
ISSN 2304-0122 Ufa Mathematical Journal. Volume 6. No 2 (2014). Pp. 66-76.

UDC 517.956.25

BOUNDEDNESS OF SOLUTIONS TO ANISOTROPIC

SECOND ORDER ELLIPTIC EQUATIONS

IN UNBOUNDED DOMAINS

L.M. KOZHEVNIKOVA, A.A. KHADZHI

Abstract. In the paper we study a class of anisotropic second order elliptic equations
represented by the model equation

𝑛∑︁
𝛼=1

(|𝑢𝑥𝛼 |𝑝𝛼−2𝑢𝑥𝛼)𝑥𝛼 =

𝑛∑︁
𝛼=1

(Φ𝛼(x))𝑥𝛼
, 𝑝𝑛 > . . . > 𝑝1 > 1.

We prove the boundedness of solutions to the homogeneous Dirichlet problem in unbounded
domains located along one of the coordinate axes. We also establish an estimate for the
solutions to the considered equations with a compactly supported right hand side that
ensures a power decay of the solutions at infinity.

Keywords: Dirichlet problem, anisotropic elliptic equation, unbounded domain, bound-
edness of solutions, decay of solution.
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1. Introduction

Let Ω be an arbitrary unbounded domain in the space R𝑛 = {x = (𝑥1, 𝑥2, ..., 𝑥𝑛)}, Ω ⊆ R𝑛,
𝑛 > 2. We consider the Dirichlet problem for an anisotropic quasilinear second order elliptic
equation

𝑛∑︁
𝛼=1

(𝑎𝛼(x,∇𝑢))𝑥𝛼 =
𝑛∑︁

𝛼=1

(Φ𝛼(x))𝑥𝛼
, x ∈ Ω; (1)

𝑢
⃒⃒⃒
𝜕Ω

= 0. (2)

We assume that functions 𝑎𝛼(x, 𝜉), 𝛼 = 1, 𝑛, are measurable w.r.t. x ∈ Ω for 𝜉 ∈ R𝑛

and continuous w.r.t. 𝜉 ∈ R𝑛 for a.e. x ∈ Ω. Let p = (𝑝1, 𝑝2, ..., 𝑝𝑛); we suppose that
1 < 𝑝1 6 𝑝2 6 ... 6 𝑝𝑛 and there exists positive numbers 𝑎, ̂︀𝑎 such that for each 𝜉, 𝜂 ∈ R𝑛 and
a.e. x ∈ Ω the conditions

𝑛∑︁
𝛼=1

(𝑎𝛼(x, 𝜉) − 𝑎𝛼(x, 𝜂)) (𝜉𝛼 − 𝜂𝛼) > 𝑎
𝑛∑︁

𝛼=1

|𝜉𝛼 − 𝜂𝛼|𝑝𝛼 ; (3)

|𝑎𝛼(x, 𝜉) − 𝑎𝛼(x, 𝜂)| 6 ̂︀𝑎|𝜉𝛼 − 𝜂𝛼| (|𝜉𝛼| + |𝜂𝛼|)𝑝𝛼−2 , 𝛼 = 1, 2, . . . , 𝑛; (4)

𝑎𝛼(x,0) = 0, 𝛼 = 1, 2, . . . , 𝑛, (5)

are satisfied.

L.M. Kozhevnikova, A.A. Khadzhi, Boundedness of solutions to anisotropic second order
elliptic equations in unbounded domains.
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I.M. Kolodii [1] established the boundedness of solutions to some class of anisotropic elliptic
equations in bounded domains. At that, the boundedness of the domain was essential in his
proof. The main result of the present paper is the proof of the boundedness for the generalized
solutions to problem (1), (2) in unbounded domains Ω.

We suppose that Φ𝛼(x) ∈ 𝐿𝑝𝛼/(𝑝𝛼−1)(Ω), 𝛼 = 1, 2, . . . , 𝑛. The generalized solution to problem
(1), (2) is treated in a “narrow” sense, i.e., as an element in appropriate anisotropic Sobolev

space
∘
𝐻 1

p(Ω) introduced as the completion of the space 𝐶∞
0 (Ω) w.r.t. the norm ‖𝑣‖ ∘

𝐻1
p(Ω)

=
𝑛∑︀

𝛼=1

‖𝑣𝑥𝛼‖𝐿𝑝𝛼 (Ω) (the definition of the latter is given in Section 2).

In the paper we consider domains located along a selected axis 𝑂𝑥𝑠, 𝑠 = 1, 𝑛 (domain Ω lies
in the half-space 𝑥𝑠 > 0 and the cross-section 𝛾𝑟 = {x ∈ Ω | 𝑥𝑠 = 𝑟} is non-empty for each
𝑟 > 0).

We introduce the notation: Ω𝑏
𝑎 = {x ∈ Ω

⃒⃒⃒
𝑎 < 𝑥𝑠 < 𝑏}, values 𝑎 = 0, 𝑏 = ∞ can be omitted.

Let 𝑃 = 𝑛

(︂
−1 +

𝑛∑︀
𝛼=1

1/𝑝𝛼

)︂−1

, 𝑀 = 𝑝𝑠(𝑃 − 𝑝𝑠)
−1, 𝐾 =

𝑛∑︀
𝛼=1

1/𝑝𝛼

(︁
− 1 +

𝑛∑︀
𝛼=1

1/𝑝𝛼

)︁−1

.

Theorem 1. Let 𝑢(x) be a generalized solution to problem (1), (2) with

supp Φ𝛼 ⊂ Ω𝑅0 , 𝑅0 > 0, 𝛼 = 1, 2, . . . , 𝑛, (6)

and conditions (3)—(5) are satisfied as well as

1 <
𝑛∑︁

𝛼=1

1

𝑝𝛼
< 1 +

𝑛

𝑝𝑠
. (7)

Then for 𝑅 > 2𝑅0/𝜀, 𝜀 ∈ (0, 1), the inequality

vrai max
Ω𝑅

𝜀𝑅

|𝑢(x)| 6
̃︀𝐶

𝑅𝑀
(8)

holds true, where ̃︀𝐶 is a positive constant depending on 𝑝𝛼, 𝑛, 𝑎,̂︀𝑎, ‖Φ𝛼‖𝑝𝛼/(𝑝𝛼−1).

Example 1. Let 𝑝𝛼 = 𝑝, 𝛼 = 1, 2, . . . , 𝑛. In the ball 𝐵1 of radius 1 centered at the origin
we consider the function 𝑢(x) = ln 𝑟, 𝑟 = |x|. It is an unbounded solution to equation (1)
with Φ𝛼(x) = |𝑢𝑥𝛼|𝑝−2𝑢𝑥𝛼 ∈ 𝐿𝑝/(𝑝−1), 𝑝 < 𝑛. Thus, even in the isotropic case the belongings
Φ𝛼(x) ∈ 𝐿𝑝/(𝑝−1), 𝛼 = 1, 2, . . . , 𝑛, are insufficient for the boundedness of solutions.

In the next theorem we prove the boundedness of a solution to problem (1), (2) (Ω is un-
bounded) in Ω𝑅1 for arbitrary 𝑅1 > 0 under the assumption of higher summability of functions
Φ𝛼(x) (in particular, they can be bounded).

Theorem 2. Let 𝑢(x) be a generalized solution to problem (1), (2) with functions Φ𝛼(x)
such that for each 𝑟 > 0

Φ𝛼(x) ∈ 𝐿𝑘𝛼(Ω𝑟), 𝑘𝛼 =
𝑝𝛼𝑙

(𝑝𝛼 − 1)(𝑙 − 1)
, 𝛼 = 1, 2, . . . , 𝑛, (9)

1 6 𝑙 < min

(︂
𝐾,

𝑃

𝑝𝑠

)︂
, (10)

and conditions (3)–(5) are obeyed with exponents 𝑝𝛼 such that

1 <

𝑛∑︁
𝛼=1

1

𝑝𝛼
< 1 + min

{︂
𝑛

𝑙𝑝𝑠
,

1

𝑙 − 1

}︂
. (11)
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Then for each 𝑅1 > 0 the estimate

vrai max
Ω𝑅1

|𝑢(x)| 6 𝐶 (12)

holds true, where 𝐶 is a positive constant depending on 𝑝𝛼, 𝑛, 𝑙, 𝑎, ̂︀𝑎, 𝑅1, mes Ω2𝑅1 , ‖Φ𝛼‖𝑘𝛼,Ω2𝑅1 .

Example 2. Let 𝑝1 < 𝑝𝑛 < 𝑝1
𝑛∑︀

𝛼=1

1/𝑝𝛼. In the ball 𝐵1 we consider the function 𝑢(x) = 𝑟−𝐴,

𝑟 = |x|, 𝐴 = 𝑛

𝑝1
𝑛∑︀

𝛼=1
1/𝑝𝛼

− 1 > 0. It is an unbounded solution to equation (1) with functions

Φ𝑠(x) = |𝑢𝑥𝑠|𝑝𝑠−2𝑢𝑥𝑠 , 𝑠 = 1, 2, . . . , 𝑛. It is easy to check that functions Φ𝑠(x) are 𝑟𝑠-power
integrable functions in the ball 𝐵1, and this exponent is less than 𝑛

(𝐴+1)(𝑝𝑠−1)
, while the exponents

𝑘𝑠 in Theorem 2 are greater than 𝑝𝑠
𝑝𝑠−1

𝑛∑︀
𝛼=1

1/𝑝𝛼. Since 𝑟𝑠 <
𝑝1

𝑛∑︀
𝛼=1

1/𝑝𝛼

(𝑝𝑠−1)
6 𝑘𝑠, 𝑠 = 1, 2, . . . , 𝑛, we

can state that the lower bound of the integrability exponents 𝑘𝑠 for functions Φ𝑠 is close to the
lowest possible.

In [2] the authors obtained the estimates for the decay at infinity of solution to anisotropic
elliptic equations subject to the geometry of unbounded domain Ω located along a selected axis;
this was done for bounded solutions. However, the boundedness left unproven. The main aim
of the present paper is the proof of global boundedness for a generalize solutions to problem
(1), (2). It is sure that for an isotropic equations one can omit the restriction for the class of
considered domains, but in the case of anisotropic equations it leads one to substantial technical
difficulties in the proof of estimate (8). Estimate (12) can be obtained for arbitrary unbounded
domains with a non-compact boundary. But here we provide its proof for domains located
along a selected axis for the consistency with estimate (8). A corollary of Theorems 1, 2 is

Theorem 3. Suppose that conditions (3)—(5), (11) hold true. Then a generalized solution
to problem (1), (2) 𝑢(x) with functions Φ𝛼(x), 𝛼 = 1, 𝑛, satisfying (6), (9), satisfies the estimate

sup
Ω

|𝑢| 6 𝐶,

where 𝐶 is a constant depending on 𝑝𝛼, 𝑛, 𝑎, ̂︀𝑎, ‖Φ𝛼‖𝑘𝛼 , 𝑅0, mes Ω4𝑅0, 𝑙.

2. Auxiliary statements

We denote by ‖ · ‖𝑝 the norm in the space 𝐿𝑝(Ω). Let us provide an embedding theorem for
the anisotropic Sobolev space implying that ‖ · ‖ ∘

𝐻1
p(Ω)

is a norm.

Lemma 1. Let 𝑢(x) ∈
∘
𝐻 1

p(Ω) and

𝑛∑︁
𝛼=1

1/𝑝𝛼 > 1, (13)

Then 𝑢(x) ∈ 𝐿𝑃 (Ω), where 𝑃 = 𝑛

(︂
−1 +

𝑛∑︀
𝛼=1

1/𝑝𝛼

)︂−1

, and

‖𝑢‖𝑃 6 𝐴1

𝑛∑︁
𝛼=1

‖𝑢𝑥𝛼‖𝑝𝛼 , (14)

Here𝐴1 is a constant depending on 𝑝𝛼, 𝑛 (see [3], [4]).
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Definition 1. A generalized solution to problem (1), (2) with Φ𝛼(x) ∈ 𝐿𝑝𝛼/(𝑝𝛼−1)(Ω),

𝛼 = 1, 2, . . . , 𝑛, is a function 𝑢(x) ∈
∘
𝐻 1

p(Ω) obeying the integral identity∫︁
Ω

𝐿(𝑢, 𝑣)𝑑x ≡
∫︁
Ω

𝑛∑︁
𝛼=1

(𝑎𝛼(x,∇𝑢) − Φ𝛼) 𝑣𝑥𝛼𝑑x = 0 (15)

for each function 𝑣(x) ∈
∘
𝐻 1

p(Ω).

Theorem 4. Suppose that conditions (3)–(5) are satisfied. Then there exists the unique gen-
eralized solution 𝑢(x) to problem (1), (2) with functions Φ𝛼(x) ∈ 𝐿𝑝𝛼/(𝑝𝛼−1)(Ω), 𝛼 = 1, 2, . . . , 𝑛,
and the estimate

𝑛∑︁
𝛼=1

‖𝑢𝑥𝛼‖𝑝𝛼𝑝𝛼 6 𝐴2

𝑛∑︁
𝛼=1

‖Φ𝛼‖𝑝𝛼/(𝑝𝛼−1)
𝑝𝛼/(𝑝𝛼−1) (16)

is valid, where 𝐴2 is constant depending on 𝑎, ̂︀𝑎, 𝑝𝛼.
The proof of the existence is made by Galerkin’s approximations.

Lemma 2. As 0 6 𝑎 < 𝑏, a function 𝑢(x) ∈
∘
𝐻1

p(Ω) satisfies the inequality

1

𝑏
‖𝑢‖𝑝𝑠,Ω𝑏

𝑎
6

𝑝𝑠
𝑝𝑠 − 1

‖𝑢𝑥𝑠‖𝑝𝑠 (17)

(see [5, Ineq. (73)]).

Lemma 3. Let 𝑢(x) ∈
∘
𝐻1

p(𝐷) and

𝑛∑︁
𝛼=1

∫︁
𝐷

|𝑢|𝑞𝛼 |𝑢𝑥𝛼|𝑝𝛼𝑑x < ∞, 𝑞𝛼 > 0, 𝑝𝛼 > 1, 𝛼 = 1, 2, . . . , 𝑛.

If condition (13) is satisfied, then 𝑢(x) ∈ 𝐿𝑄(𝐷) as 𝑄 =
𝑛∑︀

𝛼=1

(︁
1 + 𝑞𝛼/𝑝𝛼

)︁(︁
− 1 +

𝑛∑︀
𝛼=1

1/𝑝𝛼

)︁−1

,

and the estimate

‖𝑢‖𝑄,𝐷 6 𝐴3

⎛⎝ 𝑛∑︁
𝛼=1

∫︁
𝐷

|𝑢|𝑞𝛼|𝑢𝑥𝛼|𝑝𝛼𝑑x

⎞⎠𝐾/𝑄

(18)

is valid, where 𝐾 =
𝑛∑︀

𝛼=1

1/𝑝𝛼

(︁
− 1 +

𝑛∑︀
𝛼=1

1/𝑝𝛼

)︁−1

, 𝐴3 is a constant depending on 𝑛, 𝑞𝛼, 𝑝𝛼 (see

[3], [6], [7]).

Remark. It was shown by V.S. Klimov in [8] that inequality (18) is valid also for functions
“vanishing on a rather massive subset of Ω”. In particular, it is true as 𝐷 = Ω𝑟, 𝑟 > 0, for

functions 𝑢(x) ∈
∘
𝐻1

p(Ω).

3. Proof of Theorems 1, 2

The proofs of Theorems 1 and 2 are based on the iterative method suggested by Yu. Moser
[9] and widely used in works by S.N. Kruzhkov [10], [4], D. Serrin [11], I.M. Kolodii [1].

We let 𝑢(x) = |𝑢(x)| + 𝜒, 𝜒 > 0, and |𝑢𝑥𝛼| = |𝑢𝑥𝛼|. For fixed numbers 𝑞 > 1 and 𝜇 > 𝜒 we
define the functions

𝐹 (𝑢) =

{︃
𝑢𝑞 if 𝜒 6 𝑢 6 𝜇,

𝑞𝜇𝑞−1𝑢− (𝑞 − 1)𝜇𝑞 if 𝜇 < 𝑢,

𝐺(𝑢) = {𝐹 (𝑢)𝐹 ′(𝑢)𝑝𝑠−1 − 𝜒𝑞𝑝𝑠−𝑝𝑠+1𝑞𝑝𝑠−1} sign𝑢, −∞ < 𝑢 < ∞.
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A.e. on the set {x : 𝑢 ̸= 𝜇} we have

0 6 𝐺′(𝑢) =

⎧⎨⎩
𝑝𝑠𝑞 − 𝑝𝑠 + 1

𝑞
𝐹 ′(𝑢)𝑝𝑠 if 𝑢 6 𝜇,

𝐹 ′(𝑢)𝑝𝑠 if 𝜇 < 𝑢.

The inequalities

𝑝𝑠𝐹
′(𝑢)𝑝𝑠 > 𝐺′(𝑢) > 𝐹 ′(𝑢)𝑝𝑠 , |𝐺(𝑢)| 6 𝐹 (𝑢)𝐹 ′(𝑢)𝑝𝑠−1, (19)

𝐹 (𝑢) 6 𝑢𝑞, 𝐹 ′(𝑢) 6 𝑞𝑢𝑞−1 (20)

hold true.

Proof of Theorem 1. Let 𝜂(𝑥𝑠) be a non-negative Lipschitz function with the support in [𝜌 −
𝜎, ̂︀𝜌 + ̂︀𝜎] ⊂ [𝜀𝑅/2, 2𝑅], 𝜀 ∈ (0, 1), such that

𝜂(𝑥𝑠) =

⎧⎨⎩ 1, 𝑥𝑠 ∈ [𝜌, ̂︀𝜌],
0, 𝑥𝑠 /∈ (𝜌− 𝜎, ̂︀𝜌 + ̂︀𝜎),
linear, 𝑥𝑠 ∈ [𝜌− 𝜎, 𝜌) ∪ (̂︀𝜌, ̂︀𝜌 + ̂︀𝜎].

We let 𝑣(x) = 𝜂𝑝𝑠𝐺(𝑢) ∈
∘
𝐻1

p(Ω), 𝜒 = 0. A.e. on the set {x : |𝑢| ≠ 𝜇} we have

𝑣𝑥𝛼 = 𝜂𝑝𝑠𝐺′(𝑢)𝑢𝑥𝛼 + 𝑝𝑠𝜂
𝑝𝑠−1𝐺(𝑢)𝜂𝑥𝛼 , 𝛼 = 1, 2, . . . , 𝑛.

Employing (19), (6), we find

𝐿(𝑢, 𝑣) =
𝑛∑︁

𝛼=1

(𝑎𝛼(x,∇𝑢) − Φ𝛼)(𝑝𝑠𝜂
𝑝𝑠−1𝐺(𝑢)𝜂𝑥𝛼 + 𝜂𝑝𝑠𝐺′(𝑢)𝑢𝑥𝛼)

>𝜂𝑝𝑠𝐹 ′(|𝑢|)𝑝𝑠
𝑛∑︁

𝛼=1

𝑎𝛼(x,∇𝑢)𝑢𝑥𝛼 − 𝑝𝑠𝜂
𝑝𝑠−1|𝜂𝑥𝑠|𝐹 (|𝑢|)𝐹 ′(|𝑢|)𝑝𝑠−1|𝑎𝑠(x,∇𝑢)|.

By conditions (3)–(5), we obtain

𝐿(𝑢, 𝑣) > 𝑎𝜂𝑝𝑠𝐹 ′(|𝑢|)𝑝𝑠
𝑛∑︁

𝛼=1

|𝑢𝑥𝛼|𝑝𝛼 − ̂︀𝑎𝑝𝑠𝜂𝑝𝑠−1𝐹 (|𝑢|)𝐹 ′(|𝑢|)𝑝𝑠−1|𝜂𝑥𝑠||𝑢𝑥𝑠|𝑝𝑠−1. (21)

Integrating (21) over x ∈ Ω and taking into consideration definition (15), we get∫︁
Ω

𝜂𝑝𝑠𝐹 ′(|𝑢|)𝑝𝑠
𝑛∑︁

𝛼=1

|𝑢𝑥𝛼 |𝑝𝛼𝑑x 6 𝐶1

∫︁
Ω

𝐹 (|𝑢|)𝐹 ′(|𝑢|)𝑝𝑠−1𝜂𝑝𝑠−1|𝜂𝑥𝑠||𝑢𝑥𝑠|𝑝𝑠−1𝑑x.

Young inequality implies∫︁
Ω

𝜂𝑝𝑠𝐹 ′(|𝑢|)𝑝𝑠
𝑛∑︁

𝛼=1

|𝑢𝑥𝛼|𝑝𝛼𝑑x 6
1

2

∫︁
Ω

𝜂𝑝𝑠𝐹 ′(|𝑢|)𝑝𝑠|𝑢𝑥𝑠 |𝑝𝑠𝑑x + 𝐶2

∫︁
Ω

𝐹 (|𝑢|)𝑝𝑠|𝜂𝑥𝑠 |𝑝𝑠𝑑x.

It follows from (20) that

𝑞𝑝𝑠
∫︁

{𝑥∈Ω:|𝑢|6𝜇}

𝜂𝑝𝑠|𝑢|(𝑞−1)𝑝𝑠

𝑛∑︁
𝛼=1

|𝑢𝑥𝛼|𝑝𝛼𝑑x 6
∫︁
Ω

𝜂𝑝𝑠𝐹 ′(|𝑢|)𝑝𝑠
𝑛∑︁

𝛼=1

|𝑢𝑥𝛼 |𝑝𝛼𝑑x

6𝐶3

∫︁
Ω

|𝑢|𝑞𝑝𝑠|𝜂𝑥𝑠|𝑝𝑠𝑑x.
(22)
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Assume that the right hand side of (22) is finite. We let 𝜇 tend to infinity in the left hand side
of (22) and apply Fatou lemma∫︁

Ω

𝜂𝑝𝑠|𝑢|𝑝𝑠(𝑞−1)

𝑛∑︁
𝛼=1

|𝑢𝑥𝛼|𝑝𝛼𝑑x 6
𝐶3

𝑞𝑝𝑠

∫︁
Ω

|𝑢|𝑞𝑝𝑠|𝜂𝑥𝑠|𝑝𝑠𝑑x. (23)

We obtain a chain of inequalities∑︁
𝛼 ̸=𝑠

∫︁
Ω

(︁
|𝑢|𝜂𝑝𝑠/𝑝1

)︁𝑝𝑠(𝑞−1)

|(𝑢𝜂𝑝𝑠/𝑝1)𝑥𝛼|𝑝𝛼𝑑x +

∫︁
Ω

(︁
|𝑢|𝜂𝑝𝑠/𝑝1

)︁𝑝𝑠(𝑞−1)

|(𝑢𝜂𝑝𝑠/𝑝1)𝑥𝑠|𝑝𝑠𝑑x

=
∑︁
𝛼 ̸=𝑠

∫︁
Ω

|𝑢|𝑝𝑠(𝑞−1)|𝑢𝑥𝛼 |𝑝𝛼𝜂𝑝𝑠/𝑝1[𝑝𝑠(𝑞−1)+𝑝𝛼]𝑑x

+

∫︁
Ω

𝜂𝑝
2
𝑠(𝑞−1)/𝑝1|𝑢|𝑝𝑠(𝑞−1)|𝑢𝑥𝑠𝜂

𝑝𝑠/𝑝1 +
𝑝𝑠
𝑝1
𝑢𝜂𝑝𝑠/𝑝1−1𝜂𝑥𝑠|𝑝𝑠𝑑x

6
∑︁
𝛼 ̸=𝑠

∫︁
Ω

|𝑢|𝑝𝑠(𝑞−1)|𝑢𝑥𝛼 |𝑝𝛼𝜂𝑝𝑠/𝑝1[𝑝𝑠(𝑞−1)+𝑝𝛼]𝑑x

+ 𝐶4

∫︁
Ω

𝜂𝑝
2
𝑠𝑞/𝑝1|𝑢|𝑝𝑠(𝑞−1)|𝑢𝑥𝑠|𝑝𝑠𝑑x + 𝐶4

∫︁
Ω

𝜂𝑝𝑠[𝑞𝑝𝑠/𝑝1−1]|𝜂𝑥𝑠 |𝑝𝑠|𝑢|𝑝𝑠𝑞𝑑x

6 𝐶5

𝑛∑︁
𝛼=1

∫︁
Ω

|𝑢|𝑝𝑠(𝑞−1)|𝑢𝑥𝛼|𝑝𝛼𝜂𝑝𝑠[𝑝𝑠(𝑞−1)+𝑝𝛼]/𝑝1𝑑x + 𝐶4

∫︁
Ω

|𝑢|𝑝𝑠𝑞𝜂𝑝𝑠[𝑞𝑝𝑠−𝑝1]/𝑝1 |𝜂𝑥𝑠|𝑝𝑠𝑑x.

Since 0 6 𝜂(𝑥𝑠) 6 1, we apply (23) to get

𝑛∑︁
𝛼=1

∫︁
Ω

|𝑢𝜂𝑝𝑠/𝑝1|𝑝𝑠(𝑞−1)|(𝑢𝜂𝑝𝑠/𝑝1)𝑥𝛼|𝑝𝛼𝑑x

6 𝐶5

𝑛∑︁
𝛼=1

∫︁
Ω

|𝑢|𝑝𝑠(𝑞−1)|𝑢𝑥𝛼|𝑝𝛼𝜂𝑝𝑠𝑑x + 𝐶4

∫︁
Ω

|𝑢|𝑝𝑠𝑞|𝜂𝑥𝑠|𝑝𝑠𝑑x 6 𝐶6

∫︁
Ω

|𝑢|𝑞𝑝𝑠|𝜂𝑥𝑠|𝑝𝑠𝑑x.
(24)

It follows from Lemma 3 for 𝑞𝛼 = 𝑝𝑠(𝑞 − 1), 𝛼 = 1, 2, . . . , 𝑛, that

𝑄 =

(︃
𝑛 + 𝑝𝑠(𝑞 − 1)

𝑛∑︁
𝛼=1

1/𝑝𝛼

)︃(︃
𝑛∑︁

𝛼=1

1/𝑝𝛼 − 1

)︃−1

= 𝑃 + 𝑝𝑠(𝑞 − 1)𝐾.

Then (18) and (24) yield⎛⎝∫︁
Ω

|𝜂𝑝𝑠/𝑝1𝑢|𝑃+𝑝𝑠(𝑞−1)𝐾𝑑x

⎞⎠1/𝐾

6 𝐶7

∫︁
Ω

|𝑢|𝑞𝑝𝑠|𝜂𝑥𝑠|𝑝𝑠𝑑x. (25)

Let ℎ = 𝑝𝑠(𝑞 − 1) + 𝜃, 𝜏 = 𝑃 − 𝐾𝜃 = 𝑝𝑠 − 𝜃, where 𝜃 = (𝑃 − 𝑝𝑠)/(𝐾 − 1). Then
𝜏 + 𝐾ℎ = 𝑃 + 𝐾𝑝𝑠(𝑞 − 1), 𝜏 + ℎ = 𝑝𝑠𝑞. In view of (13), 𝐾 > 1, it follows from condition (7)
that 𝜃 > 0.

We let ̂︀𝜌 + ̂︀𝜎 = ̂︀𝜌𝜈 = (1 + 2−𝜈)𝑅, ̂︀𝜌 = ̂︀𝜌𝜈+1 = (1 + 2−𝜈−1)𝑅, 𝜌 − 𝜎 = 𝜌𝜈 = (1 − 2−𝜈−1)𝜀𝑅,
𝜌 = 𝜌𝜈+1 = (1 − 2−𝜈−2)𝜀𝑅, ̂︀𝜎 = 𝑅2−𝜈−1, 𝜎 = 𝜀𝑅2−𝜈−2.
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By (25) we obtain⎛⎜⎜⎝∫︁
Ω̂︀𝜌

𝜌

|𝑢|𝜏+𝐾ℎ𝑑x

⎞⎟⎟⎠
1/(𝐾ℎ)

6
𝐶7

1/ℎ

(min(𝜎, ̂︀𝜎))𝑝𝑠/ℎ

⎛⎜⎜⎝ ∫︁
Ω̂︀𝜌+̂︀𝜎

𝜌−𝜎

|𝑢|𝜏+ℎ𝑑x

⎞⎟⎟⎠
1/ℎ

.

We let ℎ = 𝜃𝐾𝜈 , 𝜈 = 0, 1, 2, ..., then⎛⎜⎜⎜⎝
∫︁

Ω
̂︀𝜌𝜈+1
𝜌𝜈+1

|𝑢|𝜏+𝜃𝐾𝜈+1

𝑑x

⎞⎟⎟⎟⎠
1/(𝜃𝐾𝜈+1)

6
𝐶8

1/(𝜃𝐾𝜈)2𝑝𝑠(𝜈+1)/(𝐾𝜈𝜃)

(𝜀𝑅)𝑝𝑠/(𝐾𝜈𝜃)

⎛⎜⎜⎝∫︁
Ω̂︀𝜌𝜈

𝜌𝜈

|𝑢|𝜏+𝜃𝐾𝜈

𝑑x

⎞⎟⎟⎠
1/(𝜃𝐾𝜈)

.

Denoting

Θ𝜈 =

⎛⎜⎜⎝∫︁
Ω̂︀𝜌𝜈

𝜌𝜈

|𝑢|𝜏+𝜃𝐾𝜈

𝑑x

⎞⎟⎟⎠
1/(𝜃𝐾𝜈)

,

we get the inequality

Θ𝜈+1 6
𝐶8

1/(𝐾𝜈𝜃)2𝑝𝑠(𝜈+1)/(𝐾𝜈𝜃)

(𝜀𝑅)𝑝𝑠/(𝐾𝜈𝜃)
Θ𝜈 , 𝜈 = 0, 1, 2, ....

For 𝜈 = 0 we have ℎ = 𝜃, 𝑞 = 1 and

Θ1 6
𝐶8

1/𝜃2𝑝𝑠/𝜃

(𝜀𝑅)𝑝𝑠/𝜃
Θ0.

Hence,

Θ𝜈+1 6
𝐶8

1/𝜃
∞∑︀

𝜈=0
1/𝐾𝜈

2
𝑝𝑠/𝜃

∞∑︀
𝜈=0

(𝜈+1)/𝐾𝜈

(𝜀𝑅)
𝑝𝑠/𝜃

∞∑︀
𝜈=0

1/𝐾𝜈

Θ0.

Passing to the limit 𝜈 → ∞, we obtain

sup
Ω𝑅

𝜀𝑅

|𝑢(x)| 6 𝐶9

(𝜀𝑅)𝑝𝑠𝐾/(𝜃(𝐾−1))

⎛⎜⎜⎝ ∫︁
Ω2𝑅

𝜀𝑅/2

|𝑢(x)|𝑝𝑠𝑑x

⎞⎟⎟⎠
1/𝜃

. (26)

In accordance with Corollary 1 and employing (16), we have⎛⎜⎜⎝ ∫︁
Ω2𝑅

𝜀𝑅/2

|𝑢|𝑝𝑠𝑑x

⎞⎟⎟⎠
1/𝜃

6 𝐶10𝑅
𝑝𝑠/𝜃

⎛⎝∫︁
Ω

|𝑢𝑥𝑠|𝑝𝑠𝑑x

⎞⎠1/𝜃

6 𝐶11𝑅
𝑝𝑠/𝜃. (27)

Combining (26), (27), we finally get

sup
Ω𝑅

𝜀𝑅

|𝑢| 6 𝐶12
𝑅𝑝𝑠/𝜃

(𝜀𝑅)𝑝𝑠𝐾/(𝜃(𝐾−1))
=

𝐶12

𝑅𝑝𝑠/(𝜃(𝐾−1))𝜀𝑝𝑠𝐾/(𝜃(𝐾−1))
=

𝐶12

(𝑅𝜀𝐾)𝑀
(28)

that implies estimate (8).
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Corollary 1. The generalized solution 𝑢(x) to problem (1), (2) with functions Φ𝛼,
𝛼 = 0, 1, 2, ..., 𝑛, obeying (6), under the hypothesis of Theorem 1 satisfies the estimate

sup
Ω2𝑅0

|𝑢| 6 ̂︀𝐶, (29)

where ̂︀𝐶 is a constant independent of 𝑝𝛼, 𝑛, 𝑎,̂︀𝑎, ‖Φ𝛼‖𝑝𝛼/(𝑝𝛼−1), 𝑅0.

Proof. In (28) we let 𝜀 = 1/2, 𝑅 = 𝑟𝑘 = 2𝑘+1𝑅0, 𝑘 = 1, 2, .., that lead us to the inequalities

sup
Ω

𝑟𝑘
𝑟𝑘/2

|𝑢| 6 𝐶132
(𝐾−𝑘)𝑀 6 ̂︀𝐶, 𝑘 = 1, 2, ..,

implying (29).

Proof of Theorem 2. The proof is similar to that of Theorem 1. However, there are some
differences in construction of cut-off functions and estimates related with Φ𝛼, 𝛼 = 1, 𝑛, and
thus we provide it in all detail.

Let 𝜂(𝑥𝑠) be non-negative Lipschitz function with a support in (−∞, 𝜌 + 𝜎), 𝜌 + 𝜎 6 2𝑅1,
such that

𝜂(𝑥𝑠) =

⎧⎨⎩ 1, 𝑥𝑠 ∈ (−∞, 𝜌],
0, 𝑥𝑠 ∈ [𝜌 + 𝜎,+∞),
linear, 𝑥𝑠 ∈ (𝜌, 𝜌 + 𝜎).

We let 𝑣(x) = 𝜂𝑝𝑠𝐺(𝑢) ∈
∘
𝐻1

p(Ω), 𝜒 = 1. Employing (19), we find

𝐿(𝑢, 𝑣) =
𝑛∑︁

𝛼=1

(𝑎𝛼(x,∇𝑢) + Φ𝛼)(𝑝𝑠𝜂
𝑝𝑠−1𝐺(𝑢)𝜂𝑥𝛼 + 𝜂𝑝𝑠𝐺′(𝑢)𝑢𝑥𝛼)

>𝜂𝑝𝑠𝐹 ′(𝑢)𝑝𝑠
𝑛∑︁

𝛼=1

𝑎𝛼(x,∇𝑢)𝑢𝑥𝛼 − 𝑝𝑠𝜂
𝑝𝑠𝐹 ′(𝑢)𝑝𝑠

𝑛∑︁
𝛼=1

|Φ𝛼||𝑢𝑥𝛼 |

− 𝑝𝑠𝜂
𝑝𝑠−1|𝜂𝑥𝑠|𝐹 (𝑢)𝐹 ′(𝑢)𝑝𝑠−1|𝑎𝑠(x,∇𝑢)| − 𝑝𝑠𝜂

𝑝𝑠−1|𝜂𝑥𝑠 |𝐹 (𝑢)𝐹 ′(𝑢)𝑝𝑠−1|Φ𝑠|.
Employing conditions (3)–(5), we obtain

𝐿(𝑢, 𝑣) >𝑎𝜂𝑝𝑠𝐹 ′(𝑢)𝑝𝑠
𝑛∑︁

𝛼=1

|𝑢𝑥𝛼|𝑝𝛼 − ̂︀𝑎𝑝𝑠𝜂𝑝𝑠−1𝐹 (𝑢)𝐹 ′(𝑢)𝑝𝑠−1|𝜂𝑥𝑠||𝑢𝑥𝑠|𝑝𝑠−1

− 𝑝𝑠𝜂
𝑝𝑠𝐹 ′(𝑢)𝑝𝑠

𝑛∑︁
𝛼=1

|Φ𝛼||𝑢𝑥𝛼| − 𝑝𝑠𝜂
𝑝𝑠−1𝐹 (𝑢)𝐹 ′(𝑢)𝑝𝑠−1|𝜂𝑥𝑠||Φ𝑠|.

(30)

We integrate (30) over x ∈ Ω and in view of (15), we obtain∫︁
Ω

𝜂𝑝𝑠𝐹 ′(𝑢)𝑝𝑠
𝑛∑︁

𝛼=1

|𝑢𝑥𝛼|𝑝𝛼𝑑x 6𝐶1

∫︁
Ω

𝐹 (𝑢)𝐹 ′(𝑢)𝑝𝑠−1𝜂𝑝𝑠−1|𝜂𝑥𝑠|
(︀
|𝑢𝑥𝑠|𝑝𝑠−1 + |Φ𝑠|

)︀
𝑑x

+ 𝐶1

∫︁
Ω

𝜂𝑝𝑠𝐹 ′(𝑢)𝑝𝑠
𝑛∑︁

𝛼=1

|Φ𝛼||𝑢𝑥𝛼|𝑑x.

Applying Young inequality, we get∫︁
Ω

𝜂𝑝𝑠𝐹 ′(𝑢)𝑝𝑠
𝑛∑︁

𝛼=1

|𝑢𝑥𝛼|𝑝𝛼𝑑x 6
1

2

𝑛∑︁
𝛼=1

∫︁
Ω

𝜂𝑝𝑠𝐹 ′(𝑢)𝑝𝑠|𝑢𝑥𝛼|𝑝𝛼𝑑x

+ 𝐶2

∫︁
Ω

𝐹 (𝑢)𝑝𝑠|𝜂𝑥𝑠|𝑝𝑠𝑑x + 𝐶2

𝑛∑︁
𝛼=1

∫︁
Ω

𝜂𝑝𝑠𝐹 ′(𝑢)𝑝𝑠|Φ𝛼|𝑝𝛼/(𝑝𝛼−1)𝑑x.
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Taking into consideration (20), we obtain
𝑛∑︁

𝛼=1

∫︁
Ω

𝜂𝑝𝑠𝐹 ′(𝑢)𝑝𝑠|𝑢𝑥𝛼 |𝑝𝛼𝑑x 6 𝐶3

∫︁
Ω

𝑢𝑞𝑝𝑠|𝜂𝑥𝑠|𝑝𝑠𝑑x + 𝐶3

𝑛∑︁
𝛼=1

∫︁
Ω

|Φ𝛼|𝑝𝛼/(𝑝𝛼−1)𝜂𝑝𝑠𝑢𝑝𝑠(𝑞−1)𝑑x. (31)

Assume that the right hand side of (31) is finite. We let 𝜇 tend to infinity in the left hand
side of (31) and apply Fatou lemma∫︁

Ω𝜌

𝑢𝑝𝑠(𝑞−1)

𝑛∑︁
𝛼=1

|𝑢𝑥𝛼|𝑝𝛼𝑑x 6
𝐶3

𝑞𝑝𝑠

⎛⎝ 1

𝜎𝑝𝑠

∫︁
Ω𝜌+𝜎

𝑢𝑞𝑝𝑠𝑑x +
𝑛∑︁

𝛼=1

∫︁
Ω𝜌+𝜎

|Φ𝛼|𝑝𝛼/(𝑝𝛼−1)𝑢𝑝𝑠(𝑞−1)𝑑x

⎞⎠ .

Applying Hölder inequality and employing (9), we arrive at the inequalities

𝑛∑︁
𝛼=1

∫︁
Ω𝜌

𝑢𝑝𝑠(𝑞−1)|𝑢𝑥𝛼|𝑝𝛼𝑑x 6
𝐶3

𝑞𝑝𝑠

⎛⎜⎝ 1

𝜎𝑝𝑠

⎛⎝ ∫︁
Ω𝜌+𝜎

𝑢𝑞𝑝𝑠𝑙𝑑x

⎞⎠1/𝑙 (︀
mes Ω2𝑅1

)︀(𝑙−1)/𝑙

+
𝑛∑︁

𝛼=1

⎛⎝ ∫︁
Ω𝜌+𝜎

|Φ𝛼|𝑘𝛼𝑑x

⎞⎠(𝑙−1)/𝑙⎛⎝ ∫︁
Ω𝜌+𝜎

𝑢𝑝𝑠(𝑞−1)𝑙𝑑x

⎞⎠1/𝑙
⎞⎟⎠ 6 𝐶4

(︂
1 +

1

𝜎𝑝𝑠

)︂⎛⎝ ∫︁
Ω𝜌+𝜎

𝑢𝑞𝑝𝑠𝑙𝑑x

⎞⎠1/𝑙

.

Taking into consideration Remark, we apply Lemma 3 for 𝐷 = Ω𝜌 and function 𝑢 ∈
∘
𝐻1

p(Ω).
Thus, employing (18), we obtain⎛⎝∫︁

Ω𝜌

|𝑢|𝑃+𝑝𝑠(𝑞−1)𝐾𝑑x

⎞⎠1/𝐾

6 𝐶5

(︂
1 +

1

𝜎𝑝𝑠

)︂⎛⎝ ∫︁
Ω𝜌+𝜎

𝑢𝑞𝑝𝑠𝑙𝑑x

⎞⎠1/𝑙

. (32)

Due to (10), 𝐾 > 𝑙. Employing then (32), we get the following chain of inequalities∫︁
Ω𝜌

𝑢𝑃+𝑝𝑠(𝑞−1)𝐾𝑑x 6 𝐶6

∫︁
Ω𝜌

|𝑢|𝑃+𝑝𝑠(𝑞−1)𝐾𝑑x + 𝐶6mes Ω𝜌

6 𝐶7

(︂
1 +

1

𝜎𝑝𝑠

)︂𝐾
⎛⎝ ∫︁
Ω𝜌+𝜎

𝑢𝑞𝑝𝑠𝑙𝑑x

⎞⎠𝐾/𝑙

+ 𝐶6

∫︁
Ω𝜌+𝜎

𝑢𝑞𝑝𝑠𝑙𝑑x

6 𝐶8

(︂
1 +

1

𝜎𝑝𝑠

)︂𝐾
⎛⎝ ∫︁
Ω𝜌+𝜎

𝑢𝑞𝑝𝑠𝑙𝑑x

⎞⎠𝐾/𝑙

.

(33)

We let 𝜌+𝜎 = 𝜌𝜈 = (1+2−𝜈)𝑅1, 𝜌 = 𝜌𝜈+1 = (1+2−𝜈−1)𝑅1, 𝜎 = 𝑅12
−𝜈−1, ℎ = 𝑙𝑝𝑠(𝑞−1)+ 𝑙𝜃,

𝜏 = 𝑃−𝐾𝜃 = 𝑙(𝑝𝑠−𝜃), where 𝜃 = (𝑃−𝑙𝑝𝑠)/(𝐾−𝑙). Then 𝜏 + ℎ𝑚 = 𝑃 + 𝐾𝑝𝑠(𝑞 − 1), 𝑚 = 𝐾/𝑙,
𝜏 + ℎ = 𝑙𝑝𝑠𝑞. It follows from (10) that 𝜃 > 0.

By (33) we get ⎛⎝∫︁
Ω𝜌

|𝑢|𝜏+𝑚ℎ𝑑x

⎞⎠1/(𝑚ℎ)

6
𝐶9

1/ℎ

𝜎𝑝𝑠𝑙/ℎ

⎛⎝ ∫︁
Ω𝜌+𝜎

|𝑢|𝜏+ℎ𝑑x

⎞⎠1/ℎ

.

Letℎ = 𝑙𝜃𝑚𝜈 , 𝜈 = 0, 1, 2, ..., then⎛⎝ ∫︁
Ω𝜌𝜈+1

|𝑢|𝜏+𝑙𝜃𝑚𝜈+1

𝑑x

⎞⎠1/(𝑙𝜃𝑚𝜈+1)

6
𝐶9

1/(𝑙𝜃𝑚𝜈)2𝑝𝑠(𝜈+1)/(𝑚𝜈𝜃)

𝑅
𝑝𝑠/(𝜃𝑚𝜈)
1

⎛⎝∫︁
Ω𝜌𝜈

|𝑢|𝜏+𝑙𝜃𝑚𝜈

𝑑x

⎞⎠1/(𝑙𝜃𝑚𝜈)

.
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Denoting

Θ𝜈 =

⎛⎝∫︁
Ω𝜌𝜈

|𝑢|𝜏+𝑙𝜃𝑚𝜈

𝑑x

⎞⎠1/(𝑙𝜃𝑚𝜈)

,

we arrive at the inequality

Θ𝜈+1 6
𝐶9

1/(𝑙𝜃𝑚𝜈)2𝑝𝑠(𝜈+1)/(𝑚𝜈𝜃)

𝑅
𝑝𝑠/(𝜃𝑚𝜈)
1

Θ𝜈 , 𝜈 = 0, 1, 2, ....

This inequality yields

Θ𝜈+1 6
𝐶9

1/(𝑙𝜃)
∞∑︀

𝜈=0
1/𝑚𝜈

2
𝑝𝑠/𝜃

∞∑︀
𝜈=0

(𝜈+1)/𝑚𝜈

𝑅
𝑝𝑠/𝜃

∞∑︀
𝜈=0

1/𝑚𝜈

1

Θ0, 𝜈 = 0, 1, 2, ....

Passing to the limit 𝜈 → ∞, we obtain

sup
Ω𝑅1

𝑢(x) 6 𝐶10

⎛⎝ ∫︁
Ω2𝑅1

𝑢(x)𝑝𝑠𝑙𝑑x

⎞⎠1/(𝜃𝑙)

. (34)

By (10), (14), (16) we get∫︁
Ω2𝑅1

𝑢𝑝𝑠𝑙𝑑x 6
∫︁

Ω2𝑅1

𝑢𝑃𝑑x 6 𝐶11mes Ω2𝑅1 + 𝐶11

∫︁
Ω

|𝑢|𝑃𝑑x 6 𝐶12. (35)

Combining (34), (35), we finally obtain (12).
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