set-theoretical difference of sets. For the sake of brevity, the latter in this section is called
difference.
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Theorem 3 (on differences of sets). Suppose that families of sets C and S are defined re-
spectively as in (4) and (14), and as in (15),

𝐶 =
⋂︁
𝛼∈A

𝐶𝛼, 𝑆 =
⋃︁
𝛽∈B

𝑆𝛽. (25)

Suppose that all the differences1

𝐶𝛼 ∖ 𝑆𝛽 are convex for each 𝛼 ∈ A and 𝛽 ∈ B. (26)

Assume that one of the conditions holds true:

(F) the finiteness condition in Theorem 1 and 2, i.e., card A + card B < ∞;
(dd) each difference in (26) is closed, for some finite subsets A0 ⊂ A, B0 ⊂ B the differences in

(26) are polyhedral for all pairs (𝛼, 𝛽) ∈ A0 ×B0, and each star-shapedness direction com-
mon for all differences (26) for each (𝛼, 𝛽) ∈ A×B is a linearity direction for differences
(26) for all (𝛼, 𝛽) ∈ (A × B) ∖ (A0 × B0).

The following statements are equivalent (in view of Convention):

(D) difference 𝐶 ∖ 𝑆 is non-empty;
(CSD) for each 𝑛 + 1 indices

𝛼1, . . . , 𝛼𝑛+1 ∈ A and 𝛽1, . . . , 𝛽𝑛+1 ∈ B (27)

the intersection
𝑛+1⋂︁
𝑘=1

(︀
𝐶𝛼𝑘

∖ 𝑆𝛽𝑘

)︀
(28)

of differences in (26) is non-empty.

Proof. For each sets of indices A′, B′ and sets 𝐶𝛼, 𝛼 ∈ A′, and 𝑆𝛽, 𝛽 ∈ B′, of arbitrary nature,
the elementary general identity for differences⋂︁

(𝛼,𝛽)∈A′×B′

(︁
𝐶𝛼 ∖ 𝑆𝛽

)︁
=

(︂ ⋂︁
𝛼∈A′

𝐶𝛼

)︂
∖
(︂ ⋃︁

𝛽∈B′

𝑆𝛽

)︂
holds true. For instance, as A = A′ and B = B′, in terms of notations in (25) we have

𝐶 ∖ 𝑆 =

(︂ ⋂︁
𝛼∈A

𝐶𝛼

)︂
∖
(︂ ⋃︁

𝛽∈B

𝑆𝛽

)︂
. (29)

Therefore, is set 𝐶 ∖ 𝑆 is non-empty, the same is true for the right hand side in (29). Thus,
Statement (D) of the theorem implies the non-emptiness of sets (28) for any indices (27), i.e.,
(CSD) is proven.

We prove the implication (CSD)⇒(D) under both conditions (F) and (dd). Since sets (26)
are convex, we can apply Helly’s theorem on convex sets. Here condition (f) corresponds to
condition (F), while condition (d) does to condition (CSD) provided in Helly’s theorem instead
of sets of indices A, A0 we consider respectively sets of indices A × B, A0 × B0, and system of
sets 𝐶𝛼 is replaced by the system of all possible differences (26).

Comment 4 (on Theorem 3). # If card B = 1 and 𝑆𝛽 = ∅ is the empty set, Theorem 3
is precisely Helly’s theorem on convex sets in Section 2.

# The part of condition (dd), “each difference in (26) is closed, . . . ”, can be replaced by a
more restrictive one that “each 𝐶𝛼 ∈ C is closed and each 𝑆𝛽 ∈ S is open, . . . ” since in
this case each difference (26) is closed.

1This often happens even if the sets are not convex.



106 B.N. KHABIBULLIN

# If for some subsets A′ ⊂ A and B′ ⊂ B the intersection⋂︁
(𝛼,𝛽)∈A′×B′

(︀
𝐶𝛼 ∖ 𝑆𝛽

)︀
is bounded, there exist no star-shapedness directions common for all differences (26) and
the concluding part of Condition (dd) on common star-shapedness directions holds true
immediately since such directions are just absent.

# If all the sets 𝐶𝛼 ∈ C are closed, convex, and unbounded, and all sets 𝑆𝛽 ∈ S are bounded, a
star-shapedness direction (linearity direction) for the difference in (26) is a star-shapedness
direction (linearity direction) for unbounded set 𝐶𝛼 that follows easily from Proposition 1.
This can simplify the seeking of common star-shapedness directions while checking Condi-
tion (dd) of Theorem 2.

Remark 3. Further reach in results variations of Helly’s theorem on convex sets intersect-
ing partially with our results (especially those in Section 4 on analogues or generalizations of
transversals for families of sets), in addition to the above cited sources, can be found in works
by V.L. Dol’nikov, S.A. Bogatyi, N.A. Bobylev, R.N. Karasev [24]—[27] and many others.

The author expresses his deep gratitude to the referee for very useful remarks and important
additional information on the subject of the paper.
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