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Abstract. In the paper we study the main bifurcation scenarios for functional differential
time delay equations with periodic right side and for nonlinear autonomous equations with
aftereffect. The main tool is the operator method for studying multi-parameter bifurcation
leading us to new sufficient bifurcation conditions and allowing us to obtain the approximate
formulae for appearing solutions. As applications, we consider the problems on bifurcation
points for the modifications of Duffing equation and Hutchinson-Wright equation.
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1. Formulation of problem

In the paper we consider systems of functional differential time-delay equations

𝑑𝑥(𝑡)

𝑑𝑡
=

𝜎∫︁
0

[𝑑𝜏𝑅(𝑡, 𝜏)]𝑥(𝑡− 𝜏) +

𝜎∫︁
0

[𝑑𝜏𝑄(𝑡, 𝜏)] Φ[𝑥(𝑡− 𝜏)] + 𝐹 (𝑡, 𝑥𝑡) , (1)

where 𝑥 ∈ R𝑁 . Here 𝜎 > 0, 𝑅(𝑡, 𝜏), 𝑄(𝑡, 𝜏) are 𝑁 × 𝑁 matrices whose entries are defined for
−∞ < 𝑡 < ∞, 0 6 𝜏 6 𝜎, and they are functions of bounded variations w.r.t. 𝜏 are continuous
in w.r.t. 𝑡 in the following sense: for each 𝑡, the identities

lim
𝑡′→𝑡

𝜎∫︁
0

‖𝑅(𝑡′, 𝜏) −𝑅(𝑡, 𝜏)‖𝑑𝜏 = 0, lim
𝑡′→𝑡

𝜎∫︁
0

‖𝑄(𝑡′, 𝜏) −𝑄(𝑡, 𝜏)‖𝑑𝜏 = 0

hold true, and functions 𝑅(𝑡, 𝜏) and 𝑄(𝑡, 𝜏) are 𝑇 -periodic in 𝑡: 𝑅(𝑡 + 𝑇, 𝜏) = 𝑅(𝑡, 𝜏),
𝑄(𝑡 + 𝑇, 𝜏) = 𝑄(𝑡, 𝜏). In (1) we have employed the notation 𝑥𝑡 =

(︀
𝑥(𝑡 − 𝜑1), ..., 𝑥(𝑡 − 𝜑𝑠)

)︀
,

0 6 𝜑1 < 𝜑2 < ... < 𝜑𝑠 6 𝜎, 𝑠 is a natural number. The nonlinearity 𝐹 (𝑡, 𝑥𝑡) is not represented

by an integral
𝜎∫︀
0

[𝑑𝜏𝐴(𝑡, 𝜏)] Ψ[𝑥(𝑡−𝜏)]. Let 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑠); it is assumed that vector functions

Φ(𝑥), 𝐹 (𝑡, 𝑦) are continuously differentiable and satisfy the conditions

‖Φ(𝑥)‖ = 𝑂
(︀
‖𝑥‖2

)︀
, ‖𝑥‖ → 0, ‖𝐹 (𝑡, 𝑦)‖ = 𝑂

(︀
‖𝑦‖2

)︀
, ‖𝑦‖ → 0;

uniformly in 𝑡, 𝐹 (𝑡 + 𝑇, 𝑦) = 𝐹 (𝑡, 𝑦). Hereinafter the symbol ‖ · ‖ denotes the Euclidean norm
of vector and matrices in spaces R𝑁 or R𝑠. The integrals in (1) are treated in the Lebesgue-
Stieltjes sense.
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Many interesting equations with time-delay can be reduced to equation (1) (see, for instance,
[1]–[3]). In particular, if 𝑅(𝑡, 𝜏), 𝑄(𝑡, 𝜏), and 𝐹 (𝑡, 𝑥𝑡) are independent of 𝑡, we obtain the
autonomous equation

𝑑𝑥(𝑡)

𝑑𝑡
=

𝜎∫︁
0

[𝑑𝜏𝑅(𝜏)]𝑥(𝑡− 𝜏) +

𝜎∫︁
0

[𝑑𝜏𝑄(𝜏)] Φ[𝑥(𝑡− 𝜏)] + 𝐹 (𝑥𝑡) . (2)

Systems (1) and (2) have a solution 𝑥 ≡ 0. An important feature of this solution is the
hyperbolicity property. Let us give appropriate definitions.

First we consider equation (1). We denote by 𝑉 the monodromy matrix of linear system

𝑑𝑥(𝑡)

𝑑𝑡
=

𝜎∫︁
0

[𝑑𝜏𝑅(𝑡, 𝜏)]𝑥(𝑡− 𝜏).

The solution 𝑥 = 0 to system (1) is called (cf., for instance, [3]) hyperbolic equilibrium if matrix
𝑉 has no eigenvalues with modulus 1. Otherwise 𝑥 = 0 is called non-hyperbolic equilibrium of
system (1).

Consider autonomous equation (2). We define characteristic quasi-polynomial

𝐿(𝑝) = det

⎛⎝ 𝜎∫︁
0

𝑑𝜏𝑅(𝜏)𝑒−𝑝𝜏 − 𝑝𝐼

⎞⎠ (3)

associated with the linear part of equation (2). The solution 𝑥 = 0 is called hyperbolic equi-
librium of system (2) if quasi-polynomial (3) has no pure imaginary zeroes. Otherwise 𝑥 = 0 s
called non-hyperbolic equilibrium of system (2).

In applications, systems (1) and (2) depend usually on parameters and variation of these
parameters can change hyperbolicity that produces various bifurcations in the vicinity of point
𝑥 = 0. A large amount of works is devoted to studying bifurcations in functional differential
time-delay equations (see, for instance, [4]–[8]). In these works there were proposed effective
approaches for obtaining bifurcation tests, for approximate representation of solutions, and for
studying the stability. These approaches employ the Poincaré normal forms method, central
manifold theorem, topological methods, etc.

In the present work we study problem on bifurcation of periodic solutions to equations
(1) and (2). To solve these problems, we propose a development of an operator approach
for studying multi-parametric bifurcations [9]. The mentioned method allows us to establish
sufficient bifurcation conditions and to obtain asymptotic formulae for bifurcating solutions. In
contrast to the usually applied methods, the proposed algorithm does not involve construction of
normal forms and integral manifolds that in many cases allows us to simplify the approximate
study of bifurcations and to obtain simple bifurcation tests directly in terms of the original
problem.

2. Bifurcation scenarios for non-autonomous systems

First we consider system (1) depending on a scalar or vector parameter 𝜃 and having a
𝑇 -periodic in 𝑡 right hand side:

𝑑𝑥(𝑡)

𝑑𝑡
=

𝜎(𝜃)∫︁
0

[𝑑𝜏𝑅(𝜃, 𝑡, 𝜏)]𝑥(𝑡− 𝜏) +

𝜎(𝜃)∫︁
0

[𝑑𝜏𝑄(𝜃, 𝑡, 𝜏)] Φ[𝜃, 𝑥(𝑡− 𝜏)] + 𝐹 (𝜃, 𝑡, 𝑥𝑡) , (4)

where 𝜎(𝜃) is infinitely differentiable function obeying 0 < 𝜎(𝜃) < 𝑇 .
We call a value 𝜃 = 𝜃0 bifurcation point in the vicinity of solution 𝑥 = 0 if 𝑥 = 0 is a

non-hyperbolic equilibrium of equation (4) as 𝜃 = 𝜃0.
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We denote by 𝑉 (𝜃) the monodromy matrix of linearized system (4). In what follows we
consider situations when monodromy matrix 𝑉 (𝜃0) has a simple eigenvalue 1 or a pair of simple

eigenvalues 𝑒±2𝜋𝑝𝑖/𝑞, where 0 6
𝑝

𝑞
6

1

2
and

𝑝

𝑞
are rational irreducible fractions. In both case we

assume that the moduli of other eigenvalues of matrix 𝑉 (𝜃0) are not equal to one. Subject to
these cases, various scenarios of local bifurcations in the vicinity of equilibrium of system (4)
are possible.

2.1. Forced vibrations bifurcations. In the case 𝑉 (𝜃0) has a simple eigenvalue 1 and the
moduli of other eigenvalues are not equal to 1, the codimension of the bifurcation equals one.
In this case it is natural to deal with scalar parameter 𝜃. Here the main bifurcation scenario is
the emergence of nonzero 𝑇 -periodic oscillations with small amplitude of system in the vicinity
of equilibrium 𝑥 = 0 as parameter 𝜃 passes through 𝜃0. This bifurcation corresponds to the
following notion.

A value 𝜃0 of parameter 𝜃 is called bifurcation point of forced vibrations of system (4) if for
each 𝜀 > 0 there exists 𝜃 = 𝜃(𝜀) such that system (4) has a nonzero 𝑇 -periodic solution 𝑥(𝑡, 𝜀),
and 𝜃(𝜀) → 𝜃0 and max

𝑡
‖𝑥(𝑡, 𝜀)‖ → 0 as 𝜀 → 0.

Let us provide a sufficient condition for forced oscillations bifurcations. In order to do it,
given a function 𝑥 = 𝑥(𝑡) on the segment [0, 𝑇 ] and a number 𝜏 , 0 ≤ 𝜏 ≤ 𝑇 , we define the
function 𝑢(𝑡) and the operator 𝐸

(︀
𝜏
𝑇

)︀
by the identities

𝑢(𝑡) = 𝑥 (𝑇 · 𝑡) and 𝐸
(︁ 𝜏

𝑇

)︁
𝑢(𝑠) =

⎧⎪⎨⎪⎩
𝑢
(︁
𝑠− 𝜏

𝑇
+ 1

)︁
, 0 6 𝑠 <

𝜏

𝑇
,

𝑢
(︁
𝑠− 𝜏

𝑇

)︁
,

𝜏

𝑇
6 𝑠 6 1.

We introduce the operator

𝐵(𝜃)𝑢(𝑡) = 𝑢(1) + 𝑇

𝑡∫︁
0

⎛⎝ 𝜎(𝜃)∫︁
0

𝑑𝜏𝑅(𝜃, 𝑇𝑠, 𝜏)𝐸
(︁ 𝜏

𝑇

)︁
𝑢(𝑠)

⎞⎠ 𝑑𝑠 (5)

acting and being continuous in the space 𝐿2[0, 1] on a dense domain 𝐶[0, 1].

Lemma 1. If 𝑉 (𝜃0) has a simple eigenvalue 1, operator 𝐵(𝜃0) : 𝐿2 → 𝐿2 has a simple
eigenvalue 1.

The lemma can be proved by simple calculations.
Let 𝑒(𝑡) be an eigenfunction of operator 𝐵(𝜃0) associated with the eigenvalue 1. The adjoint

operator 𝐵*(𝜃0) : 𝐿2 → 𝐿2 has also an eigenvalue 1 and the associated eigenfunction is 𝑒*(𝑡).
We choose functions 𝑒(𝑡) and 𝑒*(𝑡) by the restriction (𝑒, 𝑒*) ̸= 0; hereinafter (·, ·) denotes the
scalar product in 𝐿2.

Theorem 1. Let 𝑉 (𝜃0) have a simple eigenvalue 1 and the relation

(𝐵′
𝜃(𝜃0)𝑒, 𝑒

*) ̸= 0 (6)

is satisfied. Then value 𝜃0 of parameter 𝜃 is a bifurcation point of forced oscillation for equation
(4). Here 𝐵′

𝜃 is the operator obtained by differentiation of operator 𝐵(𝜃) w.r.t. 𝜃.

The proofs for this and other statements of the work are given in Section 4.

2.2. Subharmonic oscillation bifurcation. Here we consider the case when the mon-

odromy matrix 𝑉 (𝜃0) has two simple eigenvalues 𝑒±2𝜋𝑖 𝑝
𝑞 , where 0 6

𝑝

𝑞
6

1

2
are

𝑝

𝑞
rational

irreducible fractions and the moduli of other eigenvalues of matrix 𝑉 (𝜃0) are not equal to one.
In this case the codimension of the bifurcation is two. Here it is natural to assume that pa-
rameter 𝜃 is two-dimensional, i.e., 𝜃 = (𝛼, 𝛽), where 𝛼 and 𝛽 are scalar parameters. We let
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𝜃0 = (𝛼0, 𝛽0). The main bifurcation scenario is the emergence of 𝑞𝑇 -periodic solutions in the
vicinity of the equilibrium 𝑥 = 0 as parameter 𝜃 passes through 𝜃0.

A value 𝜃0 of parameter 𝜃 is called bifurcation point of 𝑞𝑇 -periodic subharmonic oscillations
for system (4) if for each 𝜀 > 0 there exists 𝜃 = 𝜃(𝜀) such that system (4) has a non-zero
𝑞𝑇 -periodic solution 𝑥(𝑡, 𝜀), at that, 𝜃(𝜀) → 𝜃0 and max

𝑡
‖𝑥(𝑡, 𝜀)‖ → 0 as 𝜀 → 0.

We define operator 𝐵(𝛼, 𝛽) by analogy with (5), where value 𝑇 should be replaced by 𝑞𝑇 .

Lemma 2. Suppose that monodromy matrix 𝑉 (𝜃0) has a pair of simple eigenvalues 𝑒±2𝜋𝑖 𝑝
𝑞 ,

where 0 6
𝑝

𝑞
6

1

2
and

𝑝

𝑞
are rational irreducible fractions. At that, let matrix 𝑉 (𝜃0) has no other

eigenvalues with modulus 1. Then operator 𝐵(𝛼0, 𝛽0) : 𝐿2 → 𝐿2 has a semi-simple eigenvalue
1 of multiplicity two.

We denote by 𝑒 = 𝑒(𝑡) and 𝑔 = 𝑔(𝑡) linearly independent eigenfunctions of operator 𝐵0 =
𝐵(𝛼0, 𝛽0) : 𝐵0𝑒 = 𝑒, 𝐵0𝑔 = 𝑔. The adjoint operator 𝐵*

0 has also a semi-simple eigenvalue 1 of
multiplicity two and the associated eigenfunctions are 𝑒* = 𝑒*(𝑡) and 𝑔* = 𝑔*(𝑡). We choose
these eigenfunctions by the restrictions

(𝑒, 𝑒*) = (𝑔, 𝑔*) ̸= 0, (𝑒, 𝑔*) = (𝑔, 𝑒*) = 0. (7)

Theorem 2. Assume the hypothesis of Lemma 2 and

∆ = det

[︂
(𝐵′

𝛼(𝛼0, 𝛽0)𝑒, 𝑒
*) (𝐵′

𝛽(𝛼0, 𝛽0)𝑒, 𝑒
*)

(𝐵′
𝛼(𝛼0, 𝛽0)𝑒, 𝑔

*) (𝐵′
𝛽(𝛼0, 𝛽0)𝑒, 𝑔

*)

]︂
̸= 0. (8)

Then the pair of number (𝛼0, 𝛽0) is the bifurcation point of subharmonic oscillations of system
(4). Here 𝐵′

𝛼 and 𝐵′
𝛽 are the operators obtained by differentiation of operator 𝐵(𝛼, 𝛽).

Example 1. Consider the modified Duffing equation

𝑦′′(𝑡) + 𝛼𝑦′(𝑡− 1) +

(︂
1

4
+ 𝛽 cos 𝑡

)︂
𝑦(𝑡) = −(𝑦(𝑡− 2))3 sin 𝑡. (9)

Letting 𝑥1 = 𝑦′, 𝑥2 = 𝑦 and 𝑥 = (𝑥1, 𝑥2)
𝑇 , we rewrite equation (9) as equivalent system (4),

where

𝑅(𝛼, 𝛽, 𝑡, 𝜏) =

(︂
−𝛼ℎ(𝜏 − 1) −

(︀
1
4

+ 𝛽 cos 𝑡
)︀
ℎ(𝜏)

ℎ(𝜏) 0

)︂
, Φ(𝛼, 𝛽, 𝑥) = 𝑥3,

𝑄(𝛼, 𝛽, 𝑡, 𝜏) =

(︂
0 −ℎ(𝜏 − 2) sin 𝑡
0 0

)︂
, 𝐹 (𝛼, 𝛽, 𝑡, 𝑥𝑡) = 0.

Here ℎ(𝜏) is the Heaviside function.
Let us study the issue on local bifurcations of the system in the vicinity of equilibrium 𝑥 = 0.

In our example 𝑇 = 2𝜋. As 𝛼0 = 0 and 𝛽0 = 0, the monodromy matrix for linearized equation
(9) has a semi-simple eigenvalue −1 of multiplicity two, i.e., it has a pair of simple eigenvalues

𝑒±2𝜋𝑖 𝑝
𝑞 as

𝑝

𝑞
=

1

2
. This is why equation (9) satisfies the necessary condition for bifurcation of

subharmonic oscillations given in Theorem 2 as 𝑞 = 2.
By simple calculations one can make sure that in the considered example determinant (8) is

non-zero, namely, △ = −4𝜋2. Therefore, in accordance with Theorem 2, the pair 𝛼0 = 0 and
𝛽0 = 0 forms a bifurcation point of twice period for equation (9). That is, in the vicinity of
zero solution there appear 4𝜋-periodic solutions.
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3. Bifurcation scenario for autonomous systems

Consider autonomous system (2) with a time-delay depending on parameter 𝜃:

𝑑𝑥(𝑡)

𝑑𝑡
=

𝜎(𝜃)∫︁
0

[𝑑𝜏𝑅(𝜃, 𝜏)]𝑥(𝑡− 𝜏) +

𝜎(𝜃)∫︁
0

[𝑑𝜏𝑄(𝜃, 𝜏)] Φ(𝜃, 𝑥(𝑡− 𝜏)) + 𝐹 (𝜃, 𝑥𝑡) , (10)

where 𝜎(𝜃) > 0. Parameter 𝜃 is supposed to be scalar.
A value 𝜃 = 𝜃0 is called bifurcation point in the vicinity of solution 𝑥 = 0 for equation (10)

if characteristic quasi-polynomial 𝐿(𝑝, 𝜃) has pure imaginary zeroes 𝑝 = ±𝑖𝜔0 as 𝜃 = 𝜃0; here
𝜔0 > 0.

We restrict ourselves by considering the most interesting case 𝜔0 > 0 corresponding to
Andronov-Hopf bifurcation. A value 𝜃 = 𝜃0 is called Andronov-Hopf bifurcation point for
system (10) if there exists 𝜃𝑛 → 𝜃 such that as 𝜃 = 𝜃𝑛, equation (10) has a stationary periodic
solution 𝑥𝑛(𝑡) and max

𝑡
‖𝑥𝑛(𝑡)‖ → 0 as 𝑛 → ∞.

Let us provide a sufficient condition of Andronov-Hopf bifurcation. In order to do it, in the
space 𝐿2[0, 1] with introduce the operator

𝐵(𝜃, 𝑇 )𝑢(𝑡) = 𝑢(1) + 𝑇

𝑡∫︁
0

⎛⎝ 𝜎(𝜃)∫︁
0

𝑑𝜏𝑅(𝜃, 𝜏)𝐸
(︁ 𝜏

𝑇

)︁
𝑢(𝑠)

⎞⎠ 𝑑𝑠. (11)

on the dense domain 𝐶[0, 1].

Lemma 3. Suppose that for some 𝜔0 > 0 the identity 𝐿(±𝑖𝜔0, 𝜃0) = 0 holds true and
𝐿(±𝑖𝑚𝜔0, 𝜃0) ̸= 0, 𝑚 = 0, 2, 3, . . . Then operator 𝐵(𝜃0, 𝑇0) has a semi-simple eigenvalue 1
of multiplicity two.

We denote by 𝑒 = 𝑒(𝑡), 𝑔 = 𝑔(𝑡), 𝑒 = 𝑒*(𝑡), and 𝑔 = 𝑔*(𝑡) the eigenfunctions of operators
𝐵(𝜃0, 𝑇0), 𝐵

*(𝜃0, 𝑇0), respectively. The eigenfunctions are chosen by restrictions (7).

Theorem 3. Suppose the hypothesis of Lemma 3 and the relation

det

[︂
(𝐵′

𝜃(𝑇0, 𝜃0)𝑒, 𝑒
*) (𝐵′

𝑇 (𝑇0, 𝜃0)𝑒, 𝑒
*)

(𝐵′
𝜃(𝑇0, 𝜃0)𝑒, 𝑔

*) (𝐵′
𝑇 (𝑇0, 𝜃0)𝑒, 𝑔

*)

]︂
̸= 0, (12)

where 𝑇0 =
2𝜋

𝜔0

. Then value 𝜃0 of parameter 𝜃 is the Andronov-Hopf bifurcation point for

equation (10). Here 𝐵′
𝜃 and 𝐵′

𝑇 are the operators obtained by differentiation of operator 𝐵(𝜃, 𝑇 )
w.r.t. 𝜃 and 𝑇 , respectively.

Example 2. Consider Hutchinson-Wright equation (cf. [11])

𝑥′(𝑡) = −𝜋

2
𝑥(𝑡− 𝜃)[1 + 𝑥(𝑡)], 𝜃 > 0 , (13)

The parameter in this equation is delay 𝜃.
In the considered example we have

𝜎(𝜃) = 𝜃, 𝑅(𝜃, 𝜏) = −𝜋

2
𝐻(𝜏 − 𝜃), 𝑄(𝜃, 𝜏) = 0, 𝐹 [𝑥(𝑡), 𝑥(𝑡− 𝜑1(𝜃))] = −𝜋

2
𝑥(𝑡)𝑥(𝑡− 𝜃) .
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The first condition of Theorem implies the system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜃0∫︁
0

cos

(︂
2𝜋

𝑇0

𝜏

)︂
𝑑𝜏𝐻(𝜏 − 𝜃0) = 0,

𝜃0∫︁
0

sin

(︂
2𝜋

𝑇0

𝜏

)︂
𝑑𝜏𝐻(𝜏 − 𝜃0) =

4

𝑇0

,

having the solution 𝜃0 = 1 + 4𝑛, 𝑛 > 0, 𝑛 is integer, and 𝑇0 = 4.
Suppose, for instance, that 𝜃0 = 1 and 𝑇0 = 4. Then checking relation (12), we arrive at the

identity

det

[︂
0 1

8
−𝜋

4
𝜋
16

]︂
=

𝜋

32
.

Thus, the hypothesis of Theorem 3 is satisfied and hence, the number 𝜃0 = 1 is an Andronov-
Hopf bifurcation point for equation (13).

4. Proof of main statements

To prove Theorems 1-3 we employ the operator method of studying local bifurcations of
operator equations (see [9] and [12]).

Proof of Theorem 1. We pass to the operator equation

𝑢(𝑡) = 𝐵(𝜃)𝑢(𝑡) + 𝑏[𝜃, 𝑢(𝑡)], (14)

where 𝐵(𝜃) is operator (5), and 𝑏[𝜃, 𝑢(𝑡)] is the operator

𝑏[𝜃, 𝑢(𝑡)] =𝑇

𝑡∫︁
0

(︂ 𝜎(𝜃)∫︁
0

[𝑑𝜏𝑄(𝜃, 𝑇𝑠, 𝜏)]𝐸
(︁ 𝜏

𝑇

)︁
Φ[𝜃, 𝑢(𝑠)]

)︂
𝑑𝑠

+ 𝑇

𝑡∫︁
0

(︂
𝐹

(︂
𝜃, 𝑇𝑠, 𝐸

(︂
𝜑1

𝑇

)︂
𝑢(𝑠), ..., 𝐸

(︂
𝜑𝑠

𝑇

)︂
𝑢(𝑠)

)︂)︂
𝑑𝑠.

(15)

A simple check shows that 𝑇 -periodic solutions 𝑥(𝑡) to equation (4) coincide with solutions 𝑢(𝑡)
to equation (14).

As the basis of the procedure of constructing bifurcating solutions to equation (14), we choose
the parameter functionalization method [13] and the modified Newton-Kantorovich method
with perturbations [14].

At the first step we consider functionalized equation

𝑢 = 𝐵(𝜃(𝑢))𝑢 + 𝑏[𝜃(𝑢), 𝑢], (16)

where 𝜃(𝑢) is a continuous functional, which we choose as

𝜃(𝑢) =
𝜃0
𝜀

(𝑢, 𝑒*),

where 𝑒* is an eigenfunction of operator 𝐵*, 𝜀 > 0 is a small auxiliary parameter. If 𝑢* is a
solution to equation (16), then 𝑢* solves equation (14) as 𝜃 = 𝜃(𝑢*).

At the second step we study equation (16) by the Newton-Kantorovich method. In order to
do it, we represent (16) as

𝐺(𝑢) + 𝑊 (𝑢) = 0, (17)

where 𝐺(𝑢) = 𝑢−𝐵[𝜃(𝑢)]𝑢, 𝑊 (𝑢) = −𝑏[𝜃(𝑢), 𝑢].
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Operators 𝐺 and 𝑊 act in the space 𝐿2[0, 1] and depend on parameter 𝜀 > 0. For the
sake of simplicity, we do not use 𝜀 in the notations for operators. Space 𝐿2 can be repre-
sented as 𝐿2 = 𝐻0 ⊕ 𝐻0, where 𝐻0 is the eigenspace associated with the simple eigenvalue
of the operator 𝐵0 : 𝐵0 = 𝐵(𝜃0), and 𝐻0 is the additional invariant for 𝐵0 subspace. We let
𝐺′(𝜀𝑒)ℎ = ℎ−𝐵(𝜃0)ℎ− 𝜃0(ℎ, 𝑒

*)𝐵′(𝜃0)𝑒 and 𝑢0 = 𝜀𝑒. It follows from condition (7) that there
exists a bounded operator Γ0 = [𝐺′(𝑢0)]

−1 : 𝐿2 → 𝐿2, at that, operator Γ0 is independent of 𝜀.
Operator Γ0 can be calculated by the formula Γ0𝑦 = ℎ0 + ℎ0, where

ℎ0 = − (𝑦, 𝑒*)𝑒

𝜃0(𝐵′(𝜃0)𝑒, 𝑒*)
, ℎ0 = (𝐼 −𝐵0)

−1

[︂
𝑦 − (𝑦, 𝑒*)𝐵′(𝜃0)𝑒

(𝐵′(𝜃0)𝑒, 𝑒*)

]︂
.

Lemma 4. Suppose the hypothesis of Theorem 1. Then, for each small 𝜀 > 0 equation (17)
has a nontrivial solution 𝑢(𝜀), which can be obtained as the limit of successive approximations,

𝑢𝑛+1 = 𝑢𝑛 − Γ0𝐺(𝑢𝑛) − Γ0𝑊 (𝑢𝑛), 𝑛 = 0, 1, 2, ..., (18)

where 𝑢0 = 𝑢0(𝑡) = 𝜀𝑒(𝑡).

The above constructions imply that as 𝜃 = 𝜃[𝑢(𝜀)], equation (14) has nonzero solutions 𝑢(𝜀)
such that ‖𝑢(𝜀) − 𝜀𝑒‖ = 𝑜(𝜀), 𝜃[𝑢(𝜀)] → 𝜃0 as 𝜀 → 0. It completes the proof of Theorem 1.

We note that Lemma 4 implies the existence the function 𝜃(𝜀) = 𝜃[𝑥(𝜀)] such that as 𝜃 = 𝜃(𝜀),
equation (4) has a nontrivial 𝑇 -periodic solution 𝑥(𝑡, 𝜀): 𝑥(0, 𝜀) = 𝑥(𝜀). And values of functions
𝜃(𝜀) and 𝑥(𝜀) can be constructed by iterations (18), where 𝑢(𝑡) = 𝑥(𝑇 · 𝑡).

Proof of Theorem 2. The problem on bifurcation of subharmonic oscillations for equation (4) is
equivalent to the problem on bifurcation of small nontrivial solutions to the operator equation

𝑢(𝑡) = 𝐵(𝛼, 𝛽)𝑢(𝑡) + 𝑏(𝛼, 𝛽, 𝑢(𝑡)), (19)

where 𝐵(𝛼, 𝛽) and 𝑏[𝛼, 𝛽, 𝑢(𝑡)] are determined by (5) and (15), respectively.
At the first step of the proof, we consider the functionalized equation

𝑢 = 𝐵(𝛼(𝑢), 𝛽(𝑢))𝑢 + 𝑏[𝛼(𝑢), 𝛽(𝑢), 𝑢], (20)

where 𝛼(𝑢) and 𝛽(𝑢)) are continuous functionals chosen as follows

𝛼(𝑢) = 𝛼0 +
1

𝜀
[(𝑢, 𝑒*) − 𝜀], 𝛽(𝑢) = 𝛽0 +

1

𝜀
(𝑢, 𝑔*);

here 𝜀 > 0 is an auxiliary small parameter.
At the second step, equation (20) is treated by the Newton-Kantorovich method. In order to

do it, (20) is represented as (17), where 𝐺(𝑢) = 𝑢−𝐵[𝛼(𝑢), 𝛽(𝑢)]𝑢, 𝑊 (𝑢) = −𝑏[𝛼(𝑢), 𝛽(𝑢), 𝑢].
Space 𝐿2 can be represented as 𝐿2 = 𝐻0 ⊕ 𝐻0, where 𝐻0 is an eigenspace associated with

the semi-simple eigenvalue 1 of multiplicity two of operator 𝐵0 : 𝐵0 = 𝐵(𝛼0, 𝛽0), and 𝐻0 is the
additional invariant for 𝐵0 subspace. We let 𝐺′(𝜀𝑒)ℎ = ℎ−[(ℎ, 𝑒*)𝐵′

𝛼(𝜃0)𝑒+(ℎ, 𝑔*)𝐵′
𝛽(𝜃0)𝑒]−𝐵0ℎ

and 𝑢0 = 𝜀𝑒. Condition (8) of the theorem follows that there exists a bounded operator
Γ0 = [𝐺′(𝑢0)]

−1 : 𝐿2 → 𝐿2. At that, operator Γ0 is independent of 𝜀. Operator Γ0 can be
calculated by the formula Γ0𝑦 = ℎ0 + ℎ0, where

ℎ0 = 𝐽𝛼(𝑦)𝑒 + 𝐽𝛽(𝑦)𝑔, ℎ0 = (𝐼 −𝐵0)
−1[𝑦 + 𝐽𝛼(𝑦)𝐵′

𝛼(𝜃0)𝑒 + 𝐽𝛽(𝑦)𝐵′
𝛽(𝜃0)𝑒].

Here 𝐽𝛼(𝑦) and 𝐽𝛽(𝑦) are calculated by the formula(︂
𝐽𝛼(𝑦)
𝐽𝛽(𝑦)

)︂
= −

[︂
(𝐵′

𝛼(𝛼0, 𝛽0)𝑒, 𝑒
*) (𝐵′

𝛽(𝛼0, 𝛽0)𝑒, 𝑒
*)

(𝐵′
𝛼(𝛼0, 𝛽0)𝑒, 𝑔

*) (𝐵′
𝛽(𝛼0, 𝛽0)𝑒, 𝑔

*)

]︂−1(︂
(𝑦, 𝑒*)
(𝑦, 𝑔*)

)︂
.
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Lemma 5. Suppose the hypothesis of Theorem 2. Then for each small 𝜀 > 0 equation (17)
has a solution 𝑢(𝜀), which can be obtained as the limit of successive approximations

𝑢𝑛+1 = 𝑢𝑛 − Γ0𝐺(𝑢𝑛) − Γ0𝑊 (𝑢𝑛), 𝑛 = 0, 1, 2, ..., (21)

where 𝑢0 = 𝑢0(𝑡) = 𝜀𝑒(𝑡).

It follows from the above constructions that as 𝛼 = 𝛼[𝑢(𝜀)] and 𝛽 = 𝛽[𝑢(𝜀)], equation (19)
has nonzero solution 𝑢(𝜀), and hence, ‖𝑢(𝜀) − 𝜀𝑒‖ = 𝑜(𝜀), 𝛼[𝑢(𝜀)] → 𝛼0, 𝛽[𝑢(𝜀)] → 𝛽0 as 𝜀 → 0.
It completes the proof of Theorem 2.

We note that Lemma 5 implies the existence of functions 𝛼(𝜀) = 𝛼[𝑥(𝜀)] and 𝛽(𝜀) = 𝛽[𝑥(𝜀)]
such that as 𝛼 = 𝛼(𝜀) and 𝛽 = 𝛽(𝜀), equation (4) has a non-zero 𝑞𝑇 -periodic solution 𝑥(𝑡, 𝜀)
such that 𝑥(0, 𝜀) = 𝑥(𝜀). The values of functions 𝛼(𝜀), 𝛽(𝜀), and 𝑥(𝜀) can be constructed by
iterations (21).

Proof of Theorem 3. The proof of this theorem follows the same lines as Theorem 2. The main
ingredient is the operator equation

𝑢(𝑡) = 𝐵(𝜃, 𝑇 )𝑢(𝑡) + 𝑏[𝜃, 𝑇, 𝑢(𝑡)],

where operator 𝐵(𝜃, 𝑇 ) is determined by identity (11), and nonlinearity 𝑏[𝜃, 𝑇, 𝑢(𝑡)] is introduced
by the identity

𝑏[𝜃, 𝑢(𝑡)] =𝑇

𝑡∫︁
0

(︂ 𝜎(𝜃)∫︁
0

[𝑑𝜏𝑄(𝜃, 𝜏)]𝐸
(︁ 𝜏

𝑇

)︁
Φ[𝜃, 𝑢(𝑠)]

)︂
𝑑𝑠

+ 𝑇

𝑡∫︁
0

(︂
𝐹

(︂
𝜃, 𝐸

(︂
𝜑1

𝑇

)︂
𝑢(𝑠), . . . , 𝐸

(︂
𝜑𝑠

𝑇

)︂
𝑢(𝑠)

)︂)︂
𝑑𝑠.

BIBLIOGRAPHY

1. R. Bellman, K.L. Cooke. Differential-difference equations. Academic Press, N.Y. (1963).
2. A.D. Myshkis. Linear differential equations with retarded argument. Nauka, Moscow (1972). (in

Russian.)
3. J. Hale. Theory of functional differential Equations. Springer, New York (1977).
4. B. Balachandran, T. Kalmar-Nagy, D. Gilsinn. Delay differential equations. Recent advances and

new directions. Springer, New York (2009).
5. Yu.S. Kolesov. Justification of the method of quasinormal forms for Hutchinson’s equation with

a small diffusion coefficient // Izv. RAN. Ser. Matem. 65:4, 111-132 (2001). [Izv. Math. 65:4,
749-768 (2001).]

6. D. Roose, R. Szalai. Continuation and bifurcation analysis of delay differential equations in book
“Numerical continuation methods for dynamical systems”. Springer, Dordrecht, 359-399 (2007).

7. D. Schley. Bifurcation and stability of periodic solutions of differential equations with state-
dependent delays // Eur. J. Appl. Math. 14:1, 3-14 (2003).

8. M.I. Kamenskii, Yu.V. Lysakova, P. Nistri. On bifurcation of periodic solutions for functional
differential equations of the neutral type with small delay // Avtomatika i Telemekhanika. 12,
41-46 (2008). [Automation and Remote Control. 69:12, 2027-2032 (2008).]

9. A.A. Vyshinskiy, L.S. Ibragimova, S.A. Murtazina, M.G. Yumagulov. An operator method for ap-
proximately studying regular bifurcation in multiparameter dynamical systems // Ufimskij Matem.
Zhurn. 2:4, 3-26 (2010). (in Russian).

10. M.A. Krasnoselski. Shift operator along trajectories of differential equations. Nauka, Moscow
(1966). (in Russian).



110 M.G. YUMAGULOV, D.A. YAKSHIBAEVA

11. B. Hessard, N. Kazarinov, I. Wen. Theory and application of bifurcation of cycle generation. Mir,
Moscow (1985). (in Russian.)

12. L.S. Ibragimova, M.G. Yumagulov. Parameter functionalization and its application to the problem
of local bifurcations in dynamic systems // Avtomatika i Telemekhanika. 4, 3-12 (2007). [Automa-
tion and Remote Control. 68:4, 573-582 (2007).]

13. M.A. Krasnosel’skii, P.P. Zabreiko. Geometric methods of nonlinear analysis. Nauka, Moscow
(1975). (in Russian.)

14. M.A. Krasnosel’skii, Vainikko G.M., P.P. Zabreiko, Ya.B. Rutitskii, V.Ya. Stetsenko. Approxima-
tive solving of operator equations. Nauka, Moscow (1969). (in Russian.)

Marat Gayazovich Yumagulov,
Bashkir State University,
Zaki Validi, 32,
450074, Ufa, Russia
E-mail: yum mg@mail.ru

Dina Akhatovna Yakshibaeva,
Sibai branch of Bashkir State University,
Belov str., 21,
453837, Sibai, Russia
E-mail: K dina a@mail.ru


	to1. Formulation of problem
	to2. Bifurcation scenarios for non-autonomous systems
	to3. Bifurcation scenario for autonomous systems
	to4. Proof of main statements
	 References

