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ON UNIFORM CONVERGENCE OF PIECEWISE-LINEAR
SOLUTIONS TO MINIMAL SURFACE EQUATION

M.A. GATSUNAEV, A.A. KLYACHIN

Abstract. In the paper we consider piecewise-linear solutions of the minimal surface
equation over a given triangulation of a polyhedral domain. It is shown that under certain
conditions, the gradients of these functions are bounded as the maximal diameter of the
triangles of the triangulation tends to zero. It is stressed that this property holds if the
piecewise-linear function approximates the area of the graph of a smooth function with a
required accuracy. An implication of the obtained properties is the uniform convergence of
piecewise linear solutions to the exact solution of the minimal surface equation.
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1. INTRODUCTION

Some problems appearing in designing architectural structures are reduced to constructing
surfaces of minimal area. This was reflected quite in detail in book [I] and work [2], where the
problem of developing of awning cloth construction was studied. The detailed analysis of the
provided results leads one to the problem on developing effective methods for approximative
solving the minimal surface equations and mathematical justification of the found methods in
the sense of stability and convergence of approximate solutions. The main difficulty in studying
such issues is that the minimal surface equation is non-linear and this is way classical methods
employed for linear equations are not applicable.

Our approach is based on introducing the notion of a piecewise-linear solutions to the min-
imal surface equation over a given triangulation of a given domain and we establish needed
properties for these solutions. Namely, we show that the accuracy order of approximation for
area functional with respect to the triangles diameters equals two; we establish that the par-
tial derivatives are bounded by a constant independent of the fineness of partition under the
sufficient approximation of the area functional and so forth. The proved statements allow us
to establish, in particular, the uniform convergence as the diameters of triangulation triangles
tend to zero.

2. PIECE-WISE LINEAR SOLUTION TO MINIMAL SURFACE EQUATION

Suppose we are given a polyhedral bounded domain 2 C R". Consider a partition of this
polyhedron into non-degenerate tetrahedrons T4, Ts, ..., Tn. Let My, My, ..., M,, be all the
vertices of these tetrahedrons. We shall assume that each of points M; is neither internal for
any side non for any edge of the tetrahedrons.
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For an arbitrary set of values uq, us, ..., u, we define a piece-wise linear function u : @ — R
so that u(M;) = u;,i = 1,...,m and we introduce the function u(z) = pfz, +-- -+ pkwz, + 0" on
each tetrahedron Ty, k = 1,..., N. This function is continuous in 2 and in each tetrahedrons

Ty, the gradient Vu = pF = (p¥,...,pF) is well-defined. Therefore, the area under the graph of
function u is given by the sum

S(p) = S Z/\/1+|Vu|2dx—zx/1+|p 2 (1)),

k=17,
where v(T},) is the n-dimensional volume of tetrahedron Tj.
Since vectors p!,...,p" are uniquely defined by values u,, ..., u,, we can write the value
of the area S(p) in terms of the variables u = (u1,...,uy): S(u) = S(uy,...,uy). Indeed,
variables p',...,p" are expressed linearly in terms of variables u,...,u,. Then there exist

numbers af; such that
:Zafiui, k=1,....N, l=1,...,n.

Coefficients af, are uniquely defined by the partition of domain € into tetrahedrons 7, ..., Ty.
Thus,

N
S(u) = S(uy, ..., Un Z 1—1—2 Z%Uz Ty).
=1 =1 i=1
Suppose that in vertices My, ..., M,, we are given values ©1,...,y,,. We denote by ¢ the
associated piecewise-linear function constructed by these values. Let us state the problem on
finding a piecewise-linear function u providing the minimum of area S(u) and satisfying the
boundary condition, i.e.,

S(ug, ..., uy) — min, u(M;) = ¢, vV M; € 09. (1)

Remark. Let u* = (uj,...,u’) be a solution to problem (l). By u* we shall denote the
associated piecewise-linear function. Suppose that h(x) is an arbitrary piecewise-linear function
satisfying the condition h(M;) = 0 for each point M; € 9. Then the function o(t) = S(u*+th)
achieves the minimum at the pomt t =0. Hence, 0'(0) =0 that is equivalent to the identity

(Vu*, Vh)
Z / . -0 @)
V14| Vur |2
Theorem 1. Problem 15 uniquely solvable.

Proof. We observe that function S(ug,...,u,) is convex with respect to variables uy, ..., ty,.
And since in the boundary points the values of function u are fixed,
lim S(u) = +oo,

|u| =00

where |u| = max |u;|. Hence, function S(u) achieves its minimum at some point u*.
1<i<m

Let us prove the uniqueness. We assume the opposite, i.e., there exists one more solution
v* to problem . Then piecewise-linear function v* satisfies condition as well. Letting
h = v* —u*, we arrive at the identity

(v* —u)>_(Vu,V(v —u*)) .
Z/( \/1+|W 2 V14 [Vu? )d N ®)
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In what follows we shall make use of the inequality

< 3 ‘6 77> & —n)? )
V1+ €] \/1+|77!2’ VIHIEPWITHIERPYI+ P+ ¢l + 1)

satisfied for all vectors &, € R"™. We note that similar inequalities were obtained in works [3],
[4], [5] and were also employed for studying the issues on uniqueness of solution to the minimal
surface equation. Inequality by means of which we shall obtain the uniqueness will be also
employed for estimating the gradient of piecewise-linear solution v*. And we can not apply the
inequalities from the above cited works for this estimate. This is the reason why we employ
inequality . We prove it as follows.

First we note that

(n,&—mn)

VIFIER > V1+ P2+ :
L+ [n)?

Then

< ¢ §n> CEn-9  (E-n)
VI+[EP \/1+!!2’ VIHIER  VT+ 0P

> 5 &n—9)
> VITTP - VITIR - Sl 5
_ VI EPVI+ P — (€ m) — 1
V14 €
€ —nl?
\/1+\§! (VI+EPVT+ 0P+ [€llnl + 1)

Letting £ = Vu* and n = Vo* in inequality (4 ., by (3} . we obtain that Vu* = Vo*. Since on
boundary Jf) functions u* and v* coincide, we obtain the desired identity u* = v*. O

3. ESTIMATE FOR MODULUS OF GRADIENT

Let f be a solution to the minimal surface equation

Z@xz <\/1+|‘Vf|2> - R

in domain € continuous in Q and f|sq = @|sq, Where ¢(z) is a continuous function defined on
the boundary of domain 2. It is worth mentioning that the corresponding Dirichlet problem
for an arbitrary domain (even with a smooth boundary) is not always solvable. For planar
domains the solvability criteria of the Dirichlet problem for an arbitrary continuous boundary
function p(z) is the convexity of this domains. In the space of the dimension greater than two
such condition is the nonnegativity of the mean curvature with respect to the outward normal
for the boundary of the domain. One can find the precise formulations and the proofs of these
results in works [6]-[I3]. In the present paper we impose no conditions for domain € but we
assume that for a given boundary function ¢(z) the solution to the Dirichlet problem exists.
It is clear that such function p(z) exists for an arbitrary domain (.

In what follows we denote by u* the unique solution to problem with boundary data

For arbitrary £,n € R™ we let

n) = V1+ P =1+~

(&,n—2%)
VIFIER
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It follows from inequality that d(&,n) > 0 for each £ # n. Letting £ = Vf, n = Vu* and
employing equation @ we obtain

(Vfv)(u —f)
’;T/ (V. V) de = S(u*) — S(f)+8£ s

where v is the outward normal to 0f2 in the points where it exists. Employing inequality (see
the proof of Theorem 1)

VI+ P+ g -

we conclude that

(€&n—¢) € —nf?
VI[P \/1+|£|2(\/1+\€!2\/1+!n\2+|£H77|+1)’

Z/ |V — Vu*|*dz
= VIFIVIEWIH VIV Ve + V][ Ver | +1)
Vi) —f) ¢

V1+|V/P

< S(u*) = S(f) +
/

We fix arbitrary k =1,..., N. Then
/ \Vf—Vu|*dx
J VLIV VPV Ve + [V Var| +1)

V1+|VL?
o0
In what follows we assume that |V f| < Py in domain 2. Then inequality (7)) yields
_ 2
NIVl <504 p2)B. 8)
V1 [ Vur?
It implies that

Ve

z < 3(1+ P3)B + 2Pyu(T")

V1t |Vu* |2
/\/1 Ve Pde < 3(1 + P2)B + (2P + 1)o(T").
k

Then by and Holder inequality we arrive at the estimate

or

1/2

/ IVf — Vu'|de < 3(1+ F;) (B +0(T")) B)

Hence,
1/2

/ IVu*|de < Poo(T") + 3(1+ P§) ((B + v(T")) B)

Tk
Since the gradient Vu* is constant in T}, we obtain the inequality

v(Ty)|Vu* (z)] < Pov(Ty) +3(1+ P2 (B +v(Ty)) B)'? zeT,.
Dividing by v(T}), we arrive at the estimate of the gradient
[Vu* ()| < P+ 3(1+ Py)v/ (o + 1) ou, (9)
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where

1 (VI 1)

Oék:m S(u*)—S(f)ﬂLag W

Theorem 2. Let f € C*(Q)NC(Q) be a solution to equation (6) such that floa = ¢loa and
Py = sup |V f| < +oo. Suppose that u* is a solution to problem (1|) subject to the condition
Q

u*(M;) = p(M;), M; € Q. Then inequality (9) holds true for each point x € Q.

Remark. Denote by f* the piecewise-linear function constructed by the values of functionf
at points M;,i = 1...,m. If the quantity

1 L (Vf,v)y(u* —f)
A(f)=—— | S - S dS
(f) 1Q€I<HNU<T’“) (F7) (7) +8£ 1+|Vf]?

15 bounded for sufficiently smooth functions f as the fineness of partition p = max diam T}, of

VX

domain Q tends to zero in a certain way, then by Theorem 2 and the inequality S(u*) < S(fF)
we conclude that the approximate solution u* has a gradient bounded by a constant independent
of the partition fineness.

4. APPROXIMATION OF AREA FUNCTIONAL

Let us study the quantity S(fL) — S(f) for functions f € C3(Q) as n = 2, where Q is a
closed rectangle with the sides parallel to the coordinate axes. Consider the surface defined as
the graph of a function z = f(z,y) over set (2.

Let Q = [a,b] X [e,d] anda =2 <21 < -+ <zp=b,c=y <y < - < Ym =d. We
partition € into rectangles ; = [x;, Tiy1] X [y, Yj+1], 0 < i <n—1,0<j<m—1 Then
we split each of these rectangles by the right or left diagonal. All the following arguments are
made for the rectangle [xg, z1] X [0, y1] since the estimate for error of calculating the area for
other rectangles is similar.

If the splitting is made by the right diagonal, the area under the graph of piecewise-linear
function over the diagonal is

Sy = %(351 — 7o) (Y1 — yo)\/l + (f(xl’yl) — f(xo,y1)>2 n (f(l’oayl) - f($07y0>>2’

T — Zo Y1 — Yo

and for the triangle under the diagonal

S = l(xl — 20)(y1 — yo)\/l + (f(%,yo) - f(xo,yo)>2 i (f(xo,yﬁ - f(xl,y1))2.

2 T1 — Xo Y1 — Yo

If the triangle is split by the left diagonal, the area under the graph of the piecewise-linear
function over the diagonal equals

Sh = 51— w0)(on — yo>\/ 1+ (f (z0,41) = f@hyl))? . (f<x1,yo> - f(x17y1)>27

T — T Y1 — Yo

and for the triangle under the diagonal
1 1, — f(xo, 2 Zo, — f(xo, 2
Sﬁ:;z5(:1:1—330)(@/1—yo)\/ljL (f< 1,%0) = flzo yl)) - (f( 0:31) — f{m0 y")) .
T1— Zo Y1 — Y%

We denote by S the area of the obtained piecewise-linear surface. We have
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Theorem 3. Let f(z,y) € C3*(Q) and
My = swpma{| 2] 1£4 F4)). My = supmas(

Sy |y | Sy |5 | P 3

hy = lrgag;(:cl —xiq), hy= 1%%};(3/ —yj—1), h=max(hq,hs).

Then

‘ / V14|V (z,y)?dedy — S’
Q

Hlil’l{hl, h2}> 2 2

Proof. For the sake of brevity we assume that the rectangles in the partition of set €2 are split
by the right diagonal. The results for this case and for the general case coincide.

Consider the rectangle [xg, 1] X [0, y1]. By means of Newton interpolation formula (see [14]
Ch. 3, Sect. 12]) we obtain a linear approximation Iy and [p for function f(z,y) over upper
and lower partition triangles of this rectangle

f(z,y) =lu(z,y) + Ru(z,y) = (2o, y0) + (x — x0) f(w0; 21, Yo)

+ (¥ = y0) f (o, yo; v1) + (¥ — vo)(y — v1) f (2, y0; 915 )

+ (2 — x0)(y — v1) f(wo; 7,905 y1) + (v — o) (x — 1) f (205 215 7, Y0),
f(z,y) =lp(x,y) + Rp(z,y) = f(x1,91) + (x — 1) f(21; 0, 11)

+ (= y) (@1, 91590) + (¥ — y1) (Y — vo) £ (2,95 v1; o)

+ (. —21)(y — vo) f(xo; 2, y1590) + (x — 20) (x — 1) f (205 215 7, Y1),

where f(oq;ao;ag; - an, B1; B2; Bs; -+ Bm) are separated differences of function f(z,y) (see
[14, Ch. 2, Sect. 5]). In particular,

f(x1,90) — f (o0, Y0)

< |9 <2M3 + 12 (3 + M3 + §M§h2> h?.

f(xo, 1) — f(20,90)

f(zoi1,90) = p—— , f(zo,yosy1) = — :
e L
w Loy = el = Tom) SRy, )
Loy - Lo = Htnm) O,
g—i(x,y) = f(gjl’yz — io(:vo,yl) + 8519 (,y),

Consider the difference of areas under the graph of the given function and the graph of the
obtained interpolation by the linear function over the upper partition triangle

//\/1+|Vf|2dxdy—58:/ V1+|Vf]?dxdy
U

// \/ xl,yl f(l‘o,yl))2 4 (f(xmyl) — f(xoyyo))Q dl’dy
T — Tg Y1 — Yo
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:ﬂmmdy—{/ \/1+ (5w - %<x,y>>2+ (Lo - %m,y))Q

~ [[ evten (25 % + 25 @ T
U

dy

() - ()

where

-1
of ORy\> [0f ORy\’
— (1 2414 (YL T 9l _%w .
Cu(a,y) ( i +\/ HE-5) +(2-5%
Let y = I'y(z) define the hypotenuse of the partition triangle and = = I's(y) be the inverse

function. We integrate by parts in the integral in the right hand side of the identity

1

//dedy 5y = 2/<RU(a:, y)%(ﬂc, y)Cu(z,y)
U

Yo

z=I"2(y)

T=x0

I2(y)
of  aC, 2 f '
— [ roten | S G e + S Lot ) ay

Y=

y=I"1(z)

+2/<Ru(az,y)g—‘£(w,y)%(%y)

Zo

Y1

- / Ry(z,y) {%(x,y)%(waywrgiy“é(rc,y)CU(x,y)] dy) dw—/ IV Ry (2, y)|*dady.

T1(x) U

We indicate by Cp(z,y) the function on D similar to function Cy(z,y). In the same way on
D we obtain the identity

1

//dedy — 8y = 2/(RD(1‘, y)%(x, y)Cp(z,y)

D Yo

1

r=x]

z=T"2(y)

= [ Rotean) [F ezt + S 5w Colen]| ds ) dy

T2 (y)
1

+2/<RD(x,y)g—£(:c,y>CD(%y>

o

I'i(x) 9
- [ #oten) [ w2 + G nCoten| av) ao— [[19Ro(o 0 Pasay

Y=Yo D

y=I"1()

Y=Yo
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We sum up the obtained identities taking into account that on I' the values of continuous
functions coincide

// V11 VI dedy — (s;; + Sg)

UuD
Z1

=2 [ (Bl o) Cite, ) = Ry, 0)Coleaw) ) do

o
Y1

=1 (Rp<x1,y>f;<x1,y>oD<x1,y> - RU<xo,y>f;<xo,y>cU<xo,y>)dy

Yo
x1

2 [ Ru(Ta(@) (i) (0U<r1<as>> - OD<r1<x>>)dw (10)

Zo

Y1

~2 [ ReCa) 2Tt <0D<r2<y>> - cU<r2<y>>)dy

Yo

~2 [[ (Ro d(Cule) V1) + 51 Roe. ) ) dody
U

-2 RDdiv(cD(x,y)Vf(x,y)H1|VRD(x,y)|2 dady.
it ey

It is easy to make sure that

|CU(x7y) - CD<x7y)‘ 2CU(x7y)CD(x7y>M2ha
|Cu(z1,y) — Cp(wo, y)| < 4Cy(z,y)Cp(x,y) Mahy,
|CU(x7y1) - CD(I,y0)| < CU<I7y)CD<I7y)M2h2‘ (11)

Then, employing that the separated differences are equal to the values of the derivatives at
some point of the domain, we obtain

xr1

/ (RUu,yl)g—;(a:,yl)oU(x,yl) - RD@:,yo>g—§<x,yo>cD<x,yo>)dx

zq

1

/(:1: —x0)(x — 1)

o

af c 3
a_y(xa 11)Cu(z, yl)m(&, m)(y1 — yo)

(12)

2 2
+ S € Cole, ) 526 0) 01— )

a2f

8 5 (&, 90) fy(z, ?Jo)<CU($,?Jl) —CD(IL"ayo))]dl' < ih1h2<M3+5M§>h%.
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In the same way,

Y1

/

(Rp(xl, Y) f2(x1,y)Cu (21, y) — Ru(wo, ) f2 (0, y)Cu (2o, y)>dy

Yo (13)
1
< Zh1h2<Mg + 5M§)h§.
Let us estimate the modules of interpolation error for each of the triangles:
1 1 1 1
|Ru (2, y)| < M2(Zh§ + hihy + Z]ﬁ)’ [Rp(z,y)| < M2(Zh§ + hihy + Zh%)' (14)

These inequalities can be employed as the estimates for the errors Ry (I') and Rp(I") on diagonal
r
Y1 =Y
1 — X
of the considered rectangle. Then the relations yield

Y ="Yo+ (x — o)

1

[ Ry (0U<r1<x>> - omw») da

o

[ Roa st (CoCaton) - cU<r2<y>>>dy‘ <203 (434 bt + 102 ) hah. (10

Yo

1

<MQQ

1
h3 + hihs + Zh%) hih, (15)

Let us estimates the squares of moduli of the errors gradient

OR
L =y — o)y — y) f (@2, 90,91 9) + (v — 1) (203 2, Yo 1)
ox
+ (. — 20)(y — v1) f(2os 23 2, yo: y1) + (2 — 0) (2 — 1) f (203 213 752, 90)
+2 (35 _ ;xl) f(zo; 152, 90),
OR +
Ty — o) — v f vy viy) + 2 [y — 2 Fa yoi v w)
oy 2
+ (2 — o) f (205 T, Yo; Y1),
ORp
=Y = )\Y —Y)J\T;T,Y1;Y0,Y y—un Lo, T, Y15 Yo
e ( ) 1f( )+ ( )V f( )
_|_
+ (1' - 330)(1' - xl)f($0;$15$3$ay1) +2 <5€ _ o 9 x1> f(fco;xl;iﬁ;iﬁayl)
+ (. — 1) (y — 1) f(@o; T 2, Y15 Yo)
OR +
L (=) — vo) f (@ y vy v0) + 2 (v — T Tz, y; 915 90)
dy 2

+ (v — 21) f (205 7, Y15 Yo)-

By Cauchy-Schwarz inequality it implies
2

OR 1 1
a—; <16 2hd + M2h2 + M2h2h2 + EM??h‘f + M2R?,
ors” 1

a_yU < 1—6J\4§h;L + M2h2 + M2h2,




12 M.A. GATSUNAEV, A.A. KLYACHIN

1 1
IVRy|* < §M§h§ + 2M2h2 + M2h2h2 + 1—6M§h% +2M2R2. (17)
In the same way,
1 1
IVRp|* < GMihS + 2M3RS + MEEhs + < Mihi + 20303, (18)

Then we observe that U satisfies

le(CUVf) = CUAf + <VCU7 Vf>7
Ple 0 fofie + ot
X (o THIVIT = () el

VIFIVIE

oCy 5 0 o Sufuy + fofo

U (O 1 VT2 = —(Cy)2 2 2lzy © Tylyy

9y = (OO g VTH VTP = ~(Cop =2
Hence,

0[2] N2 gl ! el el N2 gl
(V,VCy)| = JIINIE (fo) " fow T 200 fy foy + (F) 7 fy )| < 4Mo.
And since
|CuAf| < 2Ms,

then

In the same way for D we have
Let us estimate the modulus of the sum in the right hand side of identity . Employing

inequalities , —, we obtain

. 1
/] (RU div(Coe,y)V /(&) + 5|V R (&, y>|2) dady
U

+ é / (RD Aiv(Col, )V (,9)) + 5|V R(e y>!2> dudy N

1 1
< (3M§(h§ + 4h1hg + h3) + §M§h§ + 2M3hy + Mihihs + 1—6M§h§ + 2M§h§) | P|
1 1
< <§M§h§‘ + 5M3h3 + 3M3hihy + MZhihs + 5M3hT + 1—6M§h‘1‘) |P|,

where |P| is the area of the rectangle P = [xo, z1] X [yo, t1]. Now by (10), ([12), ([13), (15), (16),
, and the fact that the area of rectangle P does not exceeds hihs, we get

‘ / / VI + |V fdzdy — (S;; + Sg)
s

1
< 5WLQ(Mg + 5M22> (h2 + h2)

1 1
+ 4M? <Zh§ + hihy + th) h(hy + hs)

1 1
+ (§ 2hy + 5M3h3 + 3M3hyhy + MIhihy + 5Myh3 + T gh;*) hiho
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h 5
< hiho | 2M3h? 12—} M2h% + = M2h* ).
1z ( 3 + (36 _'_ min{hl, h2}> 2 + 2 3

Summing up the inequality over all the partition rectangles for set €2, we finally obtain

h 5
V1 2dedy — S| < Q|| 2M5 + 12 | M2+ —M2R* | b2
|// IV Pdudy S’ | |< ot (3+min{h1,h2}) 2+2M3h>h
Q

5. UNIFORM CONVERGENCE OF APPROXIMATE SOLUTIONS

Now we are going to obtain the uniform estimate for piecewise-linear solutions of minimal
surface equation. Let f be a solution to equation @ in domain 2. We assume that

sup |[Vf| = Py < +00.
Q
In what follows we shall argue as in works [I5], [16]. We denote by fL the piecewise-linear
function such that f2(M;) = f(M;). Welet fi(z) = u*(x)+t(f*(z)—u*(x)) and P, = sup |Vu*|,
Q

P =max{1, Py, P,}. It is clear that u*|spq = f¥|sq. For each t € R function f!(x) is piecewise-
linear and one can calculate the area under its graph

:/«/1+ v FiPdz.
0

Since as t = 0 function o(t) achieves its minimum, then ¢’(0) = 0. Employing this identity, we
obtain

S(f*) — S(u*) :/lds/sa”(t)dt

1 s
1+ vft va v*2_ Vft,VfL—V*z
:/ds/dt/ | ) 1+ |Uv|ft|2)§/2 «) dx (22)
0 0

WV

1 s
|V fE — Vu*|? 1
/ds/dt/ dx > —/\VfL—Vu*Fd:c.
14 |V ft]2)3/2 v/ 2)3
0 0 VF (1+72) Q

We employ Poincaré inequality (see, for instance, [I7, Sect. 7.8]) for function h(x) = f¥(x) —
u*(x), hloa = 0. By we get

Q
> 2 [lnw)pas
V(14 P2)3
Q
where M(Q) = (w,/]|Q))*™ and w,, || are n-dimensional volumes of the unit ball and domain

Q, respectively. Then we let M = sup |h| and without loss of generality we can assume that
Q

there exists a point zy € €2 satisfying h(zg) = M. Let us show that Bysap(xo) C €. Indeed,
let 2’ € 0% be such that |xy — /| = dist(z, 9€2). Hence,

2Plxg — 2’| = h(xg) — h(z') =M —h(z") = M — M' > M/2.
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Thus, the distance from point zg to boundary 0 is greater than M/4P. Therefore,

Baijap(zo) C Q. Suppose that © € Byjap(xo). Then
M
h(z) = h(zg) — 2P|z — xo| > M — 2P@ = M/2.

Hence, Byjap(zo) C Dy, where
Dy ={xe€Q:|h|>M/2} CC Q.

Therefore,
M\ M? ([ M\" M2
2 2 _ —
Q Dum Baryap(zo)
Hence,
1
S(F1) - S()\ 7
mgx|f u*| < 4P ( NV,

Theorem 4. Let f € C*(Q) N C(Q) be a solution to minimal surface equation (6) and u*
be a piecewise-linear function solving problem with p; = f(M;) for each M; € 0. Suppose
that Py = sup |V f| < 400 and P, = sup |Vu*|. Then

Q Q

1

max |ff— | <apt? (S(f:?Q—)(i(U*)) " ;

where P = max{1, Py, P }.

Now let €2 be a rectangle [a, b] X [¢, d]. We fix a natural number m and consider the partition
of the rectangle defined by the points x; = a + %(b —a),y; =c+ %(d —¢),i,7=0,1,...,m.
We partition each of the rectangles [z;, x;11] X [y;, yj+1], 4,5 = 0,1,...,m — 1 by the diagonal
connecting vertices (z;,y;) and (x;11,y;j+1) into two triangles. Suppose in rectangle 2 we are
given a solution f to the minimal surface equation, f € C3(Q). Let u’, be the solution to
problem associated with this partition and satisfying the boundary conditions

up (2, ¢) = f(xi,¢), uy(xi,d) = f(zi,d), i=0,...,m,
U;(CL, y]) = f(aa yj)v U;(b, yj) = f(b7 yj)a ] = 07 cee, M.
Corollary. Sequence u}, converges uniformly in ) to solution f, at that

sup|f(z,y) = uy,(z,y)| = O (%m)

as m — OQ.

Proof. We denote by f© the piecewise-linear function such that f*(z;,y;) = f(zi,y;), i,J =
0,...,m. First let us show that the gradients of functions u;, are bounded by a constant
independent of m. In order to do it, we employ inequality @D It follows from Theorem 3 that
for some constant C independent of m we have

S0~ SUMI < b

and applying the trapezium formula of numerical integration (see [I4, Ch. 3]), we obtain

[T D) G
VIR S
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Thus,

2
|A(S)] < m

If Py =sup|Vf], it follows from inequality @D that
Q

(Cl + CQ) = Cg.

|VU:n| < P0+3(1 +P02)\/ 03(1 +03) = Pl.

Let us estimate the quantity S(f*) — S(u},). We construct arbitrary function 4, such that

Uy = u’, in rectangle Q,, = [x1, Tm_1] X [Y1, Ym-1], Um = f on 0Q and |V, — Vul,| < Cy/m,
where constant C} is independent of m. Then

0 <S(f*) = S(up,) = S(f*) = S(f) + S(f) = S(lm) + S(m) — S(uy,)

<S(1) = SU) + Slam) — S(u5) < o3+ [ [(VIF VL = VIH [V Py
O\

i

gw + %(b —a)(d—c)(1— (1 —-2/m)?) = % + %(1 — (1—2/m)?),

where C5 = Cy(b — a)(d — ¢). Therefore, it follows from Theorem 4 that

f = upl U= I+ IF = un] < |f = fF+ 4P (S(fLA)&z)i(um) .

where P = max{1, Py, P }. Applying the previous inequality, we obtain

Oy Gy (1 2/m)2)>}1
A7

Slép |f(2,y) — (2, 9)] < Poy/(b—a)? + (d — c)2% 4 4P (

1

< —Po/(b—a)? +(d—c)? +4P*? (01+_4C5)) 0
m

m2A(Q)m

as m — 0. O
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