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FICTITIOUS ASYMPTOTIC SOLUTIONS

L.A. KALYAKIN

Abstract. We provide some examples of the problems with small parameter which have
formal asymptotic solutions associated with no exact solutions.
Keywords: small parameter, asymptotics.

1. Introduction

In this note we provide examples of the problems with a small parameter, for which an ap-
proximate (asymptotic) solution gives approximation to none of exact solutions. By asymptotic
solution we mean a function satisfying all the equations in the problem with a high degree of
accuracy. As such functions, in the asymptotic constructions one usually takes the partial sums
of the series being the formal asymptotic solution w.r.t. the powers of the small parameter.
Sometimes the series is called the asymptotic solution. The coefficients of the series appears
from the series of simpler (approximate) equations being more treatable than the original prob-
lems. Such simplification, whose realization looks rather like an art [1], is the main advantage
of the asymptotic approach. However, it turns out to be an awkward situation if one does
not control the error term of the asymptotics. An example of such situation for a particular
problem was analyzed in detail in work [2]. In wider aspects this issue was discussed in the
talk by D.V. Anosov in the conference in May 2013, [3], as well as in his work [4].

Meanwhile, many specialists dealing with asymptotics are quite sceptical on the necessity of
controlling the error term. A widely held feeling is that once one has succeeded to construct an
approximate solution giving small errors in the equations, there exists an exact solution close
to this approximate solution. Such a faith is based on the experience in studying the problem
for the which one can obtain the estimate for the deviation between an exact and approximate
solution. For those educated in the traditions of rigorous mathematics the obtaining such esti-
mates, i.e., the justification of the asymptotics, is a necessary milestone in the study. However,
in many situations, especially related with applications, the original mathematical models looks
so complicated that it is troublesome not only obtaining the estimates, but even proving the
existence of an exact solution. This the reason why quite often one does not remember on the
estimates for the error terms and employ the notion of “asymptotic solution”. The followers of
the rigorous mathematics consider of course such approach as an attempt to “bury one’s head
in the sand” veiling the problem of justification by the terminology. However, one sometimes
neglects the justification of an asymptotics even in simpler precisely formulated mathematical
problems treating this work as unattractive, often difficult and not deserving the recognition
of the colleagues. As the justification of such position one sometimes adduce the arguments on
physical interpretation of the simplified model generating the leading terms of the asymptotics.
It is clear that it moves the discussion of this issue out the frameworks of the mathematics.
In this direction we mention an interesting book [5], in which issues of “asymptotology” are
discussed from various points of view but the justification issues remains almost untouched.
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For various problems posed for differential equations both partial and general results on
justification of the asymptotic are known. Some of them, especially for nonlinear equations,
look very sophisticated [6]–[24]. Such results inspire the hope on the justification in similar
problems.

On the other hand, there are known examples of asymptotic solutions associated with none
of exact solutions. In the reference literature such constructions are provided for ordinary
differential equations in the complex plane, see, for instance, [25]. At that, there can be an
impression that such examples are apart from the problems treated in the perturbation theory.
However, the example adduced in [2] for the needle crystal model shows that the issue on
justification of asymptotics can be topical in the most unexpected situations and its solution
can be quite a nontrivial matter.

Similar examples were found recently in the spectral theory. As it is known, the asymptotics
in small parameter are widely used in studying spectra of linear operators. For instance, in
quantum mechanics, the method of quasiclassical approximation is popular [12]. This approach
is an effective tool for approximate solving problems with a self-adjoint operator. However, in
the case of a non-self-adjoint operator the quasiclassical approach sometimes fails. To analyze
such problems, from 90s of the previous century the theory of pseudospectrum is actively
developed. This direction was initiated by examples of operators with a small parameter,
for which an asymptotic solution does not approximate the exact solution [27, 26, 28, 29].
In particular, the numbers calculated in the asymptotics and pretending to approximate the
spectrum happen to be far from the spectrum [30, 31]. In relation with this fact, the notion
of “pseudospectrum” appeared. We note that these studies were initiated by an earlier work
on perturbation of non-self-adjoint operators [32]. Problems with interpretation of asymptotic
solution under the presence of a spectral parameters appeared also before [33, 34].

One more interesting problem related with the discussed subject is the justification of asymp-
totic passages to integrable equations. In the mathematical physics of recent decades, there
is an actively developed direction on finding equations distinguished by the presence of some
integrability properties. Impressive progress was made by employing algebraic methods. Sym-
metric approach allowed one to form complete lists of integrable difference equations [35, 36].
However, many results in this direction looking quite general are still rather remote from appli-
cations in contrast to earlier approaches focused on finding the ways for integrating equations
appearing in applications. This is why it is not a surprise that the issue on relation of classified
equations with the problems in physics and mechanics attract permanent attention. As a rule,
such connection is made by means of asymptotics and requires the justification. There are some
rigorous results in this direction, see the survey [37]. The classical example is the justification
of passing from the system of surface waves equations to the Korteweg de Vries equation. At
the same time, among a huge number of works where asymptotic passages are performed there
occur doubtful statements. Some of such situations were analyzed in works [38, 39, 40, 41].
These issues concern a general wide subject and require an independent discussion; here we do
not touch them.

In the present note we discuss several examples for ordinary differential equations on the
real axis and for partial differential equations. The most part of these examples belongs to the
class of well-known problem on a boundary layer. The matter is a power asymptotics, when
the formal solutions are constructed as series in powers of a small parameter. The discussed
problems split into two series:
1) Problems with exact solutions. Here we construct asymptotic solutions associated with none
of the exact solutions. These examples seem to be new, and in the case of nonlinear equations
they are not covered by the theory of pseudospectrum.



46 L.A. KALYAKIN

2) Problems with no exact solutions. Nevertheless, we succeed to construct an asymptotic
solution. In the present text we reproduce known examples [2, 3].

Of course, the considered problems were discussed and specialists are familiar with them.
However, there are just few publications on this subject not even being well-known, at least,
outside rather narrow direction of theory of pseudospectrum. The aim of the present work is
to warn the researches carried away by formal constructions against too careless relation to the
justification of asymptotics.

The analyzed phenomena are similar to ones occurring in ill-conditioned or unstable problems
when small errors in the initial data leads one either to great errors in the solution or to absence
of solution. This similarity is especially well seen in the theory of pseudospectrum treating
in fact spectrally unstable problems with exponentially increasing (w,r.t. a small parameter)
resolvent [31]. However, the formulation of problems on asymptotics w.r.t. the small parameter
has almost nothing to do with ill-conditioned problems. The presented asymptotic constructions
are not related at all with approximative methods of solving unstable problems [42, 43, 44].
Nevertheless, we should stress that exactly the presence of an exponential instability generates
the appearance of fictitious asymptotic expansions. Quite distinctively it is seen in the following
rather elementary example.

2. Nefedov’s example

The example adduced below was pointed out to the author by professor N.N. Nefedov in a
slightly different form. In fact, the matter is the behavior of a function of two variables exp(x/ε)
in the vicinity of the singular point x = 0, ε = 0. The discussed phenomena are related with
different asymptotics as ε → 0 in various domains of x. This example is more suitable for
demonstrating an unstable equilibrium. Here we adduce it in order to show for a simplest
situation that the appearance of fictitious asymptotic expansions is due to an instability.

We consider the differential equations with a small parameter

ε
du

dt
= u, t > 0, 0 < ε ≪ 1 (2.1)

subject to the homogeneous initial condition

u|t=0 = 0.

The identical zero u(t; ε) ≡ 0 is the only exact solution to the problem.
At the same time, each non-zero function

U(t; ε) = exp
(

(t− 1)/ε
)

solves exactly the differential equations and asymptotically satisfies (up to arbitrarily small
error) the initial condition since

exp(−1/ε) = O(εn), ε→ 0, ∀n.
This asymptotic solution to the problem happens to be essentially different to zero as t > 1:

U(t; ε) = exp
(

(t− 1)/ε
)

> 1, ∀ t > 1, ε > 0.

Therefore, for a long time t > 1 the asymptotic solution has nothing to do with the exact
solution. Of course, in the vicinity of the initial moment (locally) the asymptotic solution
U(t; ε) corresponds to the exact solution u(t; ε) and the trivial asymptotic identity

∀ T < 1, n > 0 : u(t; ε) = U(t; ε) +O(εn), ε→ 0, ∀ t ∈ [0, T ],

holds true.
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The uselessness of the asymptotic solution for long time is not a news for Cauchy problems.
For instance, in the oscillation theory, while using the simplest version of the asymptotic con-
struction (as the straightforward series of perturbation theory), the restrictions for the time
occurs due to so-called secular terms [7]. The non-uniformity in time of such (simplest) asymp-
totics serves as a basis for introducing more complicated multi-scale expansions. However, the
above example is not this case. Here in the asymptotic expansion there are no secular terms.
The restriction for the time, t < 1, appears in comparing with the exact solution and does
not appear in the formal constructions. Similar situation occurs in various problems. Theorem
on justification of the asymptotics w.r.t. the small parameter provided in [11] guarantees an
appropriate estimate for the error term on a finite, not very large time interval. In the appro-
priate slow scale this interval is independent of the small parameter 1. Sometimes for a Cauchy
problem one succeeds to construct on the subsequent time scale choosing an appropriate inde-
pendent variable. However an essential enlarging of the interval of asymptotics applicability is
not always possible, cf. [13, 24]. The exponential instability seems to be one of the reasons
of breaking the connection between the asymptotic and exact solutions in the general case as
well.

If one recall the theorem on continuous dependence of solution on the parameter, one can
understand that near the initial moment (locally, in the appropriate time scale), an asymptotic
solution to a Cauchy problem is always associated with the exact solution. Long time in
such problem is an additional restriction which can make the asymptotics fictitious. Another
situation occurs for boundary value problems. Here a part of the domain being far from the
boundary is involved in the main formulation of the problem, not in the additional condition.
In such problems this far domain can not be excluded by the attempt of localizing the solution
at the boundary.

3. Problem on pseudospectrum

In the case of variable coefficients the instability can be local. For instance, the function
U(t; ε) = exp(−(t− 1)2/2ε) is exponentially small as ε → 0 at the initial moment U(t; ε)|t=0 =
exp(−1/ε) and solves the equation

ε
du

dt
+ (t− 1) u = 0, t > 0, 0 < ε ≪ 1.

This is why for the Cauchy problem with the initial condition u|t=0 = 0 this function is an
asymptotic solution for each t > 0. However, in the vicinity of t = 1 it does not provide the
asymptotic of exact (zero) solution u(t; ε) ≡ 0 of the problem since U(t; ε)|t=1 = 1. At the same
time, for long time t≫ 1 + ε this function is again close to the zero solution. This property is
demonstrated by following rather unusual example borrowed from work [28].

We consider first order differential equation on a segment

ε
du

dx
+ xu = λ u, −1 < x < 1, 0 < ε≪ 1 (3.1)

with two boundary conditions

u(−1) = 0, u(1) = 0. (3.2)

It is clear for each λ = const the identical zero u(x) ≡ 0 is the only solution. At the same
time, the function U(x; ε, λ) = exp(−(x − λ)2/2ε) solves the equation and as λ ∈ R, λ 6= ±1,

1We note that the form of equation (2.1) corresponds to the writing in slow time scale; here the fast variable
is t/ε.
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it satisfies asymptotically the boundary conditions

exp(−(x− λ)2/2ε)|x=±1 = exp(−(λ∓ 1)2/2ε) = O(εn), ε → 0, ∀n.
If −1 < λ < 1, the considered function is an asymptotic solution to problem (3.1),(3.2) but it
is not small in the interior points of the segment since it has a burst of order one

U(x; ε, λ)|x=λ = 1.

Thus, asymptotic solution U(x; ε, λ) is similar to the asymptotics of an eigenfunction. But there
is no true eigenfunction at all. The numbers λ ∈ C for which there exists an asymptotic solution
of this kind are called pseudoeigenvalues and they belong to the set called “pseudospectrum”.
In the considered problem the pseudospectrum consists of the strip −1 < Reλ < 1.

The given example looks artificial and makes an impression of cheating because of two bound-
ary conditions for a first order equation. Nevertheless, it demonstrate very well the idea of the
pseudospectrum.

There is a series of other more natural formulations, in which there appears a pseudospec-
trum1. For instance, for the advection-diffusion operator on the axis

Aεu ≡ ε2
d2u

dx2
+ ε

du

dx
+
(1

4
− x2

)

u, x ∈ R, 0 < ε ≪ 1

the spectrum consists of the eigenvalues λn = −(2n + 1)ε. The pseudospectrum occupies a
much wider domain bounded by the parabola Reλ < 1/4 − (Imλ)2, [28]. The appearance of
such wide domain of the pseudospectrum is because of the exponential growth in the small
parameter ε of the norm for the resolvent at the points far from the spectrum. The latter
property is due to the non-self-adjointness of the operator.

This and other examples [28] show that fictitious asymptotics are not uncommon in spectral
problems.

4. Problems on stochastic perturbations

The example we consider in what follows motivated the present note.
On a finite interval we consider a linear homogeneous equation

ε
d2u

dx2
− x

du

dx
= 0, −1 < x < 1, 0 < ε≪ 1 (4.1)

with boundary conditions

u(−1) = 0, u(1) = 0. (4.2)

The pair of functions

u1(x) ≡ 1, u2(x) =

∫ x

−1

exp
(

η2/2ε
)

dη

forms a fundamental system of solutions to equation (4.1). In view of the general solution to
the equation

u(x) = c1 + c2

∫ x

−1

exp
(

η2/2ε
)

dη, ∀ c1, c2 = const

one can see easily that the homogeneous boundary value problem (4.1),(4.2) has no solutions
except the zero one u(x) ≡ 0.

1Its precise definition is given in terms of resolvent, see [27, 28].
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On the other hand, by the boundary layer method [6] we can construct a non-zero asymptotic
solution:

U(x; ε) = 1−
[

exp(−ξ−) + exp(−ξ+)
]

+

∞
∑

k=1

εk
[

V −

k (ξ−) + V +
k (ξ+)

]

, ε→ 0. (4.3)

Functions V ±

k (ξ±) depend on the rescaled variables ξ± = (1 ∓ x)/ε. They are determined
uniquely by the recurrent system of equations

V ′′

0 + V ′

0 = 0, ξ > 0; V0(0) = −1;

V ′′

k + V ′

k = ξV ′

k−1, ξ > 0; Vk(0) = 0, k > 1
(4.4)

with the conditions Vk(ξ) → 0 as ξ → ∞, (k > 0). Each of these functions is the product of a
polynomial by a decaying exponent

V ±

k (ξ) = P2k(ξ) exp(−ξ), ξ > 0.

A partial sum of length n of the above series solves the equation and boundary conditions (4.1)
up to an error O(εn) for each ∀n. In the internal points of the segment ∀ x ∈ (−1, 1) this
series coincides asymptotically with one, U(x; ε) = 1 + O(εN), ε → 0, ∀N and thus it has no
relation with the unique exact (zero) solution. Moreover, since problem (4.1) is homogeneous,
the asymptotic solution is determined non-uniquely, up to a multiplicative constant C. It can
be called a pseudoeigenfunction, if we follow the terminology of [26, 28].

A similar problem with nonhomogeneous boundary condition

u(−1) = α, u(1) = β

was analyized in [45]. A formal asymptotic solution has the same structure (4.3) with an
indefinite constant C as the leading term. This is why there exists many fictitious asymptotic
solutions parameterized by this constant. Meanwhile, there exists the only exact solution. Its
asymptotics appears under an appropriate choice of constant C, which can be found by the
formula for the exact solution: C = (α+β)/2+O(ε). It should be noted that in [45] there was
given another way of finding this constant by an integral identity but in this case this result
remains conditional since it is formulated as follows: if the asymptotics of solution reads as
(4.3), then C = (α+ β)/2 +O(ε).
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Figure 1. Asymptotic solution to problem (4.1),(4.2) not associated with the
exact (zero) solution.

A similar construction is made in a slightly more difficult problem

ε
[d2u

dx2
+ b(x)

du

dx

]

+ a(x)
du

dx
= 0, 0 < x < 1, 0 < ε≪ 1,

u(0) = 0, u(1) = 0.

(4.5)
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Under the smoothness condition for the coefficients a(x), b(x) ∈ C∞[0, 1] and the sign-
definiteness at the end-points a(0) > 0, a(1) < 0 we construct a non-zero asymptotic solution

U(x; ε) = 1 +

∞
∑

k=0

εk
[

V −

k (ξ−) + V +
k (ξ+)

]

, ε → 0. (4.6)

Here ξ− = x/ε, ξ+ = (1−x)/ε. At that, the exact zero solution u(x) ≡ 0 is unique as it follows
from the explicit formula for the general solution

u(x) = c1 + c2

∫ x

0

exp
(

− ε−1

∫ η

0

[a(ζ) + εb(ζ)] dζ
)

dη, ∀ c1, c2 = const.

A similar asymptotic construction is possible in a multi-dimensional problem by the way
indicated, for instance, in [6]:

εL2u+ a(x)∂
x
u = 0, x ∈ Ω ⊂ R

n, 0 < ε≪ 1,

u(x) = 0, x ∈ ∂Ω.
(4.7)

Here L2 is an elliptic second order differential operator in a bounded domain Ω ⊂ R
n involving

the derivatives only. Apart from the smoothness of the coefficients and the boundary, the main
assumption is made for vector-function a(x). We postulate that the boundary layer exists along
whole the boundary. Formal condition says that on boundary ∂Ω, vector a(x) is direct inside
the domain so that its scalar product with the internal normal n(x) is positive: (a,n) > 0,
∀x ∈ ∂Ω. This condition ensures the exponential vanishing at infinity w.r.t. the fast variable (in
the direction of the internal normal) for the boundary layer functions. A non-zero asymptotic
solution has the structure like in (4.6) with x replaced by x. The fast variable is introduced
by rescaling along the internal normal. The boundary layer functions involves an additional
dependence on a “slow” variable y ∈ R

n−1 parameterizing the points on the boundary of the
domain. At that, the exact zero solution u(x) ≡ 0 remains unique once the problem is not at
the spectrum. Thus, we again can construct an asymptotic solution not related with the exact
solution.

The described phenomenon, appearance of a fictitious asymptotic solution, can be explained
in various ways. On the level of asymptotic constructions one usually refers to the structure
of the limiting (unperturbed, as ε = 0) first order operator, all the characteristics of which
goes inside the domain that guarantees the existence of the boundary layer along whole the
domain. A deformation of domain Ω can change the situation drastically. For instance, for
equation (4.1) on the segment 1/2 < x < 1 the above construction of fictitious asymptotic
solution becomes impossible. In this case the boundary layer is absent at the left end-point,
the external expansion must satisfy the boundary condition and it happens to be zero. Such
situation corresponds to a regular degeneration [6].

Another explanation is that problem (4.1) is unstable in certain sense w.r.t. the perturbation
of the equation. For example, the solution to the non-homogeneous equation with zero condition
at the end-points

ε
d2u

dx2
− x

du

dx
= 1, −1 < x < 1; u(−1) = 0, u(1) = 0

grows exponentially as ε→ 0. In the present example such property can be seen by the explicit
formula for the solution which thanks to the symmetry u(x) = u(−x) should be written only
for > 0:

u(x; ε) = ε−1

∫ 1

x

∫ y

x

exp
(

(z2 − y2)/2ε
)

dz dy − C(ε)

∫ 1

x

exp
(

z2/2ε
)

dz, x > 0.
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Here the exponential growth is contained in the second term only, which the solution to the
homogeneous equation with a constant:

C(ε) = ε−1

∫ 1

0

exp
(

− y2/2ε
)

dy = O(1/
√
ε), ε → 0.

For a more general multi-dimensional problem, such fact is well-known in the theory of sto-
chastic perturbations [46], see also [45]. Such problems were discussed many times [47, 48, 49],
the precise results on determining the leading term in the asymptotics are presented in [50].

Under the presence of an exponential growth in the exact solution, the construction of asymp-
totics (at the formal level) allows one to extract and justify exponential asymptotics, but not
the power ones1. It means that the power asymptotic remains uncontrolled. Such uncontrolla-
bility can serve as the explanation for the appearance of a fictitious asymptotic solution in the
homogeneous problem.

We observe that an exponential growth (in the small parameter) of the resolvent for a non-
self-adjoint operator is related with the appearance of a pseudospectrum [29] and with what we
call fictitious asymptotics. Many linear problem of such types are known [28]. In the considered
example the resolvent has not been treated and the presence of the pseudospectrum (except
the point λ = 0) has not been analyzed. Here we just point out the exponential growth of the
inverse operator for a particular problem.

However, all these explanations are just an attempt to select a certain class of problems where
one observes the phenomenon of appearance of fictitious asymptotic solution. The following
examples select a class of nonlinear problems with the same phenomenon.

5. Bursts

We consider the boundary value problem for the simplest nonlinear equation with the small
parameter at the derivative

ε2
d2u

dx2
= 4u− 6u2, 0 < x < 1, 0 < ε2 ≪ 1,

u(0) = α, u(1) = β.

(5.1)

The construction and justification of the asymptotics for solution to such problems are well-
known [9]. We shall show that in these problems it is possible to construct asymptotic solutions
associated with none of exact solutions.

Since the equation is very simple, it can be integrated by quadratures. The exact solution is
written in terms of elliptic functions whose parameters are related with boundary values α, β.
However, in more complicated situations, say, for the equations with variable coefficients, the
explicit representations are absent. At the same time, the asymptotics for solution can be also
written in terms of primitive functions. In our simple example we make use of the exact partial
solutions to the equation

us(x) = − 1

sinh2(x/ε)
, uc(x) =

1

cosh2(x/ε)

associated with two type of separatrix trajectories on the phase plane.
We note that in terms of the fast variable ξ = x/ε the equation is independent of the

parameter:
u′′ξξ = 4u− 6u2.

1Such situation occurs while constructing power asymptotics when exponentially small terms remain uncon-
trolled; a typical example is provided in [2].
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Figure 2. Phase portrait for an equation with one point of unstable equilibrium

On the phase plane (Fig. 2), the problem is to find a trajectory connecting the points on the
lines u = α and u = β for a “large time” 0 6 ξ 6 ε−1. As it is known, the time of moving along
the trajectory increases unboundedly while the trajectory approaches an unstable equilibrium.
This is why for 0 < ε ≪ 1 the desired trajectory can pass near the equilibrium. For boundary
values α, β < 0 on the phase plane one can find two such trajectories. One of them remains to
left of the equilibrium: x < 0, while the other rounds the separatrix loop. These trajectories
are associated with two exact solutions of the boundary value problem.

However, in the formal constructions one can manage without this interpretation. The
asymptotics for one of solutions to problem (5.1) is the sum of boundary layers functions

u0(x) = − 1

sinh2(x/ε+ ξ0)
− 1

sinh2((1− x)/ε+ ξ1)
+O(εn), ε→ 0, ∀n.

The phase shifts ξ0, ξ1 are determined in terms of initial conditions by the relations

− 1

sinh2(ξ0)
= α, − 1

sinh2(ξ1)
= β

under the additional condition α, β < 0. Such simple structure of the asymptotics (without
series) is thanks to the simplicity of the original equation. Under the presence of variable
coefficients, for instance, ε2u′′ = a(x)u[b(x)−u] the structure of the asymptotics becomes more
complicated and the appearance of series in powers of ε can not be avoided, see [9].

We note that the sum of exact partial solutions

U0(x) = − 1

sinh2(x/ε+ ξ0)
− 1

sinh2((1− x)/ε+ ξ1)

satisfies the equation and boundary condition asymptotically as ε → 0 due to the exponential
decay of the function sinh−2(ξ) = O(exp(−2ξ)), ξ → ∞.
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Figure 3. Asymptotic solution with a boundary layer associated with the exact
solution to problem (5.1)

If we employ the other partial solution to the equation, we can form the sum

U1(x; x1) = − 1

sinh2(x/ε+ ξ0)
− 1

sinh2((1− x)/ε) + ξ1
+

1

cosh2((x− x1)/ε)
.
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For each fixed value x1 ∈ (0, 1) this function also satisfies equations (5.1) asymptotically up to
an exponentially small term. This function provides the asymptotics for the exact solution

u1(x) = − 1

sinh2(x/ε+ ξ0)
− 1

sinh2((1− x)/ε) + ξ1
+

1

cosh2((x− x1)/ε)
+O(εn), ∀n,

for the only value x1 = x∗; for instance, x∗ = 1/2 if α = β < 0. Sometimes the solution of such
kind is called solution (or function) with “burst”. It corresponds to a trajectory rounding the
separatrix loop.

Thus, under the assumption α, β < 0, boundary value problem (5.1) has just two exact
solutions u0(x), u1(x), as one can see by the phase portrait. Meanwhile, it follows from the
above construction that for various x1 we can construct a family of asymptotic solutions with
burst U1(x; x1) related with none of exact solutions to the boundary value problem.
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Figure 4. Only one of such asymptotic solutions with the boundary layer and
burst is associated with the exact solution (5.1) as α, β < 0

Moreover, there exists a multi-parametric family of asymptotic solutions

Um(x) = − 1

sinh2(x/ε+ ξ0)
− 1

sinh2((1− x)/ε) + ξ1
+

m
∑

k=1

1

cosh2((x− xk)/ε)

each being a function with m bursts; here xk are different points outside the end-points 0 <
x1 < . . . < xm < 1.
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Figure 5. Asymptotic solution with a boundary layer and bursts associated
with none of exact solutions to problem (5.1) as α, β < 0

These functions asymptotically satisfy both the equation and boundary conditions (5.1) as
ε → 0. They have m maxima at different points xk. However, these functions can not be the
asymptotics for a solution to differential equation (5.1) with boundary conditions α, β < 0. This
fact can be easily seen by the phase portrait which implies that this solution can have the only
maximum.

We observe that the exact solutions with multiple bursts are possible for 0 < α, β < 1. Their
trajectories pass along closed curves of the phase portrait [51].

While interpreting results for the considered problem, there is an temptation for relate
the presence of fictitious asymptotic expansions with the non-uniqueness of exact solutions.
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In particular, for α, β = 0 there exist two exact solutions; one corresponds a stable point
u0(x) ≡ 0, the other is a burst and corresponds a trajectory near the separatrix loop
u1(x) = cosh−2((x− 1/2)/ε) + O(εn), ∀n. Nevertheless, the next example shows that ficti-
tious asymptotics remains also in the case of the unique exact solution. The critical condition
here the presence of the cell formed by the separatrices in a bounded part of the phase plane.

6. Contrast structures

Consider the boundary value problem for the equation with two unstable equilibria

ε2
d2u

dx2
+ 2u[1− u2] = 0, 0 < x < 1, 0 < ε2 ≪ 1,

u(0) = α, u(1) = β.

(6.1)

Two exact solutions to the equation

ucot(x) =
cosh(x/ε)

sinh(x/ε)
= coth(x/ε), utan(x) =

sinh(x/ε)

cosh(x/ε)
= tanh(x/ε)

form a basis for asymptotic constructions. On the phase portrait these solutions correspond to
the separatrices which either pass to infinity or stay in a bounded part of the plane, respectively.
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Figure 6. Phase portrait of equation with unstable equilibria

In view of the phase portrait, the boundary value problem has the unique solution if at least
one of the boundary values α, β is outside the interval |u| < 1. For small ε, the solution is
associated with a trajectory passing near unstable equilibria. In particular, as α, β < −1, the
trajectory stay to left of the equilibrium u = −1. The asymptotics for this solution is described
by the boundary layer functions:

u0(x) = 1− coth(x/ε+ ξ0)− coth((1− x)/ε+ ξ1) +O(εn), ε → 0, ∀n.
Constants ξ0, ξ1 are determined by the boundary values:

coth(ξ0) = −α, coth(ξ1) = −β.
The leading term of this asymptotics

U0(x) = 1− coth(x/ε+ ξ0)− coth((1− x)/ε+ ξ1),

formed by partial solution of the nonlinear equation is not an exact solution to the problem.
However, due to the fast stabilization property coth(ξ) = 1 + O(exp(−ξ)), ξ → ∞, this sum
satisfies the equation and boundary conditions up to an exponentially small error as ε→ 0.

Apart from such asymptotic solution there exists another function describing the motion
along the separatrix via the other unstable equilibrium. Here we use the second exact solution
to the equation:

U1(x) = 1− coth(x/ε+ ξ0)− coth((1− x)/ε+ ξ1) + tanh((x− x0)/ε)− tanh((x− y0)/ε)
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Figure 7. Asymptotic solution with boundary layer associated with the only
exact solution

with fixed values 0 < x0 < y0 < 1. Due to the stabilization properties, this function asymp-
totically satisfies the equation and boundary conditions as ε → 0. But in view of the phase
portrait we see that the differential equation has no solutions with such asymptotics.
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Figure 8. Asymptotic solution with the contrast structure associated with none
of exact solutions

It is clear that on the base of series of pairs xk < yk one can construct fictitious asymptotic
solutions with a finite number of such kind bursts. Functions with bursts localized on a finite
interval are usually called contrast structures.

All the above described asymptotic solutions to boundary value problems for nonlinear equa-
tions are described by the functions which on the phase plane correspond to equilibria and fast
motion along the separatrices. The exponential proximity of exact solutions to the separatrix
trajectories allows one to construct fictitious asymptotic solutions passing from one trajectory
to another with an exponentially small error.

It is seen very clearly when the boundary values correspond to equilibria α = −1, β = 1. In
this case there exists the unique exact solution to problem (6.1). Its asymptotics is described
by the trajectory connecting equilibria along the upper separatrix:

u1(x) = tanh((x− 1/2)/ε) +O(εn), ε → 0, ∀n.
The graph of this function as a contrast structure with one internal intermediate layer.

At the same time there exists a fictitious asymptotic solution appearing by adding the motion
along the lower separatrix and also one more motion along the upper separatrix:

U1(x) = tanh(x/ε)− tanh((x− x1)/ε) + tanh((x− x2)/ε), 0 < x1 < x2 < 1.

The graph of this function contains three internal intermediate layers.
In view of the phase portrait we see that there exist no exact solution with such asymptotics.
The class of considered examples can be extended in various directions, say, for equations

with a general nonlinearity ε2u′′ = F (u). The essential condition is the presence of equilibria
which are the solutions to the limiting equation F (u) = 0 and cells formed by the separatrices.
Exactly these cells give a possibility to construct fictitious contrast structures.
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Figure 9. Asymptotic solution with a contrast structure associated with the
unique exact solution
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Figure 10. Asymptotic solution with a contrast structure associated with none
of exact solutions

We note that contrast structures can be constructed also in the case when the roots to the
limiting equation F (u, x) = 0 depend on x, i.e., they are not equilibria [10]. For such problems
we can not construct fictitious asymptotic solutions. It is remarkable that the dependence on x
happens to be essential for justification of asymptotics and the results of [10] are not applicable
for the justification in the above example with equilibria.

7. Multi-dimensional contrast structures

The above constructions of fictitious asymptotics can be easily extended for equations with
the first derivative in the perturbation

ε2[u′′ + a(u′, x)] = F (u).

In this way there appears a chance to construct fictitious contrast structures for partial dif-
ferential equations. One of the simplest examples is for the equation with two independent
variables

ε2∆u+ 2u[1− u2] = 0, x, y ∈ R
2.

If we consider the problem in a ring with appropriate boundary conditions, the situation hap-
pens to be close to the example for ordinary differential equation (6.1). In terms of polar
coordinates r, ϕ the equation and boundary condition read as

ε2
(∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂ϕ2

)

+ 2u[1− u2] = 0, 1 < r < 2, 0 < ε2 ≪ 1,

u(r, ϕ)|r=1 = α(ϕ), u(r, ϕ)|r=2 = β(ϕ), 0 6 ϕ < 2π.

(7.1)

For the boundary functions we require that at least one of them does not take the values in the
interval (−1, 1), for instance, |α(ϕ)|, |β(ϕ)| > 1, ∀ϕ. In the model independent of ϕ it allows
us to avoid the motion along the trajectories located in vicinity of to closed ones as well as to
avoid the problems with the uniqueness of exact solution.
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In the case of the ring, for small ε the influence of boundary conditions, and thus of angular
variable ϕ is essential only in a narrow strip along the boundary. The asymptotics outside
the boundary layers is independent of ϕ. In fact, the problem is reduced to constructing an
asymptotic solution to the ordinary differential equation

ε2
(d2u

dr2
+

1

r

du

dr

)

+ 2u[1− u2] = 0, 1 < r < 2, 0 < ε2 ≪ 1. (7.2)

The presence of the first derivative multiplied by a small factor plays no key role although the
construction becomes more complicated.

The contrast structure is determined by the asymptotic solution in a narrow intermediate
layer in the vicinity of the point rj ∈ (1, 2). The solution should fast stabilize w.r.t. the rescaled
variable ρ = (r − rj)/ε. In terms of this variable, the equation u = v(ρ; ε) casts into the form

d2v

dρ2
+ ε

1

rj + ερ

dv

dρ
+ 2v[1− v2] = 0, ρ ∈ R, 0 < ε2 ≪ 1.

The asymptotic solution is constructed as the series

V (ρ; rj) = v0(ρ) +
∞
∑

n=1

εnvn(ρ).

The leading term v0(ρ) = tanh ρ solves the nonlinear equation as ε = 0. The next terms vn(ρ)
are determined by the linearized equation

d2vn
dρ2

+ 2vn[1− 3v20] = fn(ρ), ρ ∈ R

with the additional condition vn(ρ) → 0, ρ → ±∞. The right hand sides are calculated in
terms of previous vk(ρ), k < n.

At the first step we have f1 = −v′o/rj. Since the fast decaying function

v′o(ρ) =
1

cosh2(ρ)

solves the homogeneous linearized equation, the solution to the next-to-leading term is written
as

v1(ρ) = −ρ v′o/2rj + c v′o

and involves an arbitrary constant c. This freedom is eliminated at the next step, when in
the solution for v2(ρ) we exclude the growing at infinity terms. Such procedure is repeated at
each step. As a result, all the coefficients are determined uniquely and they are fast decaying
functions vn(ρ) = O(ρn exp(∓2ρ), ρ→ ±∞, n > 1.

In this way we construct series V (ρ; rj) being an analogue of the separatrix solution1 describ-
ing the motion from the equilibrium −1 to +1. Due to the symmetry of the equation w.r.t. the
change of the sign, the series −V (ρ; rj) is the asymptotic solution, too. By such series we can
combine contrast structures with intermediate layers at various points rj ∈ (1, 2). For example,
the combination

−1 + V (ρ−; r−)− V (ρ+; r+), ρ± = (r − r±)/ε, r− < r+

describes the motion from the point −1 to the point +1 and back.

1We should understand that equation (7.2) has no exact solutions whose trajectories connect the saddle
points. The presence of the first derivative splits the separatrices.
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This construction can be easily adapted for solution to partial differential equation (7.1) by
adding the series of boundary layer functions

U−(ξ−, ϕ) =
∞
∑

n=0

ε2nu−n (ξ−, ϕ), U+(ξ+, ϕ) =
∞
∑

n=0

ε2n + u+n (ξ+, ϕ).

The variables for the boundary layers are introduced by the formulae ξ− = (r − 1)/ε, ξ+ =
(2 − r)/ε, while the coefficients fast decay w.r.t. these variables u±n (ξ) = O(ξ2n exp(−ξ)),
ξ → ∞.

Finally we obtain the asymptotic solution as a contrast structure with the boundary layers;
this solution can have an arbitrary number of intermediate layers at the circles of arbitrary
radius rj ∈ (1, 2).

The described construction of contrast structures as concentric rings with arbitrary centers
and radii can be performed in an arbitrary domain, not necessarily in the ring. In order to
avoid bulky constructions, one can restrict himself by the case when the rays passing from the
center of the chosen circles do not touch the domain of the boundary [6].

Thus, under the present of equilibria, for boundary value problem with the small parameter
(7.1) it is possible to construct infinitely many asymptotic solutions the most part of which are
associated with the exact solution.

The fact that the constructed contrast structure is not associated with the exact solution
is to be proven. The most simplest proof is for the problem in the ring when the boundary
condition is independent of the angle and the problem is reduced to the ordinary differential
equation.

Proposition 7.1. Boundary value problem for equation (7.2) possesses asymptotic solution
if α, β 6∈ [−1, 1].

Proof. Since equation (7.2) is not autonomous, we can not draw the phase portrait on the plane
and one has to find out the information on the exact solution by other means, namely, by apriori
estimates. One can observe that the non-autonomous term with the first derivative plays the
role of dissipation (resistance). It allows us to estimate the location of a phase trajectory by
writing an analogue of conservation law for equation (7.2):

[

(ε u′)2 + 2u2 − u4
]r

r0
= −ε2

∫ r

r0

1

r
(u′(̺))2 d̺ < 0.

It follows from this inequality that the quantity I(u, u′) = (ε u′)2 + 2u2 − u4, whose level set is
given in the phase portrait, Fig. 6, decays along the trajectories of equation (7.2). This is why
the trajectory being inside the separatrix cell (Fig. 6) as r = r̂ should stay there for each r > r̂.
Therefore, for the solution to equation (7.2) with the boundary values outside the boundary of
the cell α, β 6∈ [−1, 1], the trajectory is not inside the cell. In particular, the extrema of such
solution are outside the segment [−1, 1] since as u′(r) = 0, we necessarily have |u(r)| > 1.

On the other hand, it follows from equation (7.2) that u(r)[1 − u2(r)] > 0 at a maximum.
This is why the value of a positive maximum can be only in the segment [0, 1]. However, in the
problem with boundary values α, β < −1 such maximum is impossible and hence, the solution
stays to left of the equilibrium u(r) < −1. In the same way one can argue in the general case
when α, β 6∈ [−1, 1]. If the values α, β are of different signs, then the solution to boundary
value problem is monotonous u′(r) 6= 0.

The constructed above asymptotic solution as a contrast structure with boundary layers

−1 + V (ρ−; r−)− V (ρ+; r+) + U−(ξ−) + U+(ξ+), (r− < r+)
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is not monotone and takes values close both to +1 and −1. This is why it is associated with
none of exact solutions to the boundary value problem with α, β 6∈ [−1, 1], i.e., it is fictitious.
The proof is complete.

8. Needle crystal model

We consider third order differential equation with a small parameter at the derivatives

ε5
d3u

dx3
+ ε

du

dx
= cos u, −1 < x < 1, 0 < ε≪ 1. (8.1)

and with the boundary conditions corresponding to the equilibria:

u(−1) = −π/2, u(1) = π/2. (8.2)

In such formulation the problem is similar to those considered in the previous sections. Gener-
ally speaking, the amount of boundary conditions is insufficient for the well-defined formulation.
The additional condition

u(0) = 0, (8.3)

likely makes the problem well-defined. This condition fixes the moment of passing a given point
(here u = 0) by a trajectory of the autonomous system.

If we pass to the fast variable s = x/ε, the equation casts into the standard form used in the
geometric theory of needle crystal

ε2
d3u

ds3
+
du

ds
= cos u, 0 < ε≪ 1. (8.4)

At that, instead of large interval −1/ε < s < 1/ε, in work [2] there was considered the
unbounded interval −∞ < s <∞ and the conditions at infinity

u(s) → ∓π/2, s→ ∓∞. (8.5)

Since the asymptotic solution is constructed in the class of exponentially stabilizing function,
such replacement of the domain is not essential.

In work [2] the matter is the attempt to single out a solution of separatrix type whose
trajectory goes monotonically from one equilibrium to another. The main result is that such
solution with conditions (8.5), (8.3) does not exist.

The instructiveness of this example is that an asymptotic solution to problem (8.4), (8.5),
(8.3) is constructed up to arbitrarily small error:

U(s, ε) =

∞
∑

n=0

εnUn(s), ε → 0, s ∈ R.

The leading term is determined by the limiting nonlinear equation U ′

0 = cosU0 and it is a
smooth step U0(s) = arcsin tanh(s), see Fig. 11. The solution to the linearized equation
v′+sinU0 · v = 0 fast decays at infinity v = U ′

0(s) = 1/ cosh s. All the terms in the asymptotics
are uniquely defined by inhomogeneous linearized equations with the condition Un(0) = 0 and
are smooth odd functions. At infinity they fast tend to zero: Un(s) = O

(

sn exp(∓s)
)

, s→ ±∞.
Moreover, at each half-line (either s > 0 or s 6 0) formal solution U(s, ε) is the asymptotics

for the unique exact solution [2]. However, these two exact solutions (at different half-lines) do
not provide the solution on the whole line because of discrepancy of second derivatives at the
point s = 0. This discrepancy is exponentially small as ε → 0 and does not appear in formal
constructions.

We note that in numerical experiments there appears an approximate solution whose graph
almost coincides with the graph of the asymptotic solution already for ε = 0.1, Fig. 11. This
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Figure 11. Graphs of asymptotic and numerical solutions to equation (8.4)
almost coincide as ε = 0.1

fact should alert the fans of justifying the asymptotics by the numerics since in the considered
problem there exists no exact solution.

9. Anosov’s example

Here we reproduce in the simplest form the example in the report by D.V. Anosov [3].
For the linear equation with a periodic right hand side and a small parameter

ε
d2u

dt2
+ u = f(t), t > 0, 0 < ε ≪ 1 (9.1)

we consider a problem on finding a periodic solution. Let the right hand side be a typical
2π-periodic function which can be expanded into the Fourier series

f(t) =

∞
∑

k=0

fk exp(ikt)

and is not a trigonometric polynomial; thus, there exists a sequence of numbers kj → ∞ obeying
fkj 6= 0. We assume that this function is infinitely differentiable; for instance, all the series

∀n > 0,
∞
∑

k=0

kn|fk| <∞

converge. Under these assumptions one can easily construct an asymptotic solution with 2π-
periodic coefficients:

U(t; ε) =
∞
∑

n=0

εnun(t), ε→ 0; un(t) = (−1)nf (2n)(t). (9.2)

However, the conjecture that as ε→ 0 this series provides an asymptotics for a periodic solution
fails. For an exact solution the following statement holds true.

Proposition 9.1. If f(t) is a typical periodic function, there exists a sequence of values of
parameter εj → 0 for which equation (9.1) has no periodic solutions.

To prove this proposition, one should take the Fourier series for a periodic solution (if it
exists)

u(t; ε) =
∞
∑

k=0

ak(ε) exp(ikt),

and by equation write the relations for the coefficients (1−εk2)ak = fk. If fkj 6= 0, as εj = 1/k2j
we obtain the contradiction.

Thus, the existence of asymptotic solution as ε→ 0 with periodic coefficients does not imply
the existence of a periodic solution for all sufficiently small ε. In view of this fact the issue on
estimating the error makes no sense.
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However, it does not imply that the asymptotic solution has no relation with any exact
solution. A non-periodic function can have a very small phase shift so that it can be well
approximated by a periodic function, as one can see by the example

sin
(

t+ exp(−(t2 + 1)/ε)
)

= sin t +O(exp(−1/ε)), ε→ 0, ∀ t ∈ R.

For the considered problem we have a similar situation: there exists an exact solution to the
equation and the constructed formal series is its asymptotics as ε→ 0 uniformly in t on a large
time interval. Moreover, there are many of such solutions.

Let us consider the Cauchy problem for equation (9.1) with the initial conditions

u|t=0 = ϕ(ε), u′|t=0 = ψ(ε). (9.3)

The solution can be written as

u(t; ε) = ε−1/2

∫ t

0

sin((t− η)/
√
ε)f(η) dη + ϕ(ε) cos(t/

√
ε) +

√
εψ(ε) sin(t/

√
ε). (9.4)

Proposition 9.2. There exists a set of pairs of smooth functions ϕ(ε), ψ(ε) with the same
power asymptotics as ε → 0, for which the solution to problem (9.1), (9.3) has the asymptotics
provided by the above constructed series (9.2) with periodic coefficients. This asymptotics is
uniform w.r.t. t on the interval |t| 6 ε−p for each fixed p <∞.

The key ingredient of the proof is an appropriate choice of the coefficients in the asymptotic
series

ϕ(ε) =

∞
∑

n=0

εnϕn, ψ(ε) =

∞
∑

n=0

εnψn, ε→ 0.

In order to do it, we calculate the asymptotics for the exact solution by integrating by parts
in formula (9.4). It is easy to see that after multiple repetition of such operation all the extra-
integral terms at the upper limit η = t give the coefficients of series (9.2), while at the lower
limit η = 0 we obtain the asymptotics series at cos(t/

√
ε) and sin(t/

√
ε). The asymptotic sums

(see [52, 53]) of these series give the desired functions1 with the opposite sign: −ϕ(ε),−ψ(ε).
In this way we obtain the expansion of the exact solution as series (9.2). The estimate for the

error term can be proven as follows. If we stop the integration by parts at 2Nth step, we obtain
the representation of the solution as a partial sum of the series and the remaining integral

u(t; ε) =
N−1
∑

n=0

εnun(t) + (−1)NεN−1/2

∫ t

0

sin
(

(t− η)/
√
ε
)

f (2N)(η) dη + Φ(ε).

Here Φ(ε) = O(εN) are the remainders of the initial functions; this term and the integral with
the small factor is the error term of the asymptotic expansion. The integral can be roughly
estimated by the length of the interval,

∣

∣u(t; ε)−
N−1
∑

n=0

εnun(t)
∣

∣ < M(N)εN−p−1/2, M(N) = const <∞, ∀ |t| < ε−p.

Since number N is arbitrary, this estimate proves the proposition.
We note that on a finite interval 0 6 t < 2π, formal 2π-periodic solution (9.2) is the asymp-

totics of exact solution (9.4) up to arbitrarily small error O(εn), ε → 0, ∀n. Another point is
that this exact solution is not 2π-periodic.

On a large interval containing values t≫ 1, the estimate for the error term of the asymptotic
expansion becomes worse once the length of the interval increases2. This is a usual situation

1As it is known, there are many of such functions.
2Due to the presence of resonance terms, for typical right hand sides f(t) this estimate is the best impossible

in the order of ε.
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in the problems of oscillation theory with which known perturbation methods deal. The ex-
pansions applicable uniformly on an infinite interval are rather an exception than the rule. In
particular, such exceptions are provided by the problems on constructing periodic solutions
near the equilibrium [7, 54]. The above example (9.1) is not such an exception.

We note that this and other examples adduced by [4] are outside the framework of the
problems treated usually in the oscillation theory because of periodicity of solution in the slow
variable. More often one considers the problems no conserving the periodicity of solutions in
fast variable under a weak perturbation of the equation, i.e., without increasing the order of the
derivatives [54]. In the above example a (strong) perturbation of the second derivative leads us
to the appearance of a fast time scale t/

√
ε and the original scale t becomes slow. In fact, we

deal with the equation
d2u

dt2
+ u = f(εt), 0 < ε≪ 1

with the periodicity condition in the variable τ = εt. Such problems on slow periodic pertur-
bations was analyzed in [17].

10. Conclusion

For various classes of problem with a small parameter we have constructed formal asymptotic
solutions not providing the asymptotics for an exact solution. All the examples, for which we
have constructed fictitious asymptotic solutions (except Nefedov’s and Anosov’s examples),
possess two features:

1) presence of an equilibrium for a differential equation;
2) boundary conditions on the boundary.

Among variety of presented constructions there are such that in particular cases they are
associated with exact solutions (bursts, contrast structures). However, on the level of formal
constructions they are not distinguished among fictitious solutions. The justification of the
asymptotics in such particular cases can happen to be not a simple problem; the results of [10]
are apriori not applicable.

Anosov’s example is close in spirit to the Kruskal–Segur example. In both cases they consider
a problem having no exact solution but one can construct an asymptotic solution. In the general
situation the absence of exact solution and the proof of phantomness for a formal solution can
happen to be a very nontrivial problem as it was demonstrated in [2].

It seems that in all the examples the solution of the contradiction between the exact and
asymptotic solutions lie beyond the power asymptotics. To separate fictitious asymptotics, one
has to take into consideration exponentially small terms. For ordinary differential equations
there exists a way with going out to the complex plane, cf. [2, 55, 56]. For partial differential
equations the issue remains open.

One more remark concerns the usage of numerical methods. Due to the complexity of the
issue on errors and absence of the desire to deal with the justification, sometimes one justifies
the validity of asymptotic formulae by the results of numerical experiments with the perturbed
problem. The closeness of numerical and asymptotical solutions is interpreted as the justifi-
cation of the asymptotics. However, if one is not careful enough, such “justification” can be
performed in all the above examples. That is, the numerical solutions can happen to be fic-
titious. Here the problems occurs first of all because of finite-dimensional approximation. In
connection with the problems on pseudospectrum this issue was studied in [57], where it was
indicated that the spectrum of finite-dimensional approximations not necessarily approximates
the spectrum of the original operator. Another reasons of inefficiency of numerical methods as
well as of asymptotic formulae is hidden in troublesome control of exponentially small terms
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leading in time to great errors. However, for the problems with a small parameter at higher de-
rivative one needs special numerical methods even in the case when the degeneration is regular
in the sense [6] and fictitious asymptotics are absent. This is a well-known problem [58] and
there are many publications on this subject. The problems with fictitious asymptotics were not
touched in this direction.

The author is grateful to his colleagues in the Institute of Mathematics CC USC RAS Kise-
lev O.M., Suleimanov B.I., and Sultanov O.A., as well as to Dobrokhotov S.Yu. and Nefe-
dov N.N. for the discussions stimulated writing this not.
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