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LEVY’S PHENOMENON FOR ENTIRE FUNCTIONS OF
SEVERAL VARIABLES

A.O. KURYLIAK, O.B. SKASKIV, O0.V. ZRUM

Abstract. For entire functions f(z) = :S(’) anz", z € C, P. Lévy (1929) established
that in the classical Wiman’s inequality M (r) < pp(r)(In gz (r))'/?¢, & > 0, which holds
outside a set of finite logarithmic measure, the constant 1/2 can be replaced almost surely in
some sense by 1/4; here M¢(r) = max{|f(2)|: |z| =7}, pr(r) = max{|a,|r™: n >0}, r >
0. In this paper we prove that the phenomenon discovered by P. Lévy holds also in the case
of Wiman’s inequality for entire functions of several variables, which gives an affirmative
answer to the question of A. A. Goldberg and M. M. Sheremeta (1996) on the possibility

of this phenomenon.
Keywords: Levy’s phenomenon, random entire functions of several variables, Wiman’s
inequality

Mathematics Subject Classification: 30B20, 30D20

1. INTRODUCTION

For an entire function of the form
+oo
f(z) = Z anz"
n=0

we denote My (r) = max{|f(2)|: |z| = r}, ps(r) = max{|a,|r": n = 0}, r > 0. It is well known
([, [2]) that for each nonconstant entire function f and each € > 0 the following inequality

My(r) < pp(r)(Inpg (r) /2 (1)

holds for » > 1 outside an exceptional set E¢(e) of finite logarithmic measure ( [ ) &< 400).

In this paper we consider entire functions of p complex variables

+00
f(z)=f(z1,..., %) = Z a,z", (2)
Inl=0
where 2" = 21" ... 5", p e N, n= (ny,...,n,) € ZE, |Inll = 320_ ny. For v = (r1,...,7p) €
R® we denote
B(R)y={teRL:t; > R;, je{l,....,p}}, R=(Ry,...,R,), Inpz =Inlnuz,

= 1r£1_in ri, Mp(r) =max{|f(2)|: |z1] =11,..., |2 =7p},
SIsp

+o0
py(r) = max{|a,|r{" .. .rp7:n € ZL}, My(r) = Z |, |r™.
Inl=0
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By AP we denote the class of entire functions such that % f(z) £ 0 in CP for each j €

{1,...,p}. We say that a subset E of R is a set of asymptotically finite logarithmic measure
[9] if E is Lebesgue measurable in RY and there exists an R € RY such that EN B(R) is a set

of finite logarithmic measure, i.e.
/ / H — < +o0.

ENB(R) 771

For entire functions analogues of inequality were proved in [3], (5, [6, 9]. Also analogues
of inequality without exceptional sets for entire functions of several complex variables can
be found in [I0].

In particular, the following statement was proved in [9].

Theorem 1. Let f € A and § > 0.

a) Then there exist R € RY, and a subset E of B(R) of finite logarithmic measure such that
for each r € B(R)\E we have

(1) < oy o) (T 1P~ -1 ()

>1/2+5 3)

b) If for some a € RL we have M(r) > exp(r®) = exp(r{*...mp"), as ™ — +00 or more
generally, for each >0

H dr;
< +o00, as 8" — +o0, 4
/ /7“17"2 7"plnﬁgﬁf() W

then there exist R € ]Rﬂ and a subset E of B(R) of finite logarithmic measure such that
for each r € B(R)\E we have

My (r) < pyp(r) InP/?+9 pg(r).

2. WIMAN’S TYPE INEQUALITY
FOR RANDOM ENTIRE FUNCTIONS OF SEVERAL VARIABLES

Let Q2 = [0,1] and P be the Lebesgue measure on R. We consider the Steinhaus probability
space (2, A, P), where A is the o-algebra of Lebesgue measurable subsets of 2. Let X = (X, (¢))
be some sequence of random variables defined in this space. For an entire function of the form

f(2) =3 a,2" by K(f, X) we denote the class of random entire functions
+oo
Flzt) =) anXa(t)2". (5)
n=0

In what follows, the notion “almost surely” will be employed in the sense that the corresponding
property holds almost everywhere with respect to Lebesgue measure P on Q = [0, 1]. We say
that some relation holds almost surely in the class K (f, X) if it holds for each entire function
f(z,t) of the form (b)) almost surely in ¢.

In the case R = (X,,(t)) is the Rademacher sequence, i.e. (X, (t)) is a sequence of independent
uniformly distributed random variables on [0, 1] such that P{t: X,,(t) = £1} = 1/2, P. Levy [7]
proved that for each entire function we can replace the constant 1/2 by 1/4 in the inequality
almost surely in the class K(f,R). Later P. Erdds and A. Rényi [8] proved the same result for
the class K(f, H), where H = (e?™@n(t)) is the Steinhaus sequence, i.e. (w,(t)) is a sequence of
independent uniformly distributed random variables on [0,1]. This statement is true also for
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each class K(f, X), where X = (X,,(¢)) is multiplicative system (MS) uniformly bounded by
the number 1. That is for each n € IN and ¢ € [0, 1] we have |X,,(¢)| < 1 and

(V1 <y <idg <+ <ig): M(X;, Xy, -+ X;,) =0,

where M( is the expected value of a random variable & ([I5]-[16]).

In the spring of 1996 during the report of P. V. Filevych at the Lviv seminar of the theory
of analytic functions, professors A. A. Goldberg and M. M. Sheremeta posed the following
question (see [12]): Does Levy’s effect take place for analogues of Wiman’s inequality for entire
functions of several complex variables?

In the papers [12]-[14] we have found an affirmative answer to this question for Fenton’s
inequality [4] for entire functions of two complex variables.

In this paper we will give answer to this question for Wiman’s type inequality in [9] for entire
functions of several complex variables.

The exceptional set in our statements is “smaller” than the exceptional set in the correspond-
ing theorems from [4], [I12]-[14]. The method of proof in this paper differs from the method of
the papers [4], [12]-[14].

Let Z = (Z,(t)) be a complex sequence of random variables Z,(t) = X, (t) + 1Y, (¢) such
that both X = (X,,(¢)) and Y = (Y,,(¢)) are real MS and K(f, Z) the class of random entire

functions of the form
—+o0

f(z,t) = Z anZn ()21 .. 27

[[n]|=0

Theorem 2. Let Z = (Z,(t)) be a MS uniformly bounded by the number 1, § > 0, f € AP.

a) Then almost surely in K(f,Z) there exist R € RY and a subset E* of B(R) of finite
logarithmic measure such that for each r € B(R)\E* we have

My(r,t) = max | (= 1)] < ug(r) (10 py(r) Hmp 1 l)l/m. (6)

|z|=r
b) If for some o € R: we have
M(r) > exp(r®) = exp(ri" ...ry7) as ™ — o0

or more generally, for each 3 > 0 inequality (4) holds, then almost surely in K(f, Z) there
exist R € RY and a subset E of B(R) of finite logarithmic measure such that for each
r € B(R)\E we get

My (r,t) < pg (r) In? % g (r). (7)

Lemma 1 ([I0]). Let X = (X, (t)) be a MS uniformly bounded by the number 1. Then for
each 8 > 0 there exists a constant Ag, > 0, which depends on p and (3 only such that for each
N > Ni(p) = max{p,4n} and {c,: ||n|| < N} C C we have

{t max{ Z CnXn( m”/’l.. et | .

[I]|=0
here S% = > 2
WAHEre oy = Z”nH:O |cn*

1 1
wE[O 271'] }2 ABPSNlnz N}g W’ (8)

By H we denote the class of function h: RE — R such that

—+00 “+o00

/.../%<+oo.

1 1
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For each i € {1,...,p} we also define

9 1 X .
O, InMy(r) = ”an (InMts(r)) = W nzzoni\an\r

Lemma 2 ([9]). Let h € H. Then there exist R € RY and a subset E' of B(R) of finite
logarithmic measure such that for each r € B(R)\E' and s € {1,...,p} we have

OsInMy(r) < h(lnry,...,Inrey, InMs(r), Inrgq, ..., Inry). (9)

Proof of Theorem 2. Without loss of generality we may suppose that Z = X = (X,(t)) is a
MS. Indeed, if Z,(t) = X,,(t) + iY,(t), we obtain

—+00
— Y X0+ S Va0 = a0+ ulent)

l[n]l=0 [[n]|=0
where fi, fo € K(f,X), and
max{pu(r, fi(-, 1)), u(r, fo(-, 1))} < plr, f) = max{la,|r* ... rpp:n € 75}

for cach r € RY. and ¢ € [0,1]. Hence, by inequality @ we obtain that there exists a set Fj
of asymptotically finite logarithmic measure such that for each r € B(R)\ Ey almost surely in

K(f, %)

) 1/4+60

My, (r,t) <H1np i - In® pp () . J€{1,2}, 60 > 0.

Thus, for R" great enough and for each r € B(R)\Ey almost surely in K(f, Z) we get
Mf(rr? t) My, (T‘ t) + My, (T t)

1/4+6,
L2py(r (Hlnp ri - InP pg(r )) "< pg(r (Hlnp i - In? pp(r)

=1

) 1/4+250

For each j € {1,...,p} we have

Hm g (ry, o) gy, ) = 400 (10)

rj—>+00
for fixed 70 > 0, i € {1,...,p}\{j}. Indeed, if does not hold, there exists a constant
C > 0 such that for each 7; > 5 we have py(r{,..., 79 ,7;,79,,,...,1)) < C < 400. Hence,

#{n; > 1:a, #0} =0 and - ‘9 f( )=0in CP. So, f ¢ AP, which gives a contradiction.

For k € NU {0} we denote Gk {r =(r1,...,rp) €ERE:E<Inpp(r) <k+1}N[L;+o0)r.
Then Gy # @ for k > ko and by ([10) we obtain that for each k the set Gy is a bounded set.
Let Gy = U5, G; and

p
— H’}",L-ln1+61 Ti G H, 51 > O
i=1
By Lemma 2 there exist R; € RY and a subset E; of B(R;) of finite logarithmic measure
such that for each r € B(R;)\E; and j € {1,...,p} we have

+o00
Z nilan|r™ <My (r)h(Inry, ..., Inre_1, InMe(r),Inreq, ..., Inr,)
=0
P
<M (r) In 94 (r) Iny ™0 9024 (77) H Inr; Ind ™ r;.
i=1, i

We can choose R € R”. so that B(R) C < v B(Rj)>ﬂ[662, +00)?.

7=1
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Thus, for R" great enough and for each r € B(R)\(U_; E;) we obtain

+o0 » »
S s <0, () In 0, (r) 1k 90t >Z( 1 lnnlnlwlri)

[[n]|=0 =1 \i=1, i#£j

<p- My (r) In" /2 90 4 H In7; Ind ™ 7y,

By Theorem 1, we get that for R" great enough and for each r € B(R)\(U'_, E:)

Z||n|||an|r <ppy(r (Hln” ,,mpuf(r))l/mlx

[Im]|=0
1461 /2. 145
x(ln,uf(r)+( +(51>< —1) ZlngrljtpanpJf >) HHTZIHJ” r;
(p—1)(1/2+61)+1 2435, /2
<isr) )P0+ 955 (T T 1 (H npri)
i=1
since a1xy + -+ - + apxp < 1 - ... g for 2 > 1 great enough, © = (xy,...,zx). Therefore, as

0o = (p + 1)dy, for R" great enough and for each r € B(R)\(J._, E;) we obtain

(lnp r; In> 7"-) e
g o 7g .

E“@

—+00
> lnlllanlr™ < pup(r) P20 ()

Inl|=0 i=1
Hence,
n 1
. - » N (11)
<) W2 g ) [T (i) = g (o),
where

zﬁ

146
d=d(r)= [P/ 2140 pr(r) (lnp r; In3 ri> g

1

(2

Let G = Gy \ Ept1, Epn = U (B, UE*) U (Ufi;l Gi>. By I we denote the set of integers

k > ko such that G} # @. Then #I = +oo. For k € I we choose a sequence r*) € G. Then
for each r € G}, we get

,uf(r(k)) < Ml g eur(r), pp(r) < et < e,uf(r(k)), (12)
and also

+oo
U Gy = U Gp\ Ep1 = U G\ Epr1 = [1;+00) \ Epy.
k=1

kel kel

For k € I we denote Nj, = [2d;(r®)], where

24146 - 9 \!To
dy(r) = InP/2H1+0( H(lnp 7 Iny Ti) ;

=1
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and for r € G},

Wi, (r,t) = max Z anryt .. .Tgpeinlle’"'””"w”Xn(t) 2 € [0,27]P

l[nll< Nk
For a Lebesgue measurable set G C G}, and for k € I we denote

~ meas,(G)
"~ meas,(G})’

where meas, denotes the Lebesgue measure on R?. Note that vy, is a probability measure defined
on the family of Lebesgue measurable subsets of G7.

Let Q = {J,e; Gy and I = {k;: j > 0}, where k; < kj; 1, j > 0. Without loss of generality we
may assume that ko = 0. Then E,;1 = J_,(E; U E*). For Lebesgue measurable subsets G of
) we denote

Vk(

=1 1\ ki+1-k; .
&)=Y 5 (1-(3) " ) mal@ndi). (13)
=
We note that vy, (G}, ) = 1, therefore
+o0o —+o0 kj+1 “+o0
1 1\ ki+1—k; . 1 1
Q):Z@@—(g) )ij+1( ba) =D D 5= 22—2

Thus, v is a probability measure defined on measurable subsets of 2. On [0, 1] x € we define
the probability measure Py = P ® v, which is a direct product of the probability measures P
and v. Now for k € I we define

F.={(t,r) € [0,1] x Q: Wy, (r,t) > A1Sn, (1) /2 Ne),
Fe(r)={t €[0,1]: Wy, (r,t) > A1Sn, (1) 1nl/2 No),

where S% (1) = Zﬁ\;f”:() lan[*r*™ and A, is the constant from Lemma 1 with 8 = 1. Using
Fubini’s theorem and Lemma 1 with ¢, = a,r™ and § =1, for k € I we get

Po(Fk):/< / dP)du:/P(Fk(r))du< Niky(m:Nik.

Note that Ny > In?/?™ s (r®)) > k32, Therefore 3", ; Po(Fy) < 3425 k™32 < +00. By
Borel-Cantelli’s lemma the infinite quantity of the events {Fy: k € [ } may occur with the zero
probability. Thus,

+oo
P(F)=1, F={]J () Feclo.1]xQ
s=1k>s,kel
Then for each point (¢,7) € F' there exists kg = ko(t,r) such that for each k > ko, k € I we
have
Wy, (r,t) < A1 Sy, (r) In*/2 Ny (14)
Let P; be a probability measure defined on (£2;,.4;), where A; is a o-algebra of subsets
Q; (j € {1,...,p}) and Fy is the direct product of probability measures Pi,..., P, defined
on (4 x...xQ, A x...xA,). Here A; x ... x A, is the o-algebra, which contains all
Ap x ... x Ay, where A; € A;. If F C Ay x ... x A, such that Py(F) = 1, then in the case
when projection

F = {tl € O (H(tg,...,tp) €y x ... X Qp)[(tl,...,tp) S F]}
of the set F' on )y is Pj-measurable we have P;(F;) = 1.
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By Fn we denote the projection of F' on Q, i.e. Fo = {r € Q: (3)[(t,r) € F|}. Then
v(Fo) = 1. Similarly, the projection of F' on [0,1], Fjo1) = {J,eq F(7), we obtain P(Fjy ) = 1.
Let FA(t) = {r € Q: (t,r) € F}. By Fubini’s theorem we have

0= /(1 — xp)dPy = /1 </(1 - XFA(t))du> dP.

X 0 Q

Hence, P-almost everywhere 0 = [,(1 — xpr)dv = 1 —v(F/\(t)), i.e. 3F, C Fpoqy, P(Fy) =1
such that for each t € F} we get v(F"(t)) = 1.
Indeed, if for some k € I, k = kj41 we obtain v (F"(t) N G}) = ¢ < 1, then

W(FN1) = n(FA1) NG} < f QLk (1 _ (%)’“*"“) _

kel s=0
1 1\ kj+1—k; 1 1\ ki+1—F;
0oy (1-(3) 7 ) =00y (-(5) T ) <

For each t € Fy and k € I we choose a point r(()k) (t) € G; such that

3 e *
W, (16" (£),1) = TMi(t), Mi(t) = sup{W, (1) : 7 € G}

Then from v,(F (t) N GE) = 1 for each k € I it follows that there exists a point r*)(¢) €
G N F"(t) such that

Wi (0 0).8) = Wi, (r00).0)] < 20100

or

sz@) < Wi (r§7 (1), ) < Wi, (/P (2),8) + < M (2).

Since (t,7®)(t)) € F, from inequality we obtain

b 1/246
S ) < W)y (r9) < ) (T~ g ()
i=1

Thus, for t € F} and each k > ky(t), k € I we obtain

P 1/446/2
S (r®) < pp(r @) (T r® g (r)) (16)

It follows from that di(r®) > d(r) for r € Gi. Then for t € Fy, r € F () NG},
kel, k> ko(t) we get

My(rt) < ) anlr" + W () < > ag|r™ + Mi(t).

Inl|>2d (r(3)) Inl|>2d(r)
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Finally, from , (18)), (16) for t € Fy, r € FANt) NGy, k € I and k > ko(t) we obtain
My(r®,8) <pp(r®) +24,Sn, (r) In'/? N,

1/446/2
) X

<pp(r®) + 24,10 (rV) (H L I gy (r )
i=1
. k k
X ((p/2+ 14 62) na(epts (1) + (14 82) D (pny r™ + 21ng79))

=1

Using inequality we get fort € Fy, r€ FMNt)NG;, k€I and k > ko(t)

1/2

1/4+4382/4
My(r,t) < Cug(r (Hlnp ~1np,uf(7’)> . (17)
We choose k1 > ko(t) such that for each r € G}, we have
L 82/4
C < <H [ ,uf(r)> . (18)
i=1

Using and we get that inequality () holds almost surely (¢t € Fy, P(F;) = 1) for
each

r e (U(GZ N FA(t)) N G,;)\E* = ([1,+c0)’ N G,jl) \(E*UG"UE,11) =[1,4+00)" \ Epia,
kel
where
By = Bpa UG UE", G = | (G \ FA().
kel

It remains to observe that v(G*) defined in satisfies v(G*) = >, o, (e(G) — ve(F"(t))) = 0.
Then for each k € I we obtain
meas, (G5 \ F/\(1))

* AN _
G\ () = G
meas, (G \ F"\(t / / dr . =0. O

GIAFA(t)

:0’

3. SOME EXAMPLES

In this section we prove that the exponent p/4 + § in the inequality cannot be replaced
by a number smaller than p/4. Tt follows from such a statement.

Theorem 3. For f(z) = exp{>_"_, z;} almost surely in K(f, H) for r € E we have
1
My(r,t) > Wﬂf@") P/ iy (r),

where E is a set of infinite asymptotically logarithmic measure and H = {e*™r} {w,} is a
sequence of independent random variables uniformly distributed on [0, 1].

In order to prove this theorem we need the following result.

Theorem 4 ([I7]). For the entire function g(z) = e* almost surely in K(g, H) we have

M
B (19)
rotoo fg (1) In/* g (1) 8
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Proof of Theorem 3. For the entire function f(z) = exp{)_}_, z;} we have InM;(r) =" r;

and for each § > 0 we get
dry ...
Y s R
T1e.rp(ri . 4 1p)P

(1+00)7

Therefore, function f(z) satisfies condition (4. From (19)) we have for r € (rg, +00)P

My(r,t) >—pf Hlnl/ Lg (7).

Denote t(r) = In p14(r). Note that
Ay ={rim =tiri € (ti,t2) = (7 (¥(r1)/2), 07 (29(1)))}

P 1 »
C{r: 2111/1(7“1) = (ap)y (Zzl w(m)) }
Indeed, if r € A;, for fixed r; we obtain

[T =vir sz > p(r) HM o)

1=

hS]

T ) 200 4 20 > (Y wr)]

Forre A= Ut A; we get

Myr,8) > o) [T ) > )

2p (i lnﬂg(ri)>p/4> ! (r) P/ pup (r).

1
(8p)r (8p)P

It remains to prove that the set A has infinite asymptotically logarithmic measure. It is known
[TT] that t < ~1(t) < 3t/2, t — +oo. Therefore,

+oo t2 +oo , t2 p—1
d?”l d?"g d’l"l
measp —_— —_—
T2 1

Fiowrmor- iy
e 1 too
> / (ln(2¢(r1)) - ln(gwyl)>>p dr_il = In?! ; : dr—:l = 400.
0
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