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ENTIRE FUNCTIONS WITH FINE ASYMPTOTIC
ESTIMATES FOR CONVEX FUNCTIONS

K.P. ISAEV, R.S. YULMUKHAMETOV, A.A. YUNUSOV

Abstract. In the paper we propose an entire function such that the logarithm of its
modulus asymptotically approximates the given subharmonic function h(Re z), where h
is the Legendre transformation of a convex function h(t) on (—1;1). Such functions have
applications in the issues on representation by exponential series of functions in integral
weighted spaces on the interval (—1;1) with the weight exp h(t). At that, better the ap-
proximation, a finer topology can be used for the representation by exponential series.
For functions h obeying (1 — [t|)™ = O(exp(h(t))), n € IN, the corresponding entire func-
tions were constructed before. In the present paper we consider the functions satisfying
exp(h(t)) = o((1 — |t|)™), n € IN. In the suggested construction we take into considera-
tion the necessary conditions for the distribution of exponents for the exponentials in the
unconditional bases obtained in previous works. This is why the main result of the paper
(Theorem 1) should be treated not as a tool for constructing unconditional bases but as an
argument supporting the absence of such bases.

Keywords: entire functions, subharmonic function, Riesz measure, Hilbert space, Riesz
bases.
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1. INTRODUCTION

The problem on approximating subharmonic functions by the logarithm of the modulus of
an analytic function appeared in the theory of entire functions. The first general result for this
problem was proven in work [I]. In [2] there was proven the following essential specification of
V.S. Azarin’s theorem.

Theorem A. For each subharmonic on the plane function u of finite growth there exists an
entire function f satisfying condition

ju(z) =In|f(2)|| = O(Inz]), =z¢& E, |z] — oo.
The exceptional set is small, for instance, it has a finite Lebesque measure.

This theorem is the best possible and optimal in the sense of the estimate for the difference
and the size of the exceptional set. However, while applying such results in the related issues of
complex analysis one needs finer estimates for the difference. Introducing additional conditions
for function u and increasing exceptional set E, in [3]—[5] authors succeeded to obtain finer

estimates for the difference. In the latter work there were considered the functions ﬁ(z) =

h(Re z) being the Legendre transform of a convex function h(t) defined on the interval (—1;1)
of the real axis. The approximation of such functions has applications in issues on representing
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functions in integral weighter Hilbert spaces on intervals by the exponentials series. In work
[5] there were constructed entire functions quite well approximating convex functions of the
mentioned type, if ¢"®(1 — |t|)" — oo for each n as |t| — 1.

The present paper is devoted to constructing an entire function approximating asymptotically
functions h when e"® (1 — |t|)® = o(1) for each n as |[t| — 1.

Construction of entire function. Let u(z) be a non-negative twice differentiable convex
function on R, u(0) = 0, |z|u”(x) decays as |z| increases and

u"(x) = o(1/[x?), |2] — oo (4)
We define two increasing sequences 7, and z,, € (T,,,T,,11), n € Z, by the relations
Tn+1

du'(z) =1, ne€Z, n#0, / (x — z,)du' (z) = 0.

Tn

Tn+1

TO = O, (TnJrl - Tn)/

Tn

We let p, = T,,+1 — T,,. The squares

) 1
Pom={2=a+1iy: T <x < T, |y—pk(m+§)| <%

are mutually disjoint and the points wy,,, = xp + i(m + %), k,m € 7, are the mass centers of
these squares w.r.t. the measure du'(z)dy. For ¢ € (0;1) we let

qu,n = Wk,n + Q(Pk,n - wk,n)~

Theorem 1. There exists an entire function f(z) with simple zeroes wyn, = xx + ipp(m + 3),
k,m € Z., obeying the conditions
1. For each z € C the estimate

In[f(z)] < w(Rez) + O(N(2]z]), [2] — o0,
holds true, where N(r) is the counting function of the sequence |xy|:

N(r)= > L

|zg | <7
2. For z ¢ U, I, the estimate
In|f(z)] > u(Rez) —2In|z| + O(N(2|z])), |z| > 1, |z] — o0,
holds true.

Proof of Theorem 1. We can assume that u(0) = »/(0) = 0. We begin with a preliminary
lemma.

Lemma 1. For the piece-wise linear convex function v(x) on R defined by the condition that
its derivative is a piece-wise constant function with the discontinuity points {x,} and the jump
P at point x, and v(0) = v'(0) = 0 the condition

sup |v(z) —u(z)| < 1

zeR
18 satisfied. Moreover, the conditions for function w implies that sequence p, increases as
|n| — oo and

Tn . Tn
limn_mTJrl =o0, lim, , —— =o00, (1)
n n+1
T, T, T, T,
0< T, <a, < +12+ L om0, 0> Ty >an > +12+ . n<0
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Proof. By the induction in n one can prove that for each n one has w(7,) = v(T},), v'(T,) =

V'(T,,). Therefore, function v(x) is the upper envelope for the tangent functions of u(x) at
points T}, and

sup |u(z) — v(z)| = sup(u(z,) — v(z,)).

zeR nez
The estimate of the latter supremum can be done by elementary methods. O]

Due to this lemma we can prove the theorem assuming that u is a piece-wise linear function.
By u we denote the measure associated with the subharmonic function u(z) = u(Rez). We
observe immediately that measure p is concentrated on the vertical lines Re z = z; and on each
of these lines it is linearly distributed with the density pik. At that, p-measure of each square
Py, equals 1 and points wy, are the mass centers of square P, w.r.t. measure p. By v we
denote the discrete measure with the unit masses at points wy . It was shown in work [2] that
under these conditions outside a small exceptional set £ the relation

z
[ ]t 2] dww) - ww) = ota(izh), 12l — .
holds true. Thus, it is sufficient to prove the relations
z
[w]t= 2] dww) - uw) < 0N (aD). 2] — .

w

and
/m ‘1 - 5‘ (dv(w) — p(w)) = —2In|2| + O(N(|2]), || — oo

outside the set |, ,, Py,
Indicating by [z] the integer part of a number z, for each p > 0 we have

T T 1 1
—— =4+ =] < r € R, 2
p {p 2} @)

57

/:(fj—[]é+ﬂ)dt<§,xeﬁ. (3)

The restriction uy of measure p on the critical line Rew = xp+it is generated by the function
ka + C, while the restriction of point measure v is generated by the function [pik +3]+C. We
let

t 1 t
me(t) = [—+—} — = L(zw) :m‘1_ i‘ — Reln (1_3).
Pr 2 Dk w w

By n we denote the charge whose restriction on the vertical line Rew = zj, equals n(t)dt.
Under these notation we need to estimate the integral

/m 1= 2] dw(w) — plw) :Z/: L(z o + it)dne(t)

= Z/m L' (2, zp + it)ne(t)dt = — /L’(z,w)dn(w)~

We shall make use of the following representation (w = s + it)

: : 1 ]
Lg(z,w):Re( ! —i>:—ImL:Im——Im : (4)

w—z w (w— z)w w w—z
We fix a point z = (v + iy) € P,; assuming that x,y > 0, i.e., point P, ; lies in the first
quadrant. We take a sufficiently small § > 0 and introduce the squares: Q(0) is the square
centered at 0 with the sides parallel to the axes and of length dr, r = |z|, Q(z) = Q(0) + z. For

sufficiently small § squares are disjoint. Indeed, these squares lie in the circles of radius v/26r
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with the same centers. Therefore, if § < 1/4/8, the mentioned circles are disjoint. We shall
suppose that 2§ < 1/ V/8. In this case the distance between the squares obeys

dist (Q(0),Q(z)) > dz|. (5)

Lemma 2. Let E be the exterior of two vertical strips with the bases [—dr;dr]| (involving
square Q(0)) and [x — or;x + 0r] (involving square Q(z)). Then (w = s+ it)

|zt w)ante

Proof. Let xy ¢ [—dr;0r] [z — 0r; x + dr]. We employ (2), (4) and Cauchy-Schwarz inequality

(z, xp + it)dt y y dt <
‘/ (1t F ) ' o |TK +it||xg + it — 2]

=0(1), |z] — oo.

1 1
B ) ) =
) oo ’$k+it‘2 oo \xk+it—z\2 2 ’xk(gj—xk”

Lemma 1 (relation (1)) implies that for some constants ¢ < 1, C' > 0 and each n,m € Z,

nm > 0, |m| < |n|, the estimate
T,

Lm o Orgnl=Iml
T, 1
holds true. Hence,
Il < Oglki=mi=2.
Tk

Consider the indices k obeying x; > x + ér and let m > 0 be the smallest among them. Then

7|2] —x)| _ ™C(B -/
(z, ) + it)dt < < 1.
Z / ne(t K 2/ [T (& — )] Z xp(x — ) 4(1—/q)0
In the same way we can estimate the sum of mtegrals w.r.t. the indices k obeying z; < —or.
And the same is true for the sum of integrals w.r.t. the indices k£ for which ér < z, < x — or if
they exists. The proof is complete. O

Lemma 3. Let F=C\ (EJQO0)JQ(2)). Then (w=s+it)

[ L want) = 0D, o — .

Proof. The support of the charge n = v — p on set F' is the union of the intervals zy+i(dr; +00),
zy + i(—00; —07;), xf € (—=0r;0r), xp + i(y + 0r; +00), 2 + (—o0;y — or), | — zx| < or and
probably of bounded intervals zy, + i(dr;y — dr), zx € (x — or; 7).

Consider a bounded integral (dr;y — dr). By representation (4) and estimate (2) we have

(w = xp +it)
y—or / Bl y—or dt 1
/& ne(t)L'(z, xk—l—@t)dt‘ 5 /& Tw = 2lw]| S ?
Consider an interval xp + i(dr;+o0). If w = xp + it and =z, < x — §|z[, then
lw— 2| 2z — ), > 6|z|, and thus |w| < |w — 2| + |z] < 2w — z|. Hence,
lw— z| > 0 w|
T 1446 "
It yields for w = zy, + it, t € (dr;+00), the estimate
||

|Li(z, zp +it)| < W
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1
/5 ack—i—t?\%'

In the same way we prove that the integrals over unbounded intervals of other kind are bounded
as well. If a vertical line Rew = x intersects with set Q(0)|J Q(z), then xy € (—or; (1 + 0)r),
and thus, the amount of such lines is at most N(2r). The proof is complete. ]

Thus,

+o0
/ (D)L (=, 25+ it)dt
&

r

Proposition 1. Let ( =a+ibe C, 0 € (0;1). Then
1. For each number d we have

b+opi. (ka — d)
Im/ —— 2 dt| < 20.
b—opg (:Bk + Zt) - C

2. If opy < Or, then

btor
[t |1
' brop, (T + i) — C

Proof. 1. Since

t
btopk (177 - d) 1 Pk (1 + b — dpy)dT
Im . dt =— Im -
b—opg (xk - (l) + Z(t - b) Pk —0opk (xk: - CL) +aT
1 TPk d b—d OPk d
Di —opr (xp —a) + it Dk —opr (xp —a) + it
and
TPk dr TPk —7dr
Im —_— = 5 5 =0,
—opp (TR — @) T —opp Tk — a)?+ 71
then
‘Im /'b+(7pk T]k(t)dt ‘ _ i Im /'O'Pk TdT _ i /ka T2d7' < 20-.
boop, Tk —a)+i(t —D) Di: —opp (TR — @) T i J_op, |Tx —al? + 72

2. Integrating by parts, we obtain

b+or b+-6r b+-6r t .
t)dt 1 idt
/ 77k() = (/ nk('r)d7> _ —|—/ </ nk(T)dT) TSR
biopy Tk + it —C btop T +10T —a  Jorope \Sorom (g + it — )

Therefore, by estimate (3)

- b+or k pk / dt < l Pk < i
btopr, Tk —i— zt — C 4(57’ brop, (Tk — @)%+ (t —b)? S Ao dopr 20
The proof is complete. O

Lemma 4. The relation (w = s +it)

\/ e wdn(u)| = 0D, 2] — o

holds true.

Proof. By representation (4) and estimate (5) we see that for w € Q(0) the estimate |w — z| >

d|z| holds and hence,
1
‘/ — - (20r) =
sr (Tk + zt -2

\57“
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The number of z;, € (—dr;dr) equals N(0r), thus,

'/Q(O - Zdn )=

or
We let 0 = 1f B < drand o = o if 2= > 0r. We apply Proposition 1 for ( =0, d = 0. In the

first case we obtaln
T dt t)dt
2
Im/ P4 / Im (1)
e T, + 1t % Cptj<or Tk +at

O(N([=1), |2 — oo (6)

9

‘Im/ ()dt
sr Tk + it

while in the second case

Im / <1
5r Tk + Zt
Hence, in all the cases we have (w = xy, + it)
(t)d
Tm / Dt g
—or
Together with relation (6) it completes the proof. O

Lemma 5. The upper estimate (w = s + it)
i [ Lz wjdnte) = ON(ED), ol — o

18 valid.

Proof. We again employ representation (4). Since |w| > |z| — |w —z| = (1 —0)|z| for w € Q(2),
we have
o () dt 1 20

< - (207) = ——.
s Thtit] S (1= 0)r (20r) = =5
The amount of x € (x — dr; x + dr) does not exceed N((1 + 6)r), thus,

Im

tn [ S dofu)| = ORI, — )
Q) W
We fix a number oy € (0; ;) and we split the set of indices k such that ), € (z — dr;a + 6r)
into two parts:
J is the indices for which there exists a point pg(m+3) in the segment [(y —oopk); (y+0o0ps)],
where m is an integer;
Ji is the other indices.

1. For k € J; we apply Proposition 1 taking o = gq if ogpr < 0r and 0 = &£ 1f oopr = or. In
the latter case we obtain 5
yor t)dt
‘Im / _m®dt |,
y—or Tk il —2

while in the former

y+or tdt
Im / _m®dt |
y—or Tk it —z

Bearing in mind estimate (7), we obtain

y+oopr <m — —) dt
J i

T+t — 2z

t)dt 1
+ / LA QLU P WS S
aopr<ly—t|<dr

—00Pk

y+or
Z/ Li(xy + it, 2)ni(t)dt| = O(N(2]z])), |z| — oc.

keJy y—or
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Thus,

> y+or .
/m ‘1 - E‘ d(w(w) = p(w)) =3 Im 5 % FOWNE@2]), o] — o0, (8)
keJ y—or k

2. For each index k € J there exists an integer m = m(k) such that |y — py(m + 3)| < oops.

We introduce the notation y; := px(m(k) + 1). By the second item in Proposition 1, as

2
|Z| — 09,

y+or y+oopr Nt
Zlm/ ZI / O o va)ep).
keJ Lk _'_ Zt -z y—oope Tk T U —2
We note that if k; = min{k € J}, ky = max{k € J}, then
k2*1 kQ*l
Zp’“ - Z(T’fﬂ —Ty) =Ty, — Ty, < (x+6r) — (x — dr) = 20r,
k=k1 k=k1
hence,
< 20r, ke J

We let I, := (y — By +5) if pp < 25r and Iy, := (y — dr; y + or) otherwise. By the estimate
for py the latter situation can occur only once k = kyq, ko 1f these indices are in J. Thus, as

2| — o0,
/1n]1_£]d(u(w) =Y Im / u+—2)f_tz+0(N(2|z|)). 9)

keJ 1

It remains to estimate the integrals over intervals I, k € J.
3. Let k € J, Iy = (ag; b) and for some integer m

¢
- = ar <t <y,

— P
m(t) {m+1 p Yp <t < bg.

Then

Im/M:Im/ —I—Im/
I, T+t — 2 ar :ck—l—zt—z a:k—l—zt—z

by m - = dt b (y _ t)dt
=1m xk+zt—z . (xk—x)Q—l—(y—t)th'
Yk

We estimate the first integral by means of Proposition 1

Im/bkugél. (10)

Ty + it — 2z

The second integral can be calculated as

. y—tydt . [ee—2)? 4 (y — )
(e —x)2 + (y — 1) (xr — ) + (y — yi)*
vy k
By the assumption for k € J, k # ki, ko, we have |y; — y| < oopr < ZF. Hence, |by —y| >
bw — yi| — |y —y| > & — B = B > |y — y| and therefore,

(zr —2)* + (y — by)?
" \/(xk — )+ (y — u)? >0
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Together with (9), (10) it yields

[ ]t 2| dww) - uw) <o), 1o — .
w
The proof is complete. O
To complete the proof of Theorem 1, it remains to obtain the lower estimate outside the set

U, P, under the assumptions that z € P, ;. By estimates (9), (10) we just need to show
the lower estimate for the sum of integrals

t)dt N e 2?4 (g — )
Z/ Tk — x)? —t)th_ 2! \/(%—90)24‘@— )7

keJ (y keJ yk)

We split the set of indices J into three parts: Jo ={k € J, 0 < xp <z}, J_ ={k € J, x, <0},
Jy ={k e J, x <ux}. It is clear that

(zr — 2)* + (y — bi)? Pi
" \/(xk — )+ (y —yp)? s \/1 Tl

Let z € P, ;, but z ¢ Pr‘ij. If k€ Jo k#n, then x — x;, > B, and therefore,

ln\/m—x) (=0 . 5

(wp — )2+ (y —yp)?

If n € Jy and k = n, by condition z ¢ P ; we have v — z, < %&. Thus,

— 7r)2 — b.)2 1
Y At ) S R PR
(@ —2)* + (y = yi) q
Two latter estimates imply

Sim [ O o(Nefep), o] — o i

x it — 2z
kedo I Tkt

If k€ Jy, k #n, then v — x4y > 5, and assuming |z — x,| > 1, we obtain

Zln\/ xk_x)2i‘ézy/_zk§2 N(2r) +1nH e —1) N(2r) + Inor.

keJy kedy
In the same way we get
)2 _b)2
Zln Py i)2<N(2r)+lan—k:1+ln5r.
= (zp — x) + (Y —vp) ey 2@, — )

Two latter inequalities and (11) follow that

_ — b2
Zln\/ T = @)* £y b’:) < 2Inr 4+ 2N(2r).

et :L’k—:L' ‘l’(y_yk)Q
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